Katayama, S. and Terasaka, H. Osaka J. Math. 3 (1966), 269-292

ON CONGRUENT AXIOMS IN LINEARLY ORDERED SPACES, I

SHIGERU KATAYAMA and HIDETAKA TERASAKA

(Received September 2, 1966)

1. Introduction

In connection with the axioms of congruence of segments on a straight line given in Hilbert's Grundlagen der Geometrie, we will set up a group of axioms of congruence on a linearly ordered space and study their mutual dependency and independency.

In the following let L be a linearly ordered space, that is a set of points, in which for any pair of distinct points A and B either of the relations A < B and B < A holds, and for any three points A, B and C, if A < B and B < C then A < C.

When we write AB, it will be understood that A and B are distinct points of L such that A < B. AB will be called a *segment*. We write $AC \equiv AB + BC$ if and only if A < B < C.

The axioms we are going to study is the following:

Axiom E (UNIQUE EXISTENCE): $\forall AB \forall A' \exists_1 B': AB = A'B'$, that is, for any segment AB and for any point A' there is one and only one point B' such that

AB=A'B'. **Axiom R** (REFLEXIVITY): AB=AB. **Axiom S** (SYMMETRICITY): $AB=A'B' \Rightarrow A'B'=AB.$ **Axiom T** (TRANSITIVITY): $AB=A'B', A'B'=A''B'' \Rightarrow AB=A''B''.$ **Axiom A** (ADDITIVITY): $AC\equiv AB+BC, A'C'\equiv A'B'+B'C', AB=A'B', BC=B'C' \Rightarrow AC=A'C'.$

The following scheme will be used in application:

$$\begin{array}{c} AC \equiv AB + BC , \\ A'C' \equiv A'B' \\ +B'C' , \\ AB = A'B' , \\ BC = B'C' \end{array} \end{array} \xrightarrow{(A)} AC = A'C' . \qquad L \xrightarrow{A} \qquad B \quad C \\ L \xrightarrow{A'} \qquad B' \quad C' \end{array}$$

Axiom C (COMMUTATIVE ADDITION):

 $AC \equiv AB + BC$, $C'A' \equiv C'B' + B'A'$, AB = B'A', $BC = C'B' \Rightarrow AC = C'A'$.

In application we write:

$$\begin{array}{c} AC \equiv AB + BC, \\ C'A' \equiv C'B' \\ +B'A', \\ AB = B'A', \\ BC = C'B' \end{array} \right\} \xrightarrow{(C)} AC = C'A'.$$

$$\begin{array}{c} L \xrightarrow{A} & B & C \\ \hline & & & \\ C' & B' & A' \end{array}$$

Axiom I (Interchanging): A < B < A' < B', $AB = A'B' \Rightarrow AA' = BB'$.

Under the assumption of Axiom E we studied in this paper all the relationship between the remaining axioms R, S, T, A, C, I as to their mutual dependency and independency, and obtaind among others the following Main Theorem.

Main Theorem: Under the assumption of Axiom E,

I. Axioms T and C are independent of each other, and Axioms R, S, A and I follow from them. In symbol:

II. Axioms T and I are independent of each other, and Axioms R, S, A and C follow from them. In symbol:

R, S, T, A, C, I

III. Axioms S, A and I are independent of one another, and Axioms R, T and C follow from them. In symbol:

R, S, T, A, C, I

IV. Axioms S, A and C are independent of one another, and Axioms R, T and I follow from them. In symbol:

V. Axioms R, A and C are independent of one another, and Axioms S, T and I follow from them. In symbol:

2. Theorems

In the following we always assume the unique existence of Axiom E, if not otherwise stated.

To make proofs as clear as possible we introduce first some useful notations.

- (a) $X \xrightarrow{(T)} Y$ means that Y follows from the left side X by the use of T.
- (b) A=B means that A coincides with B and $AB\equiv A'B'$ means that A=A',

B=B' at the same time.

(c) " $\exists_1 X$:" means that "there exist one and only one X such that."

Theorem 1. If T is assumed, then $R \Leftrightarrow S$.

Proof. (i) $R \Rightarrow S$.

By Axiom E,
$$\exists_{1}B': AB = A'B'$$
.
By Axiom E, $\exists_{1}B'': A'B' = AB''$. (1)

Now by Axiom R,

$$AB = AB.$$
(2)
(1), (2) $\xrightarrow{(E)^{1}} B'' = B.$

(ii) $\mathbf{R} \leftarrow \mathbf{S}$.

Assume AB = A'B'. Then by Axiom S, A'B' = AB. Hence by Axiom T, AB = AB.

Theorem 2. R, $C \Rightarrow I$.

Proof. Let A < B < A' < B' and AB = A'B'. Then we have

$$\left. \begin{array}{c} AA' \equiv AB + BA' , \\ BB' \equiv BA' + A'B' , \\ AB = A'B' , \\ BA' = BA' \text{ (by Axiom R)} \end{array} \right\} \xrightarrow{\text{(C)}} AA' = BB' .$$

Lemma 1. Under the assumption of T: $AB = A'B' \Rightarrow A'B' = A'B'$. Especially: $AB = AB' \Rightarrow AB' = AB'$.

Proof. Let

Then we have

$$AB = A'B' .$$

By Axiom E, $\exists_{1}B'': A'B' = A'B'' (2)$.
By (1): $AB = A'B' .$
By (1): $AB = A'B' .$

Therefore we have from (2) A'B' = A'B'.

¹⁾ If AB = A'B' and AB = A'B'' then we have by Axiom E B' = B''. As a special case, if AB = AB' and AB = AB then B' = B.

