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GENUS AND CLASSIFICATION OF RIEMANN SURFACES*'

BY

MITSURU NAKAI

Introduction

1. Consider two properties for Riemann surfaces R:
(1) there exists no harmonic Green's function on R:
(2) there exists no non-constant harmonic function on R with finite

Dirichlet integral taken over R.
It is well known that (1) implies (2) but (2) does not imply (1).

On the other hand, for finite Riemann surfaces**', the conditions (1) and
(2) are equivalent. Hence the Riemann surfaces satisfying (2) but not
(1) must be of infinite genus. In this aspect, there naturally arises the
question that, under what condition on genus, Riemann surfaces with
the property (2) satisfy automatically the condition (1).

The main purpose of this paper is to give a quantative condition on
the distribution of genus which assures the implication from (2) to (1).
The condition to be given is satisfied for finite Riemann surfaces. So
our result which will be stated below may be regarded as an extension
of the fact that (1) and (2) are equivalent for finite Riemann surfaces.

2. Before stating our main result, we need some preliminary defini-
tions. Let R be a Riemann surface. We denote by [C19 C2~] a pair of
mutually disjoint simple closed curves C1 and C2 on R satisfying the
following two conditions :

(3) C1 and C2 are dividing cycles of R, i.e. the open set R—Cf consists
of two components (ί = l, 2)

(4) the union of C1 and C2 is the boundary of a relatively compact
domain (C19 C2) of R such that (Cί9 C2) is of genus one.

We say that two such pairs [C1, CJ and \C{, C£] are equivalent if
there exists such a third pair [Cϊ, C£] that

*) This has been done under the scholarship of the Yukawa Foundation.
**) We shall say that R is a finite Riemann surface if R is of finite genus.
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This relation is actually an equivalence relation and so the totality of
such pairs [C19 C2] is divided into equivalence classes. We call each
equivalence class H a handle of R. Clearly the totality of handles of R
is at most countably infinite.

Let G be a subdomain of R and H be a handle of G. Then by an
obvious identification, H may be considered to be a handle of J?.

An annulus A in R is said to be associated with a handle H of R,
A e H in notation, if there exists a representative [C1 , CJ of H with
ACCC^C,) satisfying

(5) each component of the relative boundary of A is not a dividing
cycle of domain (Cl , C2)

(6) each boundary component of the relative boundary of A is not
homo topic to any component of an arbitrary level curve of the harmonic
function in (Cly C2) with boundary value 1 on C1 and 2 on C2.

Roughly speaking, conditions (5) and (6) may be summerized as
follows : each boundary component of the relative boundary of A rounds
the "hole" of (C19 C2).

Now consider a Riemann surface R in which there exists a sequence
(AH) of annuli in R satisfying the following conditions :

(7) An£Hn, where (Hn) is the totality of handles in R:
(8) Anr\Am = 0 (empty set) ifnψm;
(9) Σn I/mod A,< oo,

where mod A is the modulus of the annulus A. For convinience, we shall
say that such an R is almost finite Riemann surface or that R is of almost
finite genus. Then our result to be proved is stated as follows :

Theorem 1. For almost finite Riemann surfaces R, the following four
conditions are mutually equivalent :

(a) there exists no harmonic Green's function on R
(b) there exists no non-constant positive harmonic function on R
(c) there exists no non-constant bounded harmonic function on R
(d) there exists no non-constant harmonic function witn finite Dirichlet

integral on R.

3. Finite Riemann surfaces are clearly of almost finite genus. In
order to show that our theorem is not a formal extension of that for
finite Riemann surfaces, we must show the existence of an almost finite
Riemann surface R with (1) (or without (1)) which is not of finite genus.
For the aim, consider the Riemann sphere S; |z|<oo. Let (an) and (bn)
be two sequences defined by

an = 3n-2 + 2 exp(-w2)
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and

where » = 1, 2, • • • . Let S0 be a subdomain of S obtained from S by
cutting along all intervals \_an, bn~]. Patch two such copies crosswise
along \_any bn~], w = l, 2, ••• . Then we get a two sheeted covering surface
R of S. Clearly R thus obtained is of infinite genus and each interval
[bny an+^\ corresponds to a handle Hn in one to one and onto manner by
an obvious correspondence. Let An be the annulus in R which is two
sheeted covering surface of the annulus

Bn = (z in S; exp (-(

in 5. Then clearly An£Hn and Anr\Am = 0 (n=^m). Moreover

mod AH = mod BJ2 = n2/2.

