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1. Introduction

Let D be an arbitrary bounded domain of the N-dimensional Euclidean space
RN,

We will call a function G,(x, y) (>0, x, yED, x#+y) a (continuous)
resolvent density on D if the following conditions are satisfied:

(G.1)  Gux,v)=0, a>0, x ysD, x£y.
(G.2) aS Go(x, y)dy<1, a>0, x&D.»
D

(G.3)  Gux, y)—G(x, y)+(a—RB) SDGm(x’ 2) Ge(2, y)dz=0,
a, >0, x yeD, x*y.
(G.4) For fixed a>0, G4(x, y) is continuous in (x,y) on DX D off the

diagonal.

A resolvent density on D is called conservative if the equality holds in (G.2)
for all @>0 and all xD.

In this paper, we will construct a conservative resolvent density on D and
show that it determines a diffusion process (that is, a strong Markov process
having continuous trajectories) which takes values in a natural enlarged state
space D*¥. When the relative boundary 0D of D is sufficiently smooth, our
diffusion process is shown (Theorem 6) to be the well known reflecting barrier
Brownian motion on DU®dD. For this reason, our process for an arbitrary D
may be considered the reflecting barrier Brownian motion in an extended sense.

A function p(t, %, y), t>0, x, ye D, will be called a (continuous) transition
density on D, if it satisfies the following conditions:

(T.1)  p(t, x, y)=0, >0, x, yD.

1) dy denotes the Lebesgue measure on D.
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(T.2) S Pt %, y)dy<1, t>0, x&D..
D

(T.3)  p(t+s, x, y)=g P, x, 2)p(s, 2, y)dz, t,s>0,x, yeD .
D

(T.4)  p(t, », v) is continuous in (¢, x, y)=(0, +o0)x DX D .

A transition density for which the equality holds in (T. 2) for all £>0 and
all xe D will be called conservative.
Let p°(¢, x, ) be the transition density corresponding to the absorbing barrier
Brownian motion on D, Set
too
0

1) GYx, y)=g e pt, x, y)dt, a>0, x,yeD,
then GJ(x, y) is a resolvent density on D and can be expressed in the form,
(1.2)  GYx, y)=I4x, y)—E (e * I, (X,, y)) a>0,xyeD,

where,
1

~Clx=>12/28) N 3
(Zﬂt)lee dt, x, ye RN ?®,

+oo
(%, y)= So e

E, is the expectation with respect to the standard Brownian measure P,, x€ D,
and 7 is the first exist time from D of the Brownian path X,.

A function u defined on an open set U of RN will be called a-harmonic on
Uif

1 . . X o

(a——2—A>u(x)=O, xe U, where A is the Laplacian; A= Za—z For func-
' i=1 0x%
tions u, v on D, we set

1.3) (4 v):SDu(x)v(x)dx,
D(u, v)=SD(grad u, grad v)(x)dx .

For each >0, let H, be the Hilbert space formed by all a-harmonic functions
on D with the following norm:

(1.4) D,(u, u)=D(u, u)+2a(u, u) <+ oo .
In section 2, we shall prove the following.
Theorem 1.

(i) For each a>0 and each x=D, there exists a unique y-function Ri(y)
=R,(x, y) in H, such that the equation

2) cf. [8].

3) [x—y/ denotes the distance between x and y.
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(1.5) DRz, v)+2a(Rz, v)=2v(x)
holds for all ve H,,.
(i) Set
Gu(*, ¥)=GY%, y)+Ry(x, y), a>0, x yeD.
Then G,(x, y) is a conservative resolvent density on D, symmetric in x, yE D.

(ii) Denote by B(D) (resp. C(D)) the collection of all bounded measurable (resp.
bounded continuous) functions on D. The operator G, defined by

(1.6)  Guf(-)= SD Gu(+» )y, fEBD),

maps B(D) into C(D). Moreover, if f€ C(D), then alim aG, f(x)=f(x), x€ D.
(iv) Suppose that K, and K, are compact, D, is open and K,CD,CK,CD.
Then, sup G,(x,y) is finite.
1EK,VED-K,
(v) There is a unique transition density p(t, x, y) on D satisfying
(1.7) G, y)=j+°°e-wp(t, x, y)dt, a>0, x yeD.
0

p(2, x, y) is conservative and S p(t, x, y)[(y)dy is continuous in (t, x) (0, + o)
D
X D for any fe B(D).
When 9D is suffciently smooth, the transition density in Theorem 1 turns

1 Ax> u(t, x)

out to be the fundamental solution of the heat equation <§t——_2—
=0, t>0, x&€ D, with the boundary condition aiu(t, x)=0, t>0, x=0D,
n

where #n, is the inner normal at the point x9D. Indeed, assuming that
0D is in class C°, let us denote the latter by p(z, x, y), £>0, x, yE D. Then,
it is a transition density and
. oo
R,(x, y)=g e " p(t, x, y)dt—GZ(x, y) is an a-harmonic function in the class
0
C'(DU@D) as a function of y». Hence, we have only to show that
Rz:Rm(x, +) satisfies equation (1.5). Applying the Green formula to the
identity —6i-lé§(y)=ai02(x, ¥), y€0D, we see that
n

y y

(1.8) %D(R’:, )+ a(Re, 'v)=~1—s

1o 2 G 9)2() (@)

%D On,,

4) cf. [7]. CYDUGAD) denotes the totality of continuously differentiable functions on
DuyoD.
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holds for every veCY(DUOD), o(dy) standing for the surface Lebesgue
measure of 9D. The right hand side of (1.8) is the a-harmonic function
with the boundary value ». A usual limiting procedure leads us to the validity

of (1. 5) for Rz and for every ve H,.

We call a compact set D* a compactification of D if D* contains D as an
open dense subset and the relative topology of D in D* is equivalent to the
original Euclidean topology there. In Sections 3 and 4, the following theorem
will be proved.

Theorem 2.

(1) There is a compactification D* of D such that p(t, x, y), t>0, of Theorem 1
is extended to (x, y)& D* X D uniquely in a certain way and the extended function
(denoted again by p(t, x, y)) satisfies conditions (T. 1), (T. 2) and (T. 3) for
xeD* and yeD.

(i) There exists a Markov process X={X,, P,, x& D*} possessing the following
properties.

(a) For each Borel set A of D¥*,
P,(X,EA)zg p(t, %, y)dy, t>0, xeD*.
pna

(b) X s continuous;
P.(X, is continuous in t for every t=0)=1, xeD¥* .

(c) X has the strong Markov property.
(d) The part of X on the set D is the absorbing barrier Brownian motion there;
for every x= D and Borel set A of D,

P(X,c4; t<‘r)=SAp°(t, x, y)dy, >0,

T being the first exit time from D.
(e) There exists a Borel subset D* of D* containing D such that

Px(onx) =1, x€D*,
P(X,—x)—0, xcD*—D*.

Moreover X is conservative on D*; P, (X,ED* for every t=0)
=1, xeD*.

5) For ve H,, we can find a sequence of functions v”éCI(DU 0D) which converges to
» with respect to the norm V' D(v, v)+2a(v, v). The boundary function of v,, then, con-
verges to that of v (which is determined by v, g-almost everywhere on D) in L%(¢) sense.
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Let D* be the completion of D of the Martin-Kuramochi type with respect
to the resolvent density G,(x, ) of Theorem 19. In Section 3, we will show
that this D* satisfies condition (i) of Theorem 2 and we will derive a right
continuous strong Markov process X on D* satisfying the condition (ii, a).
Moreover, the property (ii, d) will be verified.

We now give some conments on the completion in Theorem 2. The first
remark is that the validity of Theorem 2 (i) for our D* owes essentially to the
conservativity of the resolvent density of Theorem 1. The second remark is
concerned with the strong Markov property of X in the theorem. D. Ray [20]
proved that, under certain hypotheses, to a resolvent on a compact space cor-
responds a strong Markov process. One of Ray’s hypotheses is that the given
resolvent makes invariant the space of all continuous functions. This condition,
however, is not necessarily satisfied by the resolvent (operator) induced by the
density function G,(¥, y) on the extended space D*. Therefore, Ray’s original
theorem is not enough to verify the strong Markov property of our X. We will
reproduce the proof of H. Kunita and H. Nomoto [9]; they treat a wide class
of Markov processes including ours. (T. Watanabe pointed out that there is
another nice completion for which Ray’s original results can be applied in them-
selves. Under this completion, Theorem 2 is still valid and the conservativity
of the resolvent density is irrelevant. See [11].) Third, we note that D*—D *
is the set of all branching points in Ray’s sense [20]”. Finally, statements (b)
and (e) imply that almost all trajectories starting from a non-branching point
never contact with branching points.