Theorem 3. T, C \Rightarrow A. Proof. Let $AC \equiv AB + BC$, $A'C' \equiv A'B' + B'C'$,

$$AB = A'B', \qquad (1)$$

(3)

$$BC = B'C' . \tag{2}$$

Then by Axiom E, $\exists_1 D': A'B' = C'D'$. Then we have first from (1) and (3) by using T

$$AB = C'D'. \qquad (4) \qquad {}_{L \xrightarrow{A}} \qquad B \qquad C$$

Further

$$AC \equiv AB + BC, \qquad)$$

$$\begin{array}{c} B'D' \equiv B'C' + C'D', \\ (4): AB = C'D', \\ (2): BC = B'C' \end{array} \end{array} \xrightarrow{(C)} AC = B'D'.$$

$$(5)$$

By Axiom E,
$$\exists_{i}X: C'D' = A'X$$
. (6)

Then by (3) and (6) we have by using T

$$A'B' = A'X. \tag{7}$$

Since by Lemma 1

$$A'B' = A'B', \qquad (8)$$

we have from (7) and (8) by the use of Axiom E X=B'. Hence by (6)

$$C'D' = A'B'. \tag{9}$$

Then

$$\begin{array}{c}
B'D' \equiv B'C' + C'D', \\
A'C' \equiv A'B' + B'C', \\
B'C' = B'C' \quad (by \text{ Lemma 1}), \\
(9): C'D' = A'B'
\end{array} \xrightarrow{(C)} B'D' = A'C'.$$
(10)

From (5) and (10) we have finally by Axiom T AC = A'C'.

Theorem 4. T, $A \Rightarrow R$.

Proof. Let AB be a given segment. Then by Axiom E, $\exists_{1}B'$:

$$AB = AB'. (1)$$
(i) Suppose first $A < B' < B$.
$$L \xrightarrow{A} B' B$$

$$L \xrightarrow{B' B} B'$$
Then we have

272

and

ON CONGRUENT AXIOMS IN LINEARLY ORDERED SPACES, I

$$\begin{array}{c}
AB \equiv AB' + B'B, \\
AX \equiv AB' + B'X, \\
AB' = AB' \text{ (by Lemma 1),} \\
\text{by Axiom E, } \exists_1 X: B'B = B'X
\end{array}$$
(A)
$$\begin{array}{c}
(A) \\
\Rightarrow AB = AX. \\
(C) \\
\Rightarrow AB = AX.
\end{array}$$

From (1) and (2) we would have by Axiom E B'=X, which is clearly a contradiction.

(ii) Next suppose B < B'.

Then we have

$$\begin{array}{c}
AB' \equiv AB + BB', \\
AX \equiv AB' + B'X, \\
(1): AB = AB', \\
\text{by Axiom E, } \exists_1 X: BB' = B'X
\end{array}$$

$$(A) \qquad AB' = AX. \quad (3)$$

Since by Lemma 1 AB'=AB', we have from (3) X=B', which is clearly a contradiction.

From (i) and (ii) we conclude AB = AB.

Theorem 5. T, $C \Rightarrow R$.

This is an easy consequence of Theorem 3: T, $C \Rightarrow A$ and Theorem 4: T, $A \Rightarrow R$. In the following an alternative proof will be given without an intermediation of Axiom A.

Lemma 2. Under the assumption of Axiom C

$$\begin{array}{c}
AB = A'B', \quad (1) \\
A < X < B, \\
XB = A'X' \quad (2)
\end{array} \longrightarrow \begin{cases}
A' < X' < B', \\
AX = X'B', \\
AX = X'B', \\
AX = X'B', \\
B'', B'
\end{array}$$

Proof.

$$AB \equiv AX + XB,$$

$$A'B'' \equiv A'X' + X'B'',$$

by Axiom E, $\exists_{1}B'': AX = X'B''$ (3),
by (2): $XB = A'X'$ (4)

Then we have

(1), (4)
$$\stackrel{(E)}{\Longrightarrow} B' = B''$$
.

S. KATAYAMA and H. TERASAKA

Thus AX = X'B' from (3) and clearly A' < X' < B'' = B'.

Proof of Theorem 5.

By Axiom E,
$$\exists_1 B': AB = AB'$$
. (1)

(i) Suppose first A < B' < B. By Lemma 2 there is an X such that

$$A < X < B', \tag{2}$$

$$B'B=AX,$$
 (3)

$$AB' = XB' . \tag{4}$$

Now by Axiom E, $\exists_1 X': AX = B'X'$ (5) and by Lemma 1 B′ B B' X'

Thus

$$\begin{array}{c} AB' \equiv AX + XB', \\ XX' \equiv XB' + B'X', \\ (5): AX = B'X', \\ (6): XB' = XB' \end{array} \end{array} \begin{array}{c} (C) \\ AB' = XX'. \end{array}$$

$$(7)$$

Then

$$(4), (7) \xrightarrow{(E)} X' = B',$$

which is a contradiction.

(ii) Next suppose A < B < B'.

By Axiom E,
$$\exists_1 X: BB' = AX$$
. (8)

By Axiom E,
$$\exists_1 B'': AB' = XB''$$
. (9)

Then

(1), (9)
$$\xrightarrow{(T)} AB = XB''$$
. (10)

Hence

$$\begin{array}{c} AB' \equiv AB + BB', \\ AB'' \equiv AX + XB'', \\ (10): AB = XB'', \\ (8): BB' = AX \end{array} \xrightarrow{(C)} AB' = AB''. \\ By \text{ Lemma 1 } AB' = AB' \xrightarrow{(E)} B'' = B'. \end{array}$$

Consequently, we have from (9)

$$AB' = XB' \tag{11}$$

Now

$$AB' \equiv AX + XB',$$

$$XX' \equiv XB' + B'X',$$

by Axiom E, $\exists_1 X': AX = B'X',$
by Lemm 1, $XB' = XB'$

$$(12)$$

Then we have

e have

$$\begin{array}{c} L \xrightarrow{A} & B & B' \\ \hline \\ (11), (12) \xrightarrow{(E)} B' = X', \\ L \xrightarrow{A} & X & B' & X' \\ \hline \\ A & X & B' & X' \\ \end{array}$$

which is a contradiction.

From (i) and (ii) we conclude AB = AB.

Theorem 6. T, $I \Rightarrow R$.

Proof.

By Axiom E,
$$\exists_1 B': AB = AB'$$
. (1)

(i) Suppose first A < B' < B.

By Axiom E,
$$\exists_1 C: AB' = BC$$
. (2)

$$L \xrightarrow{A} B' B C D$$

Then

(1), (2)
$$\xrightarrow{(T)} AB = BC$$
. (3)

and

$$A < B' < B < C, (2) \xrightarrow{(1)} AB = B'C.$$
(4)

By Axiom E,
$$\exists_1 D: B'B = CD$$
. (5)

Then

$$B' < B < C < D, (5) \xrightarrow{(1)} B'C = BD,$$
 (6)

and

$$(4), (6) \xrightarrow{(\mathsf{T})} AB = BD. \tag{7}$$

Hence

$$(3), (7) \xrightarrow{(E)} C = D.$$

which is a contradiction.