So the sequence (An) satisfies the conditions (7), (8) and (9). Thns we
have seen that R is an almost finite surface. Evidently the harmonic
measure of the ideal boundary of R vanishes and so R satisfies the
condition (1). If we remove the compact set with positive capacity from
R, then we get non- trivial almost finite surface which does not satisfy (1).

Here we remark the following. Let a'n = 2n and b'n = 2n + ~L (w = 0, 1,
2, • • • ) and construct the two sheeted covering surface R' of S by the
similar manner as above. Clearly R and R' are homeomorphic but R/

is not of almost finite genus. Hence the almost finite .property is not
topologically invaliant. But clearly this notion is quasiconformally in-
variant.

4. For the proof of our theorem, we use the theory of Royden's
compactification ([5]). In Chapter I, we discuss the Royden's compacti-
fication of Riemann surfaces with finite genus. In Chapter II, the Royden's
compactification of subdomains will be discussed. In Chapter III we shall
prove the following theorem which contains the essential part of the
proof of Theorem 1 :

Theorem 2. Any point in the Royden's boundary of an almost finite
Riemann surface possesses the canonical measure zero.

This theorem is equivalent to the following assertion : any almost
finite Riemann surface does not belong to the Constantinescu- Cornea's
class UHD ([2]). In appendix, we shall prove the following Lusin-Privaloff
type theorem :

Theorem 3. Let E be a subset of Royden's boundary of a Riemann
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surface with canonical measure positive and f be a meromorphic function
defined on a subdoma^n whose closure in Royden's compactification is a
neighborhood of E. Suppose that f has continuous boundaary value zero
at each point of E. Then f vanishes identically.

I. Roy den's compactification of finite Riemann surfaces.

5. Let R be a Riemann surface. We denote its Royden's algebra,
Royden's compactification, Royden's boundary, harmonic boundary and
canonical measure by M(R}y R*y Γ, Δ and μ respectively ([5])*. For
simplicity, we suppose that μ, is defined for Borel subsets of Γ by de-
fining the measure of Γ —Δ is zero.

If R is a finite Riemann surface, there exists a compact Riemann
surface R such that R is a subdomain of R. Let R be the closure of
R in R and <γ = R — R. We shall study the relation between R* and R.

Proposition 1. There exists a unique continuous mapping π of R*
onto R fixing R elementwise and such that τr~1(R) = R.

Proof. The unicity of such a π is obvious. Hence we have only
to show the existence. Let A be the totality of functions in M(R) which
are considered to be continuous functions on R. Then A contains suf-
ficiently many functions on R, since the restriction of a function in
C°°(JF?) is contained in A. Let S be the space of all characters on A,
where a character q on A means an algebraic homomorphism f->f(q)
of A onto the complex number field. The topology in S is defined by
the weak* topology, i.e. a directed net (#λ) in S converges to q in S if
and only if (/(#λ)) converges to f ( q ) for any / in A. Then S is a
compact Hausdorff space containing R as its open and dense subset (cf.
Lemma I. 1, P. 162 in [4]).

First we show that S = R. It is clear that RC^S. Take an arbitrary
q in S and set

Aq = (/ in A f ( q ) = 0).

Then for some z0 in R, f(zQ) = Q for all / i n Aq. If this is not so, then
we can find an fz in Aq such that /2>0 on R and fz(z) = \ for each
z in R, since Aq is an ideal in A. Using the compactness of R and the

*) M(/?) is the totality of bounded a.c.T functions on R with finite Dirichlet integral. R*
is the smallest compact Hausdorff space containing R as its open and dense subspace such that
any function in M(l?) is continuously extended to R*. Mj(R) is the BD-closuτe of M0(/?)» the
totality of functions in Λf(/?) with compact support and Γ = R*—R and A = {p£R; /C£)=0 for
any / in M^(jR)}. μ is nothing but the harmonic measure.
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7r- ' ( f )AΔφ0if ξ is in γ l β

Next suppose that ξ is in ?ι —7ι We can find a sequence (ζn) in γx

converging to ζ and ?wφfm (nφm). Choose a point ^n in ΔAΛr-^fJ,
which is non-void as we saw above. By the compactness of Δ, there
exists a point p in Δ such that p is an accumulation point of the set (pn\
Then by the continuity of τt> π(ρ) is an accumulation points of the set
(fj Hence from the nature of (ζn)9 π(ρ) = ζ. Thus TΓ-^AΔΦO.

