ON INDUCED REPRESENTATIONS

KIYOSATO OKAMOTO*

(Received March 10, 1967)

Let G be a locally compact topological group and K a compact subgroup of G. For any irreducible unitary representation σ of K, we denote by $U(\sigma)$ the induced representation generated by σ (see §1). In general, $U(\sigma)$ is not irreducible.

The purpose of this paper is to give a method of extracting the irreducible components of $U(\sigma)$ when G is one of the special types of Lie groups.

1. Let G be a connected non-compact semisimple Lie group with a finite dimensional faithful representation and K a maximal compact subgroup of G. We assume that rank G=rank K. For any given irreducible unitary representation σ of K on a representation space V, we can construct a unitary representation $U(\sigma)$ of G as follows. Let $\mathfrak{D}(\sigma)$ be the set of all "Haar-measurable" V-valued functions f which satisfy the following conditions;

$$f(kx) = \sigma(k)f(x) \qquad (k \in K, x \in G)$$

and

$$||f||^2 = \int_G ||f(x)||_V^2 dx < \infty$$

where $|| ||_{V}$ denotes the norm in V.

Then $\mathfrak{F}(\sigma)$ is a Hilbert space if we identify functions which differ only on subsets of G of Haar measure zero. The inner product (,) in $\mathfrak{F}(\sigma)$ is given by

$$(f_1, f_2) = \int_G (f_1(x), f_2(x))_V dx$$
 $(f_1, f_2 \in \mathfrak{D}(\sigma))$

where $(,)_V$ denotes the inner product in V. Finally for any $g \in G$, $U_g(\sigma)$ is defined by

$$(U_g(\sigma)f)(x) = f(xg)$$
 $(f \in \mathfrak{D}(\sigma), x \in G)$

Thus we obtained the induced representation $U(\sigma)$ generated by σ (cf. [7] (d)). Our aim is to find out an irreducible closed subspace of $\mathfrak{H}(\sigma)$.

^{*} The author is partially supported by the Sakkokai Foundation.

К. Окамото

2. Let g (resp. \mathfrak{k}) be the Lie algebra of G (resp. K) and \mathfrak{p} the orthogonal complement of \mathfrak{k} in g with respect to the Killing form of g. Then $\mathfrak{g}=\mathfrak{k}+\mathfrak{p}$ is a Cartan decomposition of g. Let T be a maximal torus in K and \mathfrak{h} the Lie algebra of T. Then since G has a finite dimensional faithful representation and rank $G=\operatorname{rank} K$, T is a Cartan subgroup of G; i.e.

$$T = \{g \in G; \operatorname{Ad}(g)H = H \text{ for all } H \in \mathfrak{h}\}$$

where Ad denotes the adjoint representation of G. Let g^{C} denote the complexification of g. Let Σ be the set of all non-zero roots of g^{C} with respect to the Cartan subalgebra \mathfrak{h}^{C} (\mathfrak{h}^{C} is the subspace of g^{C} spanned by \mathfrak{h}). We denote by Σ_{k} the set of all compact roots (see for definition [8]). Let \mathcal{F} be the vector space over \mathbf{R} (the field of real numbers) consisting of all purely imaginary complex valued linear forms on \mathfrak{h} . Then $\Sigma \subset \mathcal{F}$. Introduce a linear order in \mathcal{F} and let P (resp. P_{k}) be the set of all positive roots in Σ (resp. Σ_{k}). We denote by \mathfrak{G} the universal enveloping algebra of g^{C} . As usual we regard elements of \mathfrak{G} as left-invariant differential operators on G. Since V is finite dimensional, it has the canonical structure of an analytic manifold. We denote by $C^{\circ}(G, V)$ the vector space of all continuous mappings from G to V. For any $f \in C^{\circ}(G, V)$ and $v \in V$, we put

$$f_v(x) = (f(x), v)_V \qquad (x \in G) \,.$$

Let $C^{\infty}(G)$ be the vector space of all infinitely differentiable complex valued functions on G. We denote by $C^{\infty}(G, V)$ the set of all $f \in C^{0}(G, V)$ such that

$$f_v \in C^{\infty}(G)$$
 for all $v \in V$.