In order to complete the proof of Theorem 2, we must show the continuity
of trajectories of X. Section 4 will be devoted to the proof of the above feature
of X by a potential-theoretic method. First, G,(x, y) of Theorem 1 will be
extended to (x, y)e D* X D¥* and every summable 1-excessive function will be
expressed as the integral of the kernel G(», y) with a unique measure on D, *
(Theorem 3). Second, we will introduce the notion of the Dirichlet norm

||| x of the function u(x)——-s G.(x, )f(y)dy, x€ D*, fe B(D), with respect to
D
our process X and we will then show (Theorem 4) that the equality |||u|||%
=S (grad u, grad ) (x) dx holds for each function of above type. This is a charac-
D

teristic feature of reflecting barrier Brownian motions. Owing to the result of
M. Motoo and S. Watanabe [18], this characteristic property of X permits us
to conclude that, for any additive functional 4, of X such as E,(4,)=0 and

E (A}) <+, x&D¥*, t>0, the stochastic integral S Xps—pdA, vanishes

6) cf. [12] and [13].
7) For x&D*—D;*, the life time of our path X, is either infinity or zero P,-almost
every-where (see Lemma 3.4 and 3.5).
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identically (Theorem 5). Here, Xp+—p is the indicator function of D,*—D.
This property of X will exclude the possibility that the trajectories of X have
jumps on D, *— D with positive probability.

Acknowledgement. K. Ito and N. Ikeda suggested me the problem treated
here and encouraged me throughout the research. The analysis of the con-
tinuity of trajectories performed in §3 and §4 is in debt to valuable advices by
H. Kunita and S. Watanabe. I wish to thank them all for their kindness.
Thanks are due to K. Sato and T. Watanabe for their kind and useful opinion
on the manuscript.

2. Construction of resolvent density (proof of Theorem 1)

From now on, we fix an arbitrary bounded domain D of R¥. The following
criterion for a function on D to be a-harmonic is easily verified and it will be
frequently used in this paper.

Lemma 2.1. Let o be positive number. A function u on D is a-harmonic,
if and only if, for each ball B with closure contained in D, it holds that
uw=| #iw y)ui)o(dy), B,
9B
where o(dy) is the surface Lebesgue measure of 0B and h3(x, y)zéai BGY(x, ),
nJ’

xE B, y= 0B, BGY(x, y) being the resolvent density defined by (1. 1) for the ball B.
For functions # and v on D, define D(u, v) and (4, v) by (1. 3). Put

(2. 1) D,(u, v)=D(u, v)+2a(u, v), a>0.
Denote by H, the space of all @-harmonic functions u satisfying D,(u, ) <+ co.

Lemma 2.2. For each aa>0, H, forms a real Hilbert space with the inner
product D,(u, v). Moreover, any Cauchy sequence of functions in H, with respect
to the norm \/ D,(u, u) converges on D uniformly on any compact subset of D.

Proof. Suppose thatu,= H,,n=1, 2 ,--+,and D,(u,—u,,, v,—u,) —> 0.

Let K be any compact subset of D. Choose £>0 smaller than the distance
of K with 8D. Let By(x) be the ball with radius & centered at x in K. Ap-
plying Lemma 2. 1 to the a-harmonic function u,—u,,, we have

(2.2)  w(%)— (%)

1 S _ .

=7 B’wﬂw(ly %) uny)—um(y))dy, x€K,
where V, is the volume of By(x), |y—x| is the distance between x and y, and
74(r) is a function of real >0 which depends only on a>0 and satisfies
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0<74(r)<1. The Schwarz inequality applied to (2.2) leads to

(un(2)— (%)) < ( Uppy Uy~ Up,)
=< 1 D,(u,—u,,, u,—u,,), x=K.
2aV,

Thus, u, converges to a function # on D uniformly on any compact subset of
D. By virtue of Lemma 2. 1, u is also @-harmonic on D and the first derivatives
of u, converge to those of # uniformly on any compact subset of D. On the
other hand, since u,, n=1, 2 ,---, form a Cauchy sequence with respect to the
norm D,, one can find, for any £>0, a compact subset K CD such that

SD_K | grad u,,|*(x) dx+2 SD_Ku,,(x)zdx<E

uniformly in n. Hence, us H, and D,(u,—u, u,—u) ——— 0.
n—> 4 oo
Lemma 2.3. Let >0 be fixed.
(i) For each x= D, there exists a function u”< H,, uniquely such that

(2.3) D,(u®, v)=2v(x), for any ve H, .

(i) The function u™ in (i) is a unique element of H, minimizing the value of the
Sfunctional V(u)=D,(u, u)—4u(x) on H,.

Proof. (i). For a fixed x& D, define the linear mapping ® from H, to R
by ®(v)=2v(x), ve H,. @ is continuous by the latter half of Lemma 2.2.
The Riesz theorem implies (i).

(if). We have only to notice the equality ¥(u)=(u")+ Dy(u—u®,
u—u®), uc H,.

DrriniTION 1. For >0 and x, ye D, denote by Ri(y)=R,(x, y), yED,
the function #™(y) of Lemma 2.3.

DrrINITION 2. Let GY(x, y) by the resolvent density defined by (1.1).
Define the function G,(x, y), >0, x, yE D, by

Gu(x, )=Ga(x, y)+Rao(x, ¥) .

Before examining those properties of Gu(», y) stated in Theorem 1, we
prepare three lemmas.

An exhaustion of D is a sequence of domains D,, n=1, 2,-.+, such that
the closure of D, is contained in D,., and D, converges monotonically to D.
An exhaustion {D,} of D is called regular if 8D, are of class C",
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Lemma 2.4. Let a>0 be fixed.
(i) Any non-negative a-harmonic function on D is either identically zero on D or
strictly positive on D. '
(ii) The function w=1—aGll is strictly positive on D. Moreover w is the
unique element in H, satisfying

(24)  D,(w, v)=20a(1, v) for all vE H, .

Proof. (i). Since Lemma 2.1 implies that the value of an «-harmonic
function at any point of D is a weighted volume mean on the ball centered at the
point, property (i) is verified in the same manner as in the case of harmonic
functions.

(ii). It is evident, by expression (1.2) of G, that w is «-harmonic and
strictly positive on D. In order to show identity (2.4), consider a regular ex-
haustion {D,} of D.

Put w,=X,,—a"GiXp,, where Xp, is the indicator function of
D,, "ng,,,,(x)=j *Ga(x, y)dy and "G{(x, y) is the resolvent density (1. 1) for

Dy

D,. The function w, is a-harmonic in D,, converges to w monotonically and
(consequently) uniformly on any compact subset of D. On account of Lemma
2. 1, the derivatives of w, converge to those of w on D. Denote byDy( , )
the integral (2. 1) on D,. Since w, belongs to C*D,U3dD,), we can apply
Green’s formula to w, and vEH,, obtaining Diw,, v)=2a(Xp,, V).
This equality implies the inequality DZ(w,, w,)—4a(Xp,, w,) <Di(v, v)
—4a(Xp,, v) for all veH,. Letting n tend to infinity and using Fatou’s
lemma, we obtain

D,(w, w)—4a(l, w) < D,(v, v)—4a(l, v) .

Thus, we H,, and if we put, instead of v, w-&v in the inequality above, we
arrive at (2.4). The proof of the uniqueness is straightforward.

Lemma 2.5. Take an exhaustion {D,} of D arbitrarily. Let "R3(y) and
"Gu(x, y), >0, x, y D, be the functions defined by Definition 1 and Definition 2
for the domain D,. Then, lim"G,(x, y)==G4(%, y), a>0, x, yeD, x+y.

Moreover, for each x< D, the equality

(2.5)  lim "Ri(y)=R3(y), y€D,

holds and the convergence is uniform in y on any compact subset of D.

Proof. Let *G3(x, y) be the resolvent density defined by (1. 1) for the
domain D,,. Since "Gg(x, y) increases to Gg(x, ¥) we have only to discuss the
convergence of "Rj, to Ry,



A CONSTRUCTION OF REFLECTING BARRIER BROWNIAN MOTIONS 191

Let us fix x&D. We can assume that x is in D,. For each D, denote its
associated a-Dirichlet norm by D} and its associated Hilbert space by H?%.
It is clear that, if m <n, the restriction of the function of H? to D,, is an element
of H?.

