Okamoto, K.
Osaka J. Math.
4 (1967), 85-94

ON INDUCED REPRESENTATIONS

Kiyosato OKAMOTO*

(Received March 10, 1967)

Let G be a locally compact topological group and K a compact subgroup of G. For any irreducible unitary representation σ of K, we denote by $U(\sigma)$ the induced representation generated by σ (see §1). In general, $U(\sigma)$ is not irreducible.

The purpose of this paper is to give a method of extracting the irreducible components of $U(\sigma)$ when G is one of the special types of Lie groups.

1. Let G be a connected non-compact semisimple Lie group with a finite dimensional faithful representation and K a maximal compact subgroup of G. We assume that rank $G=\operatorname{rank} K$. For any given irreducible unitary representation σ of K on a representation space V, we can construct a unitary representation $U(\sigma)$ of G as follows. Let $\mathfrak{S}(\sigma)$ be the set of all "Haar-measurable" V-valued functions f which satisfy the following conditions;

$$
f(k x)=\sigma(k) f(x) \quad(k \in K, x \in G)
$$

and

$$
\|f\|^{2}=\int_{G}\|f(x)\|_{V}^{2} d x<\infty
$$

where $\left\|\|_{V}\right.$ denotes the norm in V.
Then $\mathfrak{E}(\sigma)$ is a Hilbert space if we identify functions which differ only on subsets of G of Haar measure zero. The inner product (,) in $\mathfrak{E}(\sigma)$ is given by

$$
\left(f_{1}, f_{2}\right)=\int_{G}\left(f_{1}(x), f_{2}(x)\right)_{V} d x \quad\left(f_{1}, f_{2} \in \mathfrak{L}(\sigma)\right)
$$

where $(,)_{V}$ denotes the inner product in V. Finally for any $g \in G, U_{g}(\sigma)$ is defined by

$$
\left(U_{g}(\sigma) f\right)(x)=f(x g) \quad(f \in \mathscr{G}(\sigma), x \in G)
$$

Thus we obtained the induced representation $U(\sigma)$ generated by σ (cf. [7] (d)).
Our aim is to find out an irreducible closed subspace of $\mathfrak{S}(\sigma)$.

[^0]2. Let g (resp. \mathfrak{f}) be the Lie algebra of G (resp. K) and \mathfrak{p} the orthogonal complement of \mathfrak{f} in \mathfrak{g} with respect to the Killing form of \mathfrak{g}. Then $\mathfrak{g}=\mathfrak{f}+\mathfrak{p}$ is a Cartan decomposition of \mathfrak{g}. Let T be a maximal torus in K and \mathfrak{h} the Lie algebra of T. Then since G has a finite dimensional faithful representation and rank $G=\operatorname{rank} K, T$ is a Cartan subgroup of G; i.e.
$$
T=\{g \in G ; \operatorname{Ad}(g) H=H \quad \text { for all } \quad H \in \mathfrak{b}\}
$$
where Ad denotes the adjoint representation of G. Let \mathfrak{g}^{C} denote the complexification of \mathfrak{g}. Let Σ be the set of all non-zero roots of g^{C} with respect to the Cartan subalgebra $\mathfrak{h}^{c}\left(\mathfrak{h}^{c}\right.$ is the subspace of \mathfrak{g}^{c} spanned by $\left.\mathfrak{h}\right)$. We denote by Σ_{k} the set of all compact roots (see for definition [8]). Let \mathscr{F} be the vector space over \boldsymbol{R} (the field of real numbers) consisting of all purely imaginary complex valued linear forms on \mathfrak{h}. Then $\Sigma \subset \mathscr{F}$. Introduce a linear order in \mathscr{F} and let P (resp. P_{k}) be the set of all positive roots in Σ (resp. Σ_{k}). We denote by $\mathfrak{C S}$ the universal enveloping algebra of g^{c}. As usual we regard elements of $\mathscr{C H}^{(5)}$ as left-invariant differential operators on G. Since V is finite dimensional, it has the canonical structure of an analytic manifold. We denote by $C^{\circ}(G, V)$ the vector space of all continuous mappings from G to V. For any $f \in C^{0}(G, V)$ and $v \in V$, we put
$$
f_{v}(x)=(f(x), v)_{V} \quad(x \in G)
$$

