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1. Introduction

Let D be an arbitrary bounded domain of the N-dimensional Euclidean space
RN.

We will call a function Ga(xy j ) (α>0, ^,}Έfl, xΦj) a (continuous)
resolvent density on D if the following conditions are satisfied:

(G.I) Ga(xyy)^0, a>0,

(G.2) a[ GΛ(x,y)dy^l, α>0,
JD

(G. 3) Ga(x, y)-Gβ(x, y)+(α-/3) \ Ga(x, z)Gβ(z, y)dz=0 ,
JD

a, β>09 xy y<EΞD, xφy.

(G. 4) For fixed α > 0 , Ga(x, y) is continuous in (x, y) on DxD off the

diagonal.

A resolvent density on D is called conservative if the equality holds in (G.2)
for all a>0 and all x<=D.

In this paper, we will construct a conservative resolvent density on D and
show that it determines a diffusion process (that is, a strong Markov process
having continuous trajectories) which takes values in a natural enlarged state
space D*. When the relative boundary 3D of D is sufficiently smooth, our
diffusion process is shown (Theorem 6) to be the well known reflecting barrier
Brownian motion on DUdD. For this reason, our process for an arbitrary D
may be considered the reflecting barrier Brownian motion in an extended sense.

A function p(t> x, y), ί>0, x, y^D, will be called a (continuous) transition
density on D, if it satisfies the following conditions:

(T. 1) p(t, x, J O ^ O , f>0, x,

1) dy denotes the Lebesgue measure on D.
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(T.2) ( p(t, x, y)dy^\, t>0, x
JD

(T. 3) p(t+s, x, y)= [ p(t, x, z)p(s, z, y)dz, t, s>0 , x, y<=D .

(T. 4) p(t, x, y) is continuous in (t> x, y)^(0, + oo)χDχD .

A transition density for which the equality holds in (T. 2) for a l l ί>0 and

all X E D will be called conservative.
Let p°(t, x, y) be the transition density corresponding to the absorbing barrier

Brownian motion on D2K Set

(1.1) G°(x, y)=\+~e—p"(t, x, y)dt, α > 0 , x,y^D,
JO

then G°(ΛJ, y) is a resolvent density on D and can be expressed in the form,

(1. 2) G°(x, y)=ΠΛ(x, y)-Ex(e-«τna(Xτyy)) a>0, x,

where,

Ex is the expectation with respect to the standard Brownian measure Pχy

and T is the first exist time from D of the Brownian path Xt.
A function u defined on an open set U of RN will be called a-harmonic on

£7 if
/ 1 \ N d2

(a- Δ)u(x)=0, x^ U, where Δ is the Laplacian; Δ = Σ —r For func-
V 2 / *=1 dxj
tions w, Ϊ; on Z), we set
(1.3) (u, v)=\ u(x)v(x)dx ,

2>(w, υ)= \ (grad M, grad v)(x)dx .

For each α > 0 , let JEΓ̂  be the Hubert space formed by all α-harmonic functions
on D with the following norm:

(1. 4) DΛ{uy u)=D(u, u)+2a(u, u)< + oo .

In section 2, we shall prove the following.

Theorem 1.
(i) For each a>0 and each x G ΰ , there exists a unique y-function Rx

Λ{y)

=Rcά(xy y) in HΛ such that the equation

2) cf. [8].
3) \x—y\ denotes the distance between x and y.
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(1. 5) D(RZ, v)+2a(R%, v)=2v(x)

holds for all v

(ii) Set

GΛ(x,y)=G°(x,y)+Ra(x9y)9 α>0, x,yeD.

Then GΛ{x, y) is a conservative resolvent density on D, symmetric in x,

(iii) Denote by B(D) (resp. C(D)) the collection of all bounded measurable (resp.

bounded continuous) functions on D. The operator GΛ defined by

(1.6) GJ(.)=\DGΛ(;y)f(y)dy, /εB(fl),

maps B(D) into C(D). Moreover, iff<=C(D), then Km aGJ(x)=f(x\ χ<=D.

(iv) Suppose that K1 and K2 are compact, D1 is open and K^D^

Then, sup Ga(x, y) is finite.

(v) There is a unique transition density p(t, x, y) on D satisfying

(1.7) Ga(x,y) = \+~e-«tp(t,x,y)dt, a>0, x,y(ΞD.
Jo

p(t, x, y) is conservative and I p(t, x9 y)f{y)dy is continuous in (t, x) ^(0, +oo)
J D

χDforanyf<=ΞB(D).

When 3D is suffciently smooth, the transition density in Theorem 1 turns

out to be the fundamental solution of the heat equation ( — Δ )u(t% x)
\dt 2 XJ

= 0 , t>0, x^iDy with the boundary condition u(t, x)=0, t>0, x<=dD,

dnx

where nx is the inner normal at the point x^dD. Indeed, assuming that

ΘD is in class C3, let us denote the latter by p(t, x, y)9 *>0, x, y<=D. Then,

it is a transition density and
p + oo

Rω(x, y)=\ e'Άtp(ty x, y)dt—Gl(x, y) is an α-harmonic function in the class
Jo

^(DUdD) as a function of j4>. Hence, we have only to show that

R%=Rω(x, •) satisfies equation (1.5). Applying the Green formula to the

identity —R*Λ(y)= — G°(x,y), y<EΞdD, we see that
dny dny

(1. 8) \D{K, υ)+a(R Λ, v)=1 j ^ J L G Ϊ ( * , y)v(y)a(dy)

4) cf. [7]. Cι(D\JdD) denotes the totality of continuously differentiable functions on
D\J3D.
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holds for every v&C\D\JdD), σ{dy) standing for the surface Lebesgue
measure of dD. The right hand side of (1.8) is the α-harmonic function
with the boundary value v. A usual limiting procedure leads us to the validity
of (1. 5) for R% and for every v^HΛ

5K

We call a compact set D* a compactίfication of D if Z)# contains D as an
open dense subset and the relative topology of D in D* is equivalent to the
original Euclidean topology there. In Sections 3 and 4, the following theorem
will be proved.

Theorem 2.

(i) There is a compactίfication Z)# of D such that p(ty x, y), t>0, of Theorem 1
is extended to (x, y)^D*xD uniquely in a certain way and the extended function
{denoted again by p{t, x, y)) satisfies conditions (T. 1), (T. 2) and (T. 3) for
Λ e f l* and y^D.
(ii) There exists a Markov process X= {Xt, Pχy xGί)*} possessing the following
properties.

(a) For each Borel set A of D*,

Ps(Xt€=A)=[ p(t,x,y)dyft>0, XΪΞD* .
JDOA

(b) X is continuous

Px{Xt is continuous in t for every ί^>0)=l, Λ G U * .

(c) X has the strong Markov property.
(d) The part of X on the set D is the absorbing barrier Brownian motion there

for every Λ G U and Borel set A of D,

; t<τ)=\ p\t, x, y)dy, ί > 0 ,
J A

T being the first exit time from D.
(e) There exists a Borel subset D^ of Z)# containing D such that

Px(X0=x)=l,

Ps(X0=x)=0, XEΞD*-D* .

Moreover X is conservative on D^; Px(Xt^D* for every t^>
= 1,

5) For ϋGffaί, we can find a sequence of functions vnG:Cι(D\JdD) which converges to

v with respect to the norm VD(vy v)-{-2a(v, v). The boundary function of vni then, con-

verges to that of v (which is determined by v, σ-almost everywhere on dD) in L2(σ) sense.
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Let Z)# be the completion of D of the Martin-Kuramochi type with respect
to the resolvent density G^x, y) of Theorem 16>. In Section 3, we will show
that this Z)# satisfies condition (i) of Theorem 2 and we will derive a right
continuous strong Markov process X on D* satisfying the condition (ii, a).
Moreover, the property (ii, d) will be verified.

We now give some conments on the completion in Theorem 2. The first
remark is that the validity of Theorem 2 (i) for our D* owes essentially to the
conservativity of the resolvent density of Theorem 1. The second remark is
concerned with the strong Markov property of X in the theorem. D. Ray [20]
proved that, under certain hypotheses, to a resolvent on a compact space cor-
responds a strong Markov process. One of Ray's hypotheses is that the given
resolvent makes invariant the space of all continuous functions. This condition,
however, is not necessarily satisfied by the resolvent (operator) induced by the
density function Ga(x, y) on the extended space D*. Therefore, Ray's original
theorem is not enough to verify the strong Markov property of our X. We will
reproduce the proof of H. Kunita and H. Nomoto [9] they treat a wide class
of Markov processes including ours. (T. Watanabe pointed out that there is
another nice completion for which Ray's original results can be applied in them-
selves. Under this completion, Theorem 2 is still valid and the conservativity
of the resolvent density is irrelevant. See [11].) Third, we note that D*—D1*
is the set of all branching points in Ray's sense [20]Ό. Finally, statements (b)
and (e) imply that almost all trajectories starting from a non-branching point
never contact with branching points.