If m<n, we have

Dy("R;—"Rz, "Re—"R2)
—DI("Rs, "Rz)—2D3("Rz, "R2)+D2("Rz, "R:).
We will apply Lemma 2. 3 to each term of the last expression. The first term
is not greater than Dy(*R3, "R%)=2"R%(x). The second and third terms are

equal to —4"Rj(x) and 2”R%(x), respectively. Therefore, for each N, it holds
that

(2.6)  0<DN("Rz—™Rz, "Rz—™R=)<2("R%(x)—"R2(x)) ,

for any m and 7 such that N<m<n. Inequality (2. 6) implies that "RZ(x) is
non-increasing in n and since "R%(x)=3%Dy("R%, "R%) is non-negative, "R%(x)
converges. Thus, inequality (2. 6) and Lemma 2. 1 show that "R%(y) converges
to an a-harmonic function RZ(y) on D uniformly on any compact subset of
D, and for each N, the restriction of "R% to D, converges to that of B2 in the
norm DY,

Let us prove that R%(y)=R%(y), yeD. Since R belongs to H”, Lemma
2. 3 (ii) implies

D3 ("R, "R3)—4"Ry(x) = D(R3, R)—4R3(x) .
Letting 7 tend to infinity, we have, for each N,

Di(R:, R;)—4Ri(x)<Du(Ri, R7)—4Ri(x).
Let N tend to infinity, then

D,(Rz, R7)—4Ry(x)< Du(R%, R2)—4Ri(x) .

Thus, we see that R2< H,, and that, by Lemma 2. 3 (ii), the inequality above is
just the equality and F%(y)=RZ%(y), y&D. The proof of Lemma 2. 5 is com-
plete.

We have seen (in the paragraph following Theorem 1) that, if 8D, is of
class C?% "G,(x, y) is nothing but the Laplace transform of the fundamental

solution of the heat equation on D, with the boundary condition —8—u=0

Ny

and this solution is a transition density on D,. Hence, we have

Lemma 2.6. Let {D,}, {"R,(x, ¥)} and {*(Gu(x, y)} be those in Lemma
2.5. If D, is regular, then we have
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(2.7) "Guo(%, ¥)=0, a>0, x yeD,, x=*y.

(2.8) "R, (x,y)=0, a>0, x, yeD,.

2.9) aS "Golx, y)dy<1, a>0, x€D,.
Dn

(2.10)  "Gufx, y)="Gel(x, y)+(a—H) SD "Ga(x, 2)"Gi(2, y)dz=0,
a, >0, x yeD,, x+y. i

We note that (2. 8) follows from (2. 7).
Now, let us complete the proof of Theorem 1 by the following series of
lemmas.

Lemma 2.7. R,(x, y) is non-negative for a>0, x, ycD and
otg Gu(x, y)dy <1, for a>0, x&D. G,(x, y) is symmetric in x, y=D and
D
continuous in (x, y) on DX D off the diagonal.

Proof. The first part of Lemma 2. 7 is an immediate consequence of
Lemma 2. 5 and Lemma 2. 6. It is well known that GY(x, y) is symmetric in
x, y&D and continuous in (x, y)& DX D off the diagonal set. R,(x, y) is sym-
metric because D,(R%, RY)=2R%(y)=2Ri(x), x, ye D.

We shall show that R,(x, y) is continuous in (x, y) DX D. Since R,(x, y) is

a-harmonic in x and in y, applying Lemma 2. 1 for any x, y&D and for

sufficiently small balls B, and B, containing x and y, respectively, we have

Ro(x, y):g S hB\(x, 2)Ry(z, =) hBx(y, 2')o(dz)oy(dz’), where o,(dz) and
a8, JoB

o,(dz’) are the surface Lebesgue measures of 8B, and 0B,, respectively.

While, R,(2, 2') being continuous in 2z’ for each z,S R,(2, 2")o(d=") is
9B,

finite and a-harmonic in 2. Thus,
[ ] Rz 3)o(ds)oids)<+oo
9B, JoB,

Since R, is non-negative, Lebesgue’s convergence theorem implies continuity of
R.(%, y). The proof of the latter half of Lemma 2. 7 is complete.
We will show assertion (iv) of Theorem 1.

Lemma 2.8. Let K, and K, be compact subsets of D such that K, and the
closure of D-K, are disjoint. Then, sup G,(x, y) is finite.
*E€K,VED-K,

(]

Proof. Without loss of generality, we can assume that S=3(D—K,)ND
is sufficiently regular. Consider a regular exhaustion {D,} of D such that
D,DK,. Let xbe fixed in K,. For a fixed n, set D'=D,—K, and u(y)
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="Gy(x, y), yeD'UdD’'. Since ai— u(y)=0, yedD,, we see by Green’s
ny

formula that D,’(4, v—u)=0 holds if veC* (D' U8D’) and v=u on S®. Hence,

the equality

(2.11) D,'(u, uy=D,’'(v, v)—D,'(u—v, u—2)

is valid for each v belonging to ®,= {v; v is square summable on D’, v has

square summable weak-derivatives on D', v&C(D'US) and v=u on S}.

Set 6= sup u(y) and u,(y)= min («(y), 8), y&D'US. Obviously, D,'(u, u)
rye

=D,'(u,, ). But, since u,€9,, (2.11) holds for v=wu, and consequently
u,(y)=u(y) on D".

We have proved that, if x€K, and yeD,—K,, then "G4, y)
= sup "Ga(x, y). Letting n tend to infinity, we see by virtue of Lemma 2. 5,

Gu(%, y)=< sup Gu(x, y), x€K,, yeD—K,. Thus,
res

sup  Gu(x, )= sup Gu(x, ).
xEK‘,VES

1EK,YED-K,

The right hand side above is finite by Lemma 2. 7.
Let us show statement (iii) of Theorem 1.

Lemma 2.9. The operator G, defined by (1. 6) maps B(D) into C(D).
Moreover, if f C(D), then alim aG,f(x)=f(x), xD.

Proof. We note that Gj has those properties in Lemma 2. 9'”. For

feB(D), Ra,f(x)-——s R,(x, ¥)f(y)dy is a-harmonic and bounded on account
D

of Lemma 2. 1 and Lemma 2. 7. Moreover, we see by Lemma 2. 1 that, for
any x€ D and sufficiently small ball B containing x.,

|aRuf) | = | #2w 3) aRuf0)] (@)
< sup 1)1, y)oldy) ———0.

The proof of Lemma 2. 9 is complete.
The following lemmas are statements (ii) and (v) of Theorem 1.

8) D, denotes the integral (2.1) on D’.
9) 'We call f the weak derivative of v with respect to the coodinate x;, if (f, @)n

= ——(v,ﬁa— (p)D holds for every infinitely differentiable function on D’ with a compact sup-
X 4

port, ( , )y being the integral (1. 3) on D’,
10) See (1. 2).
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Lemma 2.10. G,(x, y) is a conservative resolvent density on D. R,(x, y)
is strictly positive.

Proof. We must prove that G,(x, y) satisfies conditions (G. 1)~(G. 4)
stated in the beginning of Section 1 and the conservativity condition. Con-
dition (G. 1), (G. 2) and (G. 4) were already proved in Lemma 2. 7.

Proof of the resolvent equation (G. 3). Take a regular exhaustion {D,}
of D. Let f and g be non-negative continuous functions on D with compact
supports. Owing to equation (2. 10) of Lemma 2. 6, we have for sufficiently large
n’

(2.12)  (f, "Gag)s—(f, "Gpg)ut(a—B)("Gaf, "Grg)a=0,

where (u, v), denotes the integral of u v on D,,.

Note that 0<"G,f(x) "Gpg(x) g—% sup f(x)-sup g(x) and that *G,g converges to
o xep *€D

G,g on D (since, "GJg increases to Glg and "R%(y) converges uniformly on
any compact subset).
Hence, we can delete both superscript and subscript z in (2. 12). Owing to
Lemma 2. 8 and Lemma 2. 9, the left hand side of (G. 3) is, for each xe D,
continuous in y€ D— {x}, and we can see that the resolvent equation (G. 3) is
valid.

Proof of conservativity. If we show that R,1€ H, and that

(2.13)  Du(aR,l, v)=2a(1, v),

holds for all ve H,,, then, we have, by (ii) of Lemma 2. 4, 1 —aG{l=aR,1 and
aG,l=1.

Let D, be an exhaustion of D. Integrating D,(R%, RY)=2R,(x, y) on
D,,x D,, we obtain

(2. 14) D‘,(R,,XDm,R,,,XD”)_—_Z(D SD Ru(x, y)dxdy .