Let $C^{\infty}(G)$ be the vector space of all infinitely differentiable complex valued functions on G. We denote by $C^{\infty}(G, V)$ the set of all $f \in C^{0}(G, V)$ such that

$$
f_{v} \in C^{\infty}(G) \quad \text { for all } \quad v \in V .
$$

We often call $f \in C^{\infty}(G, V)$ a V-valued C^{∞}-function. Define

$$
\left(U_{X}(\sigma) f\right)(g)=\lim _{t \rightarrow 0} \frac{1}{t}(f(g \exp t X)-f(g)) \quad(g \in G)
$$

for $X \in \mathfrak{g}$ and $f \in C^{\infty}(G, V)$. Then we have a representation $X \rightarrow U_{X}(\sigma)$ of \mathfrak{g} on $C^{\infty}(G, V)$. This extends uniquely to a representation of \mathscr{S}. It is obvious that

$$
\left(U_{u}(\sigma) f\right)_{v}=u f_{v} \quad \text { for all } \quad u \in \mathbb{C}
$$

In the following, we shall simply write $u f$ instead of $U_{u}(\sigma) f$. Let 3 be the center of \mathbb{G}) and Ω the Casimir operator of g. Then $\Omega \in \mathfrak{Z}$. For any $g \in G$, we define

$$
(R(g) f)(x)=f(x g) \quad\left(x \in G, f \in C^{\infty}(G)\right) .
$$

Then an element u of (5) belongs to 3 if and only if $R(g) \circ u=u \circ R(g)$ for all $g \in G$. Fix a subalgebra \mathfrak{A} of 3 such that $\Omega \in \mathfrak{A}$. We denote by Hom ($\mathfrak{A}, \boldsymbol{C}$) the set of all homomorphisms of \mathfrak{A} into \boldsymbol{C}. For any $\chi \in \operatorname{Hom}(\mathfrak{A}, \boldsymbol{C})$ we put

$$
\mathfrak{S}(\sigma, \chi)=\left\{f \in \mathfrak{C}(\sigma) \cap C^{\infty}(G, V) ; z f=\chi(z) f \text { for all } z \in \mathfrak{A}\right\} .
$$

Then we have
Proposition 1. $\mathfrak{S}(\sigma, \chi)$ is a closed invariant subspace of $\mathfrak{S}(\sigma)$. Moreover, every element of $\mathfrak{E}(\sigma, \chi)$ is an analytic mapping from G into V.

Proof. Let B be the Killing form of g^{c} and put

$$
\langle X, Y\rangle=-B(X, \theta(Y)) \quad\left(X, Y \in \mathfrak{g}^{C}\right)
$$

where θ denotes the conjugation of g^{c} with respect to the compact real form $\mathrm{g}_{u}=\mathfrak{f}+\sqrt{-1} \mathfrak{p}$. Then \langle,$\rangle is an inner product in \mathfrak{g}^{c}$. Select orthonormal bases $\left(X_{1}, \cdots, X_{m}\right)$ and $\left(Y_{1}, \cdots, Y_{n}\right)$ for \mathfrak{l} and \mathfrak{p}, respectively. Then, it follows from the definition of the Casimir operator Ω that

$$
\Omega=-\left(X_{1}^{2}+\cdots+X_{m}^{2}\right)+Y_{1}^{2}+\cdots+Y_{n}^{2} .
$$

We put

$$
\Omega_{\mathfrak{t}}=X_{1}^{2}+\cdots+X_{m}^{2}, \quad \Omega_{\mathfrak{p}}=Y_{1}^{2}+\cdots+Y_{n}^{2}
$$

For any $X \in \mathfrak{g}$, let X^{\prime} denote the right invariant vector field on G given by

$$
\left(X^{\prime} f\right)(x)=\left[\frac{d}{d t} f(\exp (t X) x)\right]_{t=0} \quad\left(x \in G, f \in C^{\infty}(G)\right)
$$

Then the mapping $X \rightarrow X^{\prime}(X \in \mathfrak{g})$ can be extended uniquely to an anti-homomorphism of $\mathbb{C S}$ onto the algebra of right-invariant differential operators on G. It is easy to see that $\Omega^{\prime}=\Omega$ as differential operators on G. For any $\lambda \in \mathscr{F}$, we shall denote as usual by H_{λ} an element of \mathfrak{h}^{c} such that $\lambda(H)=B\left(H_{\lambda}, H\right)$ for all $H \in \mathfrak{h}$; the inner product $\langle\lambda, \mu\rangle$ of two linear forms $\lambda, \mu \in \mathscr{F}$ means the value $\left\langle H_{\lambda}, H_{\mu}\right\rangle$. We denote by the same notation the infinitesimal representation of σ. Let $\Lambda \in \mathscr{F}$ be the highest weight of σ. Then it is well known that

$$
\sigma\left(\Omega_{k}\right)=-\left\langle\Lambda+2 \rho_{k}, \Lambda\right\rangle I
$$

where $\rho_{k}=\frac{1}{2} \sum_{\alpha \in P_{k}} \alpha$ and I denotes the identity operator on V. Fix any $f \in \mathscr{S}(\sigma, \chi)$ and $v \in V$. Then

