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This paper is the continuation of part I, Osaka J. Math. 2 (1965),
pp. 71-115. §§1-5 are contained in Part I and this part consists of
§8 6-12. We use all notations and notions defined in Part I.

In §6 we discuss admissible multiplications p, in K( ; Z,) and show
that they induce multiplications p¥* in periodic cohomology K*( ;Z,);
Kiinneth isomorphism K*(X;Z,)®K*(Y;Z,)=K*(XA\Y;Z,) holds for
any prime p; an important property of mod ¢ K-theory, Propositions 6. 3
and 6.4, is discussed. §7 is devoted to the discussion of commutativity
criteria of admissible multiplications (Corollary 7.7, Theorems 7.11 and
7.13); we can establish the existence or non-existence of commutative
admissible multiplications in K( ; Z,) for all ¢>1. §8 is a preparation
mainly for §9. The existence of associative admissible multiplications
is proved in §9 (¢=2) and §10 (¢=2). In case ¢=2, it is guaranteed
whenever »**=(0 (which is required even for the existence proof of
admissible u, of Theorem 5. 9) (Theorem 9.9). In case ¢=2, it is proved
only under some conditions (Theorems 10.6 and 10.7). These are sufficient
to prove the associativity for every admissible multiplication of K( ; Z,)
(Corollary 10.8). In §11 we discuss Bockstein spectral sequences for
general cohomologies and multiplicative structures in them. We see many
analogous properties as those of ordinary Bockstein spectral sequences.
Whenever the existence of admissible x, is guaranteed by Theorem 5.9,
then some p, induces multiplications m, in E,-terms of mod p Bockstein
spectral sequences for each prime p. It is noticeable that d, behaves
as a derivation to m, (Theorem 11.10) even though the compatibility
of the reduction psp, With ps, and p, is generally not proved, from
which follows Kiinneth’s isomorphism for each term of Bockstein spectral
sequences of periodic K*-cohomology (Theorem 11.11). §12 is an ap-
pendix treating some further properties of the maps a@: M,— M, of 2.4,
not treated there.
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6. Multiplications in mod ¢ K-cohomology.

6.1. The Atiyah-Hirzebruch K-~cohomology theory of complex vector
bundles has the commutative and associative multiplication p defined by
tensor products [2]. Thus its associated multiplications pr and p, satis-
fies (H,)—(H,). By Theorem 2.3 and Proposition 2.5 any homomorphism
f: Z,—~Z, induces a natural map

[+ K Z)—~K(;Z)

for each 7, and (H,) holds.
Since Ki(S°)=~Z or 0 according as ¢ is even or odd, we easily see
that

(6.1) Ki(S%) = p,Ki(S*;Z;)=2Z, or O

according as 7 is even or odd. From (6.1), for i= —2, Theorems 2.3,
5.9, Corollaries 3.10 and 3. 11 follows

Theorem 6.1. For every integer q>1 there exist just q distinct
admissible multiplications in K(; Z,).

6.2. Let g be the generator of K°(S?), given by the reduced Hopf
bundle. Bott’s isomorphism
B: Ki(X)= K (X)

is given by the formula B=o¢"2u( ®g). Making use of ur, we define
Bott’s isomorphism

(6.2) Be: KX Z) % KX Z,)
in K( ; Z,) for each i by
Be = o’ ur( ®E)

in the same way as g, which is natural. B,=pB as a map: K***(XA\M,)—
K*{(XAM,), hence (6.2) is an isomorphism.
By (H)-(H,) and (H,) we have the commutativities :

0aBq¢ = Beoq, BePq = Pl
(6- 3) 518:1 = 183 ’ 3qﬁ’q = quq
f *Bq = lerf *
for any homomorphism f: Z,—Z,.
B, gives isomorphisms of exact sequences of mod ¢ K-cohomology

associated with cofibrations. Consequently we can define periodic Z,-
graded mod ¢ K*-cohomology theory by putting



MULTIPLICATIVE STRUCTURES IN Mop ¢ CoroMoLoGY THEORIES II. 83

K*X;Z,) = RY(X; Z)®K"(X; Z,)

and identifying K*(X ; Z,) with K%(X; Z,) and K**(X; Z,) with K'(X; Z,)
via Bi. By (6.3) natural maps o, pg, 8, 8, and f, are introduced also
in the periodic theory K*( ; Z,).

Let p, be an admissible multiplication in K(;Z,). By (H,), (A,
and (A,) we obtain the equalities

(6- 4) #q(Bq®1) = ﬁbq(]-@Bq) = Baug,
which imply that

(6.5) g induces a multiplication, denoted by u¥, in the periodic cohomology
K*(; Z,) satisfying also the admissibility conditions (A,)—(A,).

By a general argument using an induction on cells and (6.1) we get
a Kiinneth isomorphism :

Theorem 6.2. If K*(X; Z,) or K¥(Y; Z,) is a Z~free module, then
w¥ induces an isomorphism

K*X;Z)QK(Y;Z,) = KXNXNY; Z,).
6.3. The following proposition is important for our later discussions.

Proposition 6.3. Let 7 be a generator of {S*M,, S*} given in (4.1).
There holds the relation

T = ot
for K-theory.

Proof. Let 7 be represented by a map f: S*‘M,—S* such that
f(S*%)=S%;, 7 is the Hopf map. Then the mapping cone of f is

L =S*'U;CS*'M, = S*Ue*Ué = S*PU, ¢,

where 4: S°—S°P is the attaching map of ¢ and P is the complex
projective plane. From the cell structure of L we see easily that

Z fori=0,4
H{(L;Z)={ Z, fori=17
0 others,

and S¢*|H*(L;Z) is non-trivial. Thus, by discussing the Atiyah-Hirze-
bruch spectral sequence with E¥=H*(L;Z) and EX=GK*(L;Z) [2],
we see that

R(L)=0 and R(L)=Z.
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Then, from the exact sequence
=%

RS —— RYS*M,) —> K(L)

associated with the cofibration S*‘— L—S*M,, it follows that the above
#* and, via Bott isomorphism, the homomorphism 7*: K°(S?— K°(S*M,)
are epimorphic. z*: K°(S?—K%M,) is also epimorphic. Thus 7* and
7z* are both equal to the projection: Z—Z,. Hence

57‘* — 0.218”*

as maps: K°S*— K°(S*M,).
For any W and any x K{(WAS?), there exists 2’ K W) such that
w(x’®@g)=x by the Bott isomorphism theorem. Then we have

7% = Ly A7) *u(¥'®g) = w(x'@7*g)
= p(X Ru(z*gR®8)) = p(lw A7*)u(xr’'®g)RVE)
= pu(z**xQg) = o’*Br™*x. q.ed.
6.4. The above proposition can be generalized to the following

Proposition 6.4. Let q be even. For any class 5 {S°M,, S’} of (4.1)
the following relation
7% = (q/2)-o*Bri*
holds for K-theory.

Proof. Denote by 7,&{S*M,, S?} an element 7 for ¢g=2. Let v&
{S*M,, S°M,} be the class of S%g/2), where ¢/2: M,— M, is a map of
(2.5), i.e.,

v(S%,) = S%, and (S’z,)v = (¢/2)-S°z,.
We have
7(S%g) = 1 = 7,(5%,) = 7,7(S%,) .
Then, from the exact sequence

Stk Sei*
(s, 57 27 (sM,, 81 225 (S0, 5%

follows the relation
7 = 7,y mod 7*(S°z,) .
Since »**=0 in K, we have
FEE = R o KK 2 g

= "By *af* = (¢/2)-o*Br*. q.ed.
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7. (Non-) Commutativity of mod ¢ multiplications.

7.1. In this section we use the following convention: for each
xehi(X; Z,), which is the same as j*3(XAM,) by definition, we denote
x as ¥ when we consider it as an element of Z+3(XA M,).

Let p be a commutative and associative multiplication in a cohomo-
logy theory % and p, an admissible multiplication in %( ; Z,) constructed
in §5 (assuming that »**=0 in case ¢=2 (mod 4) and fixing an element
a of (4.17)). That is, for xeki(X; Z,), yehi(Y;Z,) and w=pu(xQy),
we have

(7.1) W= oYy wlw AV Ax A\ T A1y *w(ZR3) ,
where W=XAY and T'=T(Y, M,).
Put

w = p(x®y) = (—1)7T"*p(yQx)

for 7"=T(X, Y). w} is also an admissible multiplication. In fact, by a
routine calculation making use of the commutativity of 4 and the natu-
rality of ¢ etc., we see that

(7.2) o' = oy wlw A(Ta))*(Ax A T’ A1) * n(2R3)

where T=T(M,, M,).
Computing the difference @’ —w for x=y=x, we discuss the (non-)
commutativity of n,. To do this, we may choose «, suitably.

Lemma 7.1. We can choose x,=h'(M,; Z,) satisfying (3.7) as
(7.3) 7 = B(’1).

Proof. Discussing the integral cohomology map B%F by using (4.9)
we see that

(7.3) BluAi) = zAls and BiNly) = —1sAm,

where S=S?, which show (3.7) immediately for the element «, defined
by (7.3). q.e.d.
In this section we define «, always by (7.3).

Lemma 7.2. Let q be even. There holds the relation
1yAn = 9+,
in {S*°M,, SM,} after choosing 7, suitably in case ¢g=0 (mod 4).
Proof. By Theorem 4.1 we may put
1uAn = xomy+y-m,+2-(S0)n*(S7)
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for x, y, and zeZ,, where 2=0 in case ¢=2 (mod4). Composing Sz on
both sides from the left we see that

7(S'z) = wAn = (Sz)1yuAn) = y-u(S'n) .