Here, we have used the Fubini theorem, which is valid for the following reason:
if m<n,

S D SD,. dxdy SD |(grad, Ri(2), grad, RY(z))|d=

< | vbu(r, Ryv DKL, Rojaxdy
Dp JDp

=(S V2R (%, x)dx)*< ZS R (x, x)dx X Lebesgue measure of D,
Dn

Dn

the integral in the last expression being finite by Lemma 2.7. In view of
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Lemma 2.7, R,(x, y)=0 and S S R,(x, y) dxdyg—l- X Lebesgue measure of D.
DVD 04

Therefore, R,Xp, forms a Cauchy sequence in H, and, by Lemma 2.2,
converges to R,1 in H,. We have D,(R,1, R,1)=2(1, R,1). In the same
way, identity (2. 13) is obtained. Strict positivity of R,(x, y) follows from
Lemma 2. 4.

Lemma 2.11. There is a unique transition density p(t, x, y) on D satisfying

the following conditions.
(i) Gax, y)=g+°°e-wp(t, x, y)dt, a>0.
(ii) For each t>0, f= B(D),

S pt, %, Y)f(y)dy is continuous in (t, x)E (0, +o0)x D.
D

(iif)  p(2, x, y) is symmetric in x, yE D and it is conservative.
(iv) Set v(t, x, y)=p(t, x, y)—p°(t, x, ¥), then

-1—5 (¢, x, y)dy t_T 0 uniformly in x on any compact subset of D.
D —>

Proof. First of all, we will show the existence of a non-negative function
(¢, x, ¥) continuous in ¢>0, satisfying
+o0
(2.15)  Ry(x, y):S e ty(t, x, y)dt, a>0, x,yeD.
0

If x+y, R,(», y) is completely monotonic in (0, + o). In fact, by the
resolvent equation (G. 3) for G, and GJ, we have, if x=y,

dﬂ

@16 (-1

R, (x, y)=n! [GI"N(x, y)—(GH" N x, y)], n=0,1,2,---.

Here GL'(x, y)=G,(x, y) and Gg"'“](x,y):-g G(x, 2) G4z, y)dz, n=1,2,-.
D

(GH)M is defined similarly. Evidently, the right hand side of (2. 16) is non-
negative and, by Lemma 2. 8, finite. Hence, R,(¥, ) is expressed by a measure
on [0, ++o0) as

4 o0
(2.17) Ruw)=| ™o 5,9, sty a>0.

Take a ball B with closure contained in D. Since R,(x, ¥) is a-harmonic in
x, we see, by Lemma 2. 1, for any x& B and any ye D,

(2.18)  Ra(x, y)=Sth§’(x, %) Ro(z, y)o(dz) .
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Note that AZ(x, 2) is written in the form
+
0

(2.19)  h3(x, z)=S e “hB(t, x, z)dt, xB, z<0B,

where h5(t, x, 2)= ; 86

n,

us put, for t>0, x& B and ye D,

p3(t,x, %), pg being the transition density p° for B. Let

2.20) (2, x,y):SaB S:hB(t——s, %, 2)v(ds, 7, y)o(dz) .

Owing to equations (2. 17), (2. 18) and (2. 19), the function (¢, x, y) of (2. 20)

satisfies the desired equation (2. 15). On the other hand, for any ball B” such

as B' UOB’ C B, the obvious idenity A2(z, x, z)=$ /SthB’(t—s, %, 'Y h5(s, 2, %)
9B’ Jo

dso'(dz’), x=B’, 2€0B,

leads us to the relation

2.21)  y(t, x, y):S /Sth‘*'(t—s, %, 2)y(s, 5, y)dsa'(dz")
0

9B

>0, x€B yeD,

which implies the continuity of (¢, x, y) in (¢, )= (0, 4+ <)X B’.
Here, we have used the following estimate which is a consequence of (2. 17),
(2. 20) and Lemma 2. 8.

(2.22) sup (¢, x, y)=<C-e”- sup R(z, y)<Hoo,
D ZE08,yED

0SIST, *EB"VE

where T is an arbitrary positive number and C is a constant determined by T,
B and B’. Hence, we see that, for any x and y in D, ¥(¢, x, y) defined by
(2. 20) is independent of ball B such that x&B and BUABCD, because it
satisfies (2. 15) and it is continuous in #. It is symmetric in x, y because of the
symmetry of R,(x, y) (Lemma 2.7). Henceforce, it is continuous in y, and
(2. 21) and (2. 22) imply its continuity in (¢, x, y)E(0, + o)X DX D. In view

of (2. 22), we see that S v(t, x, ¥)f(y)dy is continuous in (¢, x) (0, + o)X D
D
for each f = B(D).
Now put, for t>0, x, ye D,
(2.23)  p(t, %, y)=p'(, x, y)+(, %, p).

Then, p(t, x, y) is continuous in (¢, x, y)E(0, + o)X DX D and satisfies
conditions (i), (ii) and the first half of Lemma 2. 11 (iii). In particular,

SDp(t, x, y)dy is continuous in ¢, so that, the conservativity of p(t, x, y) follows
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from that of G,(x, y). For each «x, yeD, p(t+s, x, y) and .‘. (2, %, 2)
D

p(s, 2, y)dz are continuous in (2, s)€(0, +o0)x (0, 4 o), and so, they are
identical by virtue of (G. 3) for G4(x, y). Thus, p(¢, x, ¥) is a transition den-
sity. Assersion (iv) of Lemma 2.11 follows from (2.21) and the inequality

S ¥(t, %, y)dy<1, t>0, xED.
D

3. Compactification of D. Construction of a strong Markov
process on the compactified space

Consider the resolvent density G4(x, y), >0, x, yeD, in Theorem 1.
Let x,eD, n=1, 2 ,---, be a sequence having no accumulation point in D and
{D,, I=1, 2 ,---} be an exhaustion of D. For each /, there exists N such that
%,=D—D,,,, n=N. By Theorem 1 (iv), the family of functions {G,(x,, ),
n=N} of y is uniformly bounded in y€D,,,. Moreover, Lemma 2. 1 implies
that, for n= N, the first derivatives of G («,, ¥), n= N, are also uniformly bounded
in ye D, and that functions G,(x,, y), n= N, are equi-continuous there. Hence,
a subsequence of G (x,, ¥) converges uniformly on each D, and consequently,
by Lemma 2. 1, the limit function is 1-harmonic in D.

A sequence x,€D, n=1, 2,--- having no accumulation point in D is
called fundamental, if "lim G(x,, y) exists for each yeD.

Two fundamental sequences {x,} and {x,} are called equivalent, if
lim G,(x,, y)=lim G|(x,’, ¥), yeD. This defines a usual equivalence relation

among fundamental sequences.

DEerFINITION 3.

(i) Denote by A the collection of equivalent classes of fundamental
sequences.

(ii) For xeA, define Gy, y) by G, y)=limG\(x,, y), yED, where,

{x,} is a fundamental sequence belonging to x.
(iii) Set D*=DU A. For x,, x,€D¥, set

x.)= ‘Gl(xl’y)_Gl(‘xZ! y)l
O S Bt yipmwr-rer

Evidently, p defines a metric on D¥*.

dy .

Lemma 3.1.
(1) (D*, p) is a compactification of D.
(ii) For each y in D, the extended function G,(x,y) is p-continuous in x on
D*—{y} and the class of functions (of x), {G\(x, ¥), yED}, separates points of
D*,
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(iti) If K is a compact subset of D and F is a closed subset of D¥—K, then
sup G(x, ) is finite.

*EF,YEK

(iv) When the relative boundary 8D of D in RN is of class C°, DUOGD coincides

with D* up to a homeomorphism which is the identity on D.

Proof. Martin’s original proof (cf. [13], §2, Theorem I and I) can be
applied with no change to obtain the statements (i) and (i1). Third assertion
is a consequence of Theorem 1 (iv). Suppose that 3D is of class C°. As we
have seen in Section 1, G,(x, y) of Theorem 1 is the Laplace transform of a
fundamental solution p(¢, x, y) of a boundary problem of the heat equation.
P(t, x, y) and G4(x, y) can be continuously extended to DU®dD as functions

of x and it holds that, for each xeDU®aD, feC(DUdD), lims b, x, y)
t>0 JD

f(y)dy=f(x)>,  which implies }1}{1@ aSDGw(x, Nf(y)dy=f(x). Hence,
{G\(x, ¥), yE D} separate points of DU9D. Therefore, DUdD is homeomor-
phic to D* (cf. [1], §9).

Denote by B(D*) the o-field of all Borel subsets of D*. B(D¥), C(D¥)
and C,(D) will stand for the classes of all bounded Borel measurable functions
on D* p-continuous functions on D* and continuous functions on D with
compact supports in D, respectively. Each f&Cy(D) will be considered as a
function on D* by setting f(x)=0, x& A.

As an immediate consequence of Lemma 3. 1 and Theorem 1 (iii), we have

Corollary. The operator G,, defined by G, (x)=SDG1(x, nf(y)dy, xsD*,

maps C,(D) into C(D*) and the collection of functions G.f, f& Cy(D), separates
points of D*.
Now, let us extend every function G,(x, y), «>0, as follows.