$$
\Omega_{\mathfrak{q}}^{\prime} f_{v}(x)=\left(\sigma\left(\Omega_{\mathfrak{q}}\right) f(x) \cdot v\right)_{V}=-\left\langle\Lambda+2 \rho_{k}, \Lambda\right\rangle f_{v}(x)
$$

where $f_{v}(x)=(f(x), v)_{v}$. It follows that

$$
\Omega^{\prime} f_{v}(x)=2\left\langle\Lambda+2 \rho_{k}, \Lambda\right\rangle f_{v}(x)+\left(\Omega_{\mathbf{t}}^{\prime}+\Omega_{p}^{\prime}\right) f_{v}(x) .
$$

On the other hand,

$$
\Omega f_{v}(x)=(\Omega f(x), v)_{V}=\chi(\Omega) f_{v}(x)
$$

Therefore, we have

$$
\begin{equation*}
\left(\Omega_{\mathfrak{t}}^{\prime}+\Omega_{\mathfrak{p}}^{\prime}\right) f_{v}=\left(\chi(\Omega)-2\left\langle\Lambda+2 \rho_{\mathfrak{p}}, \Lambda\right\rangle\right) f_{v} \tag{*}
\end{equation*}
$$

Since $\Omega^{\prime}{ }_{\mathbf{q}}+\Omega_{\mathfrak{p}}^{\prime}$ is obviously an elliptic differential operators on G, we conclude that f_{v} is an analytic function. This shows that f is an analytic mapping from G to V. Moreover, owing to the ellipticity of $\Omega^{\prime}{ }_{\mathbf{t}}+\Omega_{p}^{\prime}$, all solutions of the above equation $(*)$ in the distribution sense are analytic. It is an immediate consequence of this fact that $\mathfrak{S}(\sigma, \chi)$ is closed in $\mathfrak{S}(\sigma)$. Since $R(g) \circ z=z \circ R(g)$ for all $g \in G$, we see that $U_{g}(\sigma) U_{z}(\sigma)=U_{z}(\sigma) U_{g}(\sigma)$. It follows immediately that $\mathfrak{S}(\sigma, \chi)$ is an invariant subspace of $\mathfrak{S}(\sigma)$. This completes the proof of the proposition.

We denote by $U(\sigma, \chi)$ the subrepresentation of $U(\sigma)$ obtained by restricting $U(\sigma)$ on $\mathscr{S}_{(}(\sigma, \chi)$. In the following, we shall discuss when $U(\sigma, \chi)$ is non-trivial and irreducible.
3. Let \mathcal{E} (resp. \mathcal{E}_{K}) be the set of all equivalence classes of irreducible unitary representations of G (resp. K). For any irreducible unitary representation π of G, let $\pi \mid K$ denote the restriction of the representation π to the subgroup K. For any $\mathfrak{D} \in \mathcal{E}_{K}$, we denote by $(\pi \mid K: \mathfrak{D})$ the multiplicity with which the representation \mathfrak{D} occurs in $\pi \mid K . \quad(\pi \mid K: \mathfrak{D})$ depends only on the equivalence class ω which contains π. In this case, we also write $(\omega \mid K: \mathfrak{D})$ instead of $(\pi \mid K$: D). Let ξ_{σ} be the character of σ. We define a projection operator E_{σ} by

$$
E_{\sigma}=d(\sigma) \int_{K} \overline{\xi_{\sigma}(k)} U_{k}(\sigma, \chi) d k
$$

where $d(\sigma)$ denotes the degree of σ and $d k$ is the normalized Haar measure of K. We denote by $[\sigma]$ the class in ε_{K} to which σ belongs.

Proposition 2. If $(U(\sigma, \chi) \mid K:[\sigma])=1$, then $U(\sigma, \chi)$ is irreducible.
Proof. It is sufficient to prove that every non-zero closed invariant subspace of $\mathscr{E}(\sigma, \chi)$ contains $E_{\sigma} \mathfrak{S}(\sigma, \chi)$. Let \mathfrak{S} be an arbitrary non-zero closed invariant subspace of $\mathfrak{g}(\sigma, \chi)$. Fix a non-zero element $f \in \mathfrak{L}$. Then from Proposition $1, f$ is analytic. Hence there exists a $g_{0} \in G$ such that $f\left(g_{0}\right) \neq 0$. Put $f_{0}=U_{g_{0}} f$. Then it is obvious that $f_{0}(1)=f\left(g_{0}\right) \neq 0(1$ is the identity element of $G)$ and that f_{0} is analytic on G. Notice that

$$
\begin{aligned}
\left(E_{\sigma} f_{0}\right)(1) & =d(\sigma) \int_{K} \overline{\xi_{\sigma}(k)} U_{k}(\sigma, \chi) f_{0}(1) d k \\
& =d(\sigma) \int_{K} \overline{\xi_{\sigma}(k)} f_{0}(k) d k \\
& =d(\sigma) \int_{K} \overline{\xi_{\sigma}(k)} \sigma(k) d k f_{0}(1) \\
& =f_{0}(1) \neq 0
\end{aligned}
$$