Thus y=1. Similarly, composing S% from the right, we obtain that
x=1. In case ¢g=0 (mod4), replacing 7, by »,+7} if necessary, we see
that »,, hence », and »,, can be chosen so that z2=0. g.e.d.

7.2. First we discuss the case g=2. Put
(7.4) 7 = AA)nAAR) and 7" = AAD,(IAT),

which belong to {M,AM,, M,AM,}. By (4.3),
7 = (GADFAAZ) and 7"=QAAi)HzA7).

Proposition 7.3. (i) {M,AM,, SM,} =Z,+ Z, + Z, with generators
7(1A7), 1(AN=) and (Siynp,.

(i) {M,AM,, M,AM,} =Z +Z +Z, with generators 1y, 4.3, and 7'.

(iii) There hold the relations

’7/(“0180) = 2-0,83, and (O{OBO)(O(OIBO) = (aoBo)"?/ =77 =0,
Proof. (i) In the exact sequence of (1.7):

1 * *
0— {SZMZ,SMZ}(—/—\—Q (M,AM,, SM}( N Tor ({SM,, SM}, Z,) — 0,

(LA Y*((Si)nB,) generates Tor ({SM,, SM,} ; Z,) since (1A )*((Si)nB,) =
(Si)n(Sm)=2+1sp. And 2-(Si)nB,=0. Thus the above sequence splits and
(i) follows from Theorem 4. 1.

(ii) In the exact sequence

0 — MAM,, SMy 2% o amt,, My SO A, sMy 0,

((1.7), the above (i) and (4.10)), {M,AM,, S*M,} is generated by 1A=
=1 A%)slpyrnm and (S%)B,=AAnr)ya,B, by (4.10) and (4.9"). Here
2 ynme = LA (2-1,y) = 1A (i7)

= (AN (0, +2)A A7) by Lemma 7.2

=7+7" %0
by (i) and the above exact sequence, and

2-a,8, = (EAD)B, by (4.15)
= (IN)(SimB, + 0
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by (i) and the above exact sequence. Thus (ii) follows.

(iii) B.a.=pBai,=pi,=0 by (4.9) and (4.7). Thus (@B, (B, =0.
BEiND)=(Sz)(Si)=0 by (4.9). Thus (a,B)7=0. (ZA=)a,=(S7)(S*%)=0
by (4.9), hence 7”"(tsBe) =0; 2+Be= (21 p)AeBo= (7" + 7"t =1"(te30).
77 =AN)FANAZ)AND)FALAZ)=0. Hence (iii) is proved.

Theorem 7.4. For T=T(M,, M,) there holds the relation
T = 1yam+alBo+7 mod 2- {M,AM,, M,AM,} .
Proof. Set
T=2x1yamtyaBe+27, x,yeZ, and zeZ,,
by Proposition 7.3, (ii). By (4.9) and (4.11) we have
AAR)+(S*%)B, = AAR) T=x-ALA7m)+y+(S%)B, .
Thus
() % =y=1(mod?2)
by (4.10). Next, if z2=0,
Lynm =T? = 2Lyt (2xy) o3,

by the above setting and Proposition 7.3, (iii), which implies that xy=0
(mod 2) contradicting to (x), i.e.,

z2=1. q.e.d.

Corollary 7.5. Ta=a+7a mod2-{N,, M,AM,}.
Because : B,a=pBRaj=pj=0 by (4. 7).

Y

7.3. New we compufe w —w of (7.1)-(7.2) for x=y=«, in case
g=2. Since 2-u(z,®%x)=0 by Proposition 3.2,

W' —w = oy Ly A ) * A A T' A 1p)*u(m ®7,)

by Corollary 7.5 for W= M,AM,

= oy w o Ay A ) (A A TA L ANIA LAY (7R ,)
for T,=T(M,, S*) and S= S

= o Py s (A A Ty A 1s)*u((S7)*o’1R(S7)*a™1)
by (7.3), (7.3), 4.9), (4.18)

= o **(x Ar A\ 1s2)*u(u(c’1Q o*1) R o*1)
by Lemma 5.2, (i) and 7T(S? S")=1

= w(p(r*a’1R@r*e’1)R7*1) .

Thus, putting
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a=mn*l, ach™S°;Z),
w-—w = p(Wrz*’ 1R 7% 1)K a)
= pPop(z*e’1R7*s"1)Q @)
1:(aR po(, R ,))

from which we deduce the following

Theorem 7.6. Let i be equipped with a commutative and associative
multiplication p and 7**=0 in h. For any admissible multiplication p,
in h(;Z,), putting

a = a(l‘bz) ’
there holds the relation
a= g*l.

Proof. The above formula and (3. 13) imply that the theorem is true
for a suitably constructed p,. Since 2:8(u,, u3)=0 for any two admissible
multiplications u, and p} by Proposition 3.2, (3.18) implies that the
theorem is true for any admissible u,. q.e.d.

Since #*1=0 if and only if #**=0 in %, we have

Corollary 7.7. Under the assumption of Theorem 7.6, the necessary
and sufficient condition for the existence of commutative admissible p, in
h(;Z) is that 7%%=0. When this condition is satisfied, every admissible
1, 1S commutative.

Because of Proposition 6.3 and zf*=+0 in K, we have

Corollary 7.8. K(;Z,) has no commutative admissible n,. If we
denote the two distinct admissible multiplications in K(;Z,) by A and N',
respectively, then

THyA%) = Ay = xAY+B(S,2N8,9)
for x€K¥X;Z,), yeK*(Y;Z,) and T=T(X, Y).

This corollary means that the admissible multiplication in K(;Z,) is
essentially unique.

7.4. Next we discuss the case ¢==2 (mod 4).
N, = S*VS*M, and N,=SM,VS*M, by (4.6), (i). Let

i':S°M,— N,, #:S'M,— N,
and
7’ N, — S? 7 :N,— SM,

be the inclusions and the maps collapsing S*M,, respectively. Besides
(5.2) we have the relations
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v =ji’, 7= (S, # =0,

7.5
(7.5) p=Sn)z, i,=14% and #i,=0.

In the present case we choose v, as
v, = n'¥*c?l .
Then v satisfies (5. 4).
Put
(7.6) i/ =ai’:S°M,— M,AM,, =" =#7B:M,AM,— SM,,
then we obtain the relations
7.7 7" =0, 7a"(IyNi) =1sy and AyuAn)i" = lg2y

by Lemmas 4.3, (ii), (4.7), (5.2) and (7.5).
By (4.6), (i), we see immediately

Proposition 7.9. In case g2 (mod 4), (1yAd)y, 14, (1yAz)* and
7% are monomorphic, and we have the following direct sum decompositions

(1) AW, MyAMg} =QA N {W, SM} @i {W, S°M,},

(ii) {M,AM,, W}=QQA=)*{S?M,, W}D»"*{SM,, W}
for any W, and in particular

(i) {MGAM,, MoAMG} =1 Ni)yn"*{SM,, SM} @iy z"*{SM,, S*M,}
SANDKANZ*{S M,, SMg} @iy AN=)*{S°M,, S*M,}.

By Proposition 7.9, (iii), we can put

lyruw = AADaxr” +i"ar” +AANDa;ANR)+i"a A A7)

with a,€ {SM,, SM,}, a,= {SM,, S*°M,}, a,={S°M,, SM,;} and a,c {S°M,,
S2M,}. Compose 1Az on both sides from the left, then by (7.7) we get

IANz = a7’ +a(lA7),
hence

a,=0 a,=1lgy

by Proposition 7.9, (ii), for W=S’M,. Similarly, composing ="’ from
the left, we get

a, =1g and a,=0.
Thus we obtain
(7.8) Lyam = "AAR)+ AN,

Next, put
T = AN)b7" +1"b,x" + ANDOAAT)+ b (A A7)
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with b, {SM,, SM,}, b, {SM,, S°M,}, b, {S*M,, SM,} and b, {S*M,,
S*M,} for T=T(M,, M,). Compose 1A= on both sides from the left.
By (4.11), (i) and (7.7) we get

AuAm)+(S*%)B, = ba”’ +b(1AR) .
Here
(S*)B, = (S*%)pB = (S*)(Sz)n”

by (4.9), (7.5) and (7.6). Thus, by Proposition 7.9, (ii), for W=SM,
we get
b,=(S%)(Sz) and b, = lszy.

Similarly, composing 1AZ from the right and making use of (4.11), (ii),
with a remark that

a(Sn) = ai,(Srz) = 1/(S*%)(Sx),
Proposition 7.9, (i), for W=SM,, implies that
by = —1sy.
Therefore we see that
T = —QANA)r" +"(S*%)(Sx)x” + 1" (A A=) +(ANDEAAR)
with £ {S*M,, SM,}, from which follows
T = (AN + " A A=) +3"(S%)(Sm)EA A=) + (A AD)ES ) (Sn)n” .
Since T?=1am, by (7.8) and Proposition 7.9, (ii), we obtain
(S%)(Sn)t =0 and E(S%)(Sz)=0.
These relations, Theorem 4.1 and Corollary 4.2, (i), imply
- { 0 if ¢ is odd
Eq+(St)*(S?r) if ¢=0 (mod 4)
with §,Z,. Thus we obtain
Theorem 7.10. In case q=2 (mod 4) there holds the relation
T = —QAA)x" +i"(S%)(Sn)n” + 1" A A7)+ E+ G A i)y (w A7)

for T=T(M,, M,), where §,Z, in case ¢g=0 (mod 4) and &,=0 in case
q odd.