DrFINITION 4. For >0, xe A, ye D, define G,(x, y) by
(3.2)  Guw 9)=Cix3) (@1 G(x 2)Culx »ds.
Lemma 3.2. For each x& /\, G,(x, y) has the following properties:

(G. 1) Gux,y), a>0, ye D, is non-negative, finite and ct-harmonic in ye D ,
(G.2) aG,lx)=Glx)<1, a>0,

where G, 1(x)= SD Go(x, ) dy.

(G.3)  Gy(x, y)—Galx, y)+(a—B) SDGa,(x, 2)Gy(z, y)dz=0, a, 8>0, ye D.

11) cf. [7].
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Proof. Let us fix x& A. By Fatou’s lemma,
3.3) G l(x)=1.

By virtue of (3. 3), assertion (iii) of Lemma 3. 1 and assertion (iv) of Theorem
1, the integral appering in (3. 2) turns out to be finite for >0 and y&D. When
a<<l, Gux, y) is clearly non-negative. By Fatou’s lemma, G,(x, y)=0 for
a>1. We can easily verify

(a——%— Ay> Gu(x, )=0, a>0, yeD.
Integrating both sides of (3. 2) in y and noting the conservativity of G, of
Theorem 1, we get aG,l(x)=G,1(x), «>0. The equation (G. 3)’ is obtained
from (3. 2) by a simple calculation.

We now extend p(¢, x, y) of Thoerem 1 (v) from D to D* with respect to «.

Lemma 3.3. For each x= /\, there is one and only one function p(t, x, y),
t>0, ye D, which is continuous in t and satisfies

oo

(3.4 Galx, y)zg e p(t, x, y)dt, a>0, yeD.
0

Moreover the function p(t, x, y) has the following properties:

(T. 1) It is non negative.

(T. 2)’ Sp(t, %, y)dy=G,1(x)<1, >0.
D

(T. 3y S P&, %, 2)p(s, 2, y)dz=p(t+s, x, ), t, >0, yeD.
D

(T.4)" For each x€ A\, it is continuous in (t, y)E(0, 4+ o0)x D and, for each
t>0 and yD, it is measurable in x on /. Moreover, for any f& B(D*) and

xEN, S p(t, x, ¥)(y)dy is continuous in t>0.
D

Proof. In view of (G. 3)" of Lemma 3. 2, we see that G,(x, y), x€ A,
y& D is completely monotonic in a&(0, 4-0). By (G. 1)’ of Lemma 3. 2, it is
a-harmonic in yeD. Hence, we can construct p(t, x, y), t>0, x€ A, yeD,
satisfying (3. 4), (T. 1)’ and the first half of (T. 4)" in the same manner as the
construction of (¢, x, y) of Lemma 2. 11.

As consequences of properties (G. 2)" and (G. 3)" of Lemma 3. 2, the equation
in (T. 2)’ holds for almost all £>0 and relation (T. 3)" holds for almost all
t, s>0. By virtue of (2. 22), the left hand side of (T. 3)’ is continuous in s>0
for each ¢ satisfying (T. 2)’. So the equation (T. 3)" holds for almost all >0
and for all s>0. In view of property (T.3) of the transition density p(t, , y),
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t>0, x, yeD, (T. 3)" holds for all ¢, s>0. (T.3)’ implies that the left hand
side of (T. 2)’ is a constant in 2. Hence (T. 2)’ holds for all 2>0. It follow

from the first half of (T. 4)’ thatS p(t, x, ¥)f(y)dy is lower semi-continuous in
D
t for each non-negative bounded function f on D. Moreover, on account of
(T. 2)’, it is continuous in ¢. Thus, S p(t, x, ¥)f(y)dy is continuous in >0
D

for each f = B(D*) and xE A.

Now, we are in a position to construct the Markov process (on D¥*) associ-
ated with p(z, x, y), x=D*, ye D, and investigate its properties.

Add a point 8 to D* as an isolated point. B(D* U9d) will stand for the
collection of sets whose restrictions to D* are the elements of B(D*). Denote
by B(D*Ud) (C(D*U0d)) the aggregate of all the functions on D* U3 whose
restrictions to D* are the elements of B(D¥*) (resp. C(D*)). Each element f
of B(D*) will always be considered as the one of B(D* U2) by setting f(8)=0,
unless particularly mentioned. Let p(¢, x, y) be the function defined for >0,
x€D* and yeD by Theorem 1 (v) and Lemma 3.3. For E=B(D*U0J),
define

(3.5 pt % B)=|_ p(t % 5)dy+(1—q()Xs(0), xED*,
p(t, 0, E)=Xg(0),

where X is the indicator function of the set E, and

(3. 6) q(x):S G(x, y)dy, xeD*.
D
We put for f € B(D*U9),

T.fee)=| | ot dnf),
(3.7) i
G, (x):S T, fx)dt, x=D*UD, >0, a>0.

G,f is expressed in the form

Guf(0)= | Gulos )ty +1 =20 10), weD*,
(3. 8) 70)
wa(a)z 7 .

By virtue of Theorem 1 (v) and Lemma 3. 3, p(¢, x, E) defined by (3. 5) is a
transition function on D*U®; p(¢, x, -) is a probability measure on D* U39,
p(+, «, E) is, for each EE®B(D* U0), measureable in (¢, x)E(0, + co)x {D* U 8}
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and it satisfies the Chapmann-Kolmogorov equation.

Let Q be the product compact space {D* U8} *>, Denote by X,(w)
the #-th coodinate of weQ. Let F(F, be the o-field of subsets of Q
generated by the cylindrical open sets of Q (resp. cylindrical open sets
depending on the coodinates up to and including #). Denote by U the o-field
of subsets of Q generated by all open set of Q. For each x&D*U3d, there
is a unique Radon measure' P, over (Q, ) which is a probability measure and
satisfies the following conditions.

(3.9) P (X,€E)=p(t, x, E),
t>0, xeD*Uo, EBD*U0),

(3.10) For each A%, and bounded F-measurable function F on Q,
E(F,(0,0); A)=E (Ex,(F); A), x&€D*UQ,

where E, denotes the integration with respect to P,-measure and §,; >0, is
the shift from Q to Q defined by X,(8,0)=X,, (o), s>0.

Lemma 3.4.
(i) Set Q,={w; X (w)ED* for every t>0} and Q,={w: X,(w0)E {0} for
every t>0}. Then, P (Q,)=¢q(x), P,(Q,)=1—¢(x), x& D* and Py (Q,)=1.
(ii) For each x& D* U0, we have P (X, has the right limits for all t=0 and the
left limits for all t>0)=1.

Proof. (i). Relations (3. 5), (3. 9) and (3. 10) imply P, (X,D*,
X, {0})=0 for every ¢, s such as #>s>0 and for every x&D¥*. Since
{X,, P,}, x€D¥, is separable,”® we see P,(Q,)= lim P, (X, D¥)=¢(x) and

P(Q)= lim P, & 8})=1—g(x).

(if). Denote by C7(D) the collection of all non-negative functions in Cy(D) and
by S,(D) a countable dense subset of Cg(D) in uniform norm. By virtue of
Corollary to Lemma 3. 1, functions G,f, f&Sy(D), are continuous on D* and
separate points of D¥*. Moreover, {Z,=e'G,f(X,), Bs P.}, fES(D),
xeD*, is a bounded supermartingale. Hence, we have assertion (ii) by a
standard argument'.

It follows from Lemma 3. 5 that there is well defined X,(w)= }1{1{1 X (w) for

every t=0 almost everywhere (P,), x&€D*Ud. X, is right continuous in =0
and has the left limit in £>>0 almost everywhere (P,), x&D*Ud. On account
of Theorem 1 (v) and Lemma 3.3 (T. 4)’, X, is a modification of X,;
P, (X,=X,)=1, for each t>>0 and x& D* U3.

12) cf. [15].
13) cf. [15].
14) cf. [10] and [20].
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Let us examine the distribution of X,.

DEFINITION 5.

(i) For each x&D* U9, define a probability measure u(x, E) on B(D* U0) by
w(x, E)y=P,(X,€E), EcB(D*U0).

This u(x, -) is called the branching measure at x.

(ii) A point x in D* U9 is called a branching point if u(x, {x})<1.

The notion of branching measure was introduced by D. Ray [20]. The
above definition, slightly different from Ray’s original one, is due to H. Kunita
and T. Watanabe [10]. We shall use the general results obtained by these
authors, whenever their methods of the proof are applicable to our situation
without essential change.

