Katayama, S. and Terasaka, H. Osaka J. Math.

ON CONGRUENT AXIOMS IN LINEARLY ORDERED SPACES, I

Shigeru KATAYAMA and Hidetaka TERASAKA

(Received September 2, 1966)

1. Introduction

In connection with the axioms of congruence of segments on a straight line given in Hilbert's Grundlagen der Geometrie, we will set up a group of axioms of congruence on a linearly ordered space and study their mutual dependency and independency.

In the following let L be a linearly ordered space, that is a set of points, in which for any pair of distinct points A and B either of the relations $A<B$ and $B<A$ holds, and for any three points A, B and C, if $A<B$ and $B<C$ then $A<C$.

When we write $A B$, it will be understood that A and B are distinct points of L such that $A<B$. $A B$ will be called a segment. We write $A C \equiv A B+B C$ if and only if $A<B<C$.

The axioms we are going to study is the following:
Axiom E (Unique Existence): $\forall A B \forall A^{\prime} \exists_{1} B^{\prime}: A B=A^{\prime} B^{\prime}$, that is, for any segment $A B$ and for any point A^{\prime} there is one and only one point B^{\prime} such that

$$
A B=A^{\prime} B^{\prime}
$$

Axiom R (Reflexivity): $\quad A B=A B$.
Axiom S (Symmetricity): $A B=A^{\prime} B^{\prime} \Rightarrow A^{\prime} B^{\prime}=A B$.
Axiom T (Transitivity): $A B=A^{\prime} B^{\prime}, A^{\prime} B^{\prime}=A^{\prime \prime} B^{\prime \prime} \Rightarrow A B=A^{\prime \prime} B^{\prime \prime}$.
Axiom A (Additivity):

$$
A C \equiv A B+B C, A^{\prime} C^{\prime} \equiv A^{\prime} B^{\prime}+B^{\prime} C^{\prime}, A B=A^{\prime} B^{\prime}, B C=B^{\prime} C^{\prime} \Rightarrow A C=A^{\prime} C^{\prime} .
$$

The following scheme will be used in application:

Axiom \mathbf{C} (Commutative Addition):

$$
A C \equiv A B+B C, C^{\prime} A^{\prime} \equiv C^{\prime} B^{\prime}+B^{\prime} A^{\prime}, A B=B^{\prime} A^{\prime}, B C=C^{\prime} B^{\prime} \Rightarrow A C=C^{\prime} A^{\prime}
$$

In application we write:

Axiom I (Interchanging): $A<B<A^{\prime}<B^{\prime}, A B=A^{\prime} B^{\prime} \Rightarrow A A^{\prime}=B B^{\prime}$.
Under the assumption of Axiom E we studied in this paper all the relationship between the remaining axioms R, S, T, A, C, I as to their mutual dependency and independency, and obtaind among others the following Main Theorem.

Main Theorem: Under the assumption of Axiom E ,
I. Axioms T and C are independent of each other, and Axioms $\mathrm{R}, \mathrm{S}, \mathrm{A}$ and I follow from them. In symbol:
R, S, T, A, C, I
II. Axioms T and I are independent of each other, and Axioms R, S, A and C follow from them. In symbol:

$$
\mathrm{R}, \mathrm{~S}, \mathbf{T}, \mathrm{~A}, \mathrm{C}, \mathbf{I}
$$

III. Axioms S, A and I are independent of one another, and Axioms R, T and C follow from them. In symbol:

$$
\mathrm{R}, \mathbf{S}, \mathrm{~T}, \mathbf{A}, \mathrm{C}, \mathbf{I}
$$

IV. Axioms S, A and C are independent of one another, and Axioms R, T and I follow from them. In symbol:

$$
\mathbf{R}, \mathbf{S}, \mathrm{T}, \mathbf{A}, \mathbf{C}, \mathrm{I}
$$

V. Axioms R, A and C are independent of one another, and Axioms S, T and I follow from them. In symbol:

$$
\mathbf{R}, \mathrm{S}, \mathrm{~T}, \mathbf{A}, \mathbf{C}, \mathrm{I}
$$

2. Theorems

In the following we always assume the unique existence of Axiom E , if not otherwise stated.

To make proofs as clear as possible we introduce first some useful notations.
(a) $X \xrightarrow{(\mathrm{~T})} Y$ means that Y follows from the left side X by the use of T .
(b) $A=B$ means that A coincides with B and $A B \equiv A^{\prime} B^{\prime}$ means that $A=A^{\prime}$,
$B=B^{\prime}$ at the same time.
(c) " $\exists_{1} X$:" means that "there exist one and only one X such that."

Theorem 1. If T is assumed, then $\mathrm{R} \Leftrightarrow \mathrm{S}$.
Proof. (i) $R \Rightarrow S$.
$\left.\begin{array}{l}\text { By Axiom } \mathrm{E}, \\ \begin{array}{l}\exists_{1} B^{\prime}: A B=A^{\prime} B^{\prime} . \\ \text { By Axiom } \mathrm{E}, \\ \exists_{1} B^{\prime \prime}:\end{array} A^{\prime} B^{\prime}=A B^{\prime \prime} .\end{array}\right\} \stackrel{(\mathrm{T})}{\longrightarrow} A B=A B^{\prime \prime}$.
Now by Axiom R,

$$
\begin{gather*}
A B=A B . \tag{2}\\
(1),(2) \xrightarrow{(\mathrm{E})^{1)}} B^{\prime \prime}=B .
\end{gather*}
$$

(ii) $\mathrm{R} \Leftarrow \mathrm{S}$.

Assume $A B=A^{\prime} B^{\prime}$. Then by Axiom $\mathrm{S}, A^{\prime} B^{\prime}=A B$. Hence by Axiom T, $A B=A B$.

Theorem 2. $\mathrm{R}, \mathrm{C} \Rightarrow \mathrm{I}$.
Proof. Let $A<B<A^{\prime}<B^{\prime}$ and $A B=A^{\prime} B^{\prime}$.
Then we have

$$
\left.\begin{array}{l}
A A^{\prime} \equiv A B+B A^{\prime}, \\
B B^{\prime} \equiv B A^{\prime}+A^{\prime} B^{\prime}, \\
A B=A^{\prime} B^{\prime}, \\
B A^{\prime}=B A^{\prime} \text { (by Axiom R) }
\end{array}\right\} \stackrel{\text { (C) }}{\Longrightarrow} A A^{\prime}=B B^{\prime}
$$

Lemma 1. Under the assumption of $\mathrm{T}: A B=A^{\prime} B^{\prime} \Rightarrow A^{\prime} B^{\prime}=A^{\prime} B^{\prime}$.
Especially: $A B=A B^{\prime} \Rightarrow A B^{\prime}=A B^{\prime}$.
Proof. Let

$$
\begin{equation*}
A B=A^{\prime} B^{\prime} \tag{1}
\end{equation*}
$$

Then we have

Therefore we have from (2) $A^{\prime} B^{\prime}=A^{\prime} B^{\prime}$.

[^0]Theorem 3. $\mathrm{T}, \mathrm{C} \Rightarrow \mathrm{A}$.
Proof. Let $A C \equiv A B+B C, \quad A^{\prime} C^{\prime} \equiv A^{\prime} B^{\prime}+B^{\prime} C^{\prime}$,
and

$$
\begin{align*}
& A B=A^{\prime} B^{\prime} \tag{1}\\
& B C=B^{\prime} C^{\prime} \tag{2}
\end{align*}
$$

Then by Axiom E, $\exists_{1} D^{\prime}: A^{\prime} B^{\prime}=C^{\prime} D^{\prime}$ 。
Then we have first from (1) and (3) by using T

$$
\begin{equation*}
A B=C^{\prime} D^{\prime} \tag{4}
\end{equation*}
$$

Further

$$
\left.\begin{array}{l}
A C \equiv A B+B C \tag{5}\\
B^{\prime} D^{\prime} \equiv B^{\prime} C^{\prime}+C^{\prime} D^{\prime}, \\
\text { (4): } A B=C^{\prime} D^{\prime}, \\
\text { (2): } B C=B^{\prime} C^{\prime}
\end{array}\right\} \stackrel{(\mathrm{C})}{\Longrightarrow} A C=B^{\prime} D^{\prime}
$$

By Axiom E, $\quad \exists_{1} X: C^{\prime} D^{\prime}=A^{\prime} X$.
Then by (3) and (6) we have by using T

$$
\begin{equation*}
A^{\prime} B^{\prime}=A^{\prime} X \tag{7}
\end{equation*}
$$

Since by Lemma 1

$$
\begin{equation*}
A^{\prime} B^{\prime}=A^{\prime} B^{\prime} \tag{8}
\end{equation*}
$$

we have from (7) and (8) by the use of Axiom E $\quad X=B^{\prime}$.
Hence by (6)

$$
\begin{equation*}
C^{\prime} D^{\prime}=A^{\prime} B^{\prime} . \tag{9}
\end{equation*}
$$

Then

$$
\left.\begin{array}{l}
B^{\prime} D^{\prime} \equiv B^{\prime} C^{\prime}+C^{\prime} D^{\prime} \tag{10}\\
A^{\prime} C^{\prime} \equiv A^{\prime} B^{\prime}+B^{\prime} C^{\prime}, \\
B^{\prime} C^{\prime}=B^{\prime} C^{\prime} \text { (by Lemma 1), } \\
\text { (9): } C^{\prime} D^{\prime}=A^{\prime} B^{\prime}
\end{array}\right\} \stackrel{(\mathrm{C})}{\Longrightarrow} B^{\prime} D^{\prime}=A^{\prime} C^{\prime}
$$

From (5) and (10) we have finally by Axiom $\mathrm{T} A C=A^{\prime} C^{\prime}$.
Theorem 4. $\mathrm{T}, \mathrm{A} \Rightarrow \mathrm{R}$.
Proof. Let $A B$ be a given segment. Then by Axiom E, $\exists_{1} B^{\prime}$:

$$
\begin{equation*}
A B=A B^{\prime} \tag{1}
\end{equation*}
$$

(i) Suppose first $A<B^{\prime}<B$.