We often call $f \in C^{\infty}(G, V)$ a V-valued C^{∞} -function. Define

$$(U_X(\sigma)f)(g) = \lim_{t \to 0} \frac{1}{t} (f(g \exp tX) - f(g)) \qquad (g \in G)$$

for $X \in \mathfrak{g}$ and $f \in C^{\infty}(G, V)$. Then we have a representation $X \to U_X(\sigma)$ of \mathfrak{g} on $C^{\infty}(G, V)$. This extends uniquely to a representation of \mathfrak{G} . It is obvious that

$$(U_u(\sigma)f)_v = uf_v \text{ for all } u \in \mathfrak{G}.$$

In the following, we shall simply write *uf* instead of $U_u(\sigma)f$. Let 3 be the center of \mathfrak{G} and Ω the Casimir operator of \mathfrak{g} . Then $\Omega \in \mathfrak{Z}$. For any $g \in G$, we define

$$(R(g)f)(x) = f(xg) \qquad (x \in G, f \in C^{\infty}(G))$$

Then an element u of \mathfrak{G} belongs to \mathfrak{Z} if and only if $R(g) \circ u = u \circ R(g)$ for all $g \in G$. Fix a subalgebra \mathfrak{A} of \mathfrak{Z} such that $\Omega \in \mathfrak{A}$. We denote by Hom (\mathfrak{A}, C) the set of all homomorphisms of \mathfrak{A} into C. For any $\chi \in \text{Hom}(\mathfrak{A}, C)$ we put

$$\mathfrak{H}(\sigma, \mathfrak{X}) = \{ f \in \mathfrak{H}(\sigma) \cap C^{\infty}(G, V); \ zf = \mathfrak{X}(z)f \quad \text{for all} \quad z \in \mathfrak{A} \} .$$

Then we have

Proposition 1. $\mathfrak{H}(\sigma, \chi)$ is a closed invariant subspace of $\mathfrak{H}(\sigma)$. Moreover, every element of $\mathfrak{H}(\sigma, \chi)$ is an analytic mapping from G into V.

Proof. Let B be the Killing form of g^c and put

$$\langle X, Y \rangle = -B(X, \theta(Y)) \qquad (X, Y \in \mathfrak{g}^{c})$$

where θ denotes the conjugation of g^c with respect to the compact real form $g_u = t + \sqrt{-1}p$. Then \langle , \rangle is an inner product in g^c . Select orthonormal bases (X_1, \dots, X_m) and (Y_1, \dots, Y_n) for t and p, respectively. Then, it follows from the definition of the Casimir operator Ω that

$$\Omega = -(X_1^2 + \dots + X_m^2) + Y_1^2 + \dots + Y_n^2.$$

We put

$$\Omega_{t} = X_{1}^{2} + \dots + X_{m}^{2}$$
, $\Omega_{p} = Y_{1}^{2} + \dots + Y_{n}^{2}$

For any $X \in \mathfrak{g}$, let X' denote the right invariant vector field on G given by

$$(X'f)(x) = \left[\frac{d}{dt}f(\exp{(tX)x})\right]_{t=0} \quad (x \in G, f \in C^{\infty}(G)).$$

Then the mapping $X \to X'$ $(X \in \mathfrak{g})$ can be extended uniquely to an anti-homomorphism of \mathfrak{G} onto the algebra of right-invariant differential operators on G. It is easy to see that $\Omega' = \Omega$ as differential operators on G. For any $\lambda \in \mathcal{F}$, we shall denote as usual by H_{λ} an element of \mathfrak{h}^{C} such that $\lambda(H) = B(H_{\lambda}, H)$ for all $H \in \mathfrak{h}$; the inner product $\langle \lambda, \mu \rangle$ of two linear forms $\lambda, \mu \in \mathcal{F}$ means the value $\langle H_{\lambda}, H_{\mu} \rangle$. We denote by the same notation the infinitesimal representation of σ . Let $\Lambda \in \mathcal{F}$ be the highest weight of σ . Then it is well known that

$$\sigma(\Omega_k) = -\langle \Lambda + 2 \rho_k, \Lambda \rangle I$$

where $\rho_k = \frac{1}{2} \sum_{\alpha \in P_k} \alpha$ and *I* denotes the identity operator on *V*. Fix any $f \in \mathfrak{H}(\sigma, \chi)$ and $v \in V$. Then

$$\Omega'_{\mathbf{f}}f_{\mathbf{v}}(x) = (\sigma(\Omega_{\mathbf{f}})f(x), v)_{\mathbf{v}} = -\langle \Lambda + 2\rho_{\mathbf{k}}, \Lambda \rangle f_{\mathbf{v}}(x)$$

where $f_v(x) = (f(x), v)_V$. It follows that

$$\Omega' f_{v}(x) = 2 \langle \Lambda + 2\rho_{k}, \Lambda \rangle f_{v}(x) + (\Omega'_{\mathfrak{t}} + \Omega'_{\mathfrak{p}}) f_{v}(x) .$$