In order to complete the proof of Theorem 2, we must show the continuity
of trajectories of X. Section 4 will be devoted to the proof of the above feature
of X by a potential-theoretic method. First, G^x, y) of Theorem 1 will be
extended to (x, y)^D*χD* and every summable 1-excessive function will be
expressed as the integral of the kernel Gλ{x, y) with a unique measure on Dx*
(Theorem 3). Second, we will introduce the notion of the Dirichlet norm

HMIIx of the function u(x)=\ Gλ(x, y)f(y)dy, ^ G ΰ * , /e/?(D), with respect to
v D

our process X and we will then show (Theorem 4) that the equality | | |M|| |X

= I (grad u, grad u) (x) dx holds for each function of above type. This is a charac-
JD

teristic feature of reflecting barrier Brownian motions. Owing to the result of
M. Motoo and S. Watanabe [18], this characteristic property of X permits us
to conclude that, for any additive functional At of X such as Ex(At)=0 and
EX{A]) < + °°, x^. D*, t >0, the stochastic integral \ XDX*-DdAs vanishes

6) cf. [12] and [13].
7) For xE:D*—DX*, the life time of our path Xt is either infinity or zero PΛ-almost

every-where (see Lemma 3.4 and 3.5).
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identically (Theorem 5). Here, XDι*—D is the indicator function of D*—D.
This property of X will exclude the possibility that the trajectories of X have
jumps on Dx*—D with positive probability.

Acknowledgement. K. Ito and N. Ikeda suggested me the problem treated
here and encouraged me throughout the research. The analysis of the con-
tinuity of trajectories performed in §3 and §4 is in debt to valuable advices by
H. Kunita and S. Watanabe. I wish to thank them all for their kindness.
Thanks are due to K. Sato and T. Watanabe for their kind and useful opinion
on the manuscript.

2. Construction of resolvent density (proof of Theorem 1)

From now on, we fix an arbitrary bounded domain D of RN. The following
criterion for a function on D to be α-harmonic is easily verified and it will be
frequently used in this paper.

Lemma 2.1. Let a be positive number. A function u on D is a-harmonic,
if and only if, for each ball B with closure contained in D, it holds that

u(x)= \ hξ(x, y)u(y)σ{dy\ x
JdB

1 Λ

where σ(dy) is the surface Lebesgue measure of dB and hξ(x, y)— BGl(x, y)>
2 dny

X G B , y^dB, BGl(x, y) being the resolvent density defined by (1. 1) for the ball B.
For functions u and v on D, define D{uf v) and (uy v) by (1. 3). Put

(2. 1) DΛ(u, v)=D(u, v)+2a(u, v)y a>0 .

Denote by HΛ the space of all α-harmonic functions u satisfying Da(u, u) < + oo.

Lemma 2.2. For each α > 0 , HΛ forms a real Hilbert space with the inner
product DΛ(u, v). Moreover, any Cauchy sequence of functions in Ha with respect
to the norm \/~Da{uy u) converges on D uniformly on any compact subset of D.

Proof. Suppose that un<^ Ha, n= 1, 2 ,•••, and DΛ(un—um, un—um) • 0.

L e t K be any compact subset of D. Choose £ > 0 smaller than the distance

of K with dD. L e t Bz{x) be the ball with radius 8 centered at x in K. Ap-

plying L e m m a 2. 1 to the α-harmonic function un—um, we have

(2 .2 ) un(x)-um(x)

where Vζ is the volume of BΈ(x), \y—x\ is the distance between x and y, and
VΛ(

r) is a function of real r > 0 which depends only on α > 0 and satisfies
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0<i7Λ(r)<l. The Schwarz inequality applied to (2.2) leads to

( 11 I V l ήl I V l i <CΓ (ii •*/ Ίi 11 "\

^——Da(un—um, un—um)y x<=K.

Thus, un converges to a function u on D uniformly on any compact subset of
D. By virtue of Lemma 2. 1, u is also α-harmonic on D and the first derivatives
of un converge to those of u uniformly on any compact subset of D. On the
other hand, since un, n = l , 2 , , form a Cauchy sequence with respect to the
norm Da, one can find, for any £>0, a compact subset KdD such that

I grad un\ \x)dx+2 [ un(x)2dx<£

uniformly in n. Hence, u^Ha and DJun—u, un—u) > 0.

Lemma 2.3. Let a>0 be fixed.
(i) For each xEU, there exists a function u^^HΛ uniquely such that

(2. 3) Da(uc3°, Ό)=2Ό(X), for any vEΞHa.

(ii) The function u(X^ in (i) is a unique element of HΛ minimizing the value of the

functional Ψ(z/)=DΛ(w, u)—\u(x) on Ha.

Proof, (i). For a fixed x G ΰ , define the linear mapping Φ from Ha to R1

by Φ(v)=2v(x), v<^HΛ. Φ is continuous by the latter half of Lemma 2.2.
The Riesz theorem implies (i).

(ii). We have only to notice the equality Ψ(u)=Ψ(ucx^)+Da(u—uc*\

DEFINITION 1. For α > 0 and x, y^D, denote by R%(y)=Rω(x, y),
the function u(X\y) of Lemma 2.3.

DEFINITION 2. Let G°(x, y) by the resolvent density defined by (1.1).

Define the function GΛ(x, y), α > 0 , x, y^D, by

Gω(x, y)=G°(x, y)+RΛ(x, y).

Before examining those properties of Ga{x, y) stated in Theorem 1, we

prepare three lemmas.
An exhaustion of D is a sequence of domains Dny w=l, 2, , such that

the closure of Dn is contained in Dn+1 and Dn converges monotonically to D.
An exhaustion {Dn} of D is called regular if dDn are of class C3.
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Lemma 2.4. Let α > 0 be fixed.

(i) Any non-negative a-harmonic function on D is either identically zero on D or

strictly positive on D.

(ii) The function w=l—aGlί is strictly positive on D. Moreover w is the

unique element in HΛ satisfying

(2.4) DΛ(ΪD, υ)=2a(l, v)for all v^HΛ .

Proof, (i). Since Lemma 2.1 implies that the value of an α-harmonic

function at any point of D is a weighted volume mean on the ball centered at the

point, property (i) is verified in the same manner as in the case of harmonic

functions.

(ii). It is evident, by expression (1.2) of G£, that w is α-harmonic and

strictly positive on D. In order to show identity (2.4), consider a regular ex-

haustion {Dn} of D.

Put wn=XDn—anGlXDn, where XDn is the indicator function of

ΰ w

 nGlXDn(x)= f "G%x, y)dy and nG°a(x, y) is the resolvent density (1. 1) for
JDn

Dn. The function wn is α-harmonic in Dn, converges to w monotonically and

(consequently) uniformly on any compact subset of D. On account of Lemma

2. 1, the derivatives of wn converge to those of w on Zλ Denote byZ>«( , )

the integral (2. 1) on ΰ M . Since wn belongs to C\Dn\JdD^ we can apply

Green's formula to wn and v^HΛ, obtaining D*(wn, v)=2a{XDn, v).

This equality implies the inequality Dl{wny wn)—4a(XDn> wn) ^D2(v, v)

—4 oc(XDn, v) for all v^Ha. Letting n tend to infinity and using Fatou's

lemma, we obtain

Da(w, w)—4α(l, w)<,DΛ{v, v)—4α(l, v).

Thus, w^Ha, and if we put, instead of v, w-\-6v in the inequality above, we

arrive at (2.4). The proof of the uniqueness is straightforward.

L e m m a 2.5. Take an exhaustion {Dn} of D arbitrarily. Let nR%y) and
nGa(x, y)y α > 0 , x, y^Dn be the functions defined by Definition 1 and Definition 2

for the domain Dn. Then, lim nGΛ(xy y)—GΛ(xy y), α > 0 , xy y^D, x^y.

Moreover, for each x^D, the equality

(2.5) lim »R*a(y)=R*a(y), yeD,

holds and the convergence is uniform in y on any compact subset of D.

Proof. Let nGl(x, y) be the resolvent density defined by (1. 1) for the

domain Dn. Since nGl(x, y) increases to G%(x, y) we have only to discuss the

convergence of nR% to R%.
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Let us fix x^D. We can assume that x is in Dx. For each Dny denote its
associated α-Dirichlet norm by Dl and its associated Hubert space by HI.
It is clear that, if m<ny the restriction of the function of HZ to Dm is an element
of IT?.
If m < n, we have

DXRZ-mR*a,
 nR«-mR%)

We will apply Lemma 2. 3 to each term of the last expression. The first term
is not greater than DZ{nRx

Λ,
 nR%)=2nRl(x). The second and third terms are

equal to — VR%x) and 2mR%x), respectively. Therefore, for each N, it holds
that

(2. 6)

for any m and n such that N^m<n. Inequality (2. 6) implies that nRl{x) is
non-increasing in n and since nRZ(x)=^DZ(nRZ, nR*) is non-negative, nR%x)
converges. Thus, inequality (2. 6) and Lemma 2. 1 show that nR%y) converges
to an α-harmonic function Rl(y) on D uniformly on any compact subset of
D, and for each N, the restriction of nR% to DN converges to that of Rx

a in the
norm D%.