7.5. Now we compute @' —w of (7.1)-(7.2) for x=y=«, in case
¢=*2 (mod 4). By our choice of v,, yw=AwAL)* by (5.4). Thus
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(7.9) YwlwA)*Aw AAAD)Z"Y* =0
since (LA#)z"ai’ =1 Ai)7#=0 by (7.5), (7.6) and (4.18). Also
(7.10) i"(S%)(S)r" ot = 0

because of (7.5), (7.6) and (4.18). Making use of (7.8)-(7.10) and
Theorem 7.10, a parallel computation to the case of ¢=2 implies

W —w = p(p(r*c’1lRr*c’1)RQE, n*7**1) .
Thus, putting a=r»*7"*1, ach %S°; Z,), we have
W —w = py(Eq AR po(#, Q)
from which by (3.13) we conclude
(7.11) Apg) = &0a, a= n*7*1.
Therefore,

Theorem 7.11. Let u be a commutative and associative multiplication
in h. By a suitable construction of §5 in case =2 (mod 4) we can obtain
a commutative admissible multiplication p, if q is odd or if ¢=0 (mod 4)
and (7’m)*¥*=0.

This theorem for ¢ odd asserts a slightly different thing from
Corollary 3.11, ie., the unique commutative admissible u, can be con-
structed by the manner of §5, which is necessary for the proof of the
existence of a commutative and associative admissible u, later in §10.

In case ¢=0 (mod 4) it is an open question whether we can choose
a such that &=0 or not. If we can do so, then the existence of a
commutative admissible p, without any condition follows.

In case K-cohomology, (7°z)**=z¥**p**p**=0, Thus

Corollary 7.12. If ¢=0 (mod 4) there exist just two distinct com-
mutative admissible multiplications u, in K(; Z,).

7.6. In case ¢=2 (mod 4), from Theorems 7.6, 7.11 and 3.14 follows

Theorem 7.13. Let % be equipped with a commutative and associative
multiplication p and 7**=0 in h. If ¢g=2 (mod 4), a necessary and
sufficient condition for the existence of a commutative admissible multi-
plication in h(; Z,) is that 7**=0 in h for ne {S°M,, S?}.

Corollary 7.14. If g=2 (mod 4), there exist no commutative admissi-
ble multiplications in K(; Z,).
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8. Stable homotopy of some elementary complexes. II.

8.1. Let P be the complex projective plane, ie., P=S*U,¢'. Let
ip:S*—P and zp: P—S* be the inclusion and the map collapsing S%.. We
have a cofibration
8.1) s: 2, p P, 54
From Puppe’s exact sequence and its dual, (1.5) and (1.5’), associated
with (8.1) for X and Y spheres, we obtain

(8.2) the groups {S***+3, S"P} and {S"P, S*~*+%}, k<3, are both isomorphic
to the corresponding groups in the following table :

k-2 k=—1 k=0 k=1 k=2 k=3
generators of
0 z 0 z Zy, 0
{Sn+k+3, SnP} ip z ipy
{Snp, Sn—k+3} Tp C v p

where £ and T are defined by
8.3) 2ol = 2+1,., and Fip=2-1,,, 1,€{5"S"} .

Theorem 8.1. The groups {P, S‘P}, 0<i<2, and {SP, P} are iso-
morphic to the corrvesponding groups in the following table :

generators
{P, S2P} z (S%p)zp
{P, SP} 0
{P, P} zoz 1p, {zp (or ip0)
{SP, P} Zs ipv(Smp)
We have relations
(8. 4) ipt +Emp = 2:1p
and
(8.5) 1A = 3+ipv(Smp)

for ne {S, S°}.

Proof. From (8.2), (1.5) and (1.5") suitably used, we see easily the
results for {P, S‘P}, 0<i<2. Then, by (8. 3), we obtain the relation (8. 4).
Now we observe an exact sequence (1.5) associated with (8.1):
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(*1) s, P} 7t (s, P}( )’ {sp, P}( i) {s*, P} .

(8.2) and the fact that every element of n*~images is at most of order
2 show that

(*2) {SP, P} = Z, or Z,, with the generator ip,v(S7p).
And we can put
(*3) 1, A7 = a-(Sipw(S?zp) € {S°P, SP}

for some integer a, n= {S?% S} and v {S°, S*}.
By Theorem 1.1 and (*3),

2-1pam = 1pA@2-1py)=a-(ipNiJv(zpAm), M= M,.
If @ were even, then 2-1,,,,=0 since 7, is of order 2; then

PAM,AM, = SPAM)U,., ,CS(PAM)
= S(PAM,)VS¥PAM,)

in the stable range, which is but a contradiction because Sg*‘=+0 in
PAM,AM, whereas =0 in S(PAM,)VS*(PAM,. Hence

(*4) a is odd.
Next, by (8.1), (8.2), (*1), and (*3),
0 = (Szp)*n*C = (Smp)*(EAn) = (Lplmp) A7
= (LpAn)Erp=2a+iprmp,
which implies via (*2) that
a=3 and {SP, P} =Z,. q.e.d.

8.2. From now on through this section M, 7, and = stand for M,,
i,, and =,. We shall compute the groups {M,AP, S‘M,} for 2<i<4.
We have

M,AP = M,A(S*U, CS?) = S°M, U, A, CS°M,, 1=1,.
From its associated exact sequence (1.5) for X=S‘M,:

v, son A sar sany A (b san

AN sanr siany LA (oo, simy |

follows the exact sequence
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1A 7p)* 1Aip)*
(8.6) 0 — Coker(1An)¥, (A7) {MA P, SiM} AU PN ¥ -0,

where (1 An)¥ stands for (1, An)*: {S"*M, S*HiM} — {S*"°*M, S** M}, n=0
or 1. Marking use of the relations in Corollary 4. 2, (ii), and the relation
of Lemma 7.2 we have

A A @r)=2:1p, ApAn)*Llpr = 47,
and
(1M/\’7)*77i =7/ i=1,2.

Then, from Theorem 4. 1. follow

8.7 (i) Ker(lAmf=Ker(IAn)i=0,
(ii) Ker(AAn)¥=Z, generated by 2-1,,,
(ili) Coker (1 An)¥=Z, generated by the class of 1y,
(iv) Coker (1 An)f=Z, generated by the class of m, (or 7,),
(v) Coker(1An)¥f=Z, generated by the class of ivrm.

Theorem 8.2. (i) {M,AP, S‘M,}=Z, generated by 1y A=p.

(ii) {M,AP, S*M,} =Z, generated by n,(LyN7p)=1,LpyA7p).

(iii) {M,AP, S*M,)}=Z,BZ, generated by (S%)v(xAnp) and 1, N,
where ve {S°% S° and < {P, S?}.

(iv) We have the relation i1y Anp)=n35AyAnp)=0.

Proof. (i) and (ii) follow from (8.6) and (8.7). (iii) follows from
(8.3), (8.6), (8.7), and the following :

2148 = (iam) AT = (SN (xA1p), ne{S% S},
= (S%)AsADM A L) Alp)
= 3.(S%)AsAD)As Aip)r(z A7p) by (8.5)
= 6-(S*W(r Anmp)E2-(LARp)*{S'M, S*M} = 0.

(iv) follows from
ApAn)*n; = 72, i=12. g.e.d.
Next we compute the group {M,A\P, M,AP}.

Theorem 8.3. {M, AP, M,AP}=2,DZ, generated by ly,,p and
1 Nipt. We have a relation

2.1M/\P = (iAip)v(n/\nP) = ].M/\ipf‘i‘lM/\Eﬂp -_-'—_- O.

Proof, Let us consider an exact sequence (1.5%):



MULTIPLICATIVE STRUCLURES IN Mop ¢ CoHOMOLOGY THEORIES II. 95
1 ING
AP, 5oy A v ap, saay LA R

1 K
AN AP, S0y .

{MAP, MAP}

(1 A7p)y is epimorphic since (1 Azp)slpyrr=1A7p generates {MA P, S‘M}
(Theorem 8.2, (i)). (1 Aip)y is monomorphic since {M A P, S’M} is
generated by 7,(1Azp) and (LA7)(AA7p)=73AA7p)=0 (Theorem 8. 2,
(ii) and (iv)). The image group (L Aip)x{MAP, S:M}=Z,HZ, is generated
by 1yAipE and (i Aip)v(z A7p) (Theorem 8.2, (iii)). Finally, by Theorem
8.1,

2+-1ynp = 3-(ENip)(mAmp) = (ENip)v(z A7p)
since it is of order 2 at most. Thus the theorem is proved.

8.3. We shall discuss some structures of M,AN, and M,A M,A\M,.
Let z,: N,— P be the map collapsing S*® such that

(8.8) iho = ip and mpm, = (S,

stably. We have a cofibration

Ty

®.8) s, N, 2L p.
Proposition 8.4. There exists a stable homotopy equivalence
€ {S’M,V (M, A\ P), M, AN}

such that (1,;\=)E is stably homotopic to the projection of S*M,\ (M, P)
onto M,A\P.

Proof. By (4.6), (ii), there exists a homotopy equivalence SN,=

S* Uszer,, CP such that Sr, is equivalent to the map S* Uze,, CP—SP collapsing
S* to a point. Denoting N, by N,

S(MAN) = MASN = MA(S* Uy ,CP) = S*MUipyn20e, C(M A P) .

By Theorem 8. 2, (i), 1yA2:7mp=2-(1yAnp)E2- {MAP, S'M}=0. Thus,
by a general argument (cf., the beginning part of the proof of Lemma
4.3) we can conclude the proposition.