On the other hand,

$$\Omega f_v(x) = (\Omega f(x), v)_V = \chi(\Omega) f_v(x)$$

Therefore, we have

К. Окамото

(*)
$$(\Omega'_{\mathfrak{r}} + \Omega'_{\mathfrak{p}})f_{\mathfrak{p}} = (\chi(\Omega) - 2\langle \Lambda + 2\rho_{\mathfrak{p}}, \Lambda \rangle)f_{\mathfrak{p}}$$

Since $\Omega'_{\mathfrak{k}} + \Omega'_{\mathfrak{p}}$ is obviously an elliptic differential operators on G, we conclude that f_v is an analytic function. This shows that f is an analytic mapping from G to V. Moreover, owing to the ellipticity of $\Omega'_{\mathfrak{k}} + \Omega'_{\mathfrak{p}}$, all solutions of the above equation (*) in the distribution sense are analytic. It is an immediate consequence of this fact that $\mathfrak{H}(\sigma, \chi)$ is closed in $\mathfrak{H}(\sigma)$. Since $R(g) \circ z = z \circ R(g)$ for all $g \in G$, we see that $U_g(\sigma)U_z(\sigma) = U_z(\sigma)U_g(\sigma)$. It follows immediately that $\mathfrak{H}(\sigma, \chi)$ is an invariant subspace of $\mathfrak{H}(\sigma)$. This completes the proof of the proposition.

We denote by $U(\sigma, \chi)$ the subrepresentation of $U(\sigma)$ obtained by restricting $U(\sigma)$ on $\mathfrak{H}(\sigma, \chi)$. In the following, we shall discuss when $U(\sigma, \chi)$ is non-trivial and irreducible.

3. Let \mathcal{E} (resp. \mathcal{E}_K) be the set of all equivalence classes of irreducible unitary representations of G (resp. K). For any irreducible unitary representation π of G, let $\pi | K$ denote the restriction of the representation π to the subgroup K. For any $\mathfrak{d} \in \mathcal{E}_K$, we denote by $(\pi | K: \mathfrak{d})$ the multiplicity with which the representation \mathfrak{d} occurs in $\pi | K$. $(\pi | K: \mathfrak{d})$ depends only on the equivalence class ω which contains π . In this case, we also write $(\omega | K: \mathfrak{d})$ instead of $(\pi | K: \mathfrak{d})$. Let ξ_{σ} be the character of σ . We define a projection operator E_{σ} by

$$E_{\sigma} = d(\sigma) \int_{K} \overline{\xi_{\sigma}(k)} U_{k}(\sigma, \chi) dk$$

where $d(\sigma)$ denotes the degree of σ and dk is the normalized Haar measure of K. We denote by $[\sigma]$ the class in \mathcal{E}_K to which σ belongs.

Proposition 2. If $(U(\sigma, \chi)|K: [\sigma])=1$, then $U(\sigma, \chi)$ is irreducible.

Proof. It is sufficient to prove that every non-zero closed invariant subspace of $\mathfrak{F}(\sigma, \chi)$ contains $E_{\sigma}\mathfrak{F}(\sigma, \chi)$. Let \mathfrak{F} be an arbitrary non-zero closed invariant subspace of $\mathfrak{F}(\sigma, \chi)$. Fix a non-zero element $f \in \mathfrak{F}$. Then from Proposition 1, f is analytic. Hence there exists a $g_0 \in G$ such that $f(g_0) \neq 0$. Put $f_0 = U_{g_0}f$. Then it is obvious that $f_0(1) = f(g_0) \neq 0$ (1 is the identity element of G) and that f_0 is analytic on G. Notice that

$$(E_{\sigma}f_{0})(1) = d(\sigma) \int_{K} \overline{\xi_{\sigma}(k)} U_{k}(\sigma, \chi) f_{0}(1) dk$$

= $d(\sigma) \int_{K} \overline{\xi_{\sigma}(k)} f_{0}(k) dk$
= $d(\sigma) \int_{K} \overline{\xi_{\sigma}(k)} \sigma(k) dk f_{0}(1)$
= $f_{0}(1) \neq 0$.