Denote by A, the totality of branching points. Then, we have

Lemma 3.5.
(i) A.CA.
(ii) Aqis an F -set and p(x, /\)=0, xE /\,.

(i) Put N,'={x: q(x)<1}, where q(x):S G(x,y)dy. Then, N\,/’C /A, and
D
.U'(x) {6})=1—q(x), XEN,.
Proof. If f€C(D*U0d), then
+
0

(3.11)  lim aG,f(x)= mlimmEx(S " (X ) dt)

—E(fX)=  wln d)fs), x=D*U0.

On the other hand, because of Theorem 1 (ii) and formula (3. 8), mlirn aG,f(x)

=f(x), for x& DU, feC(D*U0d). Hence, D U9 contains no branching point.
For the proof of (ii), let us cite a criterion of D. Ray [20] in a modified form
fitted to our situation: x& /\,, if and only if f(x)> dlim aG,f(x), for some

fel={f=GhNc; h&,S(D), ¢ is non-negative rational}. Since, for fEC,,

aGu f<f and G, f=G(f—aG,.,f) is lower semi-continuous on D¥*

re=U U N {f(x)ZaGa.,f@)+1/n} is an Foset. By (3.11), we
fE€C; n=1 a>0, rationa

have for f=G,h, h&CyD), and conseqeuntly, for f=G,h, he B(D*), a>0, the
equality f(x)=g ua'u(x’ dy)f(y). Therefore,
D¥*

S (%, &) lim (@G )(9)= lim aGaf(x)
D* @y + 0 @y + o0

=SD*U3”(x> dfy), fec,.
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Usingmt_)lﬁ inequality mlf},lm aG,f<f, fEC, and the criterion above, we can see
that u(x, A,)=0.

Assertion (iii) is immediate from (3. 8) and (3. 11).

In the next section, we shall see that u(x, D)=0, x& A,.

Let us set D*=D*—/\,. By Lemma 3.5 (i), we see Dc D,*. By Lemma
3,4 (i) and Lemma 3. 5 (iii), we have P, (X,&D* for every t1=0)=1, x&D,*.
The following two lemmas will assure that the properties stated in Theorem 2
(ii) are valid for X={X,, P,, x&D*} except the continuity of the trajectory
X, at the boundary A.

We call a random time ¢=0 a Markov time (relative to ;) if, for each
t>0 and each probability measure » on D¥, the set {s<<#} is in §, up to a

set of P,-measure zero (P -)=S v(dx)P,(+)). For a Markov time o, let
D*

B+ denote the o-field of subsets A of Q such that, for each >0 and each
probability measure » on D*, AN {oc<t} is in &, up to a set of P,-measure
Zero.

Lemma 3.6.
(i) X={X,, P,, x&D*} is a strong Markov process; for each Markov time
o, NES, . and f € B(D¥),

E(f(Xo1e); N=EEx,(f(X)); A), xED*.
(ii) For each xD*, P (X, N\, for every t=0)=1.

Lemma 3.7.
(i) Let {D,} be an exhaustion of D. Set
1,=wnf {t: X,eD*—D,} and 7= limr~,.

Then, P,(X, is continuous in 0=<t<7)=1, x& D*.
(ii) For each x&D and Borel set E of D,

P(X,€E, t<‘r)=S ¢, %, y)dy .
E
(iil) For each x€ D¥*,
P (X, is continous for any t=0 such that X, or X,_isin D)=1.
(iv) For each x€ D¥,

P(X,, X,_& A, for every t=0)=1.

(v) X is quasi-left continuous; for any sequence of Markov times o, increasing to

g,
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P(lim X,,=X,; 0<+o0)=P,(c <+ ), x&D*.

Proof of Lemma 3. 6 (i). Since X, is a modification of X,, relations (3. 9)
and (3. 10) hold for X, if we replace X, there with X,.

Take a Markov time o and a set AE,,. The Markov property (3. 10)
for X, and a usual limiting procedure lead us to

(3.12)  E(Gf(X.); A)
+oo
=E"(S e " X,)+H(a—1)G,f(X,)dt; A),
for feCy(D), xD*. Here, we have used the resolvent equation, the right
continuity of X, in =0 and the continuity of G, f(x), f €Cy(D) in x& D*. Since
P (X,e N)=0, xeD*, t>0, we can see that equation (3. 12) holds also for
fEB(D*). By setting f[=G4h. he B(D), a>0, in equation (3. 12), we have

E(G,Gh(X,); A)=E,(S+me‘"‘('”")Glh(X,)dt; A). By the resolvent equation
(G. 3) and (G. 3)" (Lemma 3. 2), we have, for B8>0 and feC(D*),
E(Gu(BCa(X.); N=E.(|

+oo
o

e (BGaf)(X,)dt; A)
=E S:mew(r—a) (BGef )X )Xp(X,)dt; A).

Letting B tend to infinity, we have, by Theorem 1 (iii),

E(Gaf(X,); A)

=E,,(S e f(X,.)dt; A), a>0, feC(D¥), xeD*,

which proves conclusion (i) of Lemma 3. 6.

Proof of Lemma 3. 6 (ii).
Here, we can go along the same line as in H. Kunita and T. Watanabe [11],
Section 2, (j). Set, for AcCD¥,

(3.13)  o4=inf {£>0; X, 4},

=} oo, if there is no such ¢.

o 4 is a Markov time if 4 is open or closed. Since A, is an F -set (Lemma 3. 5
(it)), Lemma 3. 5 (ii) and the strong Markov property will imply the second asser-
tion of Lemma 3. 6.

Proof of Lemma 3. 7 (i), (ii).

It follows from Lemma 2. 11 (iv), that, for each compact set KD and
&£>0,
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(3.14)  lim L sup p(z, x, D— U, (x))=0.

t1o t ek
where U, (x)={yED, p(x, y)<E} .
(3.14)  implies
(3.15) P, (X, is continuous for every t<7,)=1,

x€ D¥, (see E.B. Dynkin [3], Lemma 6.6). Letting n tend to infinity, we have
the first statement of Lemma 3.7.
Next, take a regular exhaustion {D,}. Then, we have

3.16) P, (r,=0)=1, x<oD,, n=1,2,.,
(3.17)  for each n and compact set KD,

lim sup P,(7,<u)=0,
#]0 *EK

(3.18)  for each twice continuously differentiable functions f on D,
| 1
lim L (T, f0)—ftx) =1 £ fx), *€D.

Indeed, (3. 18) is immediate. Property (3. 16) follows from P (7,>t)<1—P,
(X,eD—D,)and P(X,=eD*—-D,)= S p°(¢, %, y)dy. Property (3. 17) follows
D—-Dy

from the following estimate ([3], Lemma 6.1): for any Borel subset G of D,
P (X,eD,UdD, for every t=u)=p(u, x, G)— sup p(t, ¥, G). Since T,

YED - D, 0K t<ih
maps B(D) into C(D) (Theorem 1 (v)), it follows from (3. 16) and (3. 17)
that the operator 77, defined by T;f(x)=E,(f(X,);t<7,), *&D,, makes
invariant the space of all continuous functions which vanish on 9D, (see E.B.
Dynkin [4]. Theorem 13.1 and Theorem 13.8). Let p™(¢, x, y) denote the
transition density of the absorbing barrier Brownian motion on D,. Then,
combining the above property of 77, the continuity of trajectory X,, t<7, and
formula (3. 18), we can conclude ([4], chap. V, §6) that, for any Borel subset E
of D,,

P/X,<E, t<Tﬂ)=S P, %, y)dy, >0, xED,.
E

Let n tend to infinity to obtain conclusion (ii) of our lemma.

Proof of Lemma 3.7 (iii), (iv).
Let us fix ¢>0. Denote by € the class of all D*-valued functions defined on
[0, c]. Define the operator q from £ to € by qp(t)=p(c—1t), 0=t=c, pEL,
For w€Q, we define v(w)={X(0); 0=<t=c}.



206 M. FukusHIMA

»(w)EL for almost all w(P,). We set for AEF, vA=v 'qvA. According
to the symmetry and the conservativity of p(¢, x, ¥), it is easy to see that

(3.19) SDP,(yA)dngDPx(A)dx, AEF,.

We shall first prove assertion (iv).
Put Ai™={w; X,_€ A, for some tE(h, c+h)}
and Bj={w; X,€ A, for some t& (0, c)}, h=0.

Obviously, 4i=vB¢, and by Lemma 3.6 (ii), and (3. 19), we have S P (A5)dx
D
=S P,(B§)dx=0. Hence, P,(A4§)=0 for almost all x&D. By (3. 10), we see,
D
for each xeD¥*, Px(A,'i“”):S p(h, x, y)P,(A5)dy=0. Letting ¢ tend to
D

infinity and then 4 tend to zero, we obtain conclusion (iv) of the present lemma.