Conversely, assume that ^~1(ζ) contains a harmonic boundary point
p. Assume that ζ is in rγ — 71. As Δ is non-void, so R is hyperbolic and
hence there exists a point ζ1 in γ^ From above, the set π~\ζ^ contains
a point p, in Δ. Let V be a neighborhood of ξ" in R such that FA7^0.
Then the set U=π~\V) is a neighborhood of ^ in R* and {/ does not
contain plu Find a function / on Δ such that 0</<1 on Δ and /
vanishes identically in U and f(pί) = ί. Then by using notations in [5],
the function

= \ K(z, q)f(q)dμ(q)
JΛ

is a harmonic function on R and continuous on J?* with 0<^^(^)<^1 on
R. As V contains no point in γ^ so u is continued harmonically to V
and so there exists a positive constant d such that u(z)^>d on V. Then
by the definition of π, u>_d on Ur\R and so w>d>0 on U. Since
«=/ on Δ A f/, this is clearly a contradiction. Thus we have proved that
ξ" is in T! if Tr'Xf) contains a harmonic boundary point.

6. For a moment, 7? is assumed to be an arbitrary open Riemann
surface. Let f(p) be a real valued bounded function defined on l\
Consider the totality £/£* of continuous superharmonic functions u(z)
defined on R such that for any point p in Γ

^φf) >/(/>)

in R*. We define two functions #£* and #/£* by

Hfr(z) = inf (w(*) u 6 £7 *̂) and ^fr(z)

respectively. These two functions are harmonic on R and H£*^>H£* on
7?, which are proved by the usual manner. If they are identical on R,
then we denote by H£* the common function and / is said to be resoltive
(with respect to Royden's compactification). A point p in Γ is said to
be a regular point for Dirichlet problem (with respect to Royden's corn-
pacification) if there exists at least one non-constant resoltive function
on Γ and for any resoltive function / continuous at p
in J?*,
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Γ g(p) sin (log (log z(p)D in ί/;
\ π £ ^[0 in /?— C7

satisfies the above condition. Thus each fiber τr~\ζ)9 ζ Gγ, contains point
set whose cardinal number is at least the cardinal number of continuum.

Proposition 3. For any ξ in γ, the fiber τr~l(ζ) always contains a
non-harmonic boundary point i.e. τr~\ζ) A(Γ — Δ)Φ0.

Proof. Let (C7J be a neighborhood system of ξ" in R such that
Un^Un,_,. Set DH=UHr\R. Then by the definition of *r, π--1(0 = Λ«O l i,
where Dw is the closure of Dn in R*. Hence by Theorem 3 in [6],
^r-1(f)A(Γ-Δ)Φ0. Q.E.D.

The boundary 7 is divided into two parts 70and7!, where jl (resp.
70) is the totality of regular (resp. not regular) points for Dirichlet
problem with respect to the domain R considered in R. We denote by
7j the closure of rγ1 in R. Then we have

Proposition 4. The fiber ^~\ζ) contains a harmonic boundary point
if and only if the point ζ is contained in fγ1.

Proof. First suppose that ζ is contained in 7^ Then there exists
a bounded harmonic function h(z) on R such that h^>0 on R and

limR3g+ζh(z) = 0

in R and for any η in 7 with

in I?. Let E=π(Δ\ which is compact in 7, since π is continuous and Δ
is compact in j?*. We have to show that E contains ζ. Contrry to our
assertion, assume that E does not contain ξ. For p in Δ, put

h(p) = supcc/) mίUr,Rh(z) ,

where ([/) is a neighborhood system of ^ in 7?*. Then h is lower semi-
continuous on Δ. By the defintion of π , it is clear that

h(p) > lim^3^7ίC^ Λ(^) > 0 .

Since τr(ρ) is in £"(^7 — (ξ"), the last inequality of the above is assured.
Hence there exissts a positive constant d such that

A(/» > d

on Δ. Hence by the maximum principle (Theorem 1. 2, P. 190 in £5]),
on ί?. This contradicts the definition of A. Thus we have proved
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Considering f—f(p) instead of /, we may assume f ( p ) = 0. Contrary to

the assertion, assume that 0 is not in CR(f, f) Then we can find a
neighborhood U of ζ in R such that

on Ur\R. Clearly we can find a function g in M(R) such that

g(z) = !//(*)

on Ur\R and so g(z)f(z) = l there. By the continuity of TT, τt-l(Ur\R)

is a neighborhood of p in 7?*. As 7? is dense in R and R* respectively, so

π-\Ur\R)r\R = π-'L(Ur\R)=Ur\R is dense in π-\Ur\K)r\R* = -n:-\Ur\K).