88

Then since $E_{\sigma}f_0$ is again analytic, we can conclude that $E_{\sigma}f_0 \pm 0$. Moreover, since \mathfrak{H} is closed invariant subspace, we have $E_{\sigma}f_0 \in \mathfrak{H}$. It follows from the assumption $(U(\sigma, \chi)|K: [\sigma])=1$ that $E_{\sigma}\mathfrak{H}(\sigma, \chi) \subset \mathfrak{H}$. This proves the proposition.

We denote by End (V) the algebra of all linear endomorphisms of V. An End (V)-valued C^{∞} -function φ on G is called a zornal spherical functions of type (σ, χ) if it satisfies the conditions

(1)
$$\varphi(k_1gk_2) = \sigma(k_1)\varphi(g)\sigma(k_2) \qquad (k_1, k_2 \in K, g \in G)$$

(2)
$$z\varphi = \chi(z)\varphi$$
 for all $z \in \mathfrak{A}$

Let φ be a zornal spherical function of type (σ , χ). We call φ square-integrable if

$$\int_G ||\varphi(g)||_V^2 dg < +\infty$$

where $|| ||_{V}$ is the Hilbert-Schmidt norm of End(V). Here we mean by the Hilbert-Schmidt norm of an element of $A \in \text{End}(V)$ the square root of the trace of the operator A^*A , where A^* denotes the adjoint operator of A.

Proposition 3. If there exists a non-zero square-integrable zornal spherical function of type (σ, χ) , then $U(\sigma, \chi)$ is not trivial (i.e. $\mathfrak{H}(\sigma, \chi) \neq (0)$).

Proof. Let φ be a non-zero square-integrable zornal spherical function of type (σ, χ) . Then there exists $v \in V$ such that $\varphi_v \neq 0$ where $\varphi_v(g) = \varphi(g)v$. It is easy to see that $\varphi_v \in \mathfrak{H}(\sigma, \chi)$. This completes the proof of the proposition.

4. Now we need some results of F. I. Mautner. For any unitary representation π of G or K, we denote by the $[\pi]$ equivalence class to which π belongs. Then it is easy to see that $[U(\sigma_1)] = [U(\sigma_2)]$ if $[\sigma_1] = [\sigma_2] \in \mathcal{E}_K$. In case $\sigma \in \mathfrak{d}$, we shall write $U(\mathfrak{d})$ instead of $[U(\sigma)]$.

Lemma 1. Put
$$\mathcal{E}(\sigma) = \{ \omega \in \mathcal{E}; (\omega | K: [\sigma]) \neq 0 \}$$
. Then

$$[U(\sigma)] = \int_{\mathcal{E}(\sigma)} (\omega | K: [\sigma]) \omega d\mu(\omega) \quad (direct integral)$$

where μ is the Plancherel measure for G. This means that the multiplicity with which ω occurs in $U(\sigma)$ coincides with the multiplicity with which $[\sigma]$ occurs in $\omega | K$.

For a proof, see [7] (c), and notice the following. Let R (resp. r) be the right-regular representation of G (resp. K). Then owing to the Peter-Weyl theorem, one knows that

$$[r] = \sum_{\mathfrak{d} \in \mathcal{C}_K} m(\mathfrak{d})\mathfrak{d}$$
 (direct sum)

К. Окамото

where $m(\mathfrak{d})$ is the multiplicity with which \mathfrak{d} occurs in $r(m(\mathfrak{d})=\deg \mathfrak{d})$. It follows from the theorem on inducing a representation "in stages" (see [7] (d)) that

$$[R] = \sum_{\mathfrak{d} \in \mathcal{C}_{K}} m(\mathfrak{d}) U(\mathfrak{d}) \quad \text{(direct sum).}$$

This shows that $[U(\sigma)]$ is a subrepresentation of the regular representation of G.

Now we shall need another lemma due to F.I. Mautner.