Proposition 8.5. Choosing an element @ of Lemma 4.3, we have a
stable homotopy equivalence
ae {S*M,V (M, P)VS*M,, M, \ M, \ M,}
such that
AuNa)e = ak,
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where & is the stable map of Proposition 8.4 and k: S*M,N (M,AP)—
S M,V (M,AP)\V S*M, the inclusion to the first two factors.

Proof. For 1,A2-i,€{S*M, MAN} we have
1yN2-5y = 2.1y N, = (i) Ai, = Er) AL,

= (ix)A\2+, = 2-ix)Ni, = 0.

Thus
MAN = MA(NU,.;,CS?) = (MAN) U004, CS*M

is stably homotopy equivalent to (MAN)V S*M preserving the subspace
MAN, ie., we have a stable homotopy equivalence ¢, {MAN, (MAN)
VS*M} such that &(1,,A j)=Fk,, the inclusion map: MAN—(MAN)VS*M.
Put

a= (IyAN@Ert(EVisy),

which is a stable homotopy equivalence. And
ak = AyNa)ET RE = AyNnd) Ay 7)E by Proposition 8.4
= (1A Q). q.e.d.
By Theorems 8.2, 8.3, Propositions 8.4 and 8.5 we have

Theorem 8.6. (i) {M,AP, M,AN,}=ZPZ,DZ,.
(ii) {M,AP, M,NM,AM}=Z,DZ,DZ,DZ,.

8.4. The following two lemmas will be used in the next section.

Lemma 8.7. We can choose an element p,= {M,N\P, S:N,} satisfying
the relations :

(8.9) (S*z0)py = LuAmp, P(luNip) = S*(im)
and
(8.10) S*z)py = IpAm)T  for T = T(M,, P).

Proof. Consider the complex MAP/S'AS? It has the same cell
structure as S°N, hence we have a homotopy equivalence MAP/S*AS?
=~=S?N. The map collapsing S*AS? followed by the homotopy equivalence
gives rise to a map p{: MAP—S2N such that
.o ,
st = SIS N AP 2, 5N
is a cofibration. The candidates for p, are p{ and pi+pi(Ly A Exp),
e {S*, P}. First we see easily that both candidates satisfy (8. 9) because
both sides of the equalities induce the same mod 2 homology maps,
and {MAP, S'M}=Z, and {S*M, S’N}=Z, as is easily seen,
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iN1
Discussing an exact sequence (1.5) for the cofibration S‘/\P—A——P>

1
MAP A% S?AP and X=S%P by making use of Theorem 8.1, we see
that

{MAP, S*P} = Z,®Z, generated by (1,Ax)T and (S%)(zpA7)T.
Thus

(#1) (S*z)po = (LpAm)T
or
#2) (S*m)ps = ApAR)T+(S*E)mp A7) T

since (S*z,)p; induce a non-zero mod 2 homology map. If (1) holds,
then putting p=p§ we finish the proof. If (#2) holds, then put

b = Pé +p(/l(1M/\ Z”P) .
Since
(1pA7) TN E”P) = (]-P/\”)(E”P/\ 10T
= (Szf)(ﬂp/\”)T
and
(mp A)T (AN gﬂp) = (mp A\ ”)(E”P/\ 1,)T
= 2:(xpA\m)T =0,
we see that
(S*z)py = (S*m)bo+ (S*z) oLy AEp)
= Ao AR)T+(S ) (mp A7) T
+Ap AR)T(AyArp) +(SE)ap Am) T(A A Err)
= (pAn)T. q.e.d.

Lemma 8.8. For any ac {N,, M, A M,} satisfying (1 Ar)a=mr, there
exists an element x=r,< {M,\P, M,AN,} such that

(8.11) AuAm)e = 1ynp and  (IyAme = (S*a)p, .

Proof. Consider the following commutative diagram of exact rows :

1A4, 1A,
{MA\P, S:M} (L Aio)y {MAP, MAN} (LA {MAP, MAS*M}
ANA7Z)x AANS*7)4
AN« AA7p)4

{MAP, S°M} —" {MAP, MAP} —=" {MAP, S‘M} .
The group {MAP, MAS°M} has 4 elements because of Theorem 8.2,
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(i) and (ii), and (1.7’). By Theorems 8.2, (iii), and 8.6, (i), the groups
{MAP, S°M} and {MAP, MAN} have 4 and 16 elements, respectively.
Hence (1A 7,)4 is epimorphic and there exists an element «' {MAP,
MAN} such that

(INm)sc” = (S*e)ps «

Now
AA7Zp)sdynp = LAmp = (S?70)p, by (8.9)
= AAS*z)(S*a)p, by assumption
= (AAS*Z) (LA 7o) s’
= (ANA7p)x (L A7)yt by (8.8).
Thus

Iynp— (AAZ)e" = (LAip)sX
for some element x= {MAP, S°M}. Put

k=& +ANi)sx;

then
ANz = QA7) 4’ +AAT)(AA L)X
= AAm) + A Aip)ax by (8.8)
= 1M/\P
and

(1 AN 7[0)’5 = (1 A 7’0)*’6/ + (1 A 7[0)*(1 A io)*x
= (S*)p, . q.e.d.

9. Associativity of mod 2 multiplications.
9.1. Let p be a commutative and associative multiplication in %, and
assume that »**=0 in 4. Under this assumption the exact sequence of

o . . i z . .
% associated to the cofibration S?—2» P—25S* of coefficients breaks into
the following short exact sequences

R 1 AR LA
0.1 0= iWASY L eewapy YN e asy — 0

for any W and k. In particular, for W=S° and k=2, we can choose
an element v, /%% P) such that

9.2) i¥y, = ol.

Put

(9 3) Yo = ”ik')'1 .
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Then, because of (8.8), v, defined by (9.3) satisfies (5.3). Hence any
multipilcation u, constructed in §5 by making use of the above v, is
admissible. We discuss the associativity of such a p,.

Choosing an element v, satisfying (9.2), we define a homomorphism

§ = Fuw: R(WAP) — BH(WAS?
for any W by
9.4) Fw () = QwAzp)* (2 — (o *(Lw Aip)*2Q7))),
xeh*(WAP). Since
AwAip)*u(a " AwNip)*2@7) = wlo*AwAip)*2Q0*1)
= (]-W/\iP)*x ’
x— (o (L Aip)* 2@y, is in the kernel of (1yAip)%. By (9.1) (LyAxp)*

is monomorphic. Thus ¥ is a well-define homomorphism.
Similarly as in Lemma 5.2, (i) and (ii), we see

Lemma 9.1. (i) Fw is a left inverse of (1w Anp)*.
(ii) 7 is natural in the sense that
(S4f)*'7w = Fw/(fA ]-P)*
for f: W —>W.
9.2. The following lemmas are crucial in later discussions. We
define v by using =¥y, as v,.

Lemma 9.2. For the element p,c {M,A\P, S’N,} of Lemma 8.7 there
holds the relation

FYwamLwAD)* = c*ywo ™.
Proof. For any x=h*(WANAS?) we have

AwauAmp)c’ywo ™%
= QwauA7p)*AwASm)* (2 — o’ u(o *Aw Aio) o *2R7,))
= AwAD)*x—(wAby) o’ ulo*Aw Ni) o " xQniy,)
by (8.9) and (9. 3)
= (Lw A D) x— Aw A(TAS*7)po))* (L w N io) o *2R7))
for T,=T(P, S?)
= (LwAp)* 2 —AwAx ALp)* u((lw Aig) o ?2Qv,) by (8.10)
= (LwAp)*x— u(o*(Lw AS* (i) R ,)
= Qw AP — (o *QwauNip*Aw A D) 2Qv,) by (8.9)
= AwauA7Tp)*Fwam(Lw A po)*x by (9.4).
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Since (1w amA7p)* is monomorphic, the proof is complete.

Lemma 9.3. For ac {N,, M,AM,} and x=xr,c {M,A\P, M,AN,} of
Lemma 8.8 there holds the relation

YwlwA) o Ywam = o TwanQwAr)*.

Proof. For any xchZ*(WAMAN),

LAt AT wr A pa%
= X— /"(0'_2(1 wAM/\ io)*x®75ik71)
= 2~ AwauA7)*oe Ay amAGA1p) T p(x Q1)
for T,=T(P, S?). Then, by (8.11),

AwADLY*Aw AS?a)*y e x
= AwAR)*Awau A7) Y wamX
= (IwAxyx—x',

where &'=oc A wauAUGALp) T)*u(xQ,). Here

AwamuNip)¥x’
= 0 (L an A\ G 1p) To(S%ip)) ¥ u(x @)
= o (LpauN\ G A1p)As Aip)) ¥ u(x@7,), S =57
= o (Lwpam Nl Aip)*u(x@1,)
= o w((LwamAi)**®a’l)

= (LwamNi)*x.
Hence
Ywan¥ = LwauA7p)* (& — pwlo " AwauA i) 2R 7))
= QwauA7p)* (¥’ —2") = 0.
Thus
YwamQLw Az = Ty au(QwAc)yx—2x")
= YwauQw A Do) * L A S Q¥ p %
=’y w(Aw AV c ™Y wauX by Lemma 9.2,
i.e.,
o FwaulwAr)* = v Aw A e Y wam- q.e.d.