Then we have

$$
\left.\begin{array}{l}
A B \equiv A B^{\prime}+B^{\prime} B \tag{2}\\
A X \equiv A B^{\prime}+B^{\prime} X, \\
A B^{\prime}=A B^{\prime}(\text { by Lemma } 1), \\
\text { by Axiom E, } \exists_{1} X: B^{\prime} B=B^{\prime} X
\end{array}\right\} \stackrel{(\mathrm{A})}{\Longrightarrow} A B=A X
$$

From (1) and (2) we would have by Axiom $\mathrm{E} \quad B^{\prime}=X$, which is clearly a contradiction.
(ii) Next suppose $B<B^{\prime}$.

Then we have

$$
\left.\begin{array}{l}
A B^{\prime} \equiv A B+B B^{\prime}, \tag{3}\\
A X \equiv A B^{\prime}+B^{\prime} X, \\
(1): A B=A B^{\prime}, \\
\text { by Axiom E, } \exists, X: B B^{\prime}=B^{\prime} X
\end{array}\right\} \stackrel{(\mathrm{A})}{\Longrightarrow} A B^{\prime}=A X
$$

Since by Lemma $1 A B^{\prime}=A B^{\prime}$, we have from (3) $X=B^{\prime}$, which is clearly a contradiction.

From (i) and (ii) we conclude $A B=A B$.
Theorem 5. $T, C \Rightarrow R$.
This is an easy consequence of Theorem 3: T, C $\Rightarrow \mathrm{A}$ and Theorem 4: $T, A \Rightarrow R$. In the following an alternative proof will be given without an intermediation of Axiom A .

Lemma 2. Under the assumption of Axiom C

$$
\left.\begin{array}{l}
\text { (1) } \\
(2)
\end{array}\right\} \Longrightarrow\left\{\begin{array}{l}
A^{\prime}<X^{\prime}<B^{\prime}, \\
A X=X^{\prime} B^{\prime} .
\end{array}\right.
$$

$$
L \text { L }
$$

$$
L \longrightarrow \mathbf{A}^{\prime} \quad \dot{\mathbf{X}}^{\prime} \quad{\dot{B^{\prime \prime}}}^{\prime \prime} \mathbf{B}^{\prime}
$$

Proof.

$$
\left.\begin{array}{l}
A B \equiv A X+X B, \\
A^{\prime} B^{\prime \prime} \equiv A^{\prime} X^{\prime}+X^{\prime} B^{\prime \prime}, \\
\text { by Axiom E, } \exists_{1} B^{\prime \prime}: A X=X^{\prime} B^{\prime \prime} \\
\text { by (2): } \quad X B=A^{\prime} X^{\prime}
\end{array}\right\} \stackrel{ }{(\mathrm{C})} A B=A^{\prime} B^{\prime \prime} .
$$

Pr

Then we have

$$
(1),(4) \stackrel{(\mathrm{E})}{\Longrightarrow} B^{\prime}=B^{\prime \prime} .
$$

Thus $A X=X^{\prime} B^{\prime}$ from (3) and clearly $A^{\prime}<X^{\prime}<B^{\prime \prime}=B^{\prime}$.
Proof of Theorem 5.

$$
\begin{equation*}
\text { By Axiom E, } \quad \exists_{1} B^{\prime}: A B=A B^{\prime} \tag{1}
\end{equation*}
$$

(i) Suppose first $A<B^{\prime}<B$.

By Lemma 2 there is an X such that

$$
\begin{align*}
& A<X<B^{\prime}, \tag{2}\\
& B^{\prime} B=A X \tag{3}\\
& A B^{\prime}=X B^{\prime} . \tag{4}
\end{align*}
$$

Now by Axiom E, $\quad \exists X^{\prime}: A X=B^{\prime} X^{\prime}$ and by Lemma 1

$$
\begin{equation*}
X B^{\prime}=X B^{\prime} \tag{6}
\end{equation*}
$$

Thus

$$
\left.\begin{array}{l}
A B^{\prime} \equiv A X+X B^{\prime}, \tag{7}\\
X X^{\prime} \equiv X B^{\prime}+B^{\prime} X^{\prime}, \\
\text { (5): } A X=B^{\prime} X^{\prime}, \\
\text { (6): } X B^{\prime}=X B^{\prime}
\end{array}\right\} \stackrel{\text { (C) }}{\Longrightarrow} A B^{\prime}=X X^{\prime}
$$

Then

$$
(4),(7) \stackrel{(\mathrm{E})}{\Longrightarrow} X^{\prime}=B^{\prime},
$$

which is a contradiction.
(ii) Next suppose $A<B<B^{\prime}$.

By Axiom E, $\exists_{1} X: B B^{\prime}=A X$.
By Axiom E, $\exists_{1} B^{\prime \prime}: A B^{\prime}=X B^{\prime \prime}$.
Then

$$
(1),(9) \stackrel{(T)}{\Longrightarrow} A B=X B^{\prime \prime} .
$$

Hence

$$
\begin{aligned}
& \left.\begin{array}{l}
A B^{\prime} \equiv A B+B B^{\prime}, \\
A B^{\prime \prime} \equiv A X+X B^{\prime \prime}, \\
(10): A B=X B^{\prime \prime}, \\
(8): B B^{\prime}=A X
\end{array}\right\} \stackrel{(\mathrm{C})}{\Longrightarrow} A B^{\prime}=A B^{\prime \prime} \cdot \\
& \quad \text { By Lemma } 1
\end{aligned} \quad A B^{\prime}=A B^{\prime}, ~(\mathrm{E}) ~ B^{\prime \prime}=B^{\prime}
$$

Consequently, we have from (9)

$$
\begin{equation*}
A B^{\prime}=X B^{\prime} \tag{11}
\end{equation*}
$$

Now

$$
\left.\begin{array}{l}
A B^{\prime} \equiv A X+X B^{\prime}, \tag{12}\\
X X^{\prime} \equiv X B^{\prime}+B^{\prime} X^{\prime}, \\
\text { by Axiom E, } \exists_{1} X^{\prime}: A X=B^{\prime} X^{\prime}, \\
\text { by Lemm 1, } \quad X B^{\prime}=X B^{\prime}
\end{array}\right\} \stackrel{\text { (C) }}{\Longrightarrow} A B^{\prime}=X X^{\prime}
$$

Then we have

$$
(11),(12) \stackrel{(\mathrm{E})}{\Longrightarrow} B^{\prime}=X^{\prime},
$$

which is a contradiction.
From (i) and (ii) we conclude $A B=A B$.
Theorem 6. $T, I \Rightarrow R$.
Proof.

$$
\begin{equation*}
\text { By Axiom E, } \quad \exists_{1} B^{\prime}: A B=A B^{\prime} \tag{1}
\end{equation*}
$$

(i) Suppose first $A<B^{\prime}<B$.

$$
\begin{equation*}
\text { By Axiom E, } \exists_{1} C: A B^{\prime}=B C . \tag{2}
\end{equation*}
$$

Then

$$
\begin{equation*}
(1),(2) \stackrel{(\mathrm{T})}{\Longrightarrow} A B=B C . \tag{3}
\end{equation*}
$$

and

$$
\begin{align*}
& A<B^{\prime}<B<C,(2) \stackrel{\text { (I) }}{\Longrightarrow} A B=B^{\prime} C . \tag{4}\\
& \text { By Axiom E, } \exists_{1} D: B^{\prime} B=C D . \tag{5}
\end{align*}
$$

Then

$$
\begin{equation*}
B^{\prime}<B<C<D,(5) \stackrel{\text { (I) }}{\Longrightarrow} B^{\prime} C=B D, \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\text { (4), (6) } \stackrel{(\mathrm{T})}{\Longrightarrow} A B=B D \text {. } \tag{7}
\end{equation*}
$$

Hence

$$
(3),(7) \xrightarrow{(\mathrm{E})} C=D .
$$

which is a contradiction.
(ii) Next suppose $A<B<B^{\prime}$.

$$
\text { By Axiom E, } \quad \exists_{1} C: A B=B^{\prime} C .
$$

$$
\begin{equation*}
A<B<B^{\prime}<C,(8) \stackrel{\text { (I) }}{\Longrightarrow} A B^{\prime}=B C . \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
(1),(9) \stackrel{(T)}{\Longrightarrow} A B=B C \tag{10}
\end{equation*}
$$

$$
\begin{equation*}
\text { By Axiom E, } \exists_{1} D: B B^{\prime}=C D \tag{11}
\end{equation*}
$$

$$
\begin{align*}
B<B^{\prime}<C<D,(11) & \stackrel{\text { (I) }}{\Longrightarrow} B C=B^{\prime} D . \tag{12}\\
(10),(12) & \stackrel{\text { (T) }}{\Longrightarrow} A B=B^{\prime} D . \tag{13}
\end{align*}
$$

Hence

$$
(8),(13) \stackrel{(\mathrm{E})}{\Longrightarrow} C=D,
$$

which is a contradiction.
From (i) and (ii) we conclude $A B=A B$.
Lemma 3. $A<A^{\prime}<B, A B=A^{\prime} B^{\prime} \xlongequal{(\mathrm{I})} B<B^{\prime}, A A^{\prime}=B B^{\prime}$.
Proof.