Consider the decomposition in Lemma 1. Then there exists a choice of representatives $\tilde{\pi}_{\omega} \in \omega$ ($\omega \in \mathcal{E}(\sigma)$) with the following property. Let $\tilde{\mathfrak{H}}_{\omega}$ denote the representation space of $\tilde{\pi}_{\omega}$. We denote by π_{ω} the ($\omega | K: [\sigma]$)-times direct sum of $\tilde{\pi}_{\omega}$ and let \mathfrak{H}_{ω} be the representation space of π_{ω} . Then we have

$$\mathfrak{H}_{\omega} = \tilde{\mathfrak{H}}_{\omega} \oplus \cdots \oplus \tilde{\mathfrak{H}}_{\omega}$$
 (($\omega | K: [\sigma]$)-times direct sum).

Then we have

$$\mathfrak{H}(\sigma) = \int_{\mathcal{E}(\sigma)} \mathfrak{H}_{\omega} d\mu(\omega) \quad (direct integral).$$

For any $f \in \mathfrak{H}(\sigma)$, let f_{ω} denote the "component" of f in \mathfrak{H}_{ω} . We denote by the same notations the infinitesimal representations of \mathfrak{G} for $U(\sigma)$ (resp. π_{ω}) on the Gårding subspaces $\mathfrak{H}(\sigma)$ (resp. $\mathfrak{H}_{\omega}^{0}$) where $\omega \in \mathcal{E}(\sigma)$ (cf. [7] (a))

Lemma 2. For any $f \in \mathfrak{Y}^0(\sigma)$ and $u \in \mathfrak{G}$, we have

$$(U_u(\sigma)f)_\omega = \pi_\omega(u)f_\omega$$

for almost every $\omega \in \mathcal{E}(\sigma)$.

For a proof, see [7](a), (b).

Let χ_{ω} be the infinitesimal character of $\omega \in \mathcal{C}$. For any $\chi \in \text{Hom}(\mathfrak{A}, C)$, we denote by $\chi | \mathfrak{A}$ the restriction of χ on \mathfrak{A} . Then $\chi | \mathfrak{A} \in \text{Hom}(\mathfrak{A}, C)$. For any $\chi \in \text{Hom}(\mathfrak{A}, C)$, we put

$$\mathcal{E}(\chi) = \{ \omega \in \mathcal{E}; \chi_{\omega} | \mathfrak{A} = \chi \}.$$

Let \mathcal{E}_d be the set of all discrete classes in \mathcal{E} (see [4] (d)). We denote by L the set of all $\lambda \in \mathcal{F}$ such that

$$\frac{2\langle\lambda,\,\alpha\rangle}{\langle\alpha,\,\alpha\rangle} \in \boldsymbol{Z} \quad \text{ for all } \alpha \in \Sigma \,,$$

where Z is the set of all integers. Let L' be the set of all $\lambda \in L$ such that $\langle \lambda, \alpha \rangle \neq 0$ for all $\alpha \in \Sigma$. Then owing to the profound result of Harish-Chandra ([4] (d) Theorem 16, p. 96), one has that for any $\lambda \in L'$, there corresponds an element $\omega(\lambda) \in \mathcal{E}_d$ such that

$$\chi_{\omega(\lambda)}(\Omega) = |\lambda|^2 - |\rho|^2$$

where $||^2 = \langle , \rangle$ and $\rho = \frac{1}{2} \sum_{\alpha \in P} \alpha$. As is easily seen, $\lambda \to |\lambda|^2 - |\rho|^2$ ($\lambda \in \mathcal{F}$) is a polynomial of degree 2 and its homogeneous part of degree 2 is a positive definite quardatic form. It follows that $\mathcal{E}(\chi) \cap \mathcal{E}_d$ is finite set.

Theorem 1. Let \mathfrak{A} be an arbitrary subalgebra of \mathfrak{B} such that $\Omega \in \mathfrak{A}$ and let \mathfrak{X} be a homomorphism of \mathfrak{A} into C. Then $\mathcal{E}(\mathfrak{X}) \cap \mathcal{E}_d$ is a finite set. Moreover, let σ be an irreducible unitary representation of K such that

(A)
$$\mathcal{E}(\sigma) \cap \mathcal{E}(\chi) - \mathcal{E}_d$$

is of measure zero with respect to the Plancherel measure for G. Then we have

$$[U(\sigma, X)] = \sum_{\omega} (\omega | K: [\sigma]) \omega \quad (\omega \in \mathcal{E}(\sigma) \cap \mathcal{E}(X) \cap \mathcal{E}_d) .$$

Proof. We have already proved the first assertion. We consider the decompositions in Lemma 1 and 2 and use the notations in Lemma 2. Fix any $f \in \mathfrak{H}(\sigma, \chi) \cap \mathfrak{H}^{0}(\sigma)$. Then we know that

$$U_z(\sigma)f = \chi(z)f$$
 and $\pi_\omega(z)f_\omega = \chi_\omega(z)f_\omega$ for all $z \in \mathfrak{A}$.