9.3. For any element ¢ {M,AP, M,AM,AM,} we define a triple
product

9.5) e (X ZYRQW(Y ; Z)RQI(Z ; Z,) — hiti* (W ; Z,)

as the composition
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9.%) e = o FwauEFFU*p(1Qu) :
W(X; Z)RW(Y ; Z)RQWZ ; Z,)
= WX A M)Q Y NM,)QR*(Z \ M,)
— PIHIES X AM,AYAM,NAZAM,)
— ﬁi+j+k+6(W/\M2/\M2/\ Mz)
—_ il'i+j+k+6(W/\ Mz/\P)
s ﬁ,‘+j+k+e(W/\M2/\84)
s '};i+j+k+2(W/\M2) — EH’.H‘(W;ZZ) ,
where W=XAYAZ and U: WAM,AM,AM,— XAM,AYANM,ANZA\M,
is the map given by a permutation of factors as U(x, y, z, m, m’, m"")=
(x, m, y, m', 2, m"”"). t¢ is defined for all (i, j, k) and natural with respect
to three variables X, Y and Z by Lemma 9. 1.
Denote by T(2, &) the set of all triple products ¢, £ {M,A\P,
M,AMAM,}. 7e=7¢ if and only if they are equal as natural trans-
formations for all (i, j, k). Clearly

Tepg) = Te+HTe
Thus T(2, ) forms an additive group. Define a map
9. 6) 7, {MLAP, M,AM,AM,} — T(2, h)
by 7,.(8)=7:. Then, by definitions,
9.6) T, IS an epimorphism of groups.

Since #(;Z,) is a functor of Z,-modules by Proposition 3.2, T(2, k) is
a Z,~module. Thus, by Theorem 8.6, (ii), and (9. 6'),

9.7 T, k) is a factor group of Z,PZ,PZ,PZ,.

9.4. Let ac {N,, M,AM,} be an element of (4.18) and u, be the
multiplication in %( ; Z,) defined by (5.6) by making use of this « and
v, of (9.3). By (4.18) and Proposition 4.7, (i), both « and o'= Te,
T= T(M,, M,), satisfy the condition of Lemma 8.8. Let x=«, and «'=«,’
be the elements satisfying (8.11) for a and «’, respectively.

Lemma 9.4. p,(lQuy)=7¢ and u,(u,Q1)=7; for € =AuNa)x and
t=T'Au ), T'=T(M,, M,\M,).

Proof. By definition
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p1Qp,) = o Py * (Ux A T, A1) ¥ p(Ax ape @ Pya®* Ly A TiN 1p) )
for T,=TZ, M,) and T,= T(YNZ, M,)
= o ya®* e (Ix A T,AS* 1y ¥y *(Axp seny A T ALy)*n(1Q )
by Lemma 5.2, (iv)
= o' wa** o Py A FF U (1@ 1)
for W=XAYAZ and U=the map of (9.5
= 0 " VwaulwA)*a**U*u(1®p) by Lemma 9.3

= Tg.
Next, using the commutativity and the associativity of n, we have

p(pRN(xRYR2) = Ti(zQpux®y)) for T,= T(XAYAM, ZAM)
= T{o " va®™*(Izamrx A TN 1) *p(2Q (2 @)
for T,=T(Y, M)
= THo"va** (Azppmax A TA Ly T¥p(p(x @)X 2)
for T,=TZANM, XAMANYAM)
T (TS L Y wan(T Ay A)*U*u(p@1) (2R yR 2)
for T,=T(ZAM, X\Y)
= (Lxav AT oy wam(T' Ay A )P*U* p(1Q p) (2 Ry R 2)
for T,=TWM, ZAM).

Thus,
2, ®1) = o2y (Ax p vy A Ti ALy V¥ p(p,®1)
= o Py w ™ T2y g (T' Ay A )Y* U* p(1Q )
= o 'y wd** Yy AL A T' (A A ) U* u(1Q@ )
= 6 " VwauQw ALV QAT Ay A ) U*u(1Q u)
by Lemma 9.3
=T¢. q.e.d.

Let p4 denote the admissible multiplication defined by

wi(x®y) = T"*p(yRx)

for xehi(X;Z,), yehi(Y;Z,) and T”=T(X, Y). Then, by (7.2) and the
similar computations as above, we obtain

Lemma 9.5. p,(1Qus) =71y, pt(1Q@u) =717, p(ps®@1) =1y and
1w, @) = 7o for ¥ =AyuAd)e, &' =AyNa)’, §'=T'AyNa) and
¢ = T'(Ly A ).

9.5. Here we discuss first the case of Z=K.
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Lemma 9.6. In case h=K, ,82;L2(;L2®1)(1®32®32), ﬁzl‘*z(ﬂ’z@l)(az(gl
®3,) and Bu,(u,R1)(8,R8,Q1) are triple products.

Proof. By Corollary 7.8 and (A,) for u, we have
lel‘z(ll'z»@l)(l@az@az) = Bzﬂ2(1®ﬂz)(1®82®82)

= p(1Quz) + 1 (1Qp,)
Borro(p,@1)(8,R8,R1) = p(ut@L) + pa(p,®1) ,
and
Borto(1,R1)(8,Q1R3,)
= pa(1Qu,) + (1R p,) + Bopro{1,Q1)(8,R8,21)
= p3(1Qu,) + (1R o) + 1o R1) + (12, 1) .
Thus, as sums of triple products, they are triple products. q.e.d.

Lemma 9.7. #2(M2®l)y Bz#z(l‘z@l)(1®82®82), le‘z(/‘z@l)(&z@l@sz)
and B,u(1,Q1)(8,R88,R1) form a base of T2, K).

By Proposition 3.4, u,(u(¢;Qk;)@ks), 1=1, j, k<2, form a base of
K*(M,ANM,\M,;Z,). Applying the four triple products on «,Q«,Q«,,
. Qr,RQk, and x,Qx, @ x, we see their linear independence. Then, by
(9.7), we conclude the lemma and see also that

9.8) T2, K) =Z,9Z,PZ,DZ,
and
9.8) in case h =~ K, t7'(0) = 2. {M,AP, M, A M,A\M,} .

Lemma 9.8. p,(1#,®1)=u,(1Q®u,) in case h=K.

Proof. By the above lemma we can express u,(1®u,) as a linear
combination of Mz(ﬂz@l)y Bzﬂz(ﬂz@l)(1®az®82)» Bz#z(#z@l)(s'z@l@gz) and
Bop(p,®1)(8,28,81). By (A;) p,(1Q®pu,) and p,(p,®1) have the same
values on #x,Qx,Qu,, £,Qk,Rx,, and x,Q@«,Q«,, which means theat

M2(1®#2) = #2(#2@ 1)

by the argument in the proof of Lemma 9.7. q.e.d.
By (9.8"), Lemmas 9.4 and 9.8 we see that

E—L'EZ' {Mz/\P, Mz/\Mz/\Mz} s
that is,

Te = T¢

for any % satisfying »**=0. Hence we obtain
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Theorem 9.9. Let u be a commutative and associative multiplication
in b and 7**=0in h. There exists an associative admissible multiplication
B iR h( ; Zz)

By Corollary 7.7 and Theorem 9.9 we have

Corollary 9.10. Under the assumption of Theorem 9.9 and 7**=0,
there exists a commutative and associative admissible p, in h(;Z,).

10. Associativity of mod ¢ multiplications (g=2).

10.1. Let % be given with a commutative and associative multi-
plication u. For each element #e< {S‘M,, M,AM,AM,} we define a
triple product

(10.1) e (X Z)QW (Y Z)QR(Z 3 Z,) — RHTHW 5 Z,)
as the composition
(10.1%) ¢ = o EFRURu(1Qp) :
WX Z)RQW (Y Z)RQWZ 5 Z,)

= P XAM)QW (Y AM)Q(Z N\ M,)

— RIS (X AMNA Y ANMNAZAM,)

s fli+j+k+a( W/\ Mq/\Mq/\ Mq)

> IR WAS M)

—> 'k'i+j+k+2(W/\Mq) — Ei+j+k(W;Zq) ,
where W=XAYAZ and U: WAM,AM,AM,— XANM,AYANMANZAM,
is the similar map as the corresponding one in (9.5). +¢ is defined for
all (7, j, k) and natural with respect to three variables X, Y and Z.

Similarly to 9.3 we denote by 7(q, %) the set of all triple products
e, E€{S'M,, M,AM,AM,}. By an easy relation

Terg = T Ty
T(q, k) forms an additive group, and the map
(10.2) 701 S My, M_AM,AM} — T(q, k)
defined by 7,(&)=r; satisfies
(10. 29 T4 1S an epimorphism of groups.

10.2. We shall discuss the case ¢=2 (mod4). Choosing an @ of
(4.17) and using notations of (7.6), by Proposition 7.9, (i), we have a
direct sum decomposition
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(10.3)  {S'M,, M;AM,A\M,}
= (ANIAD{S' My, "M} D" Ni)s{S*M,, S’ Mg}
BANT(S%))x{S*M,, S*M} B(ALNA")S%") {S*M,, S*M,}
Zg .0PZ, if q is odd
=3 (Z.PZDZ,DZq,0)DZ,DZ,PBZ)D(Z,BZ,PBZ,)
O(Z,BDZ,)  if ¢g=0 (mood 4)

by Theorem 4. 1, where (LAZA)x%, (7" Ab)y, (AAL"(S%))y and (AA")S%"),
are all monomorphic. '
Here we make an assumption that

(10.4) (7 )** = (v )** = Ly An)**=0 in h, where 7 and v are Hopf maps
of 1-stem and 3-stem respectively, and M=M,.