(ii) Next suppose A < B < B'.

By Axiom E,
$$\exists_{1} C: AB = B'C$$
. (8)

$$A < B < B' < C, (8) \xrightarrow[(T)]{(T)} AB' = BC.$$
(9)

$$(1), (9) \xrightarrow{(1)} AB = BC.$$
(10)

S. KATAYAMA and H. TERASAKA

By Axiom E,
$$\exists_1 D: BB' = CD$$
. (11)

$$B < B' < C < D, (11) \xrightarrow{(1)} BC = B'D.$$
(12)

(10), (12)
$$\xrightarrow{(1)} AB = B'D$$
. (13)

Hence

$$(8), (13) \xrightarrow{(E)} C = D$$
,

which is a contradiction.

From (i) and (ii) we conclude AB=AB.

Lemma 3. A < A' < B, $AB = A'B' \xrightarrow{(1)} B < B'$, AA' = BB'. Proof.

By Axiom E,
$$\exists_{1} B'': AA' = BB''$$
. (1)

$$A < A' < B < B'', (1) \xrightarrow{(1)} AB = A'B''.$$
 (2)

Let AB = A'B'. Then we have

$$AB = A'B', (2) \xrightarrow{(E)} B' = B''.$$

Therefore we have from (1) B < B' and AA' = BB'.

Theorem 7. T, $I \Rightarrow A$. Proof. (i) First let A < B < C < A' < B' < C' and AB = A'B', BC = B'C'.

$$A < B < A' < B', AB = A'B' \xrightarrow{(1)} AA' = BB',$$

$$B < C < B' < C', BC = B'C' \xrightarrow{(1)} BB' = CC' \xrightarrow{(T)} AA' = CC',$$

$$A < C < A' < C' \xrightarrow{(Lem.3)} AC = A'C'.$$

(ii) Next let A < B < C, A' < B' < C' with AB = A'B', BC = B'C', but let C < A' fail to be true.

Take points A'', B'', C'' such that A < B < C < A'' < B'' < C'' and A' < B' < C' < A'' < B'' < C'' with A'B' = A''B'', B'C' = B''C''. Then by (i)

$$AC = A''C'' \tag{1}$$

and

$$A'C' = A''C'' . \tag{2}$$

Now, since T, $I \Rightarrow R$ by Theorem 6 and T, $R \Rightarrow S$ by Theorem 1, Axiom S holds by our assumption of T and I.

Therefore

$$A'C' = A''C'' \xrightarrow{(S)} A''C'' = A'C'.$$
(3)

Hence

(1), (3)
$$\stackrel{(T)}{\Longrightarrow} AC = A'C'$$
.

Theorem 8. T, $I \Rightarrow C$.

Proof. Notice that Axiom S is a consequence of our assumption of T and I as we have shown in the proof of Theorem 7 and that Axiom A is a consequence of T and I by Theorem 7.

Let
$$A < B < C$$
, $C' < B' < A'$ and let
 $AB = B'A'$, (1) $L \xrightarrow{A} \xrightarrow{B} C$
 $BC = C'B'$. (2) $L \xrightarrow{C' \xrightarrow{B'} A' \xrightarrow{C''}}$
 $AC \equiv AB + BC$,
 $B'C'' \equiv B'A' + A'C''$,
(2): $BC = C'B'$,
by Axiom E,
 $\exists_1 C'': C'B' = A'C''$
 $C' < B' < A' < C''$, $C'B' = A'C'' \xrightarrow{(1)} C'A' = B'C'' \xrightarrow{(S)} B'C'' = C'A'$
 $\xrightarrow{(T)} AC = C'A'$.

Theorem 9. S, $A \Rightarrow R$. Proof.

By Axiom E,
$$\exists_1 B': AB = AB'$$
. (1)

(i) Let A < B < B'.

By Axiom E,
$$\exists_1 X: BB' = B'X$$
 (2)

$$\begin{array}{c}
AB' \equiv AB + BB', \\
AX \equiv AB' + B'X, \\
(1): AB = AB', \\
(2): BB' = B'X
\end{array} \xrightarrow{(A)} AB' = AX.$$

$$(3)$$

$$(1) \xrightarrow{(S)} AB' = AB. \tag{4}$$

$$(3), (4) \stackrel{(E)}{\Longrightarrow} X = B,$$

which is a contradiction.

(ii) Let A < B' < B.

By Axiom S AB'=AB, A < B' < B and the case (ii) reduces to that of (i). From (i) and (ii) we conclude AB=AB. **Lemma 4.** Under the assumption of Axioms S, A and I, if AB = A'B', then

1)
$$A < A' \Rightarrow B < B', AA' = BB'$$
.
2) $A' < A \Rightarrow B' < B, A'A = B'B$.
3) $A = A' \Rightarrow B = B'$.

Proof. 1) follows from Lemma 3.

- 2) reduces to 1) by Axiom S.
- 3) follows from Theorem 9 which asserts S, $A \Rightarrow R$.

Lemma 5. PQ = P'Q' (1), P < X < Q, PX = P'X' (2) $\xrightarrow{(A)} P' < X' < Q'$, XQ = X'Q'.

Proof.

$$PQ \equiv PX + XQ,$$

$$P'Q'' \equiv P'X' + X'Q'',$$

$$(2): PX = P'X',$$

by Axiom E, $\exists_1 Q'': XQ = X'Q''$

$$(A) \qquad PQ = P'Q'',$$

$$(1): PQ = P'Q' \qquad (E) \qquad Q'' = Q'.$$

Lemma 6. PQ = P'Q', PQ = P''Q', P < P', $P < P'' \xrightarrow{(A, I)} P' = P''$. Proof. We may assume without loss of generality that P' < P''.

L _____P

$$PQ = P'Q' \xrightarrow{\text{(I or Lem. 3)}} PP' = QQ'. \tag{1}$$

$$PQ = P''Q' \xrightarrow{\text{(I or Lem. 3)}} PP'' = QQ'. \qquad (2)$$

Q

which is a contradiction.