On the other hand, from Lemma 2 we have

$$(U_z(\sigma)f)_\omega = \pi_\omega(z)f_\omega$$

for almost every $\omega \in \mathcal{E}(\sigma)$. Hence, there exists a subset $\mathcal{I} \subset \mathcal{E}(\sigma)$ of measure zero such that

$$(\chi(z) - \chi_{\omega}(z))f_{\omega} = 0 \text{ for all } \omega \in \mathcal{E}(\sigma) - \mathcal{H}.$$

In general, \mathcal{N} depends on z as well as f. But one knows that \mathfrak{A} is finitely generated. Therefore, every $\chi \in \text{Hom}(\mathfrak{A}, \mathbf{C})$ is uniquely determined by its values at a finite number of elements of \mathfrak{A} . Hence, we can assume that \mathcal{N} does not depend on z. It follows immediately from the assumption (A) in the theorem that

$$f = \sum_{\omega} f_{\omega}$$
 $(\omega \in \mathcal{E}(\sigma) \cap \mathcal{E}(\chi) \cap \mathcal{E}_d)$.

This completes the proof of the theorem.

REMARK 1. For any real number c, define

$$\mathcal{E}_{c} = \{ \omega \in \mathcal{E}; \chi_{\omega}(\Omega) = c \}.$$

Then in case rank G/K=1, we can show that $\mathcal{E}_c-\mathcal{E}_d$ is of measure zero with respect to the Plancherel measure for G, using the explicit form of the Plancherel measure given in [4] (c), [8]. We have a conjecture that it holds in general. If this is true, then the condition (A) in Theorem 1 is always satisfied

for all σ .

Now we have assumed that G has a compact Cartan subgroup T. Owing to Harish-Chandra [4] (d), one sees that $\mathcal{E}_d \neq \emptyset$. Fix an $\omega \in \mathcal{E}_d$ and put $\chi = \chi_{\omega} | \mathfrak{A}$. Then it is obvious that there exists a $[\sigma] \in \mathcal{E}_K$ such that $\omega \in \mathcal{E}(\sigma) \cap$ $\mathcal{E}(\chi) \cap \mathcal{E}_d$. It follows from Theorem 1 that ω is a subrepresentation of $U(\sigma, \chi)$. If $\pi \in \omega$, we say that " π is a realization of ω " or that " ω is realized by π ."

Corollary. Let \mathfrak{A} be a subalgebra of \mathfrak{B} such that $\Omega \in \mathfrak{A}$. Fix an $\omega \in \mathcal{E}_d$ and put $\chi = \chi_{\omega} | \mathfrak{A}$. Assume that there exists an irreducible unitary representation σ of K which satisfies the following conditions $(A.1) \sim (A.3)$.

(A.1) $\mathcal{E}(\sigma) \cap \mathcal{E}(\chi) \cap \mathcal{E}_d = \{\omega\}.$

(A.2) $(\omega | K: \sigma) = 1$.

(A.3) $\mathcal{E}(\sigma) \cap \mathcal{E}(\chi) - \mathcal{E}_d$ is of measure zero with respect to the Plancherel measure for G.

Then ω is realized by $U(\sigma, \chi)$.

5. Consider the special case that $\mathfrak{A}=\mathfrak{B}$. Then it is known (see [4] (a)) that $\mathscr{E}(\sigma)\cap \mathscr{E}(\mathfrak{X})$ is always a finite set. Hence, in case $\mathfrak{A}=\mathfrak{B}$, the assumption (A) in Theorem 1 and the assumption (A.3) in the corollary to Theorem 1 are always satisfied.