Hence /(*)#(*) = 1 on Ur\R implies f(q)g(q) = l on π~\Ur\R). In par-

ticular, f(p)g(p) = l This is clearly a contradiction, since f(p) = Q

Conversely assume that <z is in CΛ(/, ?). We have to show the

existence of a point p in π~\ξ) such that f ( p ) = a. To this end, we may

assume a = Q by considering /— a instead of /. Assume that / does not

vanish on π~\ξ). As ^(ζ) is compact and / is continuous on this set,

there exists a positive number d such that

\f(q) >d

on π~\ξ). On the other hand, as 0 is in CR(f, ζ), so we can find a

sequence (zn) in R such that limw zn = ξ in R and

Let r be an accumulation point of the set (zn) in R*. Clearly r is in Γ.

Let (zλ} be a directed net converging to r in R* whose terms are choosen

from the set (zn). Then by the continuity of the projection π and the

fact that r is in Γ and π-\R) = R, (zλ) must converge to ζ in R and

*(r) = ζ. As |/(2fλ)|<rf, so

This shows that r is not in Tr"1^). This is a contradion, since π(r) = ζ.
Q.E.D.

It is clear that there exists a function / in M(R) such that the

interior cluster set of / at ζ in 7 is the closed interval [ — 1, 1]. For

example, let U and V be coordinate neighborhoods ( z\<^ί/2) and ( \ z \

<^l/4) in R respectively and g be in C°°(R) whose carrier is contained

in U and g(z) = ί on V. Tnen the restriction to R of the function /(/>)
defined by
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continuity of each fz on R, we can find a system of points z19 z2, ••• , zn

in R such that

on R. As £ is in Aq and l/£ is in A, so the constant function l = (L/,g)g
is contained in ^, which is absurd. So we have proved the existence
of a point z0 in R with the property mentioned before. As /—/(<?)
belongs to A?, so we get

for any function / in A This proves that S = R.
Take a point ^> in R*. Then f-*f(p) defines a character τr(^) on A

This gives rise to a mapping of /?* into S = R. Moreover TT is onto.
In fact, for any point z0 in R, consider the set

MZ = (/ in M(#) l i m Λ 3 / ( * ) = 0 in #) .

This is a proper ideal of M(7?). Since M(R) is normed so as to be a
Banach algebra, there exists a character p on M(l?) vanishing on MZQ

by Mazur-Gelfand's theorem that a normed field is the complex number
field. This p can be considered to be a point in R* (cf. Lemma I. 2,
P. 163 in [4]). If / belongs to A, f—f(z0) is contained in MZQ and so

f ( P ) = /(*o)

for any / in A. This shows that 7r(p) = zQ or TT is onto. Again by

f(P) = f

for any f in A and for any p in /?*, we can conclude π is a continuous
mapping of ./?* onto R fixing R elementwise and τt-\R) = R. Q.E.D.

We shall quote π as projection of R* onto R. We also call the set
7f~\z) the fiber in R* over a point z in J?. The fiber π~\z) is one point
(z) if z is in 7? but π~l(z) contains infinite points if z is in γ = R — R.
This is shown by using the following

Proposition 2. For any function f in M(R) and ξ in γ.

(f(p) p is in π-\ξ)) = CR(f, ζ} ,

where the right hand side of the above is the interior cluster set of f at
ζ, i.e. the totality of a such that there exists a sequence (zn) in R with

zn = ξ and limnf(zn) = a.

Proof. First we show that f(p) is in CR(f, ξ) for any p in π~\ξ).
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Lemma 1. // R is not of null boundary (i.e. R does not satisfy the
condition (1)), then any bounded Borel function f defined on Γ is resoltive
and

= ( K(z,q)f(q)dμ(q)
Jr

on R and the totality of regular points in Γ coincides with the harmonic
boundary Δ.υ

Proof. Let R do not satisfy (1). Then by Royden's theorem, ΔΦ0
(cf. Lemma 1.4, P. 185 in [5]). We first prove that any continuous func-

tion /on Γ is resoltive and H£*(z) = v(z)y where v(z)=\ K(z,q)f(q)dμ(q).
Jr

We know that v(z) is harmonic on R and continuous on R* and v(p)=f(p)
on Δ (Theorem 2. 2 and 2. 3 in [5]).