Let us prove that R%(y)=Rl(y), y^D. Since R% belongs to HI, Lemma
2. 3 (ii) implies

R»Λy R%)-\Rl{x).

Letting n tend to infinity, we have, for each N>

Let N tend to infinity, then

Thus, we see that R%^HΛ and that, by Lemma 2. 3 (ii), the inequality above is
just the equality and R%y)=R%y), y^D. The proof of Lemma 2. 5 is com-
plete.

We have seen (in the paragraph following Theorem 1) that, if dDn is of
class C3, nGa{x, y) is nothing but the Laplace transform of the fundamental

solution of the heat equation on Dn with the boundary condition u=0
dnx

and this solution is a transition density on Dn. Hence, we have

L e m m a 2.6. Let {Dn}, {nRΛ(x, y)} and {n(Ga(x, y)} be those in Lemma

2.5. If Dn is regular, then we have
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(2.7) "Ga(x,y)^O, α>0, x,y^Dn, x+y.

(2.8) "Ra(x,y)^O, a>0, x,y^Dn.

(2.9) a\ "Ga{x,y)dy^\, a>0, xeDn.

(2. 10) "Ga(x, y)-"Gβ(x, y)+{a-β) \ nGa{x, z)"Gβ(z, y)dz=0,
JDn

α, /3>0,

We note that (2. 8) follows from (2. 7).
Now, let us complete the proof of Theorem 1 by the following series of

lemmas.

a\ Ga(x,

Lemma 2.7. Ra(x> y) is non-negative for α > 0 , xy y^D and

\ ( y)y^l, for α > 0 , x&D. Ga(x, y) is symmetric in xyy^D and

continuous in (x, y) on DxD off the diagonal.

Proof. The first part of Lemma 2. 7 is an immediate consequence of
Lemma 2. 5 and Lemma 2. 6. It is well known that G£(#, y) is symmetric in
Λ J G B and continuous in (x, y)^DχD off the diagonal set. Ra(x, y) is sym-
metric because Da{R*Λ, Rl)=2RZ(y)=2Ri(x), x,

We shall show that Ra(x, y) is continuous in (x, y)(=DχD. Since RΛ(x9 y) is
α-harmonic in x and in y, applying Lemma 2. 1 for any x> y^D and for
sufficiently small balls Bx and B2 containing x and y, respectively, we have

R*(x,y)=\ j hBi(x, z)Ra(z, z')h*2(yy z')σ1(dz)σ2(dz'), where σ^dz) and

σ2(dzf) are the surface Lebesgue measures of dBλ and dB2y respectively.

While, Ra(z9 z') being continuous in z' for each z9 \ RΛ(z9 z')σ2{dz') is
J "dB2

finite and α-harmonic in z. Thus,

Ra(z, zf)σ1(dz)σ2(dz/)< +oo .

Since Ra is non-negative, Lebesgue's convergence theorem implies continuity of
Ra(x, y)> The proof of the latter half of Lemma 2. 7 is complete.

We will show assertion (iv) of Theorem 1.

Lemma 2.8. Let K1 and K2 be compact subsets of D such that Kλ and the
closure of D-K2 are disjoint. Then, sup GΛ(x, y) is finite.

Proof. Without loss of generality, we can assume that S=d(D—K2)f]D
is sufficiently regular. Consider a regular exhaustion {Dn} of D such that

Let x be fixed in Kι. For a fixed n} set D'=Dn—K2 and u{y)
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= nGΛ(x,y)yy<=D'{JdD'. Since — u(y)=0, y<EΞdDny we see by Green's
dΐly

formula that DΛ'(u, υ-u)=0 holds if v<=C\D' U dD') and v=u on S8\ Hence,
the equality

(2. 11) 2V(κ, u)=DΛ\v, v)-Da'(u-v, u-v)

is valid for each z; belonging to (&u={v; v is square summable on D\ v has
square summable weak-derivatives on D\ v^C(D'\JS) and υ=u on S}9^.
Set δ=supw(j;) and Wi(j)̂ = min (u(y)> δ), jyeD'U 5. Obviously, Da'(u, u)

^Dj(ux, u^. But, since wxeS)M, (2. 11) holds for v=ux and consequently
u1(y)=u(y) on D'.

We have proved that, if X<ELKX and y<=Dn—K2, then "G^tf, j )
^ sup nGa(x, y). Letting n tend to infinity, we see by virtue of Lemma 2. 5,

Ga{x, y)^ sup Ga(x, y), x(=Klt y(ΞD-K2. Thus,

sup GΛ(x, j ; ) ^ sup GΛ(x, y).

The right hand side above is finite by Lemma 2. 7.
Let us show statement (iii) of Theorem 1.

Lemma 2.9. The operator GΛ defined by (1.6) maps B{D) into C(D).
Moreover, iff^C(D)> then lim aGωf(x)=f(x),

Proof. We note that G°Λ has those properties in Lemma 2. 910). For

f^B(D)> Raf(x)=\ RΛ{x, y)f{y)dy is α-harmonic and bounded on account
JD

of Lemma 2. 1 and Lemma 2. 7. Moreover, we see by Lemma 2. 1 that, for
any x^D and sufficiently small ball B containing x.9

I aRJ(x) I ̂  ( Λ5(*, j ) I aRJ(y) \ σ{dy)
JQB

^ sup \f(x) I ( AS(*. y) σ{dy) > 0 .

The proof of Lemma 2. 9 is complete.
The following lemmas are statements (ii) and (v) of Theorem 1.

8) DΛ denotes the integral (2.1) on D'.

9) * We call / the weak derivative of υ with respect to the coodinate xif if (/, φ)βf

= —(yy o φ\ holds for every infinitely differentiable function on Df with a compact sup-

port, ( , )jy being the integral (1. 3) on D\

10) See (1.2).
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Lemma 2.10. GJ^x, y) is a conservative resolvent density on D. Ra(x, y)

is strictly positive.

Proof. We must prove that Ga(x, y) satisfies conditions (G. 1)^(G. 4)

stated in the beginning of Section 1 and the conservativity condition. Con-

dition (G. 1), (G. 2) and (G. 4) were already proved in Lemma 2. 7.
Proof of the resolvent equation (G. 3). Take a regular exhaustion {Dn}

of D. Let / and g be non-negative continuous functions on D with compact
supports. Owing to equation (2. 10) of Lemma 2. 6, we have for sufficiently large
n,

(2. 12) (/, nGΛg)n-{f, »Gβg)n+(a-βTGJy

 nGβg)n=0 ,

where (u, v)n denotes the integral of u v on Dn.

Note that 0^nGaf(x)nGβg(x)<^ sup/(*) sup£(*) and that nGΛg converges to
aβ X^D XSΞD

GΛg on D (since, nG%g increases to G#g and nR%y) converges uniformly on
any compact subset).
Hence, we can delete both superscript and subscript n in (2. 12). Owing to
Lemma 2. 8 and Lemma 2. 9, the left hand side of (G. 3) is, for each x^D,
continuous in y^D— {x}, and we can see that the resolvent equation (G. 3) is
valid.

Proof of conservativity. If we show that Ral <Ξ Ha and that

(2. 13) Da(aRΛl, υ)=2a(l, v),

holds for all v^Hay then, we have, by (ii) of Lemma 2. 4, 1—aGl\=aRΛ\ and

Let Dn be an exhaustion of D. Integrating Djjll, R*)=2RΛ(x, y) on
Dm xDny we obtain

(2. 14) DΛ{RΛXDmy RaXDn)=2 f ( RΛ(x, y)dxdy .

Here, we have used the Fubini theorem, which is valid for the following reason:
if

\ \ dxdy\ I (grad, *;(*), grad, Λ2(*)) I <fe
JDmJDn JD

ίί\ \ VDa(R%, Rl)\/DΛ{Rl, Rζ)dxdy

=(I V/2/?Λ(Λ;, X) dx)2 ̂  2 I Ra(x, x) dx X Lebesgue measure of Dn,
JDn JDn

the integral in the last expression being finite by Lemma 2. 7. In view of
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Lemma 2. 7, Ra(xy y)^0 and I I RJxy y)dxdy<L— x Lebesgue measure of D.

JDJD a

Therefore, RaXDn f ° r m s a Cauchy sequence in HΛ and, by Lemma 2.2,

converges to Ral in HΛ. We have DΛ(RΛ1, Raί)=2(ίy RΛ1). In the same

way, identity (2. 13) is obtained. Strict positivity of RΛ(x, y) follows from

Lemma 2. 4.

Lemma 2.11. There is a unique transition density p(t, x, y) on D satisfying

the following conditions.