$$
\begin{align*}
& \text { By Axiom E, } \quad \exists_{1} B^{\prime \prime}: A A^{\prime}=B B^{\prime \prime} . \tag{1}\\
& A<A^{\prime}<B<B^{\prime \prime},(1) \xrightarrow{(\mathrm{I})} A B=A^{\prime} B^{\prime \prime} \tag{2}
\end{align*}
$$

Let $A B=A^{\prime} B^{\prime}$. Then we have

$$
A B=A^{\prime} B^{\prime},(2) \stackrel{(\mathrm{E})}{\Longrightarrow} B^{\prime}=B^{\prime \prime}
$$

Therefore we have from (1) $B<B^{\prime}$ and $A A^{\prime}=B B^{\prime}$.
Theorem 7. $\mathrm{T}, \mathrm{I} \Rightarrow \mathrm{A}$.
Proof. (i) First let $A<B<C<A^{\prime}<B^{\prime}<C^{\prime}$ and $A B=A^{\prime} B^{\prime}, B C=B^{\prime} C^{\prime}$. $\left.\left.\begin{array}{l}A<B<A^{\prime}<B^{\prime}, A B=A^{\prime} B^{\prime} \stackrel{\text { (I) }}{\Longrightarrow} A A^{\prime}=B B^{\prime}, \\ B<C<B^{\prime}<C^{\prime}, B C=B^{\prime} C^{\prime} \stackrel{\text { (I) }}{\Longrightarrow} B B^{\prime}=C C^{\prime}\end{array}\right\} \stackrel{\text { (T) }}{\Longrightarrow} A A^{\prime}=C C^{\prime},\right\}\left(\begin{array}{l}\text { Lem.3) } \\ A<C^{\prime}\end{array}\right\} \stackrel{ }{\Longrightarrow} A C=A^{\prime} C^{\prime}$.
(ii) Next let $A<B<C, A^{\prime}<B^{\prime}<C^{\prime}$ with $A B=A^{\prime} B^{\prime}, B C=B^{\prime} C^{\prime}$, but let $C<A^{\prime}$ fail to be true.

Take points $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}$ such that $A<B<C<A^{\prime \prime}<B^{\prime \prime}<C^{\prime \prime}$ and $A^{\prime}<B^{\prime}<C^{\prime}$ $<A^{\prime \prime}<B^{\prime \prime}<C^{\prime \prime}$ with $A^{\prime} B^{\prime}=A^{\prime \prime} B^{\prime \prime}, B^{\prime} C^{\prime}=B^{\prime \prime} C^{\prime \prime}$.
Then by (i)

$$
\begin{equation*}
A C=A^{\prime \prime} C^{\prime \prime} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
A^{\prime} C^{\prime}=A^{\prime \prime} C^{\prime \prime} \tag{2}
\end{equation*}
$$

Now, since $T, I \Rightarrow R$ by Theorem 6 and $T, R \Rightarrow S$ by Theorem 1, Axiom S holds by our assumption of T and I .

Therefore

$$
\begin{equation*}
A^{\prime} C^{\prime}=A^{\prime \prime} C^{\prime \prime} \stackrel{(\mathrm{S})}{\Longrightarrow} A^{\prime \prime} C^{\prime \prime}=A^{\prime} C^{\prime} \tag{3}
\end{equation*}
$$

Hence

$$
(1),(3) \stackrel{(\mathrm{T})}{\Longrightarrow} A C=A^{\prime} C^{\prime}
$$

Theorem 8. $T, I \Rightarrow C$.
Proof. Notice that Axiom S is a consequence of our assumption of T and I as we have shown in the proof of Theorem 7 and that Axiom A is, a consequence of T and I by Theorem 7.

Let $A<B<C, C^{\prime}<B^{\prime}<A^{\prime}$ and let

$$
\begin{align*}
& A B=B^{\prime} A^{\prime} \tag{1}\\
& B C=C^{\prime} B^{\prime} \tag{2}
\end{align*}
$$

$A C \equiv A B+B C$, $B^{\prime} C^{\prime \prime} \equiv B^{\prime} A^{\prime}+A^{\prime} C^{\prime \prime}, \quad$ (A)
(2): $B C=C^{\prime} B^{\prime}$,
(1): $A B=B^{\prime} A^{\prime}$, by Axiom E,
$\exists_{1} C^{\prime \prime}: C^{\prime} B^{\prime}=A^{\prime} C^{\prime \prime}$
$\left.C^{\prime}<B^{\prime}<A^{\prime}<C^{\prime \prime}, C^{\prime} B^{\prime}=A^{\prime} C^{\prime \prime} \stackrel{(\mathrm{I})}{\Longrightarrow} C^{\prime} A^{\prime}=B^{\prime} C^{\prime \prime} \xlongequal{(\mathrm{S})} B^{\prime} C^{\prime \prime}=C^{\prime} A^{\prime}\right)$

$$
\stackrel{(\mathrm{T})}{\Longrightarrow} A C=C^{\prime} A^{\prime} .
$$

Theorem 9. $\mathrm{S}, \mathrm{A} \Rightarrow \mathrm{R}$.
Proof.

$$
\begin{equation*}
\text { By Axiom E, } \quad \exists_{1} B^{\prime}: A B=A B^{\prime} \tag{1}
\end{equation*}
$$

(i) Let $A<B<B^{\prime}$.

$$
\begin{align*}
& \text { By Axiom E, } \quad \exists 1 X: B B^{\prime}=B^{\prime} X \tag{2}\\
& A B^{\prime} \equiv A B+B B^{\prime}, \tag{3}\\
& A X \equiv A B^{\prime}+B^{\prime} X, \\
& \left.\begin{array}{l}
\text { (1): } A B=A B^{\prime}, \\
\text { (2): } B B^{\prime}=B^{\prime} X
\end{array}\right\} \stackrel{(\mathrm{A})}{\Longrightarrow} A B^{\prime}=A X .
\end{align*}
$$

$$
\begin{align*}
(1) & \stackrel{(\mathrm{S})}{\Longrightarrow} A B^{\prime}=A B . \tag{4}\\
(3),(4) & \stackrel{(\mathrm{E})}{\Longrightarrow} X=B,
\end{align*}
$$

which is a contradiction.
(ii) Let $A<B^{\prime}<B$.

By Axiom $\mathrm{S} \quad A B^{\prime}=A B, A<B^{\prime}<B$ and the case (ii) reduces to that of (i). From (i) and (ii) we conclude $A B=A B$.

Lemma 4. Under the assumption of Axioms S, A and I , if $A B=A^{\prime} B^{\prime}$, then

1) $A<A^{\prime} \Rightarrow B<B^{\prime}, A A^{\prime}=B B^{\prime}$.
2) $A^{\prime}<A \Rightarrow B^{\prime}<B, A^{\prime} A=B^{\prime} B$.
3) $A=A^{\prime} \Rightarrow B=B^{\prime}$.

Proof. 1) follows from Lemma 3.
2) reduces to 1) by Axiom S.
3) follows from Theorem 9 which asserts $S, A \Rightarrow R$.

Lemma 5. $P Q=P^{\prime} Q^{\prime}(1), P<X<Q, P X=P^{\prime} X^{\prime}(2) \stackrel{(\mathrm{A})}{\Longrightarrow} P^{\prime}<X^{\prime}<Q^{\prime}$, $X Q=X^{\prime} Q^{\prime}$.

Proof.
$P Q \equiv P X+X Q$,
$P^{\prime} Q^{\prime \prime} \equiv P^{\prime} X^{\prime}+X^{\prime} Q^{\prime \prime}$,
(2): $P X=P^{\prime} X^{\prime}$,
by Axiom $\left.\mathrm{E}, \exists_{1} Q^{\prime \prime}: X Q=X^{\prime} Q^{\prime \prime}\right)$ (1): $\left.P Q=P^{\prime} Q^{\prime}\right\} \stackrel{(\mathrm{E})}{\Longrightarrow} Q^{\prime \prime}=Q^{\prime}$.
Lemma 6. $P Q=P^{\prime} Q^{\prime}, P Q=P^{\prime \prime} Q^{\prime}, P<P^{\prime}, P<P^{\prime \prime} \xrightarrow{(\mathrm{A}, \mathrm{I})} P^{\prime}=P^{\prime \prime}$.
Proof. We may assume without loss of generality that $P^{\prime}<P^{\prime \prime}$.

$$
\begin{align*}
& P Q=P^{\prime} Q^{\prime}\left(\stackrel{\text { I or Lem. 3) }}{\Longrightarrow} P P^{\prime}=Q Q^{\prime} .\right. \tag{1}\\
& P Q=P^{\prime \prime} Q^{\prime \prime} \stackrel{(\text { or Lem. 3) }}{\Longrightarrow} P P^{\prime \prime}=Q Q^{\prime} . \tag{2}
\end{align*}
$$

$P P^{\prime \prime} \equiv P P^{\prime}+P^{\prime} P^{\prime \prime}$,
$Q X \equiv Q Q^{\prime}+Q^{\prime} X$,
(1): $P P^{\prime}=Q Q^{\prime}$,
by Axiom E, $\exists_{1} X: P^{\prime} P^{\prime \prime}=Q^{\prime} X$
$\left.\begin{array}{l}\xrightarrow{(\mathrm{A})} P P^{\prime \prime}=Q X, \\ (2): P P^{\prime \prime}=Q Q^{\prime}\end{array}\right\} \stackrel{(\mathrm{E})}{\Longrightarrow} X=Q^{\prime}$,
which is a contradiction.
Lemma 7. $\left.\begin{array}{ll} & P Q=P^{\prime} Q^{\prime}, P<P^{\prime}, \\ & P<X<Q, X Q=X^{\prime} Q^{\prime}\end{array}\right\} \stackrel{(\mathrm{S}, \mathrm{A}, \mathrm{I})}{\Longrightarrow} P^{\prime}<X^{\prime}<Q^{\prime}, P X=P^{\prime} X^{\prime}$.
Proof. By Lemma 3 we have first

$P Q=P^{\prime} Q^{\prime}, P<P^{\prime} \stackrel{(\mathrm{I})}{\Longrightarrow} Q<Q^{\prime}$.