Lemma 7.
$$PQ=P'Q', P < P',$$

 $P < X < Q, XQ = X'Q'$ $\stackrel{(S, A, I)}{\Longrightarrow} P' < X' < Q', PX = P'X'.$

Proof. By Lemma 3 we have
first
$$L \xrightarrow{P} X Q$$

 $PQ = P'Q', P < P' \xrightarrow{(1)} Q < Q'.$ $L \xrightarrow{P} X''X' Q'$

From

$$XQ = X'Q' \tag{1}$$

we have X'Q' = XQ by Axiom S, and combined with Q < Q' we obtain by Lemma 4

$$X < X'. \tag{2}$$

Now,

by Axiom E,
$$\exists_1 X'': PX = P'X''$$
, (3)

by Lemma 5
$$P' < X'' < Q'$$
 and $XQ = X''Q'$, (4)

by Lemma 4
$$X < X''$$
. (5)

Then (1), (4), (2) and (5) yield by Lemma 6 X'=X''. Consequently we have P' < X' < Q' and PX = P'X'.

Theorem 10. S, A, $I \Rightarrow T$. Proof. Let AB=A'B', A'B'=A''B''.

(i) The case where at least two of A, A' and A'' coincide:

(i)₁ A=A'. Since S, $A \Rightarrow R$ by Theorem 9 we have B=B' and hence AB=A''B''.

(i)₂
$$A' = A''$$
. The same as (i)₁.

(i)₃
$$A = A''$$
. $AB = A'B' \xrightarrow{(S)} A'B' = AB$,
 $A'B' = A''B''$, $A = A'' \Longrightarrow A'B' = AB''$ $\xrightarrow{(E)} B = B''$.

Hence

$$AB = A''B''$$
.

(ii) The case where A, A' and A'' are distinct: there are six cases to be considered.

I.
$$A < A' < A''$$
, II. $A < A'' < A'$, III. $A' < A < A''$,
I'. $A'' < A' < A$, II'. $A'' < A < A''$, III'. $A' < A'' < A < A''$.

Proof of Case I.

$$AB = A'B' \stackrel{(\text{I or Lem. 3})}{\Longrightarrow} AA' = BB',$$

$$A'B' = A''B'' \stackrel{(\text{I or Lem. 3})}{\Longrightarrow} A'A'' = B'B'',$$

$$A < A' < A'' \stackrel{(\text{Lem. 4})}{\Longrightarrow} B < B' < B''$$

$$Breaf of Coop II$$

Proof of Case II.

$$AB = A'B' \stackrel{\text{(I or Lem. 3)}}{\Longrightarrow} AA' = BB'.$$
(1)

$$A'B' = A''B'' \xrightarrow{\text{(S)}} A''B'' = A'B'^{\text{(I or Lem. 3)}} A''A' = B''B'.$$
(2)

$$\begin{array}{c} (1), \\ (2), \\ A < A'' < A' \end{array} \right\} \xrightarrow{(\text{Lem. 7})} \left\{ \begin{array}{c} B < B'' < B' \\ AA'' = BB'' \end{array} \right\} \xrightarrow{(\text{I or Lem. 3})} AB = A''B'' . \end{array}$$

Proof of Case III.

$$A'B' = A''B'' \stackrel{\text{(I or Lem. 3)}}{\Longrightarrow} A'A'' = B'B''.$$
(1)'

$$AB = A'B' \xrightarrow{\text{(S)}} A'B' = AB^{\text{(I or Lem. 3)}} A'A = B'B. \qquad (2)'$$

$$\begin{array}{c} (1)', \\ (2)', \\ A' < A < A'' \end{array} \right\} \stackrel{\text{(Lem. 5)}}{\Longrightarrow} \left\{ \begin{array}{c} B' < B < B'', \\ AA'' = BB'' \end{array} \right\} \stackrel{\text{(I or Lem. 3)}}{\Longrightarrow} AB = A''B''. \end{array}$$

Proof of Case I'.

$$AB = A'B' \xrightarrow{(S)} A'B' = AB.$$
 (1)"

$$A'B' = A''B'' \xrightarrow{(S)} A''B'' = A'B'.$$
(2)"

$$A'' < A' < A, (2)'', (1)'' \xrightarrow{(\text{Case I})} A''B'' = AB \xrightarrow{(S)} AB = A''B''$$

Similarly the proofs of II' and III' may be reduced to those of II and III respectively.

Theorem 11. S, A, $I \Rightarrow C$.

Proof. S, A, I \Rightarrow T by Theorem 10. Then by Theorem 8 T, I \Rightarrow C.

Lemma 8. Under the assumption of Axioms R and C, if AB = A'B', then

1)
$$A < A' \Rightarrow B < B'$$
.
2) $A = A' \Rightarrow B = B'$.
3) $A' < A \Rightarrow B' < B$.

Proof. 1) A < A'. B < B' is clear if B < A' or if B = A'. Let A < A' < B, and suppose either B' < B or B' = B.

By Axiom E,
$$\exists_{1}X: AA' = BX$$
. (1)
 $A < A' < B < X$, $\left\{ \begin{array}{c} (1) \\ \blacksquare \\ (1): AA' = BX \end{array} \right\} \xrightarrow{(1)} AB = A'X$.
By assumption $AB = A'B'$ $\left\{ \begin{array}{c} \blacksquare \\ \blacksquare \\ \blacksquare \\ \blacksquare \\ \end{array} \right\} \xrightarrow{(E)} X = B'$,

which is a contradiction.

2) Clear. 3) A' < A. Suppose either B < B' or B = B'. $A'B \equiv A'A + AB$, $A'X \equiv A'B' + B'X$. By Axiom E, $\exists_1 X$: A'A = B'X. AB = A'B'. By Axiom R A'B = A'B. \downarrow (E) X = B.

which is a contradiction.

Theorem 12. R, A, C
$$\Rightarrow$$
 S.
Proof. Let
 $AB = A'B'$. (1)
Case I. $A' < A$.
By Axiom E, $\exists_1 X$: $A'A = B'X$. (2)
 $A'A = B'X^{(\text{I or Lem. 3})}A'B' = AX$. (3)

$$\begin{array}{c} A'B \equiv A'A + AB, \\ A'X \equiv A'B' + B'X, \\ (2): A'A = B'X, \quad (1): AB = A'B' \end{array} \xrightarrow{(C)} A'B = A'X. \\ By Axiom R \quad A'B = A'B. \end{array} \xrightarrow{(E)} X = B.$$

Hence from (3) A'B' = AB.