( i ) Ga(x,y)=\+°°e-atp(t,x,y)dt, α > 0 .
Jo

(ii) For each t>0, f<ΞΞB(D),

\ p(t, xy y)f(y)dy is continuous in (t, x)^(0, -\-oo)χD.
JD

(iii) p(t, x, y) is symmetric in x, y€ΞD and it is conservative.

(iv) Set γ(ί, x, y)=ρ(t, x, y)-ρ°(t, xy y), then

— I γ(ί, x, y)dy > 0 uniformly in x on any compact subset of D.
t JD £ ^ 0

Proof. First of all, we will show the existence of a non-negative function

y{ty x, y) continuous in ί>0, satisfying

(2.15) Roύ(xyy)=\+°°e-«t

Ύ(t,x,y)dty α > 0 , xyyEΞD.
Jo

If x^y, Ra(xy y) is completely monotonic in αG(0, +°°) . In fact, by the

resolvent equation (G. 3) for Ga and G£, we have, if x

(2. 16) (-\γ£-RΛ{χ, y)=nl [Gl^\xy y)-(Glfn^\xy y)] , Λ=0,l, 2 , - .

Here G™(xy y)=GΛ(x, y) and G Γ + 1 1 ( ^ ) = ί G™{xy z)Gcύ(zy y)dzy n=l, 2 , - .
JD

(Gl)M is defined similarly. Evidently, the right hand side of (2. 16) is non-

negative and, by Lemma 2. 8, finite. Hence, RΛ(x> y) is expressed by a measure

on [0, +oo) as

(2.17) RΛ(x,y)=[+~e-Λ8<γ(ds,x,9y), x*yy α > 0 .
Jo

Take a ball B with closure contained in D. Since R^x, y) is α-harmonic in

xy we see, by Lemma 2. 1, for any x€ΞB and any

(2. 18) Ra(x, y)= \ hξ(x, z)Ra{z, y)σ{dz).
J θ#
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Note that hB(xy z) is written in the form

(2.19) h%x,z)=[+~e-«hB(t,x,z)dt, z^By

Jo

1 r)
where hB(t> x> z)= pUt>x> z)y PB being the transition density/)0 for B. Let

2 dnz

us put, for t>0y x G ΰ

(2. 20) γ(ί, x,y)= \ [ hB(t-sy xy z)y(ds, z, y)σ(dz) .
JdB Jo

Owing to equations (2. 17), (2. 18) and (2. 19), the function γ(f, x, y) of (2. 20)

satisfies the desired equation (2. 15). On the other hand, for any ball B' such

as B' U dB'czB, the obvious idenity hB(t, xy z)= [ ['hB'(t—s, xy z')hB(sy z\ z)
JdBy Jo

dsσ\dz'\ χ(ΞB\ z<=dB,

leads us to the relation

(2. 21) γ(ί, Λ , jθ=f (Ά^ί—ί, Λ, ̂ ')T(i, ^', y)dsσ\dzf),
J95^ J

ί>0,

which implies the continuity of j(t, xy y) in (/, x)^(0, +oo)χ j g
/ .

Here, we have used the following estimate which is a consequence of (2. 17),

(2. 20) and Lemma 2. 8.

(2.22) sup γ(ί, x, j / ) ^ C e τ sup R^z, j;)<-f-oo y

where T is an arbitrary positive number and C is a constant determined by T,

B and # ' . Hence, we see that, for any x and y in D, γ(ί, Λ;, 3;) defined by

(2. 20) is independent of ball B such that #<=£ and B{jdB(zD, because it

satisfies (2. 15) and it is continuous in t. It is symmetric in x> y because of the

symmetry of RΛ(x, y) (Lemma 2.7). Henceforce, it is continuous in y, and

(2. 21) and (2. 22) imply its continuity in (f, xy y)G(0, + o o ) χ f l χ ΰ . In view

of (2. 22), we see that I y(t9 x, y)f(y)dy is continuous in (t, x)^(0, -\-oo)χD
JD

for each / e B(D).
Now put, for ί>0, x9

(2. 23) ^(ί, x, y)=p\t, x, y)+Ύ(t, x, y).

Then, p(ΐy x, y) is continuous in (t> x, y)^(0, +oo)χDxD and satisfies

conditions (i), (ii) and the first half of Lemma 2. 11 (iii). In particular,

I p(ty x, y) dy is continuous in ΐ} so that, the conservativity of p(t, xy y) follows
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from that of Ga(xy y). For each x, y^Dy ρ(t+sf xy y) and 1 p(t, x, z)
JD

p(s, zy y)dz are continuous in (t, ί)e(0, + °°)x(0, +00), and so, they are
identical by virtue of (G. 3) for GΛ(x, y). Thus, p(ty xy y) is a transition den-
sity. Assersion (iv) of Lemma 2.11 follows from (2.21) and the inequality

ί γ(ί, x, y)dy^\y t>0y

3. Compactification of D. Construction of a strong Markov
process on the compactified space

Consider the resolvent density GJxy y)y α > 0 , xy J G D , in Theorem 1.
Let xMGΰ, w=l, 2 , , be a sequence having no accumulation point in D and
{Dly / = 1 , 2 ,•••} be an exhaustion of D. For each /, there exists N such that
xn^D—Dι+2y n^N. By Theorem 1 (iv), the family of functions {G1(xnJ y)y

n^N} of y is uniformly bounded in y^Di+1. Moreover, Lemma 2. 1 implies
that, for n^N, the first derivatives of Gx{xn, y)> n^N, are also uniformly bounded
in y^Dι and that functions Gί(xny y), n^N, are equi-continuous there. Hence,
a subsequence of Gλ(xn, y) converges uniformly on each Ώι and consequently,
by Lemma 2. 1, the limit function is 1-harmonic in D.

A sequence xn^D, τί=l, 2, having no accumulation point in D is
called fundamental, if lim G1{xn, j ) exists for each yξΞD.

Two fundamental sequences {#„} and {xn'} are called equivalent, if
lim G£xn, y)= lim Gx(xM', j ) , y£ΞD. This defines a usual equivalence relation

among fundamental sequences.

DEFINITION 3.

( i ) Denote by Δ the collection of equivalent classes of fundamental
sequences.
(ii) For Λ G Δ , define Gx{xy y) by G^x, y)= lim GΎ(xny y), y^D, where,

«->•+°°

{#„} is a fundamental sequence belonging to x.
(iii) Set D*=DUΔ. For x,, Jt^fl*, set

(3 n ^x x)(3.1) ^ , x 2 )

Evidently, p defines a metric on Z)#.

Lemma 3.1.
( i ) (Z)#, p) ώ a compactification of D.

(ii) For each y in D, the extended function Gλ{xy y) is p-continuous in x on

D*—{y} and the class of functions (of x)y {G^x, y)y y^D}y separates points of

D*.
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(iii) If K is a compact subset of D and F is a closed subset of D*—K> then

sup Gλ{x, y) is finite,

(iv) When the relative boundary dD of D in RN is of class C3, D[jdD coincides

with Dm up to a homeomorphism which is the identity on D.

Proof. Martin's original proof (cf. [13], §2, Theorem I and II) can be
applied with no change to obtain the statements (i) and (ii). Third assertion
is a consequence of Theorem 1 (iv). Suppose that dD is of class C3. As we
have seen in Section 1, Ga(x, y) of Theorem 1 is the Laplace transform of a
fundamental solution p(t, x, y) of a boundary problem of the heat equation.
p(t, x, y) and Ga(x, y) can be continuously extended to DUdD as functions

of x and it holds that, for each χ(=D{j dD, / G C ( U U dD), lim f ρ(t, x, y)

f(y)dy=f(x)n\ which implies lim a\ Ga(x, y)f(y)dy=f(x). Hence,

{Gλ{x, y), y^D} separate points of D[jdD. Therefore, D\JdD is homeomor-
phic to D* (cf. [1], §9).

Denote by 33(D#) the σ-field of all Borel subsets of D*. B(D% C(D*)
and C0(D) will stand for the classes of all bounded Borel measurable functions
on Z)*, p-continuous functions on Z)# and continuous functions on D with
compact supports in D, respectively. Each f^C0(D) will be considered as a
function on D* by setting f(χ)=0, xGΛ.

As an immediate consequence of Lemma 3. 1 and Theorem 1 (iii), we have

Corollary. The operator Gly defined by GJ(x)=\ G^x, y)f(y)dyy x^D*y
J D

maps C0(D) into C(D*) and the collection of functions GJ, / e C0(D), separates

points of D*.

Now, let us extend every function Ga(x, y), α > 0 , as follows.

DEFINITION 4. For α > 0 , x G Δ j e ΰ , define Ga(x, y) by

(3. 2) Ga(x, y)=Gι{x, y)-(a-l) ( Gx{x, z)GΛ(z, y)dz .