Then since $E_{\sigma} f_{0}$ is again analytic, we can conclude that $E_{\sigma} f_{0} \neq 0$. Moreover, since \mathfrak{S} is closed invariant subspace, we have $E_{\sigma} f_{0} \in \mathfrak{S}$. It follows from the assumption $(U(\sigma, \chi) \mid K:[\sigma])=1$ that $E_{\sigma} \mathfrak{E}(\sigma, \chi) \subset \mathfrak{S}$. This proves the proposition.

We denote by End (V) the algebra of all linear endomorphisms of V. An End (V)-valued C^{∞}-function φ on G is called a zornal spherical functions of type (σ, χ) if it satisfies the conditions

$$
\begin{array}{ll}
\varphi\left(k_{1} g k_{2}\right)=\sigma\left(k_{1}\right) \varphi(g) \sigma\left(k_{2}\right) & \left(k_{1}, k_{2} \in K, g \in G\right) \\
z \varphi=\chi(z) \varphi \quad \text { for all } & z \in \mathfrak{A} . \tag{2}
\end{array}
$$

Let φ be a zornal spherical function of type (σ, χ). We call φ square-integrable if

$$
\int_{G}\|\varphi(g)\|_{V}^{2} d g<+\infty
$$

where $\left\|\|_{V}\right.$ is the Hilbert-Schmidt norm of $\operatorname{End}(V)$. Here we mean by the Hilbert-Schmidt norm of an element of $A \in \operatorname{End}(V)$ the square root of the trace of the operator $A^{*} A$, where A^{*} denotes the adjoint operator of A.

Proposition 3. If there exists a non-zero square-integrable zornal spherical function of type (σ, χ), then $U(\sigma, \chi)$ is not trivial (i.e. $\mathfrak{W}(\sigma, \chi) \neq(0))$.

Proof. Let φ be a non-zero square-integrable zornal spherical function of type (σ, χ). Then there exists $v \in V$ such that $\varphi_{v} \neq 0$ where $\varphi_{v}(g)=\varphi(g) v$. It is easy to see that $\varphi_{v} \in \mathscr{S}(\sigma, \chi)$. This completes the proof of the proposition.
4. Now we need some results of F.I. Mautner. For any unitary representation π of G or K, we denote by the [π] equivalence class to which π belongs. Then it is easy to see that $\left[U\left(\sigma_{1}\right)\right]=\left[U\left(\sigma_{2}\right)\right]$ if $\left[\sigma_{1}\right]=\left[\sigma_{2}\right] \in \mathcal{E}_{K}$. In case $\sigma \in \mathfrak{D}$, we shall write $U(\mathfrak{D})$ instead of $[U(\sigma)]$.

Lemma 1. Put $\mathcal{E}(\sigma)=\{\omega \in \mathcal{E} ;(\omega \mid K:[\sigma]) \neq 0\}$. Then

$$
[U(\sigma)]=\int_{\mathcal{E}(\sigma)}(\omega \mid K:[\sigma]) \omega d \mu(\omega) \quad(\text { direct integral })
$$

where μ is the Plancherel measure for G. This means that the multiplicity with which ω occurs in $U(\sigma)$ coincides with the multiplicity with which $[\sigma]$ occurs in $\omega \mid K$.

For a proof, see [7] (c), and notice the following. Let R (resp. r) be the right-regular representation of G (resp. K). Then owing to the Peter-Weyl theorem, one knows that

$$
[r]=\sum_{\mathfrak{D} \in \mathcal{E}_{K}} m(\mathfrak{d}) \mathfrak{D} \quad \text { (direct sum) }
$$

where $m(\mathfrak{D})$ is the multiplicity with which \mathfrak{D} occurs $\operatorname{in} r(m(\mathfrak{D})=\operatorname{deg} \mathfrak{D})$. It follows from the theorem on inducing a representation "in stages" (see [7] (d)) that

$$
[R]=\sum_{\mathfrak{D} \in \mathcal{E}_{K}} m(\mathfrak{D}) U(\mathfrak{D}) \quad \text { (direct sum) }
$$