Coming to the proof of assertion (iii), consider the set Aj= {w; X, €D,
X,_+X, for some t&(0, ¢)}. Then, A;=A,UA,, where, 4,={w; X, €D,
X.eD, X,+X,_ for some t=(0, ¢)} and 4,= {w; X, €D, X,/ for some
te(0, ¢)}. Denote by S a countable dense subset of (0, ¢). Obviously,
A,cC s[é}g {w; X,€D, X, has a discontinuity for some ¢t (s, (s+7(f,w)) Ac)} and

4, SLEJS {w; X,€D, X, 4,,,60D, for some n such as s+7,(0,0)<c}. By

virtue of (i) and (ii) of Lemma 3. 7, one has P,(4,UA4,)=0 for x&D, and
consequently (see the proof of (iv)) for all k& D*. Set B{=vA?, then the same
argument as in the proof of (iv) leads to P,(B{)=0, x&D*.

The final statement of Lemma 3. 7 follows from assertion (iv) of the lemma
and assertion (i) of Lemma 3. 6. (see [11], Section 2, (i)).

4. The Dirichlet norm related to the process and the continuity
of trajectories at the boundary

The main purpose of this section is to show in Lemma 4. 5 that, for almost
all o, the entire trajectory X ,(w), 0<t<<-+ oo, is continuous. Since we already
proved that X,(w) is continuous for all >0 such that X,(w) or X, (o)ED, it
remains to prove that X,(w) has no jumps at the boundary A.

First, we will give an integral representation of 1-excessive functions.

DEFINITION 6. A non-negative function # on D* is called a-excessive if

4.1) e " Tu(x) t u(x) as ¢ | 0 for each x D*.

Lemma 4.1.
(1)  If a non-negative function u defined on D satisfies (4. 1) for every x& D, then
u is uniquely extended to an a-excessive function on D¥,
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(ii)  If u, and u, are a-excessive and u,(x)=u,(x) almost everywhere on D, then
u, and u, coincide on D*.

Proof. (i). For xeD*, ¢ T,u(x):e""‘s p(t, x, y)u(y)dy is monotone
D
increasing as ¢} 0, and we have only to set #(x)= lim T,u(x). The uni-
tlo
queness of # and assertion (ii) are easily verified.

Set A y=A—A,.

Lemma 4.2.
(1) Gu(x, ), (x, y)£D*X D, can be extended to (x, y)=D* X D* in such a way
that the extended function G,(x, y) is symmetric in x, y=D* and, for each
x(resp. y)E D*, it is oi-excessive in y(resp. x).
(ii)  For each branching point x< /\,, the branching measure u(x, +) is concen-
trated on /\,U0.

Proof. (i). By Theorem 1 (v) and Lemma 3.3, G,(x, ) is, for each yeD,
a-excessive in xD* and it satisfies (4.1) as a function of yeD, for each
xeD*. By virtue of Lemma 4.1, G,(x, ¥), x&D*, has an «a-excessive ex-
tension with respect to y. The symmetry of the extended kernel follows from
Theorem 1 (ii). (ii). As we have seen in Section 3, (see the proof of Lemma

3.5),
1=, ul, )fis), for f=Goh, heBD¥).

Hence, by Lemma 4.1 (ii),

(4.2)  Ga(x, y)= SDUAI u(x, d2)Gu(z,y), yeD.

When x€ £, Gu(x,y) is a-harmonic in y and equation (4.2) implies that
p(x, +) has no mass on D (see Lemma 2.1).

Theorem 3.
If u is 1-excessive and S u(x)dx<<+ oo, then there exists a unique measure v con-
D

centrated on D U /\, such as

(4.3) u(x):&)UA] G, y)u(dy), xED*.

We call v the canonical measure corresponding to u.

Proof. Since u is 1l-excessive, there is an increasing sequence of non-
negative functions f,, n=1, 2 ,---, such that
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Glf,,(x)"imu(x), xeD* .

Because of Theorem 1 (ii), S fo(x)dx=(f,, G.1)=(Gfn, l)ggDu(x)dx<+<>0.
D

Hence, extracting a subsequence if necessary, the sequence of measures fa(x)dx
converges weakly to a measure »,(dx) on D¥*. By Corollary to Lemma 3. 1,
G.p is continuous if p=Cy(D), so that (@, u)= lim (@, G, f,,)=”£i£ri (G, f»)

=S , Gp(x)u,(ds), pECD). Thus, it holds that
D

49 um=] G )u@),
pua
for almost all ¥ D, and consequently (Lemma 4. 1 (ii)) for every x& D*. Using
(4. 2) and Lemma 4. 2 (ii), we can rewrite (4. 4) in the form (4. 3) with » defined
by v(dy)zvo(dy)+g v(d2) (2, dy). 'The measure v of (4. 3) is uniquely deter-
ZAvS

mined by . In fact, for any feC(D¥), S f(x)v(dx)= limasnuA Gof(x) v(dx)
D¥* @y + 0 1

= lima SDM (Guf(¥)—(@—1) G,Gaf())o(dx)= lim a(u, f—(@—1)Gf).  The

@y 4 oo

proof of Theorem 3 is complete.

Our next task is about the canonical measures corresponding to a special
class of excessive functions.

DEFINITION 7. The (—oo, 4 oo]-valued function 4,(w) on [0, 4] XQ
is called an a-additive functional of X, if

(A.1) for fixed ¢, 4,(w) is §, -measurable in ,

and if there is YA-measurable set Q4 closed under the operation 6;, t=>0, such
that P,(Q,4)=1, x&D¥*, and for each fixed 0 E=Q,,

(A.2) A,w) is right continuous and has the left limit in ¢,
(A. 3) ¢(w)=0 implies 4,(w)=0 for t=0,

where {(w) is a hitting time to 9, and

(A.4) A4, (0)=A(w)+e >t A,(0,0), for t, s=0.

Two a-additive functionals 4 and B are called equivalent and denoted by
A=~B, when A,=B, holds almost everywhere (P,) for each t=0 and x= D*.
A 0-additive functional will be called an additive functional simply.

Put R= {u; u=G,f, feB(D*)}. Riscontained in B(D*) and independent
of a>0. If G,f(x)=Ga.fx), x&D*, f,, f,=B(D¥), then, as one easily sees,
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f1=f almost every-where on D.
Take ucR. If u=G,,f, f € B(D*), we set

(4.5) A¢=e5f/2u(x,)_u(xo)+S'e-w AX,)ds, 120

It is easy to see that A% is a 1/2-additive functional and it is uniquely determined
by u up to equivalence. Clearly E,(4%)=0, x&D*, t=0. We see that

(4.6) v (¥)=E((4%))

is a 1-excessive function. In fact, 4%.(0w)=A4%w)+e **A%..(0,0) implies v,(x)

= E((AY))+2E (e AiEx (A%.)) B Ex (A1.)) = EL((A2)) +-¢7* Trou*),
and e”*T,v,(x) 1 v,(x) as t | 0, x& D*. Moreover, S v,(x)dx<<4 oo, and so, v,
D

is expressed as the G, -potential of a measure on D*=DU A, according to
Theorem 3.

DreriNiTION 8. For u=®R, define A% and v, by (4.5) and (4. 6), respec-
tively. Denote by v, the canonical measure on DU A, corresponding to v,,.
Set |||ulllx=V v, (D U A\,) and call this the Dirichlet norm of uc®R with respect

to the process X.
We will show

Theorem 4. Let u bein R. Then,
) |l|u|l|§(=gn(grad u, grad u) (x)dx,
(i1) v (A,)=0.

Let us prepare two lemmas.

Lemma 4.3.
ulle=2(u, f)—(u, u), usK.
Proof. Since SD G (%, y)dx= SD G\(y, x)dx=q(y)=1for yeDU A, (Lemma
3.5 (iii)), we have |||u/|[Z=v. (DU Al)ngvu(x) dx. On the other hand,
oW =E([| e X ds)—u(ay
=2B,(| e fx)ar | e ) do)— (o
=2B(| et fx )t B (| e X, ds))—u(y

—2| G )/ dy— )
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Hence, Lemma 4.3 is valid.

Lemma 4.4. Let 7 be the first exit time from D defined in Lemma 3.7 (i).
Then we have, for ueR,

(+.7)  E(Ar))={ Gix ygrad u, grad w)s)dy, x€D,
(+.8)  E(42))={ G¥x3)uidy), x€D,

(4.9) y,,(D)=5D(grad u, grad u)(y)dy .