Theorem 2. Fix any $[\sigma] \in \mathcal{E}_K$ and $\chi \in \text{Hom}(\mathfrak{Z}, \mathbb{C})$. Then $U(\sigma, \chi)$ is non-trivial and irreducible if and only if σ and χ satisfy the following condition (C).

(C) $\mathcal{E}(\sigma) \cap \mathcal{E}(X) \cap \mathcal{E}_d$ consists of only one element ω such that $(\omega | K; \sigma) = 1$.

Moreover, the condition (C) implies that $U(\sigma, \chi)$ is a realization of ω .

REMARK 2. Since $K \setminus G$ is simply connected, $\mathfrak{H}(\sigma)$ can be realized as *V*-valued square-integrable functions on a certain submanifold of *G* with respect to a certain measure. If the rank of the symmetric space $K \setminus G$ is equal to be one, the radial components of $U_x(\sigma)$ ($z \in \mathfrak{B}$) coincide with ordinary differential equations (see [9] and cf. [4] (b)). It is very cumbersome to calculate the radial components of $U_z(\sigma)$ ($z \in \mathfrak{B}$) even if *G* is the lower dimensional Lie group such as the universal covering group of De Sitter group. However, R. Takahashi [9] computed the radial component of $U_{\Omega}(\sigma)$ in a very ingenious manner, making use of the quaternion field. Thus he proved that $U(\sigma, \mathfrak{X})$ is non-trivial and irreducible for a certain $[\sigma] \in \mathcal{C}_K$ and $\mathfrak{X} \in \text{Hom}(\mathfrak{A}, \mathbf{C})$ in case $\mathfrak{A} = \mathbf{C}[\Omega]$ (the algebra of all polynomials of Ω).

Now we shall give here an another proof of this fact, making use of the corollary to Theorem 1 and the result of J. Dixmier [1] (b). In the following,

92

we use the notations of [1] (b) and [9]. Let G be the universal covering group of De Sitter group. We consider the irreducible unitary representation $\rho_K^{n,0}$ of the maximal compact subgroup K of G (where $2n \in \mathbb{Z}$ and $n \ge 1$). Put $\sigma_n = \rho_K^{n,0}$. Then it follows immediately from Fig. 2-3-4-5 ([1] (b) p. 24) that

$$\mathcal{E}(\sigma_n) = \left\{ \pi_{n,q}^+; q = n, n-1, \cdots, 1 \quad \text{or} \quad \frac{1}{2} \right\} \cup \{\nu_{n,s}; s > 0\}$$

On the other hand, from (12) (in [1] (b) p. 12) and (53), (55) in ([1] (b) p. 27) one gets that

$$egin{aligned} &\chi_{\pi^+_{n,q}}(\Omega)=n^2+n+q^2-q-2\,,\ &\chi_{
u_{n,s}}(\Omega)=n^2+n-s-2\,. \end{aligned}$$

We denote by $\chi_{n,p}$ the unique element of Hom (\mathfrak{A}, C) such that $\chi_{n,p}(\Omega) = n^2 + n + p^2 - p - 2$. Then it is clear that $\mathcal{C}(\sigma_n) \cap \mathcal{C}(\chi_{n,p}) = \{\pi_{n,p}^+\}$ for any p such that 2p, $n-p \in \mathbb{Z}$ and $n \ge p \ge 1$. Since every $\mathfrak{b} \in \mathcal{C}_K$ is contained at most once in each $\omega \mid K \ (\omega \in \mathcal{C})$, it follows from the Corollary to Theorem 1 that $[U(\sigma_n; \chi_{n,p})] = \pi_{n,p}^{+}$. This shows that $U(\sigma_n, \chi_{n,p})$ is non-trivial and irreducible. If we take $\sigma_n = \rho_K^{0,n}$, similarly we have $[U(\sigma_n, \chi_{n,p})] = \pi_{n,p}^{-}$. These facts together with Theorem 1 and 2 in [1] (b) prove the following.