This shows that $[U(\sigma)]$ is a subrepresentation of the regular representation of G.
Now we shall need another lemma due to F.I. Mautner.
Consider the decomposition in Lemma 1. Then there exists a choice of representatives $\tilde{\pi}_{\omega} \in \omega(\omega \in \mathcal{E}(\sigma))$ with the following property. Let $\tilde{\mathscr{E}}_{\omega}$ denote the representation space of $\tilde{\pi}_{\omega}$. We denote by π_{ω} the $(\omega \mid K:[\sigma])$-times direct sum of $\widetilde{\pi}_{\omega}$ and let \mathfrak{S}_{ω} be the representation space of π_{ω}. Then we have

$$
\mathfrak{S}_{\omega}=\tilde{\mathfrak{S}}_{\omega} \oplus \cdots \oplus \tilde{\mathfrak{E}}_{\omega} \quad((\omega \mid K:[\sigma]) \text {-times direct sum }) .
$$

Then we have

$$
\mathfrak{S}(\sigma)=\int_{\mathcal{E}(\sigma)} \mathfrak{S}_{\omega} d \mu(\omega) \quad \text { (direct integral). }
$$

For any $f \in \mathfrak{S}(\sigma)$, let f_{ω} denote the "component" of f in \mathfrak{S}_{ω}. We denote by the same notations the infinitesimal representations of $\left(\mathscr{S}\right.$ for $U(\sigma)$ (resp. π_{ω}) on the Gårding subspaces $\mathfrak{E}^{\circ}(\sigma)$ (resp. $\left.\mathfrak{K}_{\omega}^{0}\right)$ where $\omega \in \mathcal{E}(\sigma)$ (cf. [7] (a))

Lemma 2. For any $f \in \mathfrak{F}^{\circ}(\sigma)$ and $u \in \mathfrak{G}$, we have

$$
\left(U_{u}(\sigma) f\right)_{\omega}=\pi_{\omega}(u) f_{\omega}
$$

for almost every $\omega \in \mathcal{E}(\sigma)$.
For a proof, see [7] (a), (b).
Let χ_{ω} be the infinitesimal character of $\omega \in \mathcal{E}$. For any $\chi \in \operatorname{Hom}(\mathfrak{3}, \boldsymbol{C})$, we denote by $\chi \mid \mathfrak{A}$ the restriction of χ on \mathfrak{A}. Then $\chi \mid \mathfrak{A} \in \operatorname{Hom}(\mathfrak{X}, \boldsymbol{C})$. For any $\chi \in \operatorname{Hom}(\mathfrak{A}, \boldsymbol{C}$), we put

$$
\varepsilon(\chi)=\left\{\omega \in \mathcal{E} ; \chi_{\omega} \mid \mathfrak{A}=\chi\right\}
$$

Let \mathcal{E}_{d} be the set of all discrete classes in \mathcal{E} (see [4] (d)). We denote by L the set of all $\lambda \in \mathscr{F}$ such that

$$
\frac{2\langle\lambda, \alpha\rangle}{\langle\alpha, \alpha\rangle} \in Z \quad \text { for all } \quad \alpha \in \Sigma
$$

where \boldsymbol{Z} is the set of all integers. Let L^{\prime} be the set of all $\lambda \in L$ such that $\langle\lambda, \alpha\rangle \neq 0$ for all $\alpha \in \Sigma$. Then owing to the profound result of Harish-Chandra ([4] (d) Theorem 16, p. 96), one has that for any $\lambda \in L^{\prime}$, there corresponds an element $\omega(\lambda) \in \mathcal{E}_{d}$ such that

$$
\chi_{\omega(\lambda)}(\Omega)=|\lambda|^{2}-|\rho|^{2}
$$

where $\left.\left|\left.\right|^{2}=\langle\right.$,$\rangle and \rho=\frac{1}{2} \sum_{\alpha \in P} \alpha$. As is easily seen, $\left.\lambda \rightarrow\right| \lambda\right|^{2}-|\rho|^{2}(\lambda \in \mathscr{F})$ is a polynomial of degree 2 and its homogeneous part of degree 2 is a positive definite quardatic form. It follows that $\mathcal{E}(\chi) \cap \mathcal{E}_{d}$ is finite set.