Given an arbitrary positive number t, we can find a compact set K
in Γ —Δ such that

min,/(£)-/</(?), 0(0)<max,/(/0 + f

for any point q in T — K, since / and v are continuous on Γ and f=v
on Δ. Let W be an open neighborhood of K in R* such that Wr\Δ = 0
and the relative boundary of Rr\W consists of a piecewise analytic
Jordan curves which do not accumulate in R.

Let (Rn) be a normal exhaustion of R. Let the sequence (en) of
functions en on jf?* be defined as follows. First choose a real-valued
continuous function b on R* such that b=—l on Δ and b = 2 on W—Rn.
As M(/?) is uniformly dense in the totality of continuous functions on
R* (cf. P. 185 in [5]), so there exists a real function c in M(R) such
that Iδ(/>)-<:(/>)!< 1/2. As the totality of real function in M(R) forms
a vector lattice (Lemma 1. 7, P. 187 in [5]), so the function

d(p) = max (min (1, c(p)), 0)

is in M(K) and d(p) = 0 on Δ and d(p) = l on W-Rn. Let (dm(p))m>n be
defined as follows. dm(p) = d(p) on (TF_/?JU(JR*-TF-flJ and Jm be
the solution of Dirichlet problem in Rm — (W—Rn) with boundary value
d(p). Then by Dirichlet principle and the maximum principle,

0<dm(p)<d(p)

on R* and

D(dJ<D(d).

1) If /? is of null boundary, then there exists no non-constant positive superharmonic func-
tion on R (Ohtsuka's theorem). From this, it follows that any point in Γ is not regular.
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Hence by choosing a suitable subsequence of (dm), we may assume that
(dm} converges to a function en in BD-topology and since d — dm is con-
tained in M0(7?), d— en is in M/J?), which shows

en(P) = d(p) = 0

on Δ and

en(P) = d(p} = 1

on W— Rn (cf. Chapter I in [5]). Then en is a superharmonic function
on R. It is clear that (en) forms a decreasing sequence and so its limiting
function e is bounded and harmonic on R and e is non- negative and
vanishes continuously at Δ. So by the maximum principle (Theorem 1. 2,
P. 190 in [5]), e is identically zero on J?, i.e.

limnen(x) = 0

on R. Choose an arbitrary function u(z) in t//?*. Let tf = supr/(/0 and
a' = suprv(p). Then for any p in Γ, we have

and

v(p} - 1 < f(p} Hr a'en(p) < limR^p (u(z) + a'eΛ(z)) .

From the first inequality, we have

βn(z) + t

on R and from the second, by the usual minimum principle, v(z) — t is
less than u(z) + a'en(z) or

Hence we have

on R. First making n tend to infinity and then making t tend to zero,
we finally get

#£(*)= K(z,q)f(q)dμ,(q)
J r

on /?. On the oter hand,

#£(*) = -fi^ω = -( /f(^ q)(-f(q)}dμ(q) = S^U) .
Jr

Hence /is resoltive and //j£*(X)==l K(z, q)f(q)dμ(q) for any continuous
Jr
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real function on Γ. From this, by the usual manner, we can show the
validity of the same fact for any bounded Borel function / on Γ.

Let p be in Γ and / be a resoltive function continuous at p. We
show that H&*(z) tends to f(p) as z in R tends to p in R*. For the aim,
we may assume f(p) = Q. We can find open neighborhoods U and V of
p in R* such that U contains the closure of V and

ι/ωι<ι/»
on U. Set ra = supΓ|/(#) . Let g be a continuous function on Γ such
that m^>g^>ί/n on Γ and g=l/n on Fand g=m on Γ— U. Then clearly
£>/> — g on Γ and so

On the other hand,

Hfr(z) = \ K(z,q)g(q)dμ(q)
Jr

and so

UmRsx+pHfr(z) = g(p} = II n .

Thus we have

As n is arbitrary, so we get UmRsal+pHR*(z) = Q=f(p). Hence p is a
regular point.

Let p be in Γ —Δ. There exists a continuous real function / on Γ
such that /=0 on Δ and f(p) = l. Then

H^(z)= \ K(z,9)f(9)dμ(9)=Q
Jr

on R. This shows that p is not regular. Q.E.D.