Lemma 3.2. For each x^ A, GJ^x, y) has the following properties:

(G. 1)' Ga(x, y), α > 0 , y^D, is non-negative, finite and a-harmonic in

(G. 2)' aGJ(x)=G1ί(x)^l, α > 0 ,

where Ga 1 (x) = \ GJx> y) dy.
JD

(G. 3)' Ga(x, y)-Gβ(x, y)+(a-0) \ Ga(x, z)Gβ(z, y)dz=0, a, β>0,
JD

11) cf. [7].
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Proof. Let us fix # e Δ. By Fatou's lemma,

(3.3) GM

By virtue of (3. 3), assertion (iii) of Lemma 3. 1 and assertion (iv) of Theorem
1, the integral appering in (3. 2) turns out to be finite for α > 0 and y^D. When
α < l , Ga(x, y) is clearly non-negative. By Fatou's lemma, Ga(x9 y)^0 for
a > 1. We can easily verify

}Λ(x,y)=0, α>0, yς=D .

Integrating both sides of (3. 2) in y and noting the conservativity of Ga of
Theorem 1, we get aGΛί(x)=G1l(x)9 a>0. The equation (G. 3)' is obtained
from (3. 2) by a simple calculation.

We now extend p(t, xy y) of Thoerem 1 (v) from D to D* with respect to x.

Lemma 3.3. For each x^A, there is one and only one function p(t, xy y),
ί>0, J G D , which is continuous in t and satisfies

(3.4) GΛ(x,y)=[+°°e-Λtp(t,x,y)dt, α>0,
Jo

Moreover the function p(t, x, y) has the following properties:

(T. 1)' It is non negative.

ρ(t,x,y)dy=G1l(x)^l, f > 0 .
D

(T. 3)' \ p(t, xy z)p(s, zy y)dz=p(t+s, x, y), t, s>0, y<=D .
JD

(T. 4)' For each x^A, it is continuous in (t, j>)e(0, + o o ) χ ΰ and, for each
and yEzD> it is measurable in x on A. Moreover, for any f^B(D*) and

Δ, \ p(t, x, y)fiy)dy is continuous in t>0.
JD

Proof. In view of (G. 3)' of Lemma 3. 2, we see that Ga(x, y), x^A,
is completely monotonic in α e ( 0 , +°°) . By (G. 1)' of Lemma 3. 2, it is

α-harmonic in y^D. Hence, we can constructp(t, x, y), t>0, x^A, y^D,
satisfying (3. 4), (T. 1)' and the first half of (T. 4)' in the same manner as the
construction of y(t, x, y) of Lemma 2. 11.

As consequences of properties (G. 2)' and (G. 3)' of Lemma 3. 2, the equation
in (T. 2)' holds for almost all t>0 and relation (T. 3)' holds for almost all
t, s>0. By virtue of (2. 22), the left hand side of (T. 3)' is continuous in s>0
for each t satisfying (T. 2)'. So the equation (T. 3)' holds for almost all t>0
and for all s>0. In view of property (T. 3) of the transition density p(t> x>y)>
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t>0, xyy(ΞDy (T. 3)' holds for all ty s>0. (T. 3)' implies that the left hand
side of (T. 2)' is a constant in t. Hence (T. 2)' holds for all ί>0. It follow

from the first half of (T. 4)' that I p(ΐy x, y)f(y)dy is lower semi-continuous in
JD

ΐ for each non-negative bounded function / on D. Moreover, on account of

(T. 2)', it is continuous in t. Thus, \ p(ty xy y)f(y)dy is continuous in t>0
JD

for each/<Ξ#(£>*) and xE Δ.
Now, we are in a position to construct the Markov process (on D*) associ-

ated with p{ty x, y), x G ΰ # , y^Dy and investigate its properties.
Add a point 3 to D* as an isolated point. 23(Z)* U 9) will stand for the

collection of sets whose restrictions to Z)# are the elements of 33(Z)#). Denote
by B(D* U 9) (C(D* U 9)) the aggregate of all the functions on Z>* U 9 whose
restrictions to Z)# are the elements of B{D*) (resp. C{D*)). Each element /
of B(D*) will always be considered as the one of B(D*[Jd) by setting/(9)—0,
unless particularly mentioned. Let p(t, x, y) be the function defined for t>0,
i e ΰ # and y^D by Theorem 1 (v) and Lemma 3.3. For E<BB(D* (J9),
define

(3. 5) p(ΐy xy E)=[ p(ty xy y)dy+(l-q(x))XE(d)y
JEUD

p(t, d, E)=xE(d),

where XE is the indicator function of the set E, and

(3.6) ?(*)=( G1(x,y)dy,
JD

Weputfor/eB(Z)*U3),

(3.7)
Gaf(x)=\ e-atTJ{x)dt, xeD*\Jd, ί>0, α>0.

GΛf is expressed in the form

GJ{x)=\ Ga{x,
JD

8

a

By virtue of Theorem 1 (v) and Lemma 3. 3, p{ty xy E) defined by (3. 5) is a
transition function on D*[Jd;p(ty Λ;, •) is a probability measure on Z)*LJ9,
p(-y , E) is, foreach£<=S3(D*U9), measureable in (ty x)(=(0y +oo)χ {D*\Jd}
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and it satisfies the Chapmann-Kolmogorov equation.
Let Ω be the product compact space {Z>*U3}C°'+OO). Denote by %t(ω)

the t-th coodinate of ω6Ω. Let S(S,) be the σ-field of subsets of Ω
generated by the cylindrical open sets of Ω (resp. cylindrical open sets
depending on the coodinates up to and including t). Denote by 91 the σ-field
of subsets of Ω generated by all open set of Ω. For each #eZ)*U3, there
is a unique Radon measure110 Px over (Ω, 21) which is a probability measure and
satisfies the following conditions.

(3.9) Px(Xt<=E)=p(t,x,E),

t>0, x<=D*\Jd,

(3. 10) For each Λ G § , and bounded S-measurable function F on Ω,
Ex{Fx{θtω) A)=EJβ5t!(F) Λ), xε f l * U 3,
where Ex denotes the integration with respect to P^-measure and θt\ />0, is
the shift from Ω to Ω defined by Xs(θtω)=Xt+s(ω)y s>0.

Lemma 3.4.
(i) Set «!={*>; Xt(ω)(ΞD* for every t>0} and Ω2={ω: X,(ω)e {9} for
every t>0}. Then, Px{D,l)=q{x)y Px(Π,)=l-q(x)y X G D * and P { θ } (Ω 2)=l.
(ii) For each x^D*{Jd, we have Px(Xt has the right limits for all t^O and the
left limits for all t>0)=ί.

Proof, (i). Relations (3. 5), (3. 9) and (3. 10) imply Px(Xt<=D*y

^ e { 3 } ) = 0 for every t, s such as t>s>0 and for every Λ : G D # . Since
{ltJ Px}y *<=£>*, is separable,13) we see PX(Ω^= \imPx{Xt^Dm)=q{x) and

x { t

(ii). Denote by CQ(D) the collection of all non-negative functions in C0(D) and
by S0(D) a countable dense subset of Co(D) in uniform norm. By virtue of
Corollary to Lemma 3. 1, functions GJ, / G S 0 ( D ) , are continuous on D* and
separate points of D*. Moreover, {Zt=e-'GJ(Xt), g,, Px}, /eS 0 (D),
Λ;Gΰ#, is a bounded supermartingale. Hence, we have assertion (ii) by a
standard argument1^.

It follows from Lemma 3. 5 that there is well defined Xt(ω)= lim -Xy(ω) for

every t^O almost everywhere (Px)y x^D*\Jd. Xt is right continuous in t^O
and has the left limit in t>0 almost everywhere (Px), x^D*\Jd. On account
of Theorem 1 (v) and Lemma 3. 3 (T. 4)', Xt is a modification of Xt\
Px(Xt=Xt)=l, for each t>0 and x(ΞD*{Jd.

12) cf. [15].
13) cf. [15].
14) cf. [10] and [20].
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Let us examine the distribution of Xo.

DEFINITION 5.

( i ) For each x^D* U 9, define a probability measure μ(x, E) on 93(Z)# U 9) by

μ(xf E)=PX(XO^E), £<Ξ33(Z>* U 9 ) .

This μ(xy ) is called the branching measure at x.
(ii) A point x in D*{Jd is called a branching point if μ(x, {#})<1.

The notion of branching measure was introduced by D. Ray [20]. The
above definition, slightly different from Ray's original one, is due to H. Kunita
and T. Watanabe [10]. We shall use the general results obtained by these
authors, whenever their methods of the proof are applicable to our situation
without essential change.

Denote by Δ o the totality of branching points. Then, we have

Lemma 3.5.

( i ) Δ O C Δ .
(ii) Δ o is an Fσ-set and μ(xy Δ 0 )=0, x^ Δ o .

(iii) Put A0'={x: q(x)<l}, where q{x)=\ G1(x,y)dy. Then, Δ 0 ' c Δ 0 and
JD

μ(x, {d})=l-q(x),x(ΞA0.