Theorem 1. Let \mathfrak{A} be an arbitrary subalgebra of \mathfrak{Z} such that $\Omega \in \mathfrak{A}$ and let χ be a homomorphism of \mathfrak{A} into \boldsymbol{C}. Then $\mathcal{E}(\chi) \cap \mathcal{E}_{d}$ is a finite set. Moreover, let σ be an irreducible unitary representation of K such that

$$
\begin{equation*}
\mathcal{E}(\sigma) \cap \mathcal{E}(\chi)-\mathcal{E}_{d} \tag{A}
\end{equation*}
$$

is of measure zero with respect to the Plancherel measure for G. Then we have

$$
[U(\sigma, \chi)]=\sum_{\omega}(\omega \mid K:[\sigma]) \omega \quad\left(\omega \in \mathcal{E}(\sigma) \cap \mathcal{E}(\chi) \cap \mathcal{E}_{d}\right)
$$

Proof. We have already proved the first assertion. We consider the decompositions in Lemma 1 and 2 and use the notations in Lemma 2. Fix any $f \in \mathscr{S}_{2}(\sigma, \chi) \cap \mathfrak{S}^{\circ}(\sigma)$. Then we know that

$$
U_{z}(\sigma) f=\chi(z) f \quad \text { and } \quad \pi_{\omega}(z) f_{\omega}=\chi_{\omega}(z) f_{\omega} \quad \text { for all } \quad z \in \mathfrak{A}
$$

On the other hand, from Lemma 2 we have

$$
\left(U_{z}(\sigma) f\right)_{\omega}=\pi_{\omega}(z) f_{\omega}
$$

for almost every $\omega \in \mathcal{E}(\sigma)$. Hence, there exists a subset $\mathfrak{N} \subset \mathcal{E}(\sigma)$ of measure zero such that

$$
\left(\chi(z)-\chi_{\omega}(z)\right) f_{\omega}=0 \quad \text { for all } \quad \omega \in \mathcal{E}(\sigma)-\mathcal{N} .
$$

In general, \Re depends on z as well as f. But one knows that \mathfrak{A} is finitely generated. Therefore, every $\chi \in \operatorname{Hom}(\mathfrak{A}, \boldsymbol{C})$ is uniquely determined by its values at a finite number of elements of \mathfrak{N}. Hence, we can assume that \mathcal{N} does not depend on z. It follows immediately from the assumption (A) in the theorem that

$$
f=\sum_{\omega} f_{\omega} \quad\left(\omega \in \mathcal{E}(\sigma) \cap \mathcal{E}(\chi) \cap \mathcal{E}_{d}\right)
$$

This completes the proof of the theorem.
Remark 1. For any real number c, define

$$
\mathcal{E}_{c}=\left\{\omega \in \mathcal{E} ; \chi_{\omega}(\Omega)=c\right\} .
$$

Then in case rank $G / K=1$, we can show that $\mathcal{E}_{c}-\mathcal{E}_{d}$ is of measure zero with respect to the Plancherel measure for G, using the explicit form of the Plancherel measure given in [4] (c), [8]. We have a conjecture that it holds in general. If this is true, then the condition (A) in Theorem 1 is always satisfied
for all σ.
Now we have assumed that G has a compact Cartan subgroup T. Owing to Harish-Chandra [4] (d), one sees that $\mathcal{E}_{d} \neq \emptyset$. Fix an $\omega \in \mathcal{E}_{d}$ and put $\chi=\chi_{\omega} \mid \mathfrak{R}$. Then it is obvious that there exists a $[\sigma] \in \mathcal{E}_{K}$ such that $\omega \in \mathcal{E}(\sigma) \cap$ $\mathcal{E}(\chi) \cap \mathcal{E}_{d}$. It follows from Theorem 1 that ω is a subrepresentation of $U(\sigma, \chi)$. If $\pi \in \omega$, we say that " π is a realization of ω " or that " ω is realized by π."

Corollary. Let $\mathfrak{\Re}$ be a subalgebra of \mathfrak{Z} such that $\Omega \in \mathfrak{A}$. Fix an $\omega \in \mathcal{E}_{d}$ and put $\chi=\chi_{\omega} \mid \mathfrak{Y}$. Assume that there exists an irreducible unitary representation σ of K which satisfies the following conditions $(A .1) \sim(A .3)$.
(A.1) $\mathcal{E}(\sigma) \cap \mathcal{E}(\chi) \cap \mathcal{E}_{d}=\{\omega\}$.
(A.2) $\quad(\omega \mid K: \sigma)=1$.
(A.3) $\mathcal{E}(\sigma) \cap \mathcal{E}(\chi)-\mathcal{E}_{d}$ is of measure zero with respect to the Plancherel measure for G.

Then ω is realized by $U(\sigma, \chi)$.
5. Consider the special case that $\mathfrak{A}=3$. Then it is known (see [4] (a)) that $\mathcal{E}(\sigma) \cap \mathcal{E}(\chi)$ is always a finite set. Hence, in case $\mathfrak{A}=?$, the assumption (A) in Theorem 1 and the assumption (A.3) in the corollary to Theorem 1 are always satisfied.