From

$$
\begin{equation*}
X Q=X^{\prime} Q^{\prime} \tag{1}
\end{equation*}
$$

we have $X^{\prime} Q^{\prime}=X Q$ by Axiom S , and combined with $Q<Q^{\prime}$ we obtain by Lemma 4

$$
\begin{equation*}
X<X^{\prime} . \tag{2}
\end{equation*}
$$

Now,

$$
\begin{array}{ll}
\text { by Axiom E, } & \exists_{1} X^{\prime \prime}: P X=P^{\prime} X^{\prime \prime}, \\
\text { by Lemma } 5 & P^{\prime}<X^{\prime \prime}<Q^{\prime} \quad \text { and } \quad X Q=X^{\prime \prime} Q^{\prime}, \\
\text { by Lemma } 4 & X<X^{\prime \prime} . \tag{5}
\end{array}
$$

Then (1), (4), (2) and (5) yield by Lemma $6 X^{\prime}=X^{\prime \prime}$. Consequently we have $P^{\prime}<X^{\prime}<Q^{\prime}$ and $P X=P^{\prime} X^{\prime}$.

Theorem 10. $\mathrm{S}, \mathrm{A}, \mathrm{I} \Rightarrow \mathrm{T}$.
Proof. Let $A B=A^{\prime} B^{\prime}, A^{\prime} B^{\prime}=A^{\prime \prime} B^{\prime \prime}$.
(i) The case where at least two of A, A^{\prime} and $A^{\prime \prime}$ coincide:
(i) $\quad A=A^{\prime}$. Since $\mathrm{S}, \mathrm{A} \Rightarrow \mathrm{R}$ by Theorem 9 we have $B=B^{\prime}$ and hence $A B=A^{\prime \prime} B^{\prime \prime}$.
(i) $A_{2}^{\prime}=A^{\prime \prime} . \quad$ The same as $(\mathrm{i})_{1}$.
$\left.\begin{array}{rl}\text { (i) } A_{3} & A=A^{\prime \prime} . \quad A B=A^{\prime} B^{\prime} \xlongequal{(\mathrm{S})} A^{\prime} B^{\prime}=A B, \\ A^{\prime} B^{\prime}=A^{\prime \prime} B^{\prime \prime}, A=A^{\prime \prime} \Longrightarrow A^{\prime} B^{\prime}=A B^{\prime \prime}\end{array}\right\} \stackrel{(\mathrm{E})}{\Longrightarrow} B=B^{\prime \prime}$.
Hence

$$
A B=A^{\prime \prime} B^{\prime \prime} .
$$

(ii) The case where A, A^{\prime} and $A^{\prime \prime}$ are distinct: there are six cases to be considered.

$$
\begin{array}{llll}
\text { I. } A<A^{\prime}<A^{\prime \prime}, & \text { II. } A<A^{\prime \prime}<A^{\prime}, & \text { III. } A^{\prime}<A<A^{\prime \prime}, \\
\text { I'. } A^{\prime \prime}<A^{\prime}<A, & \text { II' }^{\prime} . A^{\prime \prime}<A<A^{\prime}, & \text { III'. } A^{\prime}<A^{\prime \prime}<A .
\end{array}
$$

Proof of Case I.

$$
\left.\begin{array}{l}
A B=A^{\prime} B^{\prime}\left(\stackrel{(\mathrm{I} \text { or Lem. } 3)}{\Longrightarrow} A A^{\prime}=B B^{\prime},\right. \\
A^{\prime} B^{\prime}=A^{\prime \prime} B^{\prime \prime} \stackrel{(\mathrm{I} \text { or Lem. 3) }}{\Longrightarrow} A^{\prime} A^{\prime \prime}=B^{\prime} B^{\prime \prime}, \\
A<A^{\prime}<A^{\prime \prime} \stackrel{(\text { Lem. } 4)}{\Longrightarrow} B<B^{\prime}<B^{\prime \prime}
\end{array}\right\}
$$

Proof of Case II.

$$
\begin{align*}
& A B=A^{\prime} B^{\prime}(\text { I or Lem. } 3) \tag{1}\\
& A^{\prime} B^{\prime}=A^{\prime \prime} B^{\prime \prime} \xlongequal{(\mathrm{S})} A A^{\prime}=B B^{\prime} . \tag{2}\\
& A^{\prime \prime} B^{\prime \prime}=A^{\prime} B^{\prime}\left(\stackrel{\text { Ior Lem. 3) }}{\Longrightarrow} A^{\prime \prime} A^{\prime}=B^{\prime \prime} B^{\prime} .\right.
\end{align*}
$$

$$
\begin{aligned}
& \text { (1), } \\
& \text { (2), }
\end{aligned}
$$

Proof of Case III.

$$
\begin{align*}
& A^{\prime} B^{\prime}=A^{\prime \prime} B^{\prime \prime}\left(\stackrel{\text { I or Lem. 3) }}{\Longrightarrow} A^{\prime} A^{\prime \prime}=B^{\prime} B^{\prime \prime} .\right. \tag{1}\\
& A B=A^{\prime} B^{\prime} \xrightarrow{(\mathrm{s})} A^{\prime} B^{\prime}=A B^{(\mathrm{I} \text { or Lem. 3) }} A^{\prime} A=B^{\prime} B . \tag{2}\\
& \left.\begin{array}{l}
\begin{array}{l}
(1)^{\prime}, \\
(2)^{\prime}, \\
A^{\prime}<A<A^{\prime \prime}
\end{array}
\end{array}\right\} \stackrel{\text { Lem.5) }}{\Longrightarrow}\left\{\begin{array}{l}
B^{\prime}<B<B^{\prime \prime} \\
A A^{\prime \prime}=B B^{\prime \prime}
\end{array}\right\} \stackrel{(\text { I or Lem. } 3 \text {) }}{\Longrightarrow} A B=A^{\prime \prime} B^{\prime \prime} .
\end{align*}
$$

Proof of Case I'.

$$
\begin{align*}
& A B=A^{\prime} B^{\prime} \xlongequal{(\mathrm{s})} A^{\prime} B^{\prime}=A B . \\
& A^{\prime} B^{\prime}=A^{\prime \prime} B^{\prime \prime} \xrightarrow{(\mathrm{s})} A^{\prime \prime} B^{\prime \prime}=A^{\prime} B^{\prime} . \tag{2}\\
& A^{\prime \prime}<A^{\prime}<A,(2)^{\prime \prime},(1)^{\prime \prime} \xlongequal{(\text { Case })} A^{\prime \prime} B^{\prime \prime}=A B \xrightarrow{(\mathrm{~s})} A B=A^{\prime \prime} B^{\prime \prime} .
\end{align*}
$$

Similarly the proofs of II' and III' may be reduced to those of II and III respectively.

Theorem 11. $\mathrm{S}, \mathrm{A}, \mathrm{I} \Rightarrow \mathrm{C}$.
Proof. $\mathrm{S}, \mathrm{A}, \mathrm{I} \Rightarrow \mathrm{T}$ by Theorem 10 . Then by Theorem $8 \mathrm{~T}, \mathrm{I} \Rightarrow \mathrm{C}$.
Lemma 8. Under the assumption of Axioms R and C , if $A B=A^{\prime} B^{\prime}$, then

1) $A<A^{\prime} \Rightarrow B<B^{\prime}$.
2) $A=A^{\prime} \Rightarrow B=B^{\prime}$.
3) $A^{\prime}<A \Rightarrow B^{\prime}<B$.

Proof. 1) $A<A^{\prime} . \quad B<B^{\prime}$ is clear if $B<A^{\prime}$ or if $B=A^{\prime}$.
Let $A<A^{\prime}<B$, and suppose either $B^{\prime}<B$ or $B^{\prime}=B$.
By Axiom E, $\quad \exists_{1} X: A A^{\prime}=B X$.
$\left.\left.\begin{array}{r}A<A^{\prime}<B<X, \\ \text { (1): } A A^{\prime}=B X \\ \text { By assumption }\end{array}\right\} \stackrel{\text { (I) }}{\Longrightarrow} A B=A^{\prime} X . B^{\prime}.\right\} \stackrel{\text { (E) }}{\longrightarrow} X=B^{\prime}$,
which is a contradiction.
2) Clear.
3) $A^{\prime}<A$. Suppose either $B<B^{\prime}$ or $B=B^{\prime}$.

which is a contradiction.
Theorem 12. $R, A, C \Rightarrow S$.
Proof. Let

$$
\begin{equation*}
A B=A^{\prime} B^{\prime} \tag{1}
\end{equation*}
$$

Case I. $A^{\prime}<A$.
By Axiom E, $\exists_{1} X: \quad A^{\prime} A=B^{\prime} X$.
$A^{\prime} A=B^{\prime} X^{(\mathrm{I} \text { or Lem. 3) }} A^{\prime} B^{\prime}=A X$.