Proof. If/eC(Z)*U3), then

(3.11) lim aGJ(x)= lim Ex( Γ~e~*f{X

=Ex(f{X0))=\ μ{x,dy)f{y), *ί

On the other hand, because of Theorem 1 (ii) and formula (3. 8), lim aGMf(x)

=f(x)y for X^LD U 9, f^C{D* U 9). Hence, D U 9 contains no branching point.
For the proof of (ii), let us cite a criterion of D. Ray [20] in a modified form

fitted to our situation: x^A0, if and only if f(x)> lim aGJ(x), for some

f^C1={f=G1hΛc; h^0S(D)y c is non-negative rational}. Since, fo

1f^f and Gcύ+1f=G1(f—aGa+1f) is lower semi-continuous on

Δ o = U U~ Π {f(x)^aGa+1f(x)+l/n} is an Fσ-set. By (3. 11), we
/eCj »=1 α>0, rational

have for f=G1h, AeC0(Z>), and conseqeuntly, for f=GJι, h^B(D*)y α > 0 , the

equality f(x)= \ μ(x, dy)f(y). Therefore,

μ(x, dy) lim (aGaf)(y)= lim aGaf{x)ί.
j£)*Ud '
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Using the inequality lim aGaf^ff^C1 and the criterion above, we can see

that μ(x, Δ o )=0.
Assertion (iii) is immediate from (3. 8) and (3. 11).
In the next section, we shall see that μ(x, D)=0y x^A0.
Let us set D*=D*— Δ o By Lemma 3. 5 (i), we see DaD^. By Lemma

3, 4 (i) and Lemma 3. 5 (iii), we have Px(Xt(ΞD* for every ί ^ 0 ) = l , x<=D*.
The following two lemmas will assure that the properties stated in Theorem 2
(ii) are valid for X={Xt9 Px, x^D*} except the continuity of the trajectory
Xt at the boundary Δ.

We call a random time σ ^ O a Markov time (relative to %t) if, for each
t>0 and each probability measure v on Z)#, the set {σ<t} is in %t up to a

set of Pv-measure zero (Pv( ) = l v(dx)Px( )). For a Markov time σ, let
JD*

Sσ+ denote the σ-field of subsets Λ of Ω such that, for each t>0 and each
probability measure v on Z)*, Λ(Ί {<r<t} is in %t up to a set of Pv-measure
zero.

Lemma 3.6.
( i ) χ={Xty Pχy xEΰ*} is a strong Markov process] for each Markov time
σ, Λ ^ S σ + andfEΞB(D%

Ex(f(Xσ+t); A)=Ex(EX(r(f(Xt)); Λ),

(ii) For each ̂ Gfl*, Px(Xf$A0for every ί ^ 0 ) = l .

Lemma 3.7.
(i) Let {Dn} be an exhaustion of D. Set

rn= inf ft: Xt<=D*—Dn} and τ= lim τn .
«->+oo

Then, Px{Xt is continuous in 0<.t<τ)=l, Λ G D * .
(ii) For each Λ G D and Borel set E of Dy

Px(Xt^E, ί < τ ) = f p°(tyx,y)dy.
JE

(iii) For each ίcGfl*,

Px(Xt is continous for any t^O such that Xt or Xt_ is in Z))=l .

(iv) For each x^D^y

Px(Xt, Xt_$Λ0for every ί ^ 0 ) = l .

(v) X is quasi-left continuous; for any sequence of Markov times σn increasing to
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Px{ lim Xσn=Xσ; σ<+<χ>)=Px

Proof of Lemma 3. 6 (i). Since Xt is a modification of Xt> relations (3. 9)
and (3. 10) hold for X, if we replace Xt there with Xt.

Take a Markov time σ and a set A^%σ+. The Markov property (3. 10)
for Xt and a usual limiting procedure lead us to

(3. 12) Ex{Gj{Xσ); Λ)

for f^C0(D)y tf^D*. Here, we have used the resolvent equation, the right
continuity of Xt in t^O and the continuity of G1f(x)yf^C0(D) in ΛIGD*. Since
P ^ X ^ Δ ^ O , #eZ>*, ί>0, we can see that equation (3. 12) holds also for
f<=B(D*). By setting f=GJι. h<=B(D), a>0, in equation (3. 12), we have

E^G^GXXJ; A)=EΛ+°°e-^'-^GXXJdt; Λ). By the resolvent equation

(G. 3) and (G. 3)' (Lemma 3. 2), we have, for /3>0 and feίC(D*),

Ex(Ga(βGβf)(Xσ); A)=EX (\+e-«-*>(βGβfχXt)dt; Λ)

=EX( Γ"e-»«-°\βGβf)(Xt)XD(Xt)dt; Λ).
J σ

Letting β tend to infinity, we have, by Theorem 1 (iii),

Ex{GJ{Xσ); Λ)

t)dt;K), a>0,

which proves conclusion (i) of Lemma 3. 6.
Proof of Lemma 3. 6 (ii).

Here, we can go along the same line as in H. Kunita and T. Watanabe [11],
Section 2, (j). Set, for i c D # ,

(3. 13) σA= inf {t>0; Xt£ΞA} ,

= + oo, if there is no such t.

σA is a Markov time if A is open or closed. Since Δ o is an i^-set (Lemma 3. 5
(ii)), Lemma 3. 5 (ii) and the strong Markov property will imply the second asser-
tion of Lemma 3. 6.

Proof of Lemma 3. 7 (i), (ii).
It follows from Lemma 2. 11 (iv), that, for each compact set KaD and
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(3. 14) lim — sup p(t, x, D- U, (x))=0 .
t\0 t X(ΞK

where Ut (x)= {y<^D, p(xy y)<β} .

(3. 14) implies

(3. 15) Px{Xt is continuous for every ί < τ n ) = l ,

# , (see E.B. Dynkin [3], Lemma 6.6). Letting n tend to infinity, we have
the first statement of Lemma 3.7.

Next, take a regular exhaustion {DM}. Then, we have

(3.16) pχ(τH=0)=l, xϊΞdDny n = l , 2 , .

(3. 17) for each n and compact set KaDny

lim

(3. 18) for each twice continuously differentiable functions / o n Z),

lim ±(Ttf(x)-f(x))=±Af(x), XΪΞD .

Indeed, (3. 18) is immediate. Property (3. 16) follows from Px(τn>ή^l—Px

(Xt(=D-Dn) and Px(Xt<=D*-Dn)^ [ p°(ty x,y)dy. Property (3. 17) follows
JD-Dn

from the following estimate ([3], Lemma 6.1): for any Borel subset G of D,
Px(Xt(ΞDnUdDn for every t^u)^p(u, x, G)- sup p(t, y, G). Since Tt

maps B(D) into C(D) (Theorem 1 (v)), it follows from (3. 16) and (3. 17)
that the operator Γ?, defined by TnJ(x)=Ex(f{Xt)\ t<τn), x<=Dn, makes
invariant the space of all continuous functions which vanish on dDn (see E.B.
Dynkin [4]. Theorem 13.1 and Theorem 13.8). Let pcn\t, x, y) denote the
transition density of the absorbing barrier Brownian motion on Dn. Then,
combining the above property of T", the continuity of trajectory Xn t<ry and
formula (3. 18), we can conclude ([4], chap. V, §6) that, for any Borel subset E

of A,,

Px(Xt<ΞE, t<τn)= \ pΓ>(t, x, y)dy, ί>0,
JE

Let n tend to infinity to obtain conclusion (ii) of our lemma.

Proof of Lemma 3.7 (iii), (iv).

Let us fix c>0. Denote by 8 the class of all Devalued functions defined on

[0, c]. Define the operator q from 8 to 8 by (\<p(t)=<p(c—t), O^t^c,

For ωeΩ, we define p(ω)={Xt(ω); O^t^c],
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i;(ω)G8 for almost all ω(Px). We set for A(=%c yA=v ι(\vA. According
to the symmetry and the conservativity of p(ty x, y\ it is easy to see that

(3.19) f Px(yA)dx=\ Px{A)dx,
JD JD

We shall first prove assertion (iv).
Put Ac

h

+fh= {ω; Z ^ E Δ o for some t<=(hy c+Iί)}
and Bo={ω; Z^GΔo f°Γ some ίe(0, c)}, /i^O.

Obviously, Aζ=γBi9 and by Lemma 3.6 (ii), and (3. 19), we have j Px(Ac

0)dx

= f P^(5g)Jx-0. Hence, PjC(i4g)=0 for almost all X<EΞD. By (3. 10), we see,
JD

for each x e D * , Pχ(Ac

h

+h)=\ p(hy xy y)Py(Ac

o)dy=0. Letting c tend to

infinity and then h tend to zero, we obtain conclusion (iv) of the present lemma.
Coming to the proof of assertion (iii), consider the set Al= (ω; Xt_^Dy

Xt_^pXt for some *e(0, c)}. Then, Ac

0=A1[jA2y where, ^ ! = { ω ; I f _ E ΰ ,
Xt^Dy XtΦXt_ for some fe(0, c)} and ^42={ω; Xt_<=D, I ^ Δ for some
ίe(0, c)}. Denote by S a countable dense subset of (0, c). Obviously,
A c U {©; Z,Gfl, -Y, has a discontinuity for some t^(s, (s+τ(Θsω))Ac)} and

^42C (J {ω; Z s G ΰ , XT w ( β 5 ω )φ3DM for some n such as S+TM(#SG>)<<;}. βy

virtue of (i) and (ii) of Lemma 3. 7, one has PX(A1\JA2)=O for Λ G U , and

consequently (see the proof of (iv)) for all x^D*. Set Bo=jA°c, then the same

argument as in the proof of (iv) leads to PX(BQ)=Q> Λ G D * .