Proposition 4. (R. Takahashi) Let G be the universal covering group of De Sitter group. Then every irreducible unitary representation of discrete class $\omega \in \mathcal{E}_d$ can be realized by $U(\sigma, \chi)$ for some $[\sigma] \in \mathcal{E}_K$ and $\chi \in \text{Hom}(\mathfrak{A}, C)$ where $\mathfrak{A} = C[\Omega]$ (the algebra of all polynomials of Ω). More precisely, ω is realized by

$$U(\rho_K^{n,0}, \chi_{n,p}) \text{ (resp. } U(\rho_K^{0,n}, \chi_{n,p}))$$

if $\omega = \pi_{n,p}^+ \text{ (resp. } \omega = \pi_{n,p}^-)$

where $\chi_{n,p}$ is the unique element of Hom (\mathfrak{A}, C) such that

$$\chi_{n,p}(\Omega) = n^2 + n + p^2 - p - 2.$$

REMARK 3. It is interesting to observe the fact that the theory of unitary representations has an application to the theory of partially differential equations; i.e. the differential equation (31) on page 399 in [9] has non trivial solutions in $H_0^{o,n}$ (for the notations, see [9]).

6. Finally, we shall apply the above theory to the group SU(m, 1) and the universal covering group of $SO_0(2m, 1)$ where *m* is an arbitrary positive integer (for the notations, see [5]). Let G be any one of these groups. Then it is known that every $b \in \mathcal{E}_K$ is contained at most once in each $\omega | K (\omega \in \mathcal{E})$ (cf. [1] (b), [2], [3]). We fix an element χ of Hom (3, C). If $\omega_1, \omega_2 \in \mathcal{E}(\chi) \cap \mathcal{E}_d$, then

 $\omega_1 | K \text{ and } \omega_2 | K \text{ are disjoint, that is, } \omega_1 | K \text{ and } \omega_2 | K \text{ have no irreducible components in common (see for proof, [2], [6]). Therefore, if <math>\omega \in \mathcal{E}(\sigma) \cap \mathcal{E}_d$, then we have $\mathcal{E}(\sigma) \cap \mathcal{E}(\chi_{\omega}) \cap \mathcal{E}_d = \{\omega\}$. Making use of Theorem 2 we obtain the following proposition.

Proposition 5. Let G be either SU(m, 1) or the universal covering group of $SO_0(2m, 1)$ where m is an arbitrary positive integer. Then every $\omega \in \mathcal{E}_d$ is realized by $U(\sigma, X_{\omega})$ for any $[\sigma] \in \mathcal{E}_K$ such that $(\omega | K: [\sigma]) \neq 0$.

OSAKA UNIVERSITY

References

- [1] J. Dixmier:
 - (a) Sur les représentations de certains groupes orthogonaux, C.R. Acad. Sci. Paris 250 (1960), 3263-3265.
 - (b) Représentations intégrables du groupe de De Sitter, Bull. Soc. Math. France 89 (1961), 9–41.
- [2] I.M. Gel'fand and M.I. Graev: Finite dimensional irreducible representations of a unitary and full linear group and special functions connected with them, Izv. Akad. Nauk SSSR 29 (1965), 1324–1356.
- [3] R. Godement: A theory of spherical functions, I. Trans. Amer. Math. Soc. 73 (1952), 496-556.
- [4] Harish-Chandra:
 - (a) Representations of semisimple Lie groups on a Banach space, Proc. Nat. Acad. Sci. 37 (1951), 170-173.
 - (b) Spherical functions on a semisimple Lie groups, I. Amer. J. Math. 80 (1958), 241-310.
 - (c) Two theorems on semisimple Lie groups, Ann. of Math. 83 (1966), 74-128.
 - (d) Discrete series for semisimple Lie groups II, Acta Math. 116 (1966), 1-111.
- [5] S. Helgason: Differential geometry and symmetric spaces. Academic Press, New York, 1962.
- [6] T. Hirai: On irreducible representations of Lorenz group of n-th order, Proc. Japan Acad. 38 (1962), 258-262.
- [7] F.I. Mautner:
 - (a) Unitary representations of locally compact groups II, Ann. of Math. 52 (1950), 528-556.
 - (b) On the decomposition of unitary representations of Lie groups, Proc. Amer. Math. Soc. 2 (1951), 490–496.
 - (c) A generalization of the Frobenius reciprocity theorem, Proc. Nat. Acad. Sci. 37 (1951), 431–435.
 - (d) Induced representations, Amer. J. Math. 74 (1952) 737-758.
- [8] K. Okamoto: On the Plancherel formulas for some types of simple Lie groups, Osaka J. Math. 2 (1965), 247–282.
- [9] R. Takahashi: Sur représentations unitaires des groupes de Lorenz généralisés, Bull. Soc. Math. France 91 (1963), 289–433.