Case II. A < A'.

By Axiom E, $\exists_{1}B''$: A'B' = AB''. (4)

Then we have from (4) by Case I

 $AB'' = A'B'. \tag{5}$

(i) Suppose first A < B'' < B.

By Axiom E,
$$\exists_1 X$$
: $B''B = B'X$. (6)

From (5) and (6) we have by Axiom A AB=A'X. This, combined with (1), would yield by Axiom E X=B', which is a contradiction.

(ii) Next suppose B < B''.

By Axiom E,
$$\exists_1 X$$
: $BB'' = B'X$.

On account of (1) we have then by Axiom A AB''=A'X, which, combined with (5), would yield by Axiom E X=B', again a contradiction.

S. KATAYAMA and H. TERSAKA

Corollary. $AB = A'B', A' < A \xrightarrow{(R, C)} A'B' = AB$.

Theorem 13. S, C, $I \Rightarrow R$.

Proof.

By Axiom E,
$$\exists B': AB = AB'$$
.

(i) First suppose A < B' < B.

By Lemma 2 there is an X such that

$$A < X < B', \quad B'B = AX,$$

$$AB' = XB'.$$

By Axiom E, $\exists_1 X': \quad AX = B'X'.$
(1)

Since A < X < B' < X' we have by Axiom I

$$AB' = XX' . \tag{2}$$

From (1) and (2) we would have by Axiom E B'=X, which is a contradiction.

(ii) Next suppose B < B'. Since we have from (1) by Axiom S AB'=AB, the argument of (i) gives again a contradiction.

Thus we conclude from (i) and (ii) B'=B and then AB=AB follows from (1).

3. Models

By a model of a geometry denoted for example by M(S, C) we mean a linearly ordered space L with congruent relations which satisfy among our group of seven Axioms E, R, S, T, A, C and I Axioms S and C alone besides Axiom E but not the remaining ones.

In the following models the space L is for the most part given by the real line $-\infty < x < \infty$ or by the half line $0 \le x < \infty$. In these cases points denoted by A, B, A', X etc. will be those points of the real line having coordinates a, b, a', x etc. respectively. A < B is defined by a < b, |AB| denotes the distance b-a of points A and B.

M(R): A model of a geometry in which Axiom R alone holds besides Axiom E. Let L be the real line $-\infty < x < \infty$. DEFINITION OF AB = A'B': If A = A', then let AB = A'B' if and only if B = B'.

If $A \neq A'$, then let AB = A'B' if and only if |A'B'| = 1.

This model satisfies Axioms E and R but fails to satisfy the remaining Axioms S, T, A, C, I.

M(S): A model of a geometry in which Axiom S alone holds besides Axiom E. Let L be the real line $-\infty < x < \infty$.

Definition of AB = A'B':

In case A = A', let AB = A'B'

(i) if |AB| = 1 and |A'B'| = 3

or (ii) if |AB|=3 and |A'B'|=1

or (iii) if |AB| and |A'B'| are both different from 1 and 3, and |AB| = |A'B'|.

In case A < A', let AB = A'B' and A'B' = AB if 2|AB| = |A'B'|. This model satisfies Axioms E and S but fails to satisfy the remaining Axioms R, T, A, C, I.

M(T): A model of a geometry in which Axiom T alone holds besides Axiom E. Let L be the real line $-\infty < x < \infty$.

DEFINITION OF AB = A'B': For any AB and for any A', let AB = A'B' if and only if |A'B'| = 1.

This model satisfies Axioms E and T but fails to satisfy the remaining Axioms R, S, A, C, I.

M(A): A model of a geometry in which Axiom A alone holds besides Axiom E. Let L be the real line $-\infty < x < \infty$.

Definition of AB = A'B':

(i) In case A < A' or A = A', then let AB = A'B' if and only if 2|AB| = |A'B'|.

(ii) In case A' < A, then let AB = A'B' if and only if |AB| = |A'B'|.

This model satisfies Axioms E and A but fails to satisfy the remaining Axioms R, S, T, C, I.

M(I): A model of a geometry in which Axiom I alone holds besides Axiom E. Let L be the real line $-\infty < x < \infty$.

Definition of AB = A'B':

In case A=A', let AB=A'B' if and only if 2|AB| = |A'B'|.

In case $A \neq A'$, let AB = A'B' if and only if |AB| = |A'B'|.

This model satisfies Axioms E and I but fails to satisfy the remaining Axioms R, S, T, A, C.

M(A, C): A model of a geometry in which Axioms A and C alone hold besides Axiom E.

Let L be the real line $-\infty < x < \infty$.

DEFINITION OF AB = A'B': Let AB = A'B' if and only if 2|AB| = |A'B'|. This model satisfies Axioms E, A and C but fails to satisfy the remaining Axioms R, S, T, I. M(S, I): A model of a geometry in which Axioms S and I alone hold besides Axiom E.

Let L be the real line $-\infty < x < \infty$.

Definition of AB = A'B':

In case A=A', let AB=A'B' if |AB|=1 and |A'B'|=2 or if |AB|=2and |A'B'|=1 or if |AB| and |A'B'| are both different from 1 and 2, and |AB|=|A'B'|.

In case $A \neq A'$, let AB = A'B' if |AB| = |A'B'|.

This model satisfies Axioms E, S and I but fails to satisfy the remaining Axioms R, T, A, C.

M(R, S, A): A model of a geometry in which Axioms R, S and A alone hold besides Axiom E.

Let L be the real line $-\infty < x < \infty$.

Definition of AB = A'B':

In case A = A', let AB = A'B' if B' = B.

In case A < A', let AB = A'B' and A'B' = AB if 2|AB| = |A'B'|.

This model satisfies Axioms E, R, S and A but fails to satisfy the remaining Axioms T, C, I.

M(R, A, I): A model of a geometry in which Axioms R, A and I alone hold besides Axiom E.

Let L be the real line $-\infty < x < \infty$.