Under this assumption (I7z)** = (fvz)** = (in*z)** =0, (9,+n,)** =
Ay An)y**=0 by Lemma 7. 2, 73** = (inzn,)**=0 and »}** = (n,inz)**=0 by
Corollary 4.2, (i). Thus, defining A as a subgroup of {S*‘M,, M,A M, A\ M}
generated by (LAZA7)x(inz) in case g odd, or by {(1AiAi7),~images of
of %%, 73 and ivw, (I’ Ai)*- and (LA:”(S%)),~images of n,+7%, and i7’r,
(A A)S%") (i)}, we see that 7, factors through the projection :
{S*‘M,, M,AM,A\M;} — {S*M,, M,AM,\M,} | A=B, say, and induces an
epimorphism

(10.5) 1¢:B—>T(q, h).
Now, by (10.3) and the definition of A we have
VA ] s odd
(10.5) B~ { p zf qgiso
Z,PZ,PZ,PZ, if ¢=0 (mod 4).

Putting v,=#"*(¢’1), define an admissble u, by (5. 6"). Then it satis-
fies (5.6”). Remarking that ai’=:¢” by (7.5)-(7.6), routine calculations
give a proof of the following

Lemma 10.1. p,(1Qpug)=1¢ and p(u,Q1) =71 for £ = AyAi")S%"”
and §= (" N1y) Ay T)S*”, where M=M, and T=TM,, S?).
In case ¢=0 (mod 4), define elements

7e{S*M,, N} and #<{N,, SM,}
by
! =i+i5 and # = ' +77,.
Then, the obvious relation 1=i"+i’z, (which was used in the proof of
(5.4%) and 2.7=0 (in the present case) imply the relation
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1=i#+in,.
We define v/ as vy of (5.4) making use of #*(s%1) as v,; the above
relation implies the formula

Vi = Lw AT

as in the proof of (5.4’). Define an admissible n/ by (5.6’) making use
of the « and the v%,, then we have

Lemma 10.2. p,(1Qu))=7, p(AQ@uo)=r1¢7 and po(ue®@1)=ry for
= AuAai)S%”, & = AuNi")SNat) and ¢’ = (i’ Ni”") Ay AT)S%", T =
TM,, S?.

The proof is routine likely as Lemma 10. 1.

10.3. We shall discuss in a parallel way to 9.5, i.e., first the case
h=K. In this case the assumption (10.4) is satisfied by Theorem 2. 3.

Lemma 10.3. In case h=K and ¢=0 (mod 4),

(Q/z)’Bqﬂq(ﬂq@l)(1®sq®8q) ’ (4/2) 'ﬂq#q(ﬂq@l)(aq@)l@Bq)
and (4/2)'Bqﬂq(ﬂq@l)(8q®sq®1)

are triple products.
Proof. By definitions

to— g = o Aai) ™ (Ax A TALpy)p for T = T(Y, M,)
— I AU A TAL by (4.18)
= (g/2)-Br**(@E Ni)**(1x A TA1py)n by Proposition 6.4
= (Q/Z)'ﬁqll'q(sq@sq)-

Then, as differences of triple products, the following are also triple
products :

l"q(1®ﬂ;) - Mq(1®ﬂq) = p(1Q(ne— 1q))
= (9/2) p(1@Lqpo(8,R8,))
= (9/2)+Bard(1@ 1a)(1RQ8,R8,)
= (9/2)-Baro(1,R1)(1Q8,8,) by (Aj),
ﬂq(/’«é@l) - #q(ﬂq@ 1) = (q/2) 'Bq#q(#q@ 1)(8q®5q® 1),
ri(1® ) — nd(1®nq) = (4/2)*Bare(8,Q8qp)
= (4/2)'Bqﬂq(#q® 1)(8q®8q®1 + 84 ®1 ®8q) . Q~e-d'

Lemma 10.4. In case ¢=0 (mod 4),

Mq(#q@l)’ (q/z)‘leqﬂ'q(ll«q®1)(1 ®8q®8q) ’ (q/z)'ﬁqﬂq(ﬂq®1)(8q®1 ®84)
and (q/2) 'Bql“q(l‘*q@l)(sq@aq ®1)

generate T(q, K).
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The linear independence of the four triple products (with p.(u,®1)
replaced by (¢/2)-pu,®1)) over Z,, can be seen in the same way as
in the proof of Lemma 9.7. Since u,(u,®1) is exactly of order ¢ as is
easily seen, the proof is completed by (10.5). We can also conclude that

(10.6) 727(0) = 0
by (10.5%) in case 2=K and g=*2 (mod 4).
Lemma 10.5. In case h=K and q=2 (mod 4)

I’Jq(llfq®1) = Mq(1®ﬂq) .

Proof. A similar discussion as the proof of Lemma 9.8 shows that

Mq(]- ®,qu) = S'Nq(#q®1)
for s=0 (mod ¢g). Then (A,) implies that

s=1 (mod ¢q) . q.e.d.
10.4. Lemma 10.5 and (10.6) imply that
E=¢ mod A,

i.e.,

TE = T¢

for any % satisfying (10.4) for the case ¢==2 (mod4). Thus p, is as-
sociative under the assumption (10. 4). Since we can choose the u, used
in §7 as the same one used here, we obtain

Theorem 10.6. Let 7 be given with a commutative and associative
multiplication. In case q=2 (mod4), if h satisfies (nrgy** = (vr,)** =
AuAN¥*=0, M=M,, then there exists a commutative and associative
admissible multiplication in h(;Z,), which is unique in case q odd.

The conditions of Theorem 10.6 are satisfied always if ¢ is prime
to 2 and 3, or if ¢ is odd and (vz,)**=0.

In case ¢=2 (mod 4), from Theorems 3.14, 9.9 and 10.6 follows

Theorem 10.7. Let & be equipped with a commutative and associative
multiplication p and q=2 (mod 4). If h satisfies n**=v**=0 (or n**=
vI¥=p*¥=0), then there exists an associative (or a commutative and
associative) admissible multiplication in h(; Z,).

By Corollary 3.13, (6.1), Theorems 9.9, 10.6 and 10.7 we have

Il

ary 10.8. For any integer q>1 every admissible multiplication
is associative.
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In case ¢ odd, f{\O/( ; Z,) has a unique admissible u, (since f{\é‘z(S° 3 Zg)
=~() and satisfies the assumption of Theorem 10.6. Hence

Corollary 10.9. For q odd, the unique admissible multiplication in
KO(; Z,) is commutative and associative.

11. Multiplications in Bockstein spectral sequences.
11.1. Let % be a cohomology theory and p a prime. Define a
(mono-graded) exact couple [11]
C(X;Z) = {DKX; Z,), EXX; Z,), i\, 4, k}
by putting
D¥X;Z)=3Di(X;2,), EXX;Z)=32EX;Z,),
DiX; 2) = KX), E{X;Z)=KX;Z),
i, = b, jx = Pp and kl = 8#,09
where p is a map sending every element to its p times. The exactness

of (2.3) shows that C,(X; Z ,) is an exact couple. From the successive
derived couples

C(X;Z)=(D¥X;Z), EXX; Z), i,, j,, b}, 7r>1,
we obtain a (mono-graded) spectral sequence
{EXX;2)=SEAX;Z,), r=1} with d, =jk,,

which is called the mod p Bockstein spectral sequence of X for }.

The naturality is clear. Replacing X by X* we obtain the mod p
Bockstein spectral sequence {E}(X;Z,), r>1} of X for h. By the
definition of derived couples we see that

DXX;Z,)=p"-i*(X) for r>1.

When % is of finite type, i.e., #¢ (a point) is finitely generated for
each i, then Z*(X) is of finite type for any X (finite CW-complexes);
thus every Bockstein spectral sequences for % converge to an EX*-term.

11.2. The Bockstein spectral sequences for %4 have many analogous
properties to the ordinary Bockstein spectral sequences. The proofs
are also similar to the ordinary cases if we use (2.3), (2.7) and (2. 10)
(instead of the choice of canonical basis as is often seen in literature).
So we give only a sketch of them and the proofs are left to readers.
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Proposition 11.1. p,r B (X; Z,) > k(X; Z,) and p,: F'(X)—
k(X Z,) induce homomorphisms
1, B(X; Z,y)— EFiXx; Z,)
and g, W X)~E(X;Z),
and the following diagram

8‘07’0 . ppr =i .
WX Zy) —> W(X) > h (X5 Zp)
l pr—-l .qf lr

Ei(X: Z,) s DIX; Z,) 2 BUX; Z))

is commutative for all i and r>1, where p"' is a map sending xeiz"‘(X)
to prexeDX; Z).

The proposition is clear for =1 by putting /,=id and ¢,=p,. By
an induction on 7, we can prove this proposition.

Proposition 11.2. (i) ¢7'(0)=8,-1,2 (X5 Zy-1)+p-H(X).
(i) 170V =8y 1wk (X5 Zpr—2)+ D5l (X5 Zpr-1) for
b (X5 Zy )= WX 5 Z,0) of (2.6).
(iil) 7, is epimorphic.
(V) Lpyor phi(X; Zy+)=d70) in EXX;Z,).
In the above proposition we regard A*(X;Z = {0}. Properties

(i)-(iv) of the above proposition can be proved by a simultaneous
induction on 7.