The final statement of Lemma 3. 7 follows from assertion (iv) of the lemma
and assertion (i) of Lemma 3. 6. (see [11], Section 2, (i)).

4. The Dirichlet norm related to the process and the continuity
of trajectories at the boundary

The main purpose of this section is to show in Lemma 4. 5 that, for almost
all ω, the entire trajectory Xt(ω), 0 5 ^ < + °°, is continuous. Since we already
proved that Xt(ω) is continuous for all t>0 such that Xt(ω) or Z/_(ω)Gfl, it
remains to prove that Xt{ω) has no jumps at the boundary Δ.

First, we will give an integral representation of 1-excessive functions.
DEFINITION 6. A non-negative function u on D # is called a-excessive if

(4. 1) e-"*Ttu(x) t u(x) as t [ 0 for each *<EΞZ>*.

Lemma 4.1.

(i) If a non-negative function u defined on D satisfies (4. I) for every x^D, then
u is uniquely extended to an a-excessive function on Z)*\
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(ii) // uλ and u2 are a-excessive and u1(x)=u2(x) almost everywhere on D, then
ux and u2 coincide on D*.

Proof, (i). For X G D * , e~ΛtTtu(x)=e~Λt\ p(ty x, y)u(y)dy is monotone
JD

increasing as t j 0, and we have only to set u(x)= lim Ttu(x). The uni-

queness of ύ and assertion (ii) are easily verified.

Set Δ r = Δ — Δ o .

Lemma 4.2.
( i ) Ga(xy y)y (xy y)^D*X Dy can be extended to (xy y)^D* X D* in such a way
that the extended function Ga{xy y) is symmetric in x,y^D* and, for each
x(resp. y)^D*y it is a-excessive in y(resp. x).
(ii) For each branching point x€ΞAOί the branching measure μ(xy •) is concen-
trated on ΔiUδ.

Proof, (i). By Theorem 1 (v) and Lemma 3.3, Ga(x> y) is, for each
α-excessive in x G ΰ # and it satisfies (4.1) as a function of y^D, for each
x^D*. By virtue of Lemma 4.1, GΛ(xy y)> Λ;6D*, has an α-excessive ex-
tension with respect to y. The symmetry of the extended kernel follows from
Theorem 1 (ii). (ii). As we have seen in Section 3, (see the proof of Lemma
3.5),

fix) = ( μ(x, dy)f{y), for / = GJi, h e B(D ) .
JZJUΔj

Hence, by Lemma 4.1 (ii),

(4.2) GΛ(x,y)=\ μ(xydz)Ga(z,y)y

When Λ!GΔ0, GΛ(X> y) is α-harmonic in y and equation (4.2) implies that
μ(x, •) has no mass on D (see Lemma 2.1).

Theorem 3.

If u is 1-excessive and \ u(x)dx<C-\-oo) then there exists a unique measure v con-
JD

centrated on D (J Δ i such as

(4.3) u(x)=\ Gfr, y)v(dy),

We call v the canonical measure corresponding to u.

Proof. Since u is 1-excessive, there is an increasing sequence of non-
negative functions/„, n=ίf 2 , ? such that
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GJn(x) ί u(x),

Because of Theorem 1 (ii), ( fJx)dx=(fn, Gx\)={GJn, 1)^( u(x)dx< +oo.
JD JD

Hence, extracting a subsequence if necessary, the sequence of measures fn(x) dx
converges weakly to a measure vo(dx) on D*. By Corollary to Lemma 3. 1,
Gxφ is continuous if φ^C0(D), so that (φ, ύ)= lim (<p, G1fn)= lim (Gγ£>,/W)

= \ Gλφ(x) vo(dx), φ eC0(D). Thus, it holds that
JDDA

(4.4) u(x)=\ G^x, y)vo(dy),

for almost all x G ΰ , and consequently (Lemma 4. 1 (ii)) for every Λ G U * . Using
(4. 2) and Lemma 4. 2 (ii), we can rewrite (4. 4) in the form (4. 3) with v defined

by v(dy)=vQ(dy)+1 vQ{dz)μ(z, dy). The measure v of (4. 3) is uniquely deter-
J Δ 0

mined by u. In fact, for any / G C ( D * ) , f f(x)v(dx)= l ima I Gaf(x)v(dx)

= lima( (GJ(x)-(a—\)G1Gaf(x))v(dx)= lim a(u,f-(a—\)GΛf). The

proof of Theorem 3 is complete.

Our next task is about the canonical measures corresponding to a special
class of excessive functions.

DEFINITION 7. The (—oo, +oo]-valued function At{ω) on [0, + o o ] χ Ω
is called an a-addίtive functional of X, if

(A. 1) for fixed t, At(ω) is S/+-measurable in ω,

and if there is Si-measurable set ίlA closed under the operation θt, t>0, such
that Px(ΩA)=l, Λ e ΰ * , and for each fixed α>eΩΛ,

(A. 2) At(ω) is right continuous and has the left limit in t,

(A. 3) ζ(ω)=0 implies At(ω)=0 for t>0 ,

where ζ(ω) is a hitting time to 3, and

(A. 4) At+t(ω)=At(ω)+e-«A9φfω), for ί,

Two α-additive functional A and B are called equivalent and denoted by
A^B, when At=Bt holds almost everywhere (PJ for each ί^O and Λ G U * .
A 0-additive functional will be called an additive functional simply.

Put 5R= {u; u=Gaf feB(D*)}. ϋi is contained in B(D*) and independent
of α > 0 . If Gafί(x)=Gaf2(x)y X G D * , f19 f2^B(D*)y then, as one easily sees,
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fi=f2 almost every-where on D.
Take uEίϋϊ. If u=Gl/2fy ftΞB(D% we set

(4. 5) A?=e-"*u(Xt)-u(X0)+

It is easy to see that Au

t is a 1/2-additive functional and it is uniquely determined
by u up to equivalence. Clearly Ex(A^)=0y Λ G U * , ί^O. We see that

(4.6) υu(x)=Ex((Alooγ)

is a 1-excessive function. In fact, Atί0O(ω)=A1ί(ω)-\-e~t/2A1i00(θtω) implies vu(x)
^ ' ^ ( ^ % ) 2 ) = Ex((Aff) + e'* Ttvu(x\

and e~*Ttvu{x) \ vJx) as t J, 0, Λ:GD*. Moreover, \ ^ ( ^ ) Λ < + °°> and so, ί;w

is expressed as the Grρotential of a measure on Z) 1 *=DUΔi according to
Theorem 3.

DEFINITION 8. For u^91, define ^4" and ^M by (4. 5) and (4. 6), respec-

tively. Denote by vu the canonical measure on flUΔi corresponding to vu.
Set |||ι/|||;r=\/j>fXD U Δx) and call this the Dίrichlet norm of z/e9l with respect
to the process X.

We will show

Theorem 4. Let u be in 91. Then,

(i) 11MI \χ= \ (grad u, grad ti) (ΛJ) ώc,

(ϋ) ^»(Δ I )=0.

Let us prepare two lemmas.

Lemma 4.3.

Proof. Since f GJx, y) dx= [ G^y, x) dx=q(y)= 1 for y e Z) U Δ x (Lemma
JD JD

3.5 (iii)), we have | | | M | | | ^ = VU(D\J Δ I ) = \ vu{x)dx. On the other hand,
JD

va(x)=Ex(( p e-°<*f{Xs) dsY)-u(xγ

=2EX( \+°°e-'f(Xt)dtEXt( \+~e-"*f{X.)ds))-φY
Jo Jo

= 2\ G1{x,y)f{y)u{y)dy~u{xf.
JD
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Hence, Lemma 4.3 is valid.

Lemma 4.4. Let τ be the first exit time from D defined in Lemma 3.7 (i).