Definition of AB = A'B':

In case A = A' or A < A', let AB = A'B' if |AB| = |A'B'|.

In case A' < A, let AB = A'B' if 2|A'B'| = |AB|.

This model satisfies Axioms E, R, A and I but fails to satisfy the remaining Axioms S, T, C.

ON CONGRUENT AXIOMS IN LINEARLY ORDERED SPACES, I

If $A=(x_1, y_1)$, $B=(x_2, y_2)$, $A'=(x_1', y_1')$, $B'=(x_2', y_2')$, then let AB=A'B' if $\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}=\sqrt{(x_2'-x_1')^2+(y_2'-y_1')^2}$. This model satisfies Axioms E, R, S and T but fails to satisfy the remaining

This model satisfies Axioms E, R, S and T but fails to satisfy the remaining Axioms A, C, I.

M(A, C, I): A model of a geometry in which Axioms A, C, and I alone hold besides Axiom E.

Let L be the half real line $0 \leq x < \infty$, and let O denote the point with coordinate 0.

Definition of AB = A'B':

In case A=0, let AB=A'B' if |AB|+1=|A'B'|.

In case O < A, let AB = A'B' if |AB| = |A'B'|.

This model satisfies Axioms E, A, C and I but fails to satisfy the remaining Axioms R, S, T.

M(R, S, I): A model of a geometry in which Axioms R, S and I alone hold besides Axiom E.

Let L be the half real line $0 \leq x < \infty$ with the origin O.

DEFINITION OF AB = A'B': Let $f(x) = x^3$.

In case A=O or A'=O, let AB=A'B' if f(b)-f(a)=f(b')-f(a').

In case $A \neq O$ and $A' \neq O$, let AB = A'B' if |AB| = |A'B'|.

This model satisfies Axioms E, R, S and I but fails to satisfy the remaining Axioms T, A, C.

M(R, S, C, I): A model of a geometry in which Axioms R, S, C and I alone hold besides Axiom E.

Let L be the half real line $0 \leq x < \infty$.

For any s>0 make correspond to each x with $0 \le x \le s$ an x' with $s \le x' \le 3s$ and vice versa, by the relation

$$\frac{2x+x'}{3}=s$$

Call this correspondence σ a skew symmetrization with centre s.

$$L \frac{O}{o} \frac{X}{x} \frac{S}{s} \frac{X'}{x'} \frac{3s}{s}$$

It should be observed that for any pair of non negative numbers a and b there is one and only one skew symmetrization σ that interchanges a and b: $\sigma(a)=b, \sigma(b)=a$; indeed, if a < b, then we are only to set

$$\frac{2a+b}{3}=s.$$

Definition of AB = A'B':

Let AB = A'B', if there is a skew symmetrization σ such that $\sigma(a) = b'$, $\sigma(b) = a'$, where a, b, a' and b' are coordinates of A, B, A' and B' respectively.

Clearly Axiom E holds by the above observation. Likewise for Axioms R, S. As for Axiom C, let AB=B'A', BC=C'B'. Then there must be one and only one skew symmetrization σ with centre s that carries A to A', B to B' and C to C', hence AC=C'A'.

Axiom I follows then from Theorem 2.

 \rightarrow T: To show that Axiom T does not hold, let O, A_1, A_3, A_5 , and A_7 be points with coordinates 0, 1, 3, 5 and 7 respectively. Then $OA_1 = A_1A_3$, $A_1A_3 = A_3A_7$ but $OA_1 = A_3A_5$. Therefore $OA_1 = A_3A_7$ fails to hold, as will be seen by a simple calculation.

 \rightarrow A: Axiom A does not hold, for otherwise T would follow by Theorem 10 which asserts S, A, I \Rightarrow T.

REMARK. Instead of $0 \le x < \infty$ in our M(R, S, C, I) we may take as L the real line $-\infty < x < \infty$.

In this case the skew symmetrization σ should be modified as follows, according as the centre s lies <0, =0 or >0, the range of symmetrization spreading along the whole line:

Case I: s > 0.

(i) Points x with $0 \le x \le s$ and x' with $s \le x' \le 3s$ interchange by the relation

$$\frac{2x+x'}{3}=s.$$

(ii) Points x with $x \le 0$ and x' with $x' \ge 3s$ interchange by the relation x+x'=3s.

Case II: s < 0.

(i) Points x with $s \le x \le 0$ and x' with $3s \le x' \le s$ interchange by the same relation

$$\frac{2x+x'}{3}=s$$

as above.

(ii) Points x with $x \ge 0$ and x' with $x' \le 3s$ interchange by the same relation x+x'=3s as above.

Case III: s=0. For any real numbers, points x and x' interchange by the relation x'+x=0.

M(C): A model of a geometry in which Axiom C alone holds besides Axiom E.

Let L and \overline{L} be the half real lines $0 \leq x < \infty$ and let φ be a mapping of points X of L with coordinates x onto points \overline{X} of \overline{L} with coordinates \overline{x} such that $\overline{x}=3x$ and let i be an identical mapping $\overline{x}=x$.

DEFINITION of AB = A'B': Given AB and A'B' on L, let AB = A'B' if and only if $i(A)i(B) = \varphi(A')\varphi(B')$ on \overline{L} in the sense of the Model M (R, S, C, I).

Verification that this gives an M(C) is easy.

M(R, S, T, A): A model of a geometry in which Axioms R, S, T and A alone hold besides Axiom E.

Let L be the real line $-\infty < x < \infty$.

Definition of AB = A'B':

For any integer *n* consider for a pair of real numbers *x* and *y* in [n-1, n) with x < y a function d(x, y) defined by

$$d(x, y) = e^{1/(n-y)} - e^{1/(n-x)}$$
.

In the following a, b, a', b' etc. denote the coordinates of points A, B, A', B' respectively as usual.