Corollary 11.3. If h is of finite type, then the homomorphism
q.: B¥(X)—>EYX;Z)
is induced by p, for each i and epimorphic, and
4=40) = B8y (X Z,9) 45X

For any abelian group G we identify Tor (G, Z,) with the subgroup
of G consisting of all x&G such that ¢g-x=0. Then, by the exactness
of (2.3)

8 b X5 Z,7) = Tor (B(X), Z 7).
Thus
(11.1) g:7%(0) = Tor (B(X), Zy-1)+ - (X)

and
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(11.2) [750) = p, Tor (A(X), Zp,-1)+p*ﬁ"(X; Z 1)
for all ¢. If % is of finite type, then
¢-'(0) = 3 Tor (B(X), Z 5)+ b+ (X)
= p-tors i X)+p-H(X)
= tors B(X)+p-H(X),
where tors G (or p-tors G) denotes the subgroup of G consisting of all

torsion elements (or of all torsion elements of p-primary order). Thus
we have

Theorem 11.4. If h is of finite type, then

ENX; Z,) =~ (W(X)/tors H(X))®Z,
for all 1.

l,, q, and 8y, induce the corresponding maps in the following
diagram (denoted with primes):

Spr 0
X Zy)170) =5 W(X0/a7(0)

ll: jq;

-1 d’ i
E:N(X;Z,) — EXX;Z),

which is commutative by Proposition 11.1. /. is isomorphic and ¢/ is
monomorphic by Proposition 11.2. Thus

a.E7N(X ;5 Z,) = 8 (W (X5 Z ) [17(0))
= (Tor (B(X), Z )+ b+ W(X))/(Tor (B(X), Zy-1)+p+H(X))
== Tor (#(X), Z,))/(Tor (h(X), Zy-1) + p-Tor(h(X), Zy+)),

by which we obtain

Theorem 11.5. d.E: '(X; Zﬁ) s a Zp—module for every i and r>1.
When h is of finite type, then dim d.E}1"(X; Z,) is equal to the number
of a’z;rect summands isomorphic to Z  in a direct sum decomposition of
tors A*(X) into cyclic groups of primary orders.

By Theorems 11.4 and 11.5 we see that, in case % is of finite type,
if we know Bockstein spectral sequences for all prime p then we can
determine A*(X) additively.

11.3. Let p be a prime and ¢g=p", r>1. Denote =,: N,—S*M, by
m,q and, in case g=+2, i': S°M,—~N, and =’: N,—~S* by i; and =; respec-
tively. Choosing a sequence {a,}, a,c {N,, M,AM,} of (4.17) we get
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a sequence {a,}, a,=a,ic {N,, M,AM,}, of elements of (4. 18).

Let % be given with a commutative and associative multiplication
w, and assume that »**=0 in % when p=2. Put y,=v,,==;*(c’l) in
case q=+2 (cf., (5.4)), and v,=v,,==fy, in case ¢=2 after choosing
v, ER(P) such that i}y,=¢’1 (cf,, 9.1). Making use of «a, and v,,
chosen above, we define an admissible multiplication p, for each ¢ by
(5.6%). u, is associative (or commutative and associative) under suitable
conditions for % (Theorems 9.9, 9.10, 10.6 and 10.7).

u, defines a multiplication in E¥;z ). Since d,=3, is a derivation
by (Az), the term E¥(;Z ,) has a multlphcatlon induced from w,. Our
next task is to prove that By induces multiplications into successive
terms E¥*(;Z L) r=3, so that {E*;Z ), r=1} becomes a functor of
spectral sequences with a multlphcatlve structure.

11.4. Consider the following diagram (in the stable range) for »>2:

i 1
sM, 2 N, 2 MM, 2278 s,

[szt [i/\i ]szt
N7

) To,p ap ? 2
SM, % N, —% M,AM, —% SM, .

By an easy calculation making use of (2.5) we see that the right square
is commutative, i.e.,

(11.3) AA7HYAAT) = (S(A A7) .
The left square is generally not commutative. Nevertheless,
(AN7)s{i (S Dmo p— (IA et}

= 7,44z, p— (ST(A A7 ), by (4.18)
= (ST)mop— (Do = 0 by (4.18) and (5.2),

that is, there exists an element
b,e{N,, SM;}
such that
(11.4) (ANL)sby = agiy(S Dz, p— (1A Det,, .
We have

Py pite = Pq,pa'—z(aqiclz)**(l/\ T A
= o (g (S AN T, A p
= oy wlad (S T)m, p)* (AN Ty A ¥ p
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and
1) (Pap®Pgp) = o "y walf AN T, A1 (T QT*)
= o "y w((IADa, ) *AAN ToA D p

where T,=T(Y, M,), W=XAY and vy : B(WAN,)—=(WASM,).
Thus by (11.4) we have

(11- 5) pq,pﬂp_ Mp(pq,p ®pq,ﬁ) = oy W((l N iq)bq)**(l A Tq/\ 1)*#' .

11.5. Here we shall discuss the groups {N,, SM,} for r>2.
The case p=2. By a similar discussion as the proof of Theorem
4.1 we see that

(11.6) {SM,, SM}} ~ Z,0Z,
with generators S1 and (Si,)n(Sx,), and
(11.7) (SM,, SM}} ~ Z,&Z,

with generators (Si,)7 (of order 4) and (S1)7(S*z,) (of order 2), where
7€ {S°M,, S*} and < {S*, SM,}.

Consider the following exact sequence (1.5) associated to the cofibra-
tion S*—>N,—S°M,:

SZ ES k
S (sm,, sy 5 (N, sM

(2(S=))* (SM,, SM,} .

{5, SM,}
i
E— {Szy SMq}

{S°, SM,} =Z, generated by (Si,)n (by (4.2)), and
((S*7 ) (Sign = (Sig)n*(S°z.)
= 2-(Sig)5 by (4.2));
thus by (11.7) we see
(11.8) ¥ {S’M,, SM,}} = Z,DZ,

with generators (Sig)in,, and (S1)i(S*z,)x, ,.
Next, {S? SM,}=Z, generated by Si, ((4.2)) and (1(Sz,))*(Si,)=
(Si)n(S7,) is non-zero and of order 2 by (11.6); hence

(11.9) i {N,, SMj} = Z,,
generated by 2-Si,.

Lemma 11.6. {N,, SM,} ~Z,PZ, with generators (Si,)ijr,, (of order
2) and (Si,)sr, (of order q) for q=27, r>2, where £ {P, S} (cf., (8.3)).
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Proof. First look at the group {P, SM,}. We compute this group
in two ways. Discussing an exact sequence (1.5) for S'—>M,—S? we
see by (8.2) that

{P, SM,} =~ Z, with a generator (Si,).

On the other hand, discussing an exact sequence (1.5) for S°—»P—S* we
see by (4.2)-(4.2') that

{P, SM,} =~ Z, with generator dzp.

Thus we see that

frp = (Si,)€ .
Then
(9/2)-(Sig)em, = (SI)(Si,)Cn, by (2.5)
= (SD)mpm, = (SD)iH(S*m,)7, , by (8.8).
And
i§((Sig)em,) = (Sig)lip by (8.8)
= 2.5i, by (8.3).

These, combined with (11.8) and (11.9), prove the lemma.
The case p odd prime. Since N p=Sz\/SZM L, W€ have the direct sum
decomposition

{N,, SMg} = =;*{S*, SM} Dr% ,{S’M,, SM,} ,

where #;* and z%, are monomorphic. Here, {S?, SM,} ~Z, generated by
Si, ((4.2)), and {S*M 0 SM,} =0 as is easily seen from an exact sequence
(1.5). Thus we obtain

(11.10) {N, SMj} =Z, generated by (Si)=, for p an odd prime and
g=p’, r>2.

11.6. Now we shall discuss the deviation
Paptta— 1 y(Pas®Pap),  q=p" and r>2.
The case p=2. First we prove
Lemma 11.7. There exists a relation
7, \NE = (S7)(LyA7p)
for T {P, S?} and 7€ {S°M,, S?.

Proof. Discussing an exact sequence (1.5) for M,AS*—->M,\ P—M,S*
by (4.2) and (4.2) we see that
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{M,AP, S*} = Z, generated by (S%)(1yA7p).
On the other hand, discussing an exact sequence (1.5) for S'AP—
M,AP—-S?A\P by (8.2) we see that
{M,AP, S*} = Z, generated by =,AC.
Thus the lemma follows.
By Lemma 11.6 the element b, {N,, SM,} can be written as
b, = ¢ (Siq)ﬁ”o,z +&- (Siq)fﬂl
with €7, and &<Z,. Then, by (11.5)
Pqtbg— Mz(pq,z ®Pq,z)
= &0 2y (i N iq)'ﬁ”o,z)**(l/\ TN D*u
+& o2y w(({g N ig)Tm, ¥ (AN ToA D
Here
oy W((iq/\iq)"_lﬂo,z)**(l/\ Tq/\ 1)*,“
= o (Ax A TN 1sY* (08, ,Ra8,,) by Lemma 5.2, (i)
= 0'_27/**0'211'(84,0®84,0) ’
where T,=7(Y, S") and S=S’, and

o "y wl(fg N i)Em ¥ AN Ty A1)
= o " VwarulwA Do) o™ (Em)**e’u(8,,®8,,) by Lemma 9.2
= 0" FwAm((SE)S*7)De)** 0 1(84,0 R3,40)
= oY wam((SD)Ap A7) TY**0*u(8, ,R8,,) by (8.10) for T= T(M,, P)

= o 'Y wam(m, A E)** o' 1u(8,,®8, ) since T(S% S*)~1
= O'“VW/\M(]-M/\”P)**(Szﬁ)**0'4ﬂ(sq’o®84,0) by Lemma 11.7
= o7 * o 1(8,,884,0) by Lemma 9.1, (i).