Theorem 2. Fix any $[\sigma] \in \mathcal{E}_{K}$ and $\chi \in \operatorname{Hom}(3, \boldsymbol{C})$. Then $U(\sigma, \chi)$ is non-trivial and irreducible if and only if σ and χ satisfy the following condition (C).
(C) $\quad \mathcal{E}(\sigma) \cap \mathcal{E}(\chi) \cap \mathcal{E}_{d}$ consists of only one element ω such that $(\omega \mid K: \sigma)=1$.

Moreover, the condition (C) implies that $U(\sigma, \chi)$ is a realization of ω.
Remark 2. Since $K \backslash G$ is simply connected, $\mathfrak{S}(\sigma)$ can be realized as V-valued square-integrable functions on a certain submanifold of G with respect to a certain measure. If the rank of the symmetric space $K \backslash G$ is equal to be one, the radial components of $U_{z}(\sigma)(z \in \Omega)$ coincide with ordinary differential equations (see [9] and cf. [4] (b)). It is very cumbersome to calculate the radial components of $U_{z}(\sigma)(z \in \mathfrak{Z})$ even if G is the lower dimensional Lie group such as the universal covering group of De Sitter group. However, R. Takahashi [9] computed the radial component of $U_{\mathrm{\Omega}}(\sigma)$ in a very ingenious manner, making use of the quaternion field. Thus he proved that $U(\sigma, \chi)$ is non-trivial and irreducible for a certain $[\sigma] \in \mathcal{E}_{K}$ and $\chi \in \operatorname{Hom}(\mathfrak{A}, \boldsymbol{C})$ in case $\mathfrak{A}=\boldsymbol{C}[\Omega]$ (the algebra of all polynomials of Ω).

Now we shall give here an another proof of this fact, making use of the corollary to Theorem 1 and the result of J. Dixmier [1] (b). In the following,
we use the notations of [1] (b) and [9]. Let G be the universal covering group of De Sitter group. We consider the irreducible unitary representation $\rho_{K}^{n, 0}$ of the maximal compact subgroup K of G (where $2 n \in Z$ and $n \geqslant 1$). Put $\sigma_{n}=$ $\rho_{K}^{n, 0}$. Then it follows immediately from Fig. 2-3-4-5 ([1] (b) p. 24) that

$$
\mathcal{E}\left(\sigma_{n}\right)=\left\{\pi_{n, q}^{+} ; q=n, n-1, \cdots, 1 \quad \text { or } \quad \frac{1}{2}\right\} \cup\left\{\nu_{n, s} ; s>0\right\} .
$$

On the other hand, from (12) (in [1] (b) p. 12) and (53), (55) in ([1] (b) p. 27) one gets that

$$
\begin{aligned}
& \chi_{\pi_{n, q}^{+}}(\Omega)=n^{2}+n+q^{2}-q-2, \\
& \chi_{v_{n, s}}(\Omega)=n^{2}+n-s-2 .
\end{aligned}
$$

We denote by $\chi_{n, p}$ the unique element of $\operatorname{Hom}(\mathfrak{N}, \boldsymbol{C})$ such that $\chi_{n, p}(\Omega)=n^{2}+n$ $+p^{2}-p-2$. Then it is clear that $\mathcal{E}\left(\sigma_{n}\right) \cap \mathcal{E}\left(\chi_{n, p}\right)=\left\{\pi_{n, p}^{+}\right\}$for any p such that $2 p$, $n-p \in \boldsymbol{Z}$ and $n \geqslant p \geqslant 1$. Since every $\mathfrak{d} \in \mathcal{E}_{K}$ is contained at most once in each $\omega \mid K(\omega \in \mathcal{E})$, it follows from the Corollary to Theorem 1 that $\left[U\left(\sigma_{n} ; \chi_{n, p}\right)\right]=\pi_{n, p}^{+}$. This shows that $U\left(\sigma_{n}, \chi_{n, p}\right)$ is non-trivial and irreducible. If we take $\sigma_{n}=\rho_{K}^{0, n}$, similarly we have $\left[U\left(\sigma_{n}, \chi_{n, p}\right)\right]=\pi_{n, p}^{-} \quad$ These facts together with Theorem 1 and 2 in [1] (b) prove the following.