I. In case a, $b \in [n-1, n)$ and $a', b' \in [m-1, m)$, provided m, n denote arbitrary integers, let AB = A'B' if d(a, b) = d(a', b').

$$L \xrightarrow[n-1]{A} \xrightarrow{B} \\ L \xrightarrow{n-1} \xrightarrow{a} \xrightarrow{b} n$$

II. In case

$$a \in [n-1, n), \quad b \in [n+p-1, n+p),$$

 $a' \in [m-1, m), \quad b' \in [m+p-1, m+p)$

for any natural number p, let AB = A'B' if d(n+p-1, b) = d(m+p-1, b').

$$L \xrightarrow[m-1]{A} B$$

$$n+p-1 \ b \ n+p$$

$$L \xrightarrow[m-1]{A'} m \ m+p-1 \ b' \ m+p$$

Especially then, AB = A'B' if $a \in [n-1, n)$, b=n and $a' \in [n-1, n)$, b'=n for any choice of a and a'.

E, R, S: Clearly Axioms E, R and S hold.

T: To see that Axiom T holds, let A, B, A', B', A" and B" be points with

coordinates, a, b, a', b', a'' and b'' respectively such that AB = A'B', A'B' = A''B''.

If $a, b \in [n-1, n)$ for some integer n, then by the definition of equality=, $a', b' \in [n'-1, n')$ and $a'', b'' \in [n''-1, n'')$ for some integers n' and n''. Then we have d(a, b) = d(a', b') and d(a', b') = d(a'', b''), hence d(a, b) = d(a'', b''), therefore AB = A''B''.

If $a \in [n-1, n)$, $b \in [m-1, m)$ for some integers n and m with n < m, then as before $a' \in [n'-1, n')$, $b' \in [m'-1, m')$, $a'' \in [n''-1, n'')$, $b'' \in [m''-1, m'')$. Then we have by the definition of AB = A'B' and A'B' = A''B'', d(m-1, b) = d(m'-1, b'), d(m'-1, b') = d(m''-1, b''), hence d(m-1, b) = d(m''-1, b''), therefore AB = A''B''.

A: Similarly for Axiom A.

 \rightarrow C, \rightarrow I: To see that Axioms C and I do not hold, let A, B, A' and B' be points with coordinates a, b, a' and b' respectively such that

 $a \in [n-1, n), b = n, a' \in (n, n+1), b' = n+1.$

Then by definition AB = A'B' but not AA' = BB', thus Axiom I does not hold. Axiom C fails to hold too.

Notice that this model M(R, S, T, A) is non-Archimedean.

M(S, C): A model of a geometry in which Axioms S and C alone hold besides Axiom E.

Let L be a linearly ordered space with points A_n^i , *i*, *n* ranging over all integers $0, \pm 1, \pm 2, \cdots$, with the order relation

(i) $A_m^i < A_n^i$, if m < n, (ii) $A_m^i < A_n^j$, if i < j (for any integers m, n.)

DEFINITION OF AB = A'B': let $A_m^i A_n^j = A_{m'}^{i'} A_{n'}^{j'}$, if

(i) j - i = j' - i' = 0 and n - m = n' - m' > 0,

or (ii) j-i=j'-i' is an even number>0 and m-n=m'-n',

or (iii) j-i=j'-i' is an odd number>0 and m+n+m'+n'=-1.

E, S: Axioms E and S evidently hold.

C: To see that Axiom C holds, let

$$A_m^i A_n^j \equiv A_m^i A_q^p + A_q^p A_n^j, \qquad (1)$$

$$A_{m'}^{i'}A_{n'}^{j'} \equiv A_{m'}^{i'}A_{q'}^{p'} + A_{q'}^{p'}A_{n'}^{j'}, \qquad (2)$$

and

$$A_{m}^{i}A_{q}^{p} = A_{q'}^{p'}A_{n'}^{j'}, \qquad (3)$$

$$A^{\mathbf{p}}_{\mathbf{q}}A^{\mathbf{j}}_{\mathbf{n}} = A^{\mathbf{i}'}_{\mathbf{m}'}A^{\mathbf{p}'}_{\mathbf{q}'}.$$
(4)

Then by the definition (i), (ii), (iii) of =, we have first of all from (3) and (4)

ON CONGRUENT AXIOMS IN LINEARLY ORDERED SPACES, 1

$$p - i = j' - p', \qquad (5)$$

$$j-p=p'-i', \qquad (6)$$

whence

$$j - i = j' - i' \tag{7}$$

follows. Next we have to consider three cases:

(i) The case: j-i=j'-i'=0. We have from (1) and (2):

$$p=i=j$$
 and $p'=i'=j'$.

From (3) and (4) we have then

$$q - m = n' - q', \quad n - q = q' - m',$$

whence

$$m-n=m'-n'$$
,

which is evidently different from 0 because $A_m^i < A_n^i$.

Thus in this case we have

$$A_{m}^{i}A_{n}^{j} = A_{m'}^{i'}A_{n'}^{j'} \tag{(*)}$$

(ii) The case: j-i=j'-i' is an even number >0.

Subcase 1): If p-i is even, so is j-p=(j-i)-(p-i) and we have from (3) and (4) by the definition of =,

$$m-q=q'-n',$$

$$q-n=m'-q',$$

whence

$$m-n=m'-n'$$
,

and (*) is proved.

Subcase 2): If p-i is odd, so is j-p=(j-i)-(p-i) and from (3) and (4) we obtain

$$m+q+q'+n' = -1$$
,
 $q+n+m'+q' = -1$,

whence

$$m-n=m'-n'$$
,

and (*) is again proved.

(iii) The case: j - i = j' - i' is an odd number > 0

Subcase 1): If p-i is even, then j-p=(j-i)-(p-i) is odd and we have from (3) and (4)

$$m-q=q'-n'$$
,
 $q+n+m'+q'=-1$,

whence

$$m+n+m'+n'=-1$$
,

and again (*) holds.

Subcase 2): If p-i is odd, then j-p is even and similarly as above we have (*).

The following examples show that Axioms R, T, A and I do not hold true.

 \rightarrow R: $A_0^1 A_0^2 = A_0^1 A_{-1}^2$ but not $A_0^1 A_0^2 = A_0^1 A_0^2$, so Axiom R fails to hold.

 \rightarrow T: $A_0^1 A_0^2 = A_0^1 A_{-1}^2$, $A_0^1 A_{-1}^2 = A_1^1 A_{-1}^2$ and $A_0^1 A_0^2 = A_1^1 A_{-2}^2$ but not $A_0^1 A_0^2 = A_1^1 A_{-1}^2$, so Axiom T fails to hold.