Therefore, for x7/(X; Z,) and yep/(Y; Z,),

pq,zl’fq(x ®y) - #z(pq,zx ®pq,zy)

=&, 0'_27—1**0'211'(81037 ®Sq,oy)

= &, M(M(Sq,ox ®34,oy) ®7*1)

= &, ILL(IL(Sq,ox ®8q,oy) ®a)

= &, l‘z(l"z(sq,zx@&q,zy) ®a),
where &,=&+(& mod2)eZ, and «a is an element of 5 %S°; Z,) such that
a=7*1 via the identification %7*%(S°; Z,)=A(M,). Since §,,a=0on*1=0,
there exists an element e,/ %S?) such that a=p,a,. Thus we obtain
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Proposition 11.8. Let q=2", r>2, xchi(X; Z,) and ych(Y; Z,).
There holds the relation
Pq,zlbq(x Q) — 12(Pg .2 RP4 . Y)
= er‘ﬂz(ﬂ2(34,2x®84,2y) ®pP,a,)
for an element a,=h *(S°) (independent of v) and &,€2Z,. If 7¥*=0ink,
then the right hand side becomes zero.

The case p odd prime. By (11.10) the element b,&{N,, SM,} can
be written as

b, = eq'(Siq)”;
with §,&Z,. Then, by (11.5)

Pa pia— 1 (P, s@Pq »)
= &gra 7y W”;v**(iq/\iq)**(l/\ TN
= Eooa U R (U NP AN ToA D) ¥ by (5.4
=0 by (5.2).
Thus we obtain

Proposition 11.9. Let p be an odd prime and q=p’, r>2. There
holds the rvelation

Pgp = ll’p(pQ,P®Pq,P) .

11.7. p, gives a multiplication m, on Ex(-Z ,) by putting m,=pu .
Since 3, is a derivatiori for u,, d, is also so for m,; hence m, induces
a multiplication m, in E¥(;Z,) passing to quotients. Assume that m;,
2<i<r, is defined so that m, induces m;,, passing to quotient 1<i<r—1.
Propositions 11.1, 11.8 and 11.9 show that

Lpdx®y)—m(l,x &1, )
0 if podd
B {8,-m,(m,(drlrx®drlry)®qrao) if ¢g=2
for any x€hi(X; Z,) and ye /(Y ; Z,), where g=p", §,€Z, and a, is an
element of 57%S°. The right hand side of (11.11) vanishes if d,/,x=0
or d,/,y=0; in particular

m(m,(d,l,xRd,l,y)Rq,a,)
= m,(m,(1,8,2R1,8,y)R!,p.a,) by Proposition 11.1
= L, pd(1d(8,2 R8,y) RPa,)
= 1,8q1q( o ®3,9) QP ,a,)
= d,m,(m,(l,xRd,l,y)Rq,a,) .

(11.11)
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Hence
ad,m(l,xQ1,y) = 1,8,u,(xRy)
= lnu'q(aqx ®y) + ( - l)ilrll'q(x ®qu)
= m(dl,xR1,y)+(—1im,(,xQd,1,y),

where deg x=i. Since /, is epimorphic by Proposition 11.2, (iii), the
above formula shows that d, is a derivation for m,. Therefore m,
induces a multiplication m,., in E¥.,(; Z ,) by passing to quotients. Thus,
by an induction on 7, m, is defined for all r>1.

We saw also that d, is a derivation for m, and for all »>1.

Next we shall discuss the commutativity of m, for p=2 and r>2.
Since p, is commutative for »>2, by (11.11) we have

m(l,xQ1,y)+ & ~mm(d,1,xRd,1,y)®q,a,)
= lLux®y)
= L,T*py®x) = T*l,p,(yRx)
= T*m(l,yRl,%)+& -m(T*m,(d,1,yRd,1,x)Rq,a,),
where T=T7(X,Y) and the naturalities of /, and m, are used. This

formula shows first that the commutativity relation holds if d,/,x=0 or
d,l,y=0; in particular

T*m,(d 1, yRd,l,x) = m (d,lxQRd,l,y).
Thus
m,(l,x®1,y) = T*m,(l,yRI,x)

for any x€74(X; Z,) and yehi(Y; Z,), i.e., m, is commutative for p=2
and »>2 by Proposition 11.2, (iii).
Summarizing the above discussions we have

Theorem 11.10. Let % be given with a commutative and associative
multiplication n, and assume that n**=0 in % in case p=2. For every
prime p a suitable admissible multiplication p, induces a multiplication

m,: EXX; Z)QFY; Z,) > EI(X\Y; Z,)

(tn the sense that it is defined for any i, j, X and Y such that i) linear,
ii) nmatural and iii) has a bilateral uwit 1€E%S°; Z P)) for each r>1.
m, is compatible with u in the sense that

mJq,Rq,) = q,u .

d, is a derivation for wm, and m, induces m,,, by passing to quotients
(my=p,). m, is commutative for r>2. (If p is odd or if 7**=0 in h
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then m, is also commutative.) If p=3 or if (vr)**=0 in h then m, is
associative.

11.8. Finally consider the case #= K. Since K*(a sphere) is torsion-
free, every Bockstein spectral sequence of a sphere for K collapses by
Theorem 11.5, i.e., denoting the Z-graded »-th term by E? in this case,
we have

(11.12) E¥S";Z,) = R¥S";Z,) for 1<r<c.

In the present case, since 7**=y**=0 in K, E¥ ;Z ,) has an associative
multiplication m, for every p and r>1 with properties described in
Theorem 11.10. Through the isomorphism (11.12) we have a natural
map

(11.13) Bo, ENX;Z,)—>EA(X;Z,), 1<r<oo,
defined by
(11.13) Bs, =m( Rq,07°g)

for any ¢ and X, where g is the reduced Hopf bundle over S% Clearly

(11. 14) Bss = B,, the mod p Bott isomorphism,
(11.15) d,Bs, = Bs,4d, and B, , induces (35 ,., by passing to quotients.

Since B, is an isomorphism ((6.2)), (11.14)~(11.15) imply
(11. 16) Bs,» s an isomorphism for every p and r>1.
From (6. 4) follows

(11.17) m(Bs,,®1) = m,(1QBs,) = Bp,m, .

Thus, identifying Ei(X; Z ,) with Ei-xx;z ,) by B»,,, we obtain a functor
of Z,-graded spectral sequences

EX;Z)=EN;Z)DEX;2Z), r=1,

for each prime p with E¥(; Z ,)=K™*(;Z,) and with a multiplication {m}}
induced by {m,}, which coincides of course with the mod p Bockstein
spectral sequence for K*. Since d, is a derivation for m}, mf,, is
induced by m} and mf=u}, the Kiinneth isomorphism (Theorem 6. 2)
implies inductively

Theorem 11.11. In case h=K, m} induces an isomorphism

EXX;Z)REXY;Z,)~EXXAY;Z)
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for any X and Y, 1<r<co, and for each prime p.

12. Appendix.
12.1. We consider here some properties of the maps @ of (2.5).

Lemma 12.1. Let a be any integer. The element ac {M,, M,} satisfies

the relation
{lM if ais odd
i 1M = . .
0 if a is even.

Proof. Let P” be real projective n-spaces and i:M,=P?’CP?® the

inclusion. Then, for a: M,— M,
{iay e[M,, P*1=[M,, Pl =H'M,; Z,) = Z,.
Thus
ia ~1ib if and only if a =0 (mod2).

The homomorphism

{M,, M} — Hom (KO(M,), KO(M,))

defined by the assignment a—«* is an isomorphism, and the map

i*:l/{\O/(Pa)QI/{\O/(MZ) is also an isomorphism [1]. Hence a=b6 (mod 2)
implies that (i@)*=(ib)*, whence @*=0* whence @="5. Here, taking
b=0 or 1 we obtain the lemma.

Theorem 12.2. Let a be any integer. The element ac {M,, M.}
satisfies the relation

o {a-lM if q=£2 (mod 4)
T\ aly+@a—1)/2)-igm, if g=2 (mod 4).

Proof. By an exact sequence (1.5) for S'->M,—S* we see easily
that
a=aly+x-ign,

for xeZ,, where x=0 in case ¢ odd. In case ¢ even, for ¢/2: M,—~M,,
(¢/2)a = a-(g/2)+x-(q/2)igm,
= a-(q/2)+x+im,.
On the other hand
(¢/2)a = a(g/2) = a*-(¢/2)
by Lemma 12.1. Thus
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x-im, = ala—1)-(q/2).
Here
0 if ¢=0 (mod 4)

2-a/2) = {z‘mq if g=2 (mod 4)
by (4.13). Therefore
_ {0 if ¢=0 (mod 4)
a(a—1)/2 (mod 2) if ¢=2 (mod 4). q.e.d.
12.2. From the above theorem we obtain the following corollaries.
Corollary 12.3. If q=2 (mod 4) or if 7**=0 in h, then
r¢(x) =r-x

for any integer r and ry: W¥(X; Z)—W*X; Z,).

Corollary 12.4. Let d=(q,r) and {M,, M,} ©q/d (a generator). For
alg/d)e {M,, M.}, we have

alq]d) = {“'W if q%2 or if r2 (mod 4)

a-q/d+(a(a—1)/2)im, if g=r=2 (mod 4).
Corollary 12.5. For a, b and a+b of {M,, M,},

a+b if q%2 or if r=2 (mod 4)

+b= _
¢ {d+b+ab-z’,777rq if q=r=2 (mod 4).

Corollary 12.6. Propositions 2.4 and 2.5 hold under the assumption
that q=2 or r=2 (mod 4) or 7**=0 in h.

Corollary 12.7. The terms E¥, r>2, of mod 2 Bockstein spectral
sequences are Z-modules. (If p is odd or if v**=0 in k, then E*(;Z )
for k are Z ~modules for r>1.)

Because : for r>2,

17(0) D2, (X;Z,-1)
D240y -k (X5 Zy) = 204X ; Z,),

whence Proposition 11.2, (iii), proves Corollary 12.7.
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