Hence from (3) $\quad A^{\prime} B^{\prime}=A B$.
Case II. $A<A^{\prime}$.

$$
\begin{equation*}
\text { By Axiom E, } \exists_{1} B^{\prime \prime}: \quad A^{\prime} B^{\prime}=A B^{\prime \prime} \tag{4}
\end{equation*}
$$

Then we have from (4) by Case I

$$
\begin{equation*}
A B^{\prime \prime}=A^{\prime} B^{\prime} \tag{5}
\end{equation*}
$$

(i) Suppose first $A<B^{\prime \prime}<B$.

$$
\begin{equation*}
\text { By Axiom E, } \exists_{1} X: \quad B^{\prime \prime} B=B^{\prime} X . \tag{6}
\end{equation*}
$$

From (5) and (6) we have by Axiom A $A B=A^{\prime} X$. This, combined with (1), would yield by Axiom $\mathrm{E} \quad X=B^{\prime}$, which is a contradiction.
(ii) Next suppose $B<B^{\prime \prime}$.

$$
\text { By Axiom E, } \exists_{1} X: \quad B B^{\prime \prime}=B^{\prime} X
$$

On account of (1) we have then by Axiom A $A B^{\prime \prime}=A^{\prime} X$, which, combined with (5), would yield by Axiom $\mathrm{E} X=B^{\prime}$, again a contradiction.

Corollary. $A B=A^{\prime} B^{\prime}, A^{\prime}<A \xlongequal{(\mathrm{R}, \mathrm{C})} A^{\prime} B^{\prime}=A B$.
Theorem 13. $\mathrm{S}, \mathrm{C}, \mathrm{I} \Rightarrow \mathrm{R}$.
Proof.
By Axiom E, $\exists_{1} B^{\prime}: \quad A B=A B^{\prime}$.
(i) First suppose $A<B^{\prime}<B$.

By Lemma 2 there is an X such that

$$
\begin{gather*}
A<X<B^{\prime}, \quad B^{\prime} B=A X \\
A B^{\prime}=X B^{\prime} \tag{1}
\end{gather*}
$$

By Axiom E, $\exists_{1} X^{\prime}: A X=B^{\prime} X^{\prime}$.
Since $A<X<B^{\prime}<X^{\prime}$ we have by Axiom I

$$
\begin{equation*}
A B^{\prime}=X X^{\prime} \tag{2}
\end{equation*}
$$

From (1) and (2) we would have by Axiom $\mathrm{E} B^{\prime}=X$, which is a contradiction.
(ii) Next suppose $B<B^{\prime}$.

Since we have from (1) by Axiom $\mathrm{S} A B^{\prime}=A B$, the argument of (i) gives again a contradiction.

Thus we conclude from (i) and (ii) $B^{\prime}=B$ and then $A B=A B$ follows from (1).

3. Models

By a model of a geometry denoted for example by $\mathrm{M}(\mathrm{S}, \mathrm{C})$ we mean a linearly ordered space L with congruent relations which satisfy among our group of seven Axioms E, R, S, T, A, C and I Axioms S and C alone besides Axiom E but not the remaining ones.

In the following models the space L is for the most part given by the real line $-\infty<x<\infty$ or by the half line $0 \leqq x<\infty$. In these cases points denoted by A, B, A^{\prime}, X etc. will be those points of the real line having coordinates a, b, a^{\prime}, x etc. respectively. $A<B$ is defined by $a<b,|A B|$ denotes the distance $b-a$ of points A and B.
$\mathrm{M}(\mathrm{R})$: A model of a geometry in which Axiom R alone holds besides Axiom E .
Let L be the real line $-\infty<x<\infty$.
Definition of $A B=A^{\prime} B^{\prime}$:
If $A=A^{\prime}$, then let $A B=A^{\prime} B^{\prime}$ if and only if $B=B^{\prime}$.
If $A \neq A^{\prime}$, then let $A B=A^{\prime} B^{\prime}$ if and only if $\left|A^{\prime} B^{\prime}\right|=1$.
This model satisfies Axioms E and R but fails to satisfy the remaining Axioms S, T, A, C, I.
$\mathrm{M}(\mathrm{S}):$ A model of a geometry in which Axiom S alone holds besides Axiom E . Let L be the real line $-\infty<x<\infty$.
Definition of $A B=A^{\prime} B^{\prime}$:
In case $A=A^{\prime}$, let $A B=A^{\prime} B^{\prime}$
(i) if $|A B|=1$ and $\left|A^{\prime} B^{\prime}\right|=3$
or (ii) if $|A B|=3$ and $\left|A^{\prime} B^{\prime}\right|=1$
or (iii) if $|A B|$ and $\left|A^{\prime} B^{\prime}\right|$ are both different from 1 and 3 , and $|A B|$ $=\left|A^{\prime} B^{\prime}\right|$.

In case $A<A^{\prime}$, let $A B=A^{\prime} B^{\prime}$ and $A^{\prime} B^{\prime}=A B$ if $2|A B|=\left|A^{\prime} B^{\prime}\right|$. This model satisfies Axioms E and S but fails to satisfy the remaining Axioms R, T, A, C, I.
$\mathrm{M}(\mathrm{T}): \quad$ A model of a geometry in which Axiom T alone holds besides Axiom E.
Let L be the real line $-\infty<x<\infty$.
Definition of $A B=A^{\prime} B^{\prime}$: For any $A B$ and for any A^{\prime}, let $A B=A^{\prime} B^{\prime}$ if and only if $\left|A^{\prime} B^{\prime}\right|=1$.
This model satisfies Axioms E and T but fails to satisfy the remaining Axioms R, S, A, C, I.
$\mathrm{M}(\mathrm{A}):$ A model of a geometry in which Axiom A alone holds besides Axiom E .
Let L be the real line $-\infty<x<\infty$.
Definition of $A B=A^{\prime} B^{\prime}$:
(i) In case $A<A^{\prime}$ or $A=A^{\prime}$, then let $A B=A^{\prime} B^{\prime}$ if and only if $2|A B|$ $=\left|A^{\prime} B^{\prime}\right|$.
(ii) In case $A^{\prime}<A$, then let $A B=A^{\prime} B^{\prime}$ if and only if $|A B|=\left|A^{\prime} B^{\prime}\right|$.

This model satisfies Axioms E and A but fails to satisfy the remaining Axioms R, S, T, C, I.
$\mathrm{M}(\mathrm{I})$: A model of a geometry in which Axiom I alone holds besides Axiom E .
Let L be the real line $-\infty<x<\infty$.
Definition of $A B=A^{\prime} B^{\prime}$:
In case $A=A^{\prime}$, let $A B=A^{\prime} B^{\prime}$ if and only if $2|A B|=\left|A^{\prime} B^{\prime}\right|$.
In case $A \neq A^{\prime}$, let $A B=A^{\prime} B^{\prime}$ if and only if $|A B|=\left|A^{\prime} B^{\prime}\right|$.
This model satisfies Axioms E and I but fails to satisfy the remaining Axioms R, S, T, A, C.
$\mathrm{M}(\mathrm{A}, \mathrm{C}):$ A model of a geometry in which Axioms A and C alone hold besides Axiom E.

Let L be the real line $-\infty<x<\infty$.
Definition of $A B=A^{\prime} B^{\prime}$: Let $A B=A^{\prime} B^{\prime}$ if and only if $2|A B|=\left|A^{\prime} B^{\prime}\right|$. This model satisfies Axioms E, A and C but fails to satisfy the remaining Axioms R, S, T, I.
$\mathrm{M}(\mathrm{S}, \mathrm{I}):$ A model of a geometry in which Axioms S and I alone hold besides Axiom E.

Let L be the real line $-\infty<x<\infty$.
Definition of $A B=A^{\prime} B^{\prime}$:
In case $A=A^{\prime}$, let $A B=A^{\prime} B^{\prime}$ if $|A B|=1$ and $\left|A^{\prime} B^{\prime}\right|=2$ or if $|A B|=2$ and $\left|A^{\prime} B^{\prime}\right|=1$ or if $|A B|$ and $\left|A^{\prime} B^{\prime}\right|$ are both different from 1 and 2 , and $|A B|=\left|A^{\prime} B^{\prime}\right|$.

In case $A \neq A^{\prime}$, let $A B=A^{\prime} B^{\prime}$ if $|A B|=\left|A^{\prime} B^{\prime}\right|$.
This model satisfies Axioms E, S and I but fails to satisfy the remaining Axioms R, T, A, C.
$\mathrm{M}(\mathrm{R}, \mathrm{S}, \mathrm{A}):$ A model of a geometry in which Axioms R, S and A alone hold besides Axiom E.

Let L be the real line $-\infty<x<\infty$.
Definition of $A B=A^{\prime} B^{\prime}$:
In case $A=A^{\prime}$, let $A B=A^{\prime} B^{\prime}$ if $B^{\prime}=B$.
In case $A<A^{\prime}$, let $A B=A^{\prime} B^{\prime}$ and $A^{\prime} B^{\prime}=A B$ if $2|A B|=\left|A^{\prime} B^{\prime}\right|$.
This model satisfies Axioms $\mathrm{E}, \mathrm{R}, \mathrm{S}$ and A but fails to satisfy the remaining Axioms T, C, I.
$\mathrm{M}(\mathrm{R}, \mathrm{A}, \mathrm{I}):$ A model of a geometry in which Axioms R, A and I alone hold besides Axiom E.

Let L be the real line $-\infty<x<\infty$.
Definition of $A B=A^{\prime} B^{\prime}$:
In case $A=A^{\prime}$ or $A<A^{\prime}$, let $A B=A^{\prime} B^{\prime}$ if $|A B|=\left|A^{\prime} B^{\prime}\right|$.
In case $A^{\prime}<A$, let $A B=A^{\prime} B^{\prime}$ if $2\left|A^{\prime} B^{\prime}\right|=|A B|$.
This model satisfies Axioms E, R, A and I but fails to satisfy the remaining Axioms S, T, C.
$\mathrm{M}(\mathrm{R}, \mathrm{S}, \mathrm{T}): A$ model of a geometry in which Axioms R, S and T alone hold besides Axiom E .