Proposition 4. (R. Takahashi) Let G be the universal covering group of De Sitter group. Then every irreducible unitary representation of discrete class $\omega \in \mathcal{E}_{d}$ can be realized by $U(\sigma, \chi)$ for some $[\sigma] \in \mathcal{E}_{K}$ and $\chi \in \operatorname{Hom}(\mathfrak{A}, \boldsymbol{C})$ where $\mathfrak{A}=$ $\boldsymbol{C}[\Omega]$ (the algebra of all polynomials of Ω). More precisely, ω is realized by

$$
\begin{aligned}
& U\left(\rho_{K}^{n, 0}, \chi_{n, p}\right)\left(\text { resp. } U\left(\rho_{K}^{0, n}, \chi_{n, p}\right)\right) \\
& \text { if } \quad \omega=\pi_{n, p}^{+}\left(\text {resp. } \omega=\pi_{n, p}^{-}\right)
\end{aligned}
$$

where $\chi_{n, p}$ is the unique element of $\operatorname{Hom}(\mathfrak{N}, \boldsymbol{C})$ such that

$$
\chi_{n, p}(\Omega)=n^{2}+n+p^{2}-p-2 .
$$

Remark 3. It is interesting to observe the fact that the theory of unitary representations has an application to the theory of partially differential equations; i.e. the differential equation (31) on page 399 in [9] has non trivial solutions in $H_{0}^{\rho, p}$ (for the notations, see [9]).
6. Finally, we shall apply the above theory to the group $\operatorname{SU}(m, 1)$ and the universal covering group of $S O_{0}(2 m, 1)$ where m is an arbitrary positive integer (for the notations, see [5]). Let G be any one of these groups. Then it is known that every $\mathfrak{D} \in \mathcal{E}_{K}$ is contained at most once in each $\omega \mid K(\omega \in \mathcal{E})$ (cf. [1] (b), [2], [3]). We fix an element χ of $\operatorname{Hom}(3, \boldsymbol{C})$. If $\omega_{1}, \omega_{2} \in \mathcal{E}(\chi) \cap \mathcal{E}_{d}$, then
$\omega_{1} \mid K$ and $\omega_{2} \mid K$ are disjoint, that is, $\omega_{1} \mid K$ and $\omega_{2} \mid K$ have no irreducible components in common (see for proof, [2], [6]). Therefore, if $\omega \in \mathcal{E}(\sigma) \cap \mathcal{E}_{d}$, then we have $\mathcal{E}(\sigma) \cap \mathcal{E}\left(\chi_{\omega}\right) \cap \mathcal{E}_{d}=\{\omega\}$. Making use of Theorem 2 we obtain the following proposition.

Proposition 5. Let G be either $S U(m, 1)$ or the universal covering group of $S O_{0}(2 m, 1)$ where m is an arbitrary positive integer. Then every $\omega \in \mathcal{E}_{d}$ is realized by $U\left(\sigma, \chi_{\omega}\right)$ for any $[\sigma] \in \mathcal{E}_{K}$ such that $(\omega \mid K:[\sigma]) \neq 0$.

Osaka University

References

[1] J. Dixmier:
(a) Sur les représentations de certains groupes orthogonaux, C.R. Acad. Sci. Paris 250 (1960), 3263-3265.
(b) Représentations intégrables du groupe de De Sitter, Bull. Soc. Math. France 89 (1961), 9-41.
[2] I.M. Gel'fand and M.I. Graev: Finite dimensional irreducible representations of a unitary and full linear group and special functions connected with them, Izv. Akad. Nauk SSSR 29 (1965), 1324-1356.
[3] R. Godement: A theory of spherical functions, I. Trans. Amer. Math. Soc. 73 (1952), 496-556.
[4] Harish-Chandra:
(a) Representations of semisimple Lie groups on a Banach space, Proc. Nat. Acad. Sci. 37 (1951), 170-173.
(b) Spherical functions on a semisimple Lie groups, I. Amer. J. Math. 80 (1958), 241-310.
(c) Two theorems on semisimple Lie groups, Ann. of Math. 83 (1966), 74-128.
(d) Discrete series for semisimple Lie groups II, Acta Math. 116 (1966), 1-111.
[5] S. Helgason: Differential geometry and symmetric spaces. Academic Press, New York, 1962.
[6] T. Hirai: On irreducible representations of Lorenz group of n-th order, Proc. Japan Acad. 38 (1962), 258-262.
[7] F.I. Mautner:
(a) Unitary representations of locally compact groups II, Ann. of Math. 52 (1950), 528-556.
(b) On the decomposition of unitary representations of Lie groups, Proc. Amer. Math. Soc. 2 (1951), 490-496.
(c) A generalization of the Frobenius reciprocity theorem, Proc. Nat. Acad. Sci. 37 (1951), 431-435.
(d) Induced representations, Amer. J. Math. 74 (1952) 737-758.
[8] K. Okamoto: On the Plancherel formulas for some types of simple Lie groups, Osaka J. Math. 2 (1965), 247-282.
[9] R. Takahashi: Sur représentations unitaires des groupes de Lorenz généralisés, Bull. Soc. Math. France 91 (1963), 289-433.

[^0]: * The author is partially supported by the Sakkokai Foundation.