Then we have, for

(4.7) Ex((A«_γ)=\ Gl(x,y)(gradu,gradu)(y)dy,

(4.8) EX{{A«T_)*)=\ Gl{x,y)vu{dy), x<=D,

(4.9) vJD)=\ (grad u, grad u){y)dy .
JD

Proof. Let {τM} be the first exit times from an exhaustion {/)„} of D.
By definition, τn f r. In view of Lemma 3.7 (ii), {Xn t<τn} is equivalent to
the absorbing barrier standard Brownian motion on Dn. Now, suppose that/
belongs to C\D). Then, u=Gl/2f=G°l/2f+Rl/2f belongs to C\D) and

I — _—/^ \u(^ή^-^x^ Λ e D 1 5 ) . Applying the formula concerning stochastic inte-

ί τn

e~s/2 gr2idu(Xs)dXsy
0

and consequently

(4. 10) Ex((A"τJ)=Ex( Γe-'igxad u, grad u)(Xs)ds),
Jo

Consider the collection ξ> of all bounded functions f on D such that u=G1/2f
satisfies equation (4.10) for a fixed n. Obviously ξ> is a linear space and C\D)
cξ>. It is easy to see that, if /ΛGξ) converges boundedly to a bounded function

/, then/eξ). Hence, &=B(D). We get formula (4.7) by letting n tend to
infinity in (4.10). In order to show identity (4.8), we have only to let n tend to
infinity in the first and last term of the following identity.

= \ G^x, y)vu{dy)- \ Ex(e-τ»Gt(XTn, y))vu{dy)

y)-Ex{e-nGλ{XTni y)))vu{dy).

The formulae (4.7) and (4.8) imply identity (4.9).

Proof of Theorem 4. It follows from the definition of R^x, y) ^zt, when
and u=Gl/2f f(=B(D),

15) Cλ{D) (CPiD)) is the aggregate of all bounded, continuously (resp. twice continu-

ously) differentiable functions on D.

16) cf. [4], (7. 77).
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(4.11) Dlh(u,u)=2(u,f).

Indeed, the same procedure as in the proof of Lemma 2.10 is applicable to
get Dλl2(Rl/2fyRl}2f)=2{Rλ/2ff). It is easy to see that Dlh(G°l/2f, G°l/2f)
=2(G°l/2f, f) and Dl/2(G°l/2f Rl/2f)=0. Rewrite (4.11) in the form, 2(u, f)-(u, u)

— \ (grad u, grad u)(y) dy. Now, assertions (i) and (ii) of Theorem 4 follow
JD

from Lemma 4.3 and Lemma 4.4, respectively.

Coming to our main task about the continuity of trajectories of X, we shall
introduce several notations and concepts given by M. Motoo and S. Watanabe
[18]. In [18], Hunt processes are treated. Our process X is not a Hunt pro-
cess in general: It may include branching points. However, owing to Lemmas
3.6, 3.7 and 4.1, all the results in [18] can be applied to our process.

Set

(S>ϊ = {A] A is an additive functional of X such that At(ω), t^O, ωGΩ^, is non-
negative, continuous in t and Ex(At)< + oo for £^0, xeD*} 1 7 )

^={A; A=A,-A2, ^ e E ί , ί=l, 2},
SJί = {A; A is an additive functional of X such that Ex(A2

t)< + oo and Ex(At)

Let A, B^Wl. Then there exists a unique element of S 1 ? denoted by
04, By, satisfying the following condition: EX(<A, Byt)=Ex(AtBt) holds for
every t^O and x<=D*. ForA^Wl, <A, Ay will be denoted by <̂ 4>. It is an
element of. K .̂

We set, for AeίWl,

L2(A)= {/; / is a measurable function on D* such that Ex( [tf(Xs)
2d<Ays)< + oo

Jo

for every t>0y x<=£>*}.

DEFINITION 9.

Let A<=yJl and f<=L2(A). 5^501 is called the stochastic integral of/by A

and is denoted by B-=^fdA if Ex(BtCt)=Ex(^f(Xs)dζAy C>s), ί^O, holds for

every Ce3Jl.
The stochastic integral exists uniquely for A^ΉJl andf^L%A) (Theorem

10.4 of [18]). As a consequence of Theorem 4, we have

Theorem 5. Denote by XAl the indicator function of the set Δj . It holds

that \%ΔldA^O for any A<= 3JΪ.

17) ΩA is a suitable defining set of A (see Definition 7).
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Proof, (i). Set, for Z/GSR and u=Gl/2f with f<=B(D*),

(4. 12) %=u(Xt)-u(X0)+\\f(Xs)-±-u(Xs))ds, t^O.
Jo 2

Obviously, AMe3JΪ. Let us show, for #e9t,

(4. 13) \xAldΆu^0, or equivalent^

(4. 14) \*XAl(Xs)d<(AM>s=0, t^O, almost everywhere (PJ,
Jo

Since ^ " defined by (4.5) is related to A" by Ai=e-'^Ai+— ['
2 Jo

defined by (4.6) is expressed as

(4.15) υJ(x)=EΛ+"e-d<Ar>.), x<=D*.
J

On the other hand, vv(x)=\ Gλ{x, y)vu{dy), and by virtue of Theorem 4
JDUA1

(which states z>w(Δχ)—0), (Auyt can never increase when Z ^ G Δ I ( s e e [6] or

[14]), that is, \xAl(Xs)d<:Auys~0.

(ii). In order to derive Theorem 5 from (4.13), we introduce several nota-
tions. We write l.i.m An=A, for An and AZΞWI, if and only if Ex((Au

t-At)
2)

> 0, x e D # , t^O. A subset LofWlis called a subspace, if L satisfies
n>\oo

the following conditions.
(a) If A, B<=L, then A+B<=L.
(b) If AnEΞL and i4=l.i.m ^ Λ , then AeL.

(c) If i G L and/EEZ,2(yl), then j / A ί e l r .

For a subset M of 2JI, Z (̂M) will stand for the minimum subspace which
contains M. We note that, Theorem 12.2 of [18] states 3Ji=I/(JΪM; u^R), where

Au is defined by (4.12). If we set 3Jί'= {A; A^Wl, [χAldA^0}y then 3JΪ' is a

subspace of 3JΪ and contains Άu> u^ϋϊ, by (4.13). Hence 2Ji'=3Ji, completing
the proof of Theorem 5.

By the following lemma, we will complete the proof of Theorem 2 stated in
Section 1.

Lemma 4.5. The strong Markov process X={Xt, %t+, Px, x e ΰ * } is
a diffusion, that is, X satisfies the condition
(b) Px(Xt is continuous for every £ ^ 0 ) = l ,
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Proof. Let ρ(x, y) be the metric on Z)# defined by (3.1). We shall set, for
convenience, p(x, 3)= + oo, χ<=D* and p(3, 3)=0. For £>0, define σε by

= + oo if there is no such t,

and σϊ, σ\ , , by σ[=σ\ σl=σl_λ{ω)+σ\θ0*„-,<»). Set p]'E= Σ XB{Xa/), for

and ί^O. Obviously, p ^ E is an additive functional. We shall
denote ρs

t'
D*^d by ps

t. Statement (b) is equivalent to

(4. 16) tf«0, for any t^O and £>0 .

Let us show (4.16). We can find Bm<=&{D* U 3) such that Bm \ D* U 3 and
Ex(p]'B>n)< + ooy χ(=D*, t^O (Lemma 3.1 of [22]). For Bm, there is pϊ
such as

(4.17) Ex(p] B»)=E*{Pϊm)>

If we put qϊm=pϊB>»-pϊm, then q ε 'we3Jl and

(4. 18) <tf>my^ψ'm (Theorem 2.2 of [22]).

Now Theorem 5 implies

(4.19) £ Λ ( Γ % Δ l ( ^ y $ ' m H 0 , f^O, XSΞD*.
Jo

On the other hand, we have from identity (4.17),

(4. 20) Ex{ Σ X±x{Xo*-)XBm(Xottή)=Ex( ΓXAl(Xs)dp*'»>),

Λ G ΰ * (Lemma 3.2 of [22]). The left hand side of equation (4.20) is, owing to
assertions (iii) and (iv) of Lemma 3.7, no other than Ex(p\'Btn). Therefore, the
formulae (4.19) and (4.20) imply p2

t'
B*n^0y and consequently assertion (4.16).

We call the conservative diffusion process {Xt, %t+, Px, xGflj*} the reflect-
ing barrier Brownian motion on D*—D\j Δi

Consider the case when 3D is of class C3. By virtue of Lemma 3.1 (iv), we

can find a homeomorphism Ψ from D (J QD onto Z)# such as Ψ(x)=xy xeZλ In

this case, Δ o is empty and so^D^^D^ (see the identity (3.11) and the proof of

Lemma 3.1). Set Xt=ψ-\Xt), ί^O and Px=PΨCx,, xEίDVdD. Theorem 2

and the argument in the paragraph following Theorem 1 now imply

Theorem 6. Suppose that 3D is of class C\ Then, X=(Xt> Pχy x

is a conservative diffusion process on DlJdD satisfying Px(Xt^E)
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= ( p(t9 xyy)dyy t>0, x<^D{JdDy for any Borel set E of D{JdD. Here,
JEΓ\DJEΓ\D

p(t, x, y)y t>0, Λ:GD*, y^D is the fundamental solution of the heat equation

———A)u(t, x)=0 with the condition —u(ty x)=0, x<=dD. We call X the

dt 2 J v ' dnx

reflecting barrier Brownian motion on D{J dD.
See K. Sato and T. Ueno [21] for another version of X.
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