Let a point of the space L be defined as an ordered pair (x, y) of real numbers x and y such that either $x \geqq 0$ and $y=0$ or $x=0$ and $y \geqq 0$.

Definition of the linear order:
If $A=(x, y), A^{\prime}=\left(x^{\prime}, y^{\prime}\right)$, then let $A<A^{\prime}$ if $x<x^{\prime}$ or if $y>y^{\prime}$.

Definition of $A B=A^{\prime} B^{\prime}$:

If $A=\left(x_{1}, y_{1}\right), B=\left(x_{2}, y_{2}\right), A^{\prime}=\left(x_{1}{ }^{\prime}, y_{1}{ }^{\prime}\right), B^{\prime}=\left(x_{2}{ }^{\prime}, y_{2}{ }^{\prime}\right)$,
then let $A B=A^{\prime} B^{\prime}$ if $\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}=\sqrt{\left(x_{2}{ }^{\prime}-x_{1}{ }^{\prime}\right)^{2}+\left(y_{2}{ }^{\prime}-y_{1}{ }^{\prime}\right)^{2}}$.
This model satisfies Axioms E, R, S and T but fails to satisfy the remaining Axioms A, C, I.
$\mathrm{M}(\mathrm{A}, \mathrm{C}, \mathrm{I}):$ A model of a geometry in which Axioms A, C, and I alone hold besides Axiom E.

Let L be the half real line $0 \leqq x<\infty$, and let O denote the point with coordinate 0 .

Definition of $A B=A^{\prime} B^{\prime}$:
In case $A=O$, let $A B=A^{\prime} B^{\prime}$ if $|A B|+1=\left|A^{\prime} B^{\prime}\right|$.
In case $O<A$, let $A B=A^{\prime} B^{\prime}$ if $|A B|=\left|A^{\prime} B^{\prime}\right|$.
This model satisfies Axioms E, A, C and I but fails to satisfy the remaining Axioms R, S, T.
$\mathrm{M}(\mathrm{R}, \mathrm{S}, \mathrm{I}):$ A model of a geometry in which Axioms R, S and I alone hold besides Axiom E.

Let L be the half real line $0 \leqq x<\infty$ with the origin O.
Definition of $A B=A^{\prime} B^{\prime}$: Let $f(x)=x^{3}$.
In case $A=O$ or $A^{\prime}=O$, let $A B=A^{\prime} B^{\prime}$ if $f(b)-f(a)=f\left(b^{\prime}\right)-f\left(a^{\prime}\right)$.
In case $A \neq O$ and $A^{\prime} \neq O$, let $A B=A^{\prime} B^{\prime}$ if $|A B|=\left|A^{\prime} B^{\prime}\right|$.
This model satisfies Axioms E, R, S and I but fails to satisfy the remaining Axioms T, A, C.
$\mathrm{M}(\mathrm{R}, \mathrm{S}, \mathrm{C}, \mathrm{I}):$ A model of a geometry in which Axioms $\mathrm{R}, \mathrm{S}, \mathrm{C}$ and I alone hold besides Axiom E .

Let L be the half real line $0 \leqq x<\infty$.
For any $s>0$ make correspond to each x with $0 \leqq x \leqq s$ an x^{\prime} with $s \leqq x^{\prime} \leqq 3 s$ and vice versa, by the relation

$$
\frac{2 x+x^{\prime}}{3}=s
$$

Call this correspondence σ a skew symmetrization with centre s.

It should be observed that for any pair of non negative numbers a and b there is one and only one skew symmetrization σ that interchanges a and b : $\sigma(a)=b, \sigma(b)=a$; indeed, if $a<b$, then we are only to set

$$
\frac{2 a+b}{3}=s
$$

Definition of $A B=A^{\prime} B^{\prime}$:
Let $A B=A^{\prime} B^{\prime}$, if there is a skew symmetrization σ such that $\sigma(a)=b^{\prime}$, $\sigma(b)=a^{\prime}$, where a, b, a^{\prime} and b^{\prime} are coordinates of A, B, A^{\prime} and B^{\prime} respectively.

Clearly Axiom E holds by the above observation. Likewise for Axioms R, S.
As for Axiom C , let $A B=B^{\prime} A^{\prime}, B C=C^{\prime} B^{\prime}$. Then there must be one and only one skew symmetrization σ with centre s that carries A to A^{\prime}, B to B^{\prime} and C to C^{\prime}, hence $A C=C^{\prime} A^{\prime}$.

Axiom I follows then from Theorem 2.
$\rightharpoondown \mathrm{T}$: To show that Axiom T does not hold, let O, A_{1}, A_{3}, A_{5}, and A_{7} be points with coordinates $0,1,3,5$ and 7 respectively. Then $O A_{1}=A_{1} A_{3}$, $A_{1} A_{3}=A_{3} A_{7}$ but $O A_{1}=A_{3} A_{5}$. Therefore $O A_{1}=A_{3} A_{7}$ fails to hold, as will be seen by a simple calculation.
$\neg \mathrm{A}$: Axiom A does not hold, for otherwise T would follow by Theorem 10 which asserts $\mathrm{S}, \mathrm{A}, \mathrm{I} \Rightarrow \mathrm{T}$.

Remark. Instead of $0 \leqq x<\infty$ in our $\mathrm{M}(\mathrm{R}, \mathrm{S}, \mathrm{C}, \mathrm{I})$ we may take as L the real line $-\infty<x<\infty$.

In this case the skew symmetrization σ should be modified as follows, according as the centre s lies $<0,=0$ or >0, the range of symmetrization spreading along the whole line:

Case I: $s>0$.
(i) Points x with $0 \leqq x \leqq s$ and x^{\prime} with $s \leqq x^{\prime} \leqq 3 s$ interchange by the relation

$$
\frac{2 x+x^{\prime}}{3}=s .
$$

(ii) Points x with $x \leqq 0$ and x^{\prime} with $x^{\prime} \geqq 3 s$ interchange by the relation $x+x^{\prime}=3 s$.

Case II: $s<0$.
(i) Points x with $s \leqq x \leqq 0$ and x^{\prime} with $3 s \leqq x^{\prime} \leqq s$ interchange by the same relation

$$
\frac{2 x+x^{\prime}}{3}=s
$$

as above.
(ii) Points x with $x \geqq 0$ and x^{\prime} with $x^{\prime} \leqq 3 s$ interchange by the same relation $x+x^{\prime}=3 s$ as above.

Case III: $s=0$. For any real numbers, points x and x^{\prime} interchange by the relation $x^{\prime}+x=0$.
$\mathrm{M}(\mathrm{C}):$ A model of a geometry in which Axiom C alone holds besides Axiom E .
Let L and \bar{L} be the half real lines $0 \leqq x<\infty$ and let φ be a mapping of points X of L with coordinates x onto points \bar{X} of \bar{L} with coordinates \bar{x} such that $\bar{x}=3 x$ and let i be an identical mapping $\bar{x}=x$.

Definition of $A B=A^{\prime} B^{\prime}$: Given $A B$ and $A^{\prime} B^{\prime}$ on L, let $A B=A^{\prime} B^{\prime}$ if and only if $i(A) i(B)=\varphi\left(A^{\prime}\right) \varphi\left(B^{\prime}\right)$ on \bar{L} in the sense of the Model M (R, S, C, I).

Verification that this gives an $\mathrm{M}(\mathrm{C})$ is easy.
$\mathrm{M}(\mathrm{R}, \mathrm{S}, \mathrm{T}, \mathrm{A}):$ A model of a geometry in which Axioms $\mathrm{R}, \mathrm{S}, \mathrm{T}$ and A alone hold besides Axiom E .

Let L be the real line $-\infty<x<\infty$.
Definition of $A B=A^{\prime} B^{\prime}$:
For any integer n consider for a pair of real numbers x and y in $[n-1, n)$ with $x<y$ a function $d(x, y)$ defined by

$$
d(x, y)=e^{1 /(n-y)}-e^{1 /(n-x)} .
$$

In the following $a, b, a^{\prime}, b^{\prime}$ etc. denote the coordinates of points A, B, A^{\prime}, B^{\prime} respectively as usual.
I. In case $a, b \in[n-1, n)$ and $a^{\prime}, b^{\prime} \in[m-1, m)$, provided m, n denote arbitrary integers, let $A B=A^{\prime} B^{\prime}$ if $d(a, b)=d\left(a^{\prime}, b^{\prime}\right)$.

II. In case

$$
\begin{array}{rr}
a & \in[n-1, n), \quad b \in[n+p-1, n+p), \\
a^{\prime} \in[m-1, m), & b^{\prime} \in[m+p-1, m+p)
\end{array}
$$

for any natural number p, let $A B=A^{\prime} B^{\prime}$ if $d(n+p-1, b)=d\left(m+p-1, b^{\prime}\right)$.

Especially then, $A B=A^{\prime} B^{\prime}$ if $a \in[n-1, n), b=n$ and $a^{\prime} \in[n-1, n), b^{\prime}=n$ for any choice of a and a^{\prime}.