 \rightarrow A: $A_0^1 A_{-1}^2 = A_0^1 A_0^2$, $A_{-1}^2 A_0^2 = A_0^2 A_1^2$ and $A_0^1 A_0^2 = A_0^1 A_{-1}^2$ but not $A_0^1 A_0^2 = A_0^1 A_{-1}^2$ but not $A_0^1 A_0^2 = A_0^1 A_{-1}^2$ but not $A_0^1 A_0^2 = A_0^1 A_{-1}^2$.

 \rightarrow I: $A_0^1 A_1^1 = A_{-1}^2 A_0^2 (A_0^1 < A_1^1 < A_{-1}^2 < A_0^2)$ and $A_0^1 A_{-1}^2 = A_1^1 A_{-1}^2$ but not $A_0^1 A_{-1}^2 = A_1^1 A_0^2$, so Axiom I fails to hold.

A model M(R, C, I) will be given in the second part of this paper.

4. Proof of Main Theorem

I. T and C are independent, and T, $C \Rightarrow R$, S, A, I.

Proof.(i)T, C \Rightarrow Aby Theorem 3.(ii)T, A \Rightarrow Rby Theorem 4.(iii)T, R \Rightarrow Sby Theorem 1.(iv)R, C \Rightarrow Iby Theorem 2.

By Models M(T) and M(C) we see that T and C are independent.

II. T and I are independent, and T, I \Rightarrow R, S, A, C. Proof. (i) T, I \Rightarrow R by Threeem 6. (ii) T, R \Rightarrow S by Theorem 1. (iii) T, I \Rightarrow A by Theorem 7. (iv) T, I \Rightarrow C by Theorem 8.

By Models M(T) and M(I) we see that T and I are independent.

III. S, A and I are independent, and S, A, $I \Rightarrow R$, T, C. Proof. (i) S, $A \Rightarrow R$ by Theorem 9. (ii) S, A, $I \Rightarrow T$ by Theorem 10. (iii) S, A, $I \Rightarrow C$ by Theorem 11.

1) M(R, S, A) shows that S and A do not yield I.

2) M(R, S, C, I) shows that S and I do not yield A.

3) M(A, C, I) shows that A and I do not yield S.

Hence S, A and I are independent.

IV. S, A and C are independent, and S, A, $C \Rightarrow R$, T, I.

Proof.(i)S, $A \Rightarrow R$ by Theorem 9.(ii)R, $C \Rightarrow I$ by Theorem 2.(iii)S, A, $I \Rightarrow T$ by Theorem 10.

1) M(R, S, A) shows that S and A do not yield C.

2) M(R, S, C, I) shows that S and C do not yield A.

3) M(A, C, I) shows that A and C do not yield S.

Hence S, A and C are independent.

V. R, A and C are independent, and R, A, C ⇒ S, T, I.
Proof. (i) R, C ⇒ I by Theorem 2. (ii) R, A, C ⇒ S by Theorem 12. (iii) S, A, I ⇒ T by Theorem 10.
1) M(R, S, A) shows that R and A do not yield C.

2) M(R, S, C, I) shows that R and C do not yield A.

3) M(A, C, I) shows that A and C do not yield R.

Hence R, A and C are independent.

REMARK: By the use of our Theorems and Models it may easily be proved that there is no further theorem of the above type I–V.

5. Tables

[1]	Baisic Theorems ²⁾							
	T_1	R	S	Т				
	T_1	R	S	Т				
	T_2	R				С	Ι	
	T_{3}			Т	Α	С		
	T_4	R		Т	Α			
	T_{5}	R		Т		С		
	T_{6}	R		Т			Ι	
	T_7			Т	Α		I	
	T_s			Т		С	Ι	
	T,	R	S		Α			
	T ₁₀		S	Т	Α		I	
	T_{11}		S		Α	С	Ι	
	T_{12}	R	\mathbf{S}		Α	С		
	$T_{_{13}}$	R	S			С	Ι	

2) In the following tables **R**, S, **T** indicates for example that Axiom S follows from Axioms R, T and Axiom E. T_n means Theorem n.

[2]	Models						
	M(R)	R	→S	$\rightarrow T$	→A	→C	- → I
	M(S)	→R	S	- → T	→A	→C	-→I
	M(T)	→R	→S	Т	→A	→C	→I
	M(A)	- → R	\rightarrow S	$\rightarrow T$	Α	→C	→I
	M(C)	-→R	→S	$\rightarrow T$	→A	С	→I
	M(I)	→R	→S	→T	→A	→C	Ι
	M(A, C)	→R	→S	$\rightarrow T$	Α	С	→I
	M(S, C)	-→R	S	→T	_ → A	С	- → I
	M(S, I)	→R	S	→T	→A	→C	Ι
	M(R, S, A)	R	S	—-T	Α	→C	- ≁I
	M(R, A, I)	R	\rightarrow S	- → T	Α	→C	Ι
	M(R, S, T)	R	S	Т	→A	→C	→I
	M(A, C, I)	→R	→S	- → T	Α	С	Ι
	M(R, S, I)	R	S	→T	→A	→C	Ι
	M(R, S, C, I)	R	S	→T	- - A	С	Ι
	M(R, S, T, A)	R	S	Т	Α	→C	- → I
	$M(R, C, I)^{3)}$	R	→S	$\rightarrow T$	→A	С	Ι
[3]	Main Theorem ⁴³)					
	Ι	R	S	Т	А	С	Ι
	II	R	\mathbf{S}	Т	А	С	Ι
	III	R	S	Т	Α	С	Ι
	IV	R	S	Т	Α	С	Ι
	V	R	S	Т	Α	С	Ι

NIIHAMA TECHNICAL COLLEGE, NIIHAMA

Sophia University, Tokyo

References

- [1] D. Hilbert: Grundlagen der Geometrie, 9te Aufl., Stuttgart, 1962.
- [2] U. Morin-F. Busulini: Prova esistenziale della geometria generale sopra una retta, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fiz. Mat. Natur. 35 (1963), 269–273.
- [3] H. Terasaka: Shotō Kikagaku (in Japanese), Tokyo, 1952.

292

503

3 4 1 1

³⁾ M(R, C, I) will be given in the second part of this paper.

⁴⁾ For the notation, see Main Theorem, p. 270.