Proof. Let {r,} be the first exit times from an exhaustion {D,} of D.
By definition, 7,1 7. In view of Lemma 3.7 (ii), {X,, ¢<7,} is equivalent to
the absorbing barrier standard Brownian motion on D,. Now, suppose that f
belongs to C*D). Then, u=G,),f=GY,f+R,.f belongs to C*D) and

<% - %A )u(x),: f(x), x& D*. Applying the formula concerning stochastic inte-

Tn
grals' to the function F(¢,x)=e"**u(x), we obtain A'T‘n=s e~ grad u(X,)dX;,,
and consequently ’
Tn
(4. 10) Ex((A’,‘n)”)zEx(g e *(grad u, grad u)(X,)ds), x€D.
0

Consider the collection  of all bounded functions f on D such that u=G,f
satisfies equation (4.10) for a fixed . Obviously 9 is a linear space and C*(D)
C9. It is easy to see that, if f,€9 converges boundedly to a bounded function
f, then f€9. Hence, D9=B(D). We get formula (4.7) by letting z tend to
infinity in (4.10). In order to show identity (4.8), we have only to let # tend to
infinity in the first and last term of the following identity.

E"((A :”)2) = ‘vu(x) - Ez(e—‘r" vu(X'rn))
= SDMI Gi(x, y)v(dy)— S N E (e ™nG(X.,, y))v.dy)

DU

= (G 9)— Bl G (X0, y)rl@) .

The formulae (4.7) and (4.8) imply identity (4.9).

Proof of Theorem 4. It follows from the definition of R,(x, y) that, when
ueR and u=G,,,f, feB(D),

15) CY D) (C%D)) is the aggregate of all bounded, continuously (resp. twice continu-
ously) differentiable functions on D.
16) cf. [4], (7. 77).
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(4. 11)  Dyy(u, u)=2(u, f) .

Indeed, the same procedure as in the proof of Lemma 2.10 is applicable to
get DI/Z(RI/Zf) RI/Z )=2(R1/2f’ f) It is easy to see that D;/z(G(;/zf’ Glo/Zf)
=2(G3f, f) and Dy (Gyrf, Ry.f)=0. Rewrite (4.11) in the form, 2(u, f)—(u, u)

-——S (grad u, grad u)(y)dy. Now, assertions (i) and (ii) of Theorem 4 follow
D

from Lemma 4.3 and Lemma 4.4, respectively.

Coming to our main task about the continuity of trajectories of X, we shall
introduce several notations and concepts given by M. Motoo and S. Watanabe
[18]. In [18], Hunt processes are treated. Our process X is not a Hunt pro-
cess in general: It may include branching points. However, owing to Lemmas
3.6, 3.7 and 4.1, all the results in [18] can be applied to our process.

Set

€} ={4; A4 is an additive functional of X such that 4,(»), =0, ©EQ,, is non-
negative, continuous in ¢ and E,(4,)<+ co for =0, x& D*}'”

€, ={4; A=4,—A4,, 4,65, i=1, 2},

M = {4; A4 is an additive functional of X such that E,(A?)<<+ oo and E,(4,)
=0 for t=0, x& D*}.

Let A, B€M. Then there exists a unique element of €, denoted by
{4, B, satisfying the following condition: E, (<4, B),)=FE (A4,B,) holds for
every t=0 and x&D*. ForAeM, {4, A> will be denoted by <A4>. It is an
element of. €;.

We set, for AN,

L*(A)={f; f is a measurable function on D* such that E ( St f(X ) d{AD)<+ oo
0
for every t>0, x& D*}.

DeFINITION 9.
Let AcM and f e L*(4). B&M is called the stochastic integral of f by 4
and is denoted by B= Sfd/l if E(B,C,)=E,( Stf(Xs)cKA, C>,), t=0, holds for
0
every CeI.
The stochastic integral exists uniquely for A€M and fe L*(A4) (Theorem
10.4 of [18]). As a consequence of Theorem 4, we have

Theorem 5. Denote by X, the indicator function of the set /\,. It holds
that SXAldA'zO for any A=M.

17) 84 is a suitable defining set of 4 (see Definition 7).
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Proof. (i). Set, for ueR and u=G,),f with f € B(D¥*),
(412 A=u(X)—u(X)+ | (AX)—u(X)ds, 120,
Obviously, A*€. Let us show, for uc R,

(4. 13) SxAl dA*~0, or equivalently

4. 14) StxAl(Xs)d</T“>s=0, £20, almost everywhere (P,), x& D*.
0
~, ~ t ~
Since A“ defined by (4.5) is related to A* by A’;=e"/2A’H—%S e Axds, v,
[

defined by (4.6) is expressed as

+

0

(4. 15) v,,(x):Ex(f Tetd<A%,), xeD*.

On the other hand, v,,(x)zg G(x, y)v,(dy), and by virtue of Theorem 4
DU

(which states v,(A,)=0), (A*>, can never increase when X,E A, (see [6] or

[14]), that i, ngl(Xs)d<A“>s~0.

(ii). In order to derive Theorem 5 from (4.13), we introduce several nota-
tions. We write Lim A"=A4, for 4 and A€M, if and only if E (47— A4,))

——_;—» 0, x&D*, t=0. A subset L of M is called a subspace, if L satisfies
n— o0

the following conditions.
(a) If 4, BeL, then A+Be&L.
(b) If A"€L and A=li.m A", then A= L.

(¢) If AEL and feL¥(A), then S fddeL.

For a subset M of M, L(M) will stand for the minimum subspace which
contains M. We note that, Theorem 12.2 of [18] states M= L(A*; u< R), where

A* is defined by (4.12). If we set M'= {4; A=, SXAldA~O}, then M’ is a

subspace of M and contains A% ucR, by (4.13). Hence M'=M, completing
the proof of Theorem 5. '

By the following lemma, we will complete the proof of Theorem 2 stated in
Section 1.

Lemma 4.5. The strong Markov process X={X,, B, P,, x&D*} is
a diffusion, that is, X satisfies the condition
(b) P,(X, is continuous for every t=0)=1, x& D*,
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Proof. Let p(x, y) be the metric on D* defined by (3.1). We shall set, for
convenience, P(x, 0)=-oo, x&D* and p(d, 0)=0. For £>0, define ¢° by
o*=inf {¢; p(X,_, X,)>¢},
= o0 if there is no such ¢,
and O’i ’ 0'28 ' by G-IE:'O'E) 02:0;_1(0))4—0'8(903”_160). Set p§,E= 2 XE(XUnB)y for
0, <t

EsB(D*Ud) and t=0. Obviously, p*;% is an additive functional. We shall
denote p;'?*U? by p;. Statement (b) is equivalent to

(4.16) p;=~0, for any =0 and £>0 .

Let us show (4.16). We can find B,,=8(D* U0) such that B,,  D¥ U9 and
E, (b} Bm)<+ oo, x&D*, t=0 (Lemma 3.1 of [22]). For B,,, there is 5" <C;

such as

(4.17)  E,(pyBm)=E (§;'™), t=0, x&D*.
If we put q;'™”=p; Bm—p;"™, then ¢~ M and
4.18)  <g"">~p>" (Theorem 2.2 of [22]).

Now Theorem 5 implies
4.19) E[ S:xAl(Xs)dﬁi””)—_—O, 10, xeD*.
On the other hand, we have from identity (4.17),
(4:20) B 33 Xo (Ko o Xos ) =Bl | X (X 527),

xeD* (Lemma 3.2 of [22]). The left hand side of equation (4.20) is, owing to
assertions (iii) and (iv) of Lemma 3.7, no other than E, (p;Zm). Therefore, the
formulae (4.19) and (4.20) imply p;'B»~0, and consequently assertion (4.16).

We call the conservative diffusion process {X,, 8+, P., xED,*} the reflect-
ing barrier Brownian motion on D*=DU A,.

Consider the case when 0D is of class C°. By virtue of Lemma 3.1 (iv), we
can find 2 homeomorphism ¥ from D U 3D onto D* such as ¥(x)=x, x&D. In
this case, £\, is empty and so,D*=D* (see the identity (3.11) and the proof of
Lemma 3.1). Set X,=¥Y(X,), t=0 and P,=Puy,, ¥€DUBD. Theorem 2
and the argument in the paragraph following Theorem 1 now imply

Theorem 6. Suppose that 8D is of class C°. Then, X=(X,,P,,x
€DUdD) is a conservative diffusion process on DU0D satisfying P (X,EE)
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=S . p(t, x, y)dy, t>0, x&DUOD, for any Borel set E of DUAD. Here,
END

p(t, x, y), >0, x&D*, yED is the fundamental solution of the heat equation

ot

<i—~% A)u(t, x)=0 with the condition 5%—u(t, x)=0, x€0D. We call X the

reflecting barrier Brownian motion on DU dD.
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