E, R, S: Clearly Axioms E, R and S hold.
T : To see that Axiom T holds, let $A, B, A^{\prime}, B^{\prime}, A^{\prime \prime}$ and $B^{\prime \prime}$ be points with
coordinates, $a, b, a^{\prime}, b^{\prime}, a^{\prime \prime}$ and $b^{\prime \prime}$ respectively such that $A B=A^{\prime} B^{\prime}, A^{\prime} B^{\prime}=A^{\prime \prime} B^{\prime \prime}$.
If $a, b \in[n-1, n)$ for some integer n, then by the definition of equality $=$, $a^{\prime}, b^{\prime} \in\left[n^{\prime}-1, n^{\prime}\right)$ and $a^{\prime \prime}, b^{\prime \prime} \in\left[n^{\prime \prime}-1, n^{\prime \prime}\right)$ for some integers n^{\prime} and $n^{\prime \prime}$. Then we have $d(a, b)=d\left(a^{\prime}, b^{\prime}\right)$ and $d\left(a^{\prime}, b^{\prime}\right)=d\left(a^{\prime \prime}, b^{\prime \prime}\right)$, hence $d(a, b)=d\left(a^{\prime \prime}, b^{\prime \prime}\right)$, therefore $A B=A^{\prime \prime} B^{\prime \prime}$.

If $a \in[n-1, n), b \in[m-1, m)$ for some integers n and m with $n<m$, then as before $a^{\prime} \in\left[n^{\prime}-1, n^{\prime}\right), b^{\prime} \in\left[m^{\prime}-1, m^{\prime}\right), \quad a^{\prime \prime} \in\left[n^{\prime \prime}-1, n^{\prime \prime}\right), b^{\prime \prime} \in\left[m^{\prime \prime}-1, m^{\prime \prime}\right)$. Then we have by the definition of $A B=A^{\prime} B^{\prime}$ and $A^{\prime} B^{\prime}=A^{\prime \prime} B^{\prime \prime}, d(m-1, b)=$ $d\left(m^{\prime}-1, b^{\prime}\right), d\left(m^{\prime}-1, b^{\prime}\right)=d\left(m^{\prime \prime}-1, b^{\prime \prime}\right)$, hence $d(m-1, b)=d\left(m^{\prime \prime}-1, b^{\prime \prime}\right)$, therefore $A B=A^{\prime \prime} B^{\prime \prime}$.

A: Similarly for Axiom A.
$\neg \mathrm{C}, \neg \mathrm{I}$: To see that Axioms C and I do not hold, let A, B, A^{\prime} and B^{\prime} be points with coordinates a, b, a^{\prime} and b^{\prime} respectively such that

$$
a \in[n-1, n), b=n, \quad a^{\prime} \in(n, n+1), b^{\prime}=n+1 .
$$

Then by definition $A B=A^{\prime} B^{\prime}$ but not $A A^{\prime}=B B^{\prime}$, thus Axiom I does not hold. Axiom C fails to hold too.

Notice that this model $\mathrm{M}(\mathrm{R}, \mathrm{S}, \mathrm{T}, \mathrm{A})$ is non-Archimedean.
$\mathrm{M}(\mathrm{S}, \mathrm{C}): A$ model of a geometry in which Axioms S and C alone hold besides Axiom E.

Let L be a linearly ordered space with points A_{n}^{i}, i, n ranging over all integers $0, \pm 1, \pm 2, \cdots$, with the order relation

$$
\begin{array}{ll}
A_{m}^{i}<A_{n}^{i}, & \text { if } \quad m<n, \tag{i}\\
A_{m}^{i}<A_{n}^{j}, & \text { if } i<j \quad \text { (for any integers } m, n .)
\end{array}
$$

Definition of $A B=A^{\prime} B^{\prime}$: let $A_{m}^{i} A_{n}^{j}=A_{m^{\prime}}^{i^{\prime}} A_{n^{\prime}}^{j \prime}$, if
(i) $j-i=j^{\prime}-i^{\prime}=0$ and $n-m=n^{\prime}-m^{\prime}>0$, or (ii) $j-i=j^{\prime}-i^{\prime}$ is an even number >0 and $m-n=m^{\prime}-n^{\prime}$,
or (iii) $j-i=j^{\prime}-i^{\prime}$ is an odd number >0 and $m+n+m^{\prime}+n^{\prime}=-1$.
E, S: Axioms E and S evidently hold.
C: To see that Axiom C holds, let

$$
\begin{align*}
& A_{m}^{i} A_{n}^{j} \equiv A_{m}^{i} A_{q}^{p}+A_{q}^{p} A_{n}^{j}, \tag{1}\\
& A_{m^{\prime}}^{i^{\prime}} A_{n^{\prime}}^{j^{\prime}} \equiv A_{m^{\prime}}^{i^{\prime}} A_{q^{\prime}}^{\prime^{\prime}}+A_{q^{p^{\prime}}} A_{n^{\prime}}^{j^{\prime}} \tag{2}
\end{align*}
$$

and

$$
\begin{gather*}
A_{m}^{i} A_{q}^{p}=A_{q^{2}}^{p^{\prime}} A_{n^{\prime}}^{j^{\prime}} \tag{3}\\
A_{q}^{p} A_{n}^{j}=A_{m^{\prime}}^{i^{\prime}} A_{q^{\prime}}^{p^{\prime}} \tag{4}
\end{gather*}
$$

Then by the definition (i), (ii), (iii) of $=$, we have first of all from (3) and (4)

$$
\begin{align*}
& p-i=j^{\prime}-p^{\prime} \tag{5}\\
& j-p=p^{\prime}-i^{\prime} \tag{6}
\end{align*}
$$

whence

$$
\begin{equation*}
j-i=j^{\prime}-i^{\prime} \tag{7}
\end{equation*}
$$

follows. Next we have to consider three cases:
(i) The case: $j-i=j^{\prime}-i^{\prime}=0$. We have from (1) and (2):

$$
p=i=j \quad \text { and } \quad p^{\prime}=i^{\prime}=j^{\prime} .
$$

From (3) and (4) we have then

$$
q-m=n^{\prime}-q^{\prime}, \quad n-q=q^{\prime}-m^{\prime}
$$

whence

$$
m-n=m^{\prime}-n^{\prime},
$$

which is evidently different from 0 because $A_{m}^{i}<A_{n}^{i}$.
Thus in this case we have

$$
\begin{equation*}
A_{m}^{i} A_{n}^{j}=A_{m^{\prime}}^{i^{\prime}} A_{n^{\prime}}^{j^{\prime}} \tag{*}
\end{equation*}
$$

(ii) The case: $j-i=j^{\prime}-i^{\prime}$ is an even number >0.

Subcase 1): If $p-i$ is even, so is $j-p=(j-i)-(p-i)$ and we have from (3) and (4) by the definition of $=$,

$$
\begin{aligned}
& m-q=q^{\prime}-n^{\prime}, \\
& q-n=m^{\prime}-q^{\prime},
\end{aligned}
$$

whence

$$
m-n=m^{\prime}-n^{\prime},
$$

and (*) is proved.
Subcase 2): If $p-i$ is odd, so is $j-p=(j-i)-(p-i)$ and from (3) and (4) we obtain

$$
\begin{aligned}
& m+q+q^{\prime}+n^{\prime}=-1 \\
& q+n+m^{\prime}+q^{\prime}=-1,
\end{aligned}
$$

whence

$$
m-n=m^{\prime}-n^{\prime},
$$

and $(*)$ is again proved.
(iii) The case: $j-i=j^{\prime}-i^{\prime}$ is an odd number >0

Subcase 1): If $p-i$ is even, then $j-p=(j-i)-(p-i)$ is odd and we have from (3) and (4)

$$
\begin{aligned}
& m-q=q^{\prime}-n^{\prime} \\
& q+n+m^{\prime}+q^{\prime}=-1
\end{aligned}
$$

whence

$$
m+n+m^{\prime}+n^{\prime}=-1
$$

and again $(*)$ holds.
Subcase 2): If $p-i$ is odd, then $j-p$ is even and similarly as above we have (*).

The following examples show that Axioms R, T, A and I do not hold true.
$\neg \mathrm{R}: \quad A_{0}^{1} A_{0}^{2}=A_{0}^{1} A_{-1}^{2}$ but not $A_{0}^{1} A_{0}^{2}=A_{0}^{1} A_{0}^{2}$, so Axiom R fails to hold.
$\rightharpoondown \mathrm{T}: \quad A_{0}^{1} A_{0}^{2}=A_{0}^{1} A_{-1}^{2}, A_{0}^{1} A_{-1}^{2}=A_{1}^{1} A_{-1}^{2}$ and $A_{0}^{1} A_{0}^{2}=A_{1}^{1} A_{-2}^{2}$ but not $A_{0}^{1} A_{0}^{2}=$ $A_{1}^{1} A_{-1}^{2}$, so Axiom T fails to hold.
$\neg \mathrm{A}: \quad A_{0}^{1} A_{-1}^{2}=A_{0}^{1} A_{0}^{2}, A_{-1}^{2} A_{0}^{2}=A_{0}^{2} A_{1}^{2}$ and $A_{0}^{1} A_{0}^{2}=A_{0}^{1} A_{-1}^{2}$ but not $A_{0}^{1} A_{0}^{2}=$ $A_{0}^{1} A_{1}^{2}$, so Axiom A fails to hold.
$\neg \mathrm{I}: \quad A_{0}^{1} A_{1}^{1}=A_{-1}^{2} A_{0}^{2}\left(A_{0}^{1}<A_{1}^{1}<A_{-1}^{2}<A_{0}^{2}\right)$ and $A_{0}^{1} A_{-1}^{2}=A_{1}^{1} A_{-1}^{2}$ but not $A_{0}^{1} A_{-1}^{2}=A_{1}^{1} A_{0}^{2}$, so Axiom I fails to hold.

A model $M(R, C, I)$ will be given in the second part of this paper.

4. Proof of Main Theorem

I . T and C are independent, and $\mathrm{T}, \mathrm{C} \Rightarrow \mathrm{R}, \mathrm{S}, \mathrm{A}, \mathrm{I}$.
Proof. (i) T, C $\Rightarrow \mathrm{A}$ by Theorem 3.
(ii) $\mathrm{T}, \mathrm{A} \Rightarrow \mathrm{R}$ by Theorem 4 .
(iii) $\mathrm{T}, \mathrm{R} \Rightarrow \mathrm{S}$ by Theorem 1 .
(iv) $\mathrm{R}, \mathrm{C} \Rightarrow \mathrm{I}$ by Theorem 2 .

By Models $\mathrm{M}(\mathrm{T})$ and $\mathrm{M}(\mathrm{C})$ we see that T and C are independent.
II. T and I are independent, and $\mathrm{T}, \mathrm{I} \Rightarrow \mathrm{R}, \mathrm{S}, \mathrm{A}, \mathrm{C}$.

Proof. (i) T, I $\Rightarrow \mathrm{R}$ by Threoem 6 .
(ii) $\mathrm{T}, \mathrm{R} \Rightarrow \mathrm{S}$ by Theorem 1 .
(iii) $\mathrm{T}, \mathrm{I} \Rightarrow \mathrm{A}$ by Theorem 7 .
(iv) $\mathrm{T}, \mathrm{I} \Rightarrow \mathrm{C}$ by Theorem 8 .

By Models $\mathrm{M}(\mathrm{T})$ and $\mathrm{M}(\mathrm{I})$ we see that T and I are independent.
III. S, A and I are independent, and $\mathrm{S}, \mathrm{A}, \mathrm{I} \Rightarrow \mathrm{R}, \mathrm{T}, \mathrm{C}$.

Proof. (i) $\quad \mathrm{S}, \mathrm{A} \Rightarrow \mathrm{R}$ by Theorem 9 .
(ii) $\mathrm{S}, \mathrm{A}, \mathrm{I} \Rightarrow \mathrm{T}$ by Theorem 10 .
(iii) $\mathrm{S}, \mathrm{A}, \mathrm{I} \Rightarrow \mathrm{C}$ by Theorem 11.

1) $M(R, S, A)$ shows that S and A do not yield I.
2) $M(R, S, C, I)$ shows that S and I do not yield A.
3) $\mathrm{M}(\mathrm{A}, \mathrm{C}, \mathrm{I})$ shows that A and I do not yield S .

Hence S, A and I are independent.
IV. S, A and C are independent, and $\mathrm{S}, \mathrm{A}, \mathrm{C} \Rightarrow \mathrm{R}, \mathrm{T}, \mathrm{I}$.

Proof. (i) $\mathrm{S}, \mathrm{A} \Rightarrow \mathrm{R}$ by Theorem 9 .
(ii) $\mathrm{R}, \mathrm{C} \Rightarrow \mathrm{I}$ by Theorem 2 .
(iii) $\mathrm{S}, \mathrm{A}, \mathrm{I} \Rightarrow \mathrm{T}$ by Theorem 10 .

1) $M(R, S, A)$ shows that S and A do not yield C.
2) $M(R, S, C, I)$ shows that S and C do not yield A.
3) $\mathrm{M}(\mathrm{A}, \mathrm{C}, \mathrm{I})$ shows that A and C do not yield S .

Hence S, A and C are independent.
$\mathrm{V} . \mathrm{R}, \mathrm{A}$ and C are independent, and $\mathrm{R}, \mathrm{A}, \mathrm{C} \Rightarrow \mathrm{S}, \mathrm{T}, \mathrm{I}$.
Proof. (i) $\mathrm{R}, \mathrm{C} \Rightarrow \mathrm{I}$ by Theorem 2.
(ii) $\mathrm{R}, \mathrm{A}, \mathrm{C} \Rightarrow \mathrm{S}$ by Theorem 12.
(iii) $\mathrm{S}, \mathrm{A}, \mathrm{I} \Rightarrow \mathrm{T}$ by Theorem 10.

1) $M(R, S, A)$ shows that R and A do not yield C.
2) $M(R, S, C, I)$ shows that R and C do not yield A.
3) $M(A, C, I)$ shows that A and C do not yield R.

Hence R, A and C are independent.
Remark: By the use of our Theorems and Models it may easily be proved that there is no further theorem of the above type I-V.

5. Tables

[1] Baisic Theorems ${ }^{2)}$

T_{1}	\mathbf{R}	\mathbf{S}	\mathbf{T}			
$\mathrm{~T}_{1}$	R	\mathbf{S}	\mathbf{T}			
T_{2}	\mathbf{R}				\mathbf{C}	\mathbf{I}
$\mathrm{~T}_{3}$			\mathbf{T}	\mathbf{A}	\mathbf{C}	
$\mathrm{~T}_{4}$	R		\mathbf{T}	\mathbf{A}		
T_{5}	R		\mathbf{T}		\mathbf{C}	
T_{6}	R		\mathbf{T}			\mathbf{I}
T_{7}			\mathbf{T}	\mathbf{A}		\mathbf{I}
$\mathrm{~T}_{8}$			\mathbf{T}		\mathbf{C}	\mathbf{I}
$\mathrm{~T}_{9}$	R	\mathbf{S}		\mathbf{A}		
T_{10}		\mathbf{S}	T	\mathbf{A}		\mathbf{I}
$\mathrm{~T}_{11}$		\mathbf{S}		\mathbf{A}	\mathbf{C}	\mathbf{I}
$\mathrm{~T}_{12}$	\mathbf{R}	S		\mathbf{A}	\mathbf{C}	
$\mathrm{~T}_{13}$	R	\mathbf{S}			\mathbf{C}	\mathbf{I}

[^1][2] Models

M(R)	R	\rightarrow S	$\rightarrow \mathrm{T}$	$\rightarrow \mathrm{A}$	$\rightarrow \mathrm{C}$	\rightarrow I
M(S)	$\rightarrow \mathrm{R}$	S	\rightarrow T	\rightarrow A	$\rightarrow \mathrm{C}$	$\neg \mathrm{I}$
M(T)	$\rightarrow \mathrm{R}$	\rightarrow S	T	$\neg \mathrm{A}$	$\rightarrow \mathrm{C}$	\rightarrow I
M(A)	$\rightarrow \mathrm{R}$	\rightarrow S	$\rightarrow \mathrm{T}$	A	$\rightarrow \mathrm{C}$	\rightarrow I
M(C)	$\rightarrow \mathrm{R}$	\rightarrow S	\rightarrow T	\rightarrow A	C	\rightarrow I
M(I)	$\rightarrow \mathrm{R}$	\rightarrow S	\rightarrow T	\rightarrow A	\rightarrow C	I
M(A, C)	$\rightarrow \mathrm{R}$	\rightarrow S	\rightarrow T	A	C	\rightarrow I
$\mathrm{M}(\mathrm{S}, \mathrm{C})$	$\checkmark \mathrm{R}$	S	$\checkmark \mathrm{T}$	\rightarrow A	C	\rightarrow I
M(S, I)	$\rightarrow \mathrm{R}$	S	\rightarrow T	$\neg \mathrm{A}$	$\rightarrow \mathrm{C}$	I
M (R, S, A)	R	S	-T	A	$\rightarrow \mathrm{C}$	$\rightarrow \mathrm{I}$
$\mathrm{M}(\mathrm{R}, \mathrm{A}, \mathrm{I})$	R	\rightarrow S	\rightarrow T	A	$\rightarrow \mathrm{C}$	
$\mathrm{M}(\mathrm{R}, \mathrm{S}, \mathrm{T})$	R	S	T	\rightarrow A	$\rightarrow \mathrm{C}$	$\rightarrow 1$
$\mathrm{M}(\mathrm{A}, \mathrm{C}, \mathrm{I})$	$\rightarrow \mathrm{R}$	\rightarrow S	$\rightarrow \mathrm{T}$	A	C	
$\mathrm{M}(\mathrm{R}, \mathrm{S}, \mathrm{I})$	R	S	$\rightarrow \mathrm{T}$	\rightarrow A	$\rightarrow \mathrm{C}$	
M(R, S, C, I)	R	S	$\checkmark \mathrm{T}$	\rightarrow A	C	
$\mathrm{M}(\mathrm{R}, \mathrm{S}, \mathrm{T}, \mathrm{A})$	R	S	T	A	$\rightarrow \mathrm{C}$	\rightarrow I
$\mathrm{M}(\mathrm{R}, \mathrm{C}, \mathrm{I})^{3}$	R	\rightarrow S	$\rightarrow \mathrm{T}$	\rightarrow A	C	

[3] Main Theorem ${ }^{4)}$

I	R	S	T	A	C	I
II	R	S	T	A	C	I
III	R	S	T	A	C	I
IV	R	S	T	A	C	I
V	\mathbf{R}	S	T	A	C	I

Nifhama Technical College, Nihama
Sophia University, Tokyo

References

[1] D. Hilbert: Grundlagen der Geometrie, 9te Aufl., Stuttgart, 1962.
[2] U. Morin-F. Busulini: Prova esistenziale della geometria generale sopra una retta, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fiz. Mat. Natur. 35 (1963), 269-273.
[3] H. Terasaka: Shotō Kikagaku (in Japanese), Tokyo, 1952.
3) $M(R, C, I)$ will be given in the second part of this paper.
4) For the notation, see Main Theorem, p. 270.

[^0]: 1) If $A B=A^{\prime} B^{\prime}$ and $A B=A^{\prime} B^{\prime \prime}$ then we have by Axiom E $B^{\prime}=B^{\prime \prime}$. As a special case, if $A B=A B^{\prime}$ and $A B=A B$ then $B^{\prime}=B$.
[^1]: 2) In the following tables $\mathbf{R}, \mathrm{S}, \mathbf{T}$ indicates for example that Axiom S follows from Axioms R, T and Axiom E. T_{n} means Theorem n.