7. Again we suppose that R is a finite Riemann surface embedded
in a compact surface R. Consider a bounded real function / defined on
j = R—R. We denote by UR the totality of continuous superharmonic
functions u such that for any ξ in γ, l im^^u(z)>f(ξ) in /?. We also
denote by HR(z) = inf (u(z) w G t/£) and ^= —H^,f. These are harmonic
and H£>H£ on R. If they are identical, we denote the common function
by H£ and / is said to be resoltive in the usual sense. It is well known
that any Borel function on γ is resoltive. As before, we denote by γ1

the totality of regular points for Dirichlet problem on γ in the usual
sense.
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Let / be a continuous real function defined on 7 which contains a
regular point. Then foπ is a continuous function on Γ and Δ I 0 from
Proposition 4. If v is in URj then by the continuity of τry

pv(z) (in R*}>\\mR^z^p,v(z) (in #)

>/W)) = (/°*)(ί)

for any point ^ in Γ. Hence z; is in U£**, i.e.

77/°* -̂  J7JUR* ^ LJR .

From this we get
ΪJ f o r t <^ fj Γ
&R* ^ H K

As this is true for -/, so HRί°«<Bχf or -HRϊ«>-HR

r. Hence

By the fact that / and foπ are resoltive in the usual sense and in the
sense of Royden's compactification, we can conclude that

(10) H£r(z) = HR(z)

holds on R for any continuous function / on 7. From this fact, we get
the following proposition which plays one of the central role in this
paper.

Proposition 5. Let E be a compact set in γ. Then the canonical
measure of τr'l(E) is zero if and only if the relative harmonic measure of
E with respect to R is zero.

Proof. Let (Un) be a decreasing sequence of open sets in 7 containing
E such that f\HUH = E. Then (^(t/J) is a decreasing sequence of open
sets in Γ containing π~l(E} suce that f\nτr~l(Un) = 7r~1(E).

Let ω and μ be the relative harmonic measure on γ with respect to
z in R and the canonical measure on Γ with respect to z in R re-
spectively. First assume that γ contains a regular point. Let fn be a
continuous function on 7 such that 0<C/Λ<1 on 7 and /„ = ! on Un+1

and fn = Q on 7 outside Un. Then clearly

^»ω>«(ί/B+1) and

and from this with (10), <»(t/),)>X'r~W»+ι)) and /X^~W,«))>ω(t4+1). By
the monotone continuity of ω and μ, we have
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From this our assertion follows. If γ contains no regular point, then
Δ = 0 (Proposition 4) and our assertion is evident. Q.E.D.

II. Royden's compactification of subdomains.

7. Let G be a non-compact subdomain of an arbitrary open Riemann

surface 7?. We denote by B=BG the set GnΓ-aG in R*y where 3G is
the relative boundary of G with respect to R.

Proposition 6. The set G\jBG is an open set in R*.

Proof. We have to show that for any point p in G\JBy we can find
an open set f/ in R* such that p€ U(^G\jB. This is trivial for p in G.
Hence we suppose that p is contained in B. There exists a continuous
real function a(q) on /?* such that a(p} = 2 and a(q)=— 1 on V9 where
V is an open neighborhood of 3G in R* such that p is not in V. This
is possible, since (p) and 3G are disjoint compact set in I?*. As M(R)
is uniformly dense in the totality of continuous functions on R*, so we
can find a real function b(q) in M(R) such that \b(q) — a(q)\<^ί/2 on /?*.
Since M(R) forms a vector lattice, the function c(q) defined by

c(q) = max (min (1, b(q)\ 0)

is in M(R} and c(p) = 1 and c(q) = 0 on V. As the point p is an accumu-
lation point of G, we can find a directed net (pλ) in G such that limpλ=p
and so

limλ c(pλ) = c(p} = 1 .

Now define a function d(z) on R by

c(z), on G

0, on R-G.

As c(z) venishes on a neighborhood of 3G, so d(z) is a bounded a.c.T
function. Moreover DR(d) = DG(c)<,DR(c)<^°°, which shows that d is in
M(R) and so it is extended continuously to R*. Consider the set

£7= (q£R*; d(q)>ϋ).

This is clearly an open set in /?*. Let r be a pointin R* — G\jB. If r
belongs to R, then r is in 7?—G and d(r) = 0. If r is in Γ, then r is in

R—G or in G. In the former case, there exists a directed net (rλ) in
7?—G with limλrλ = r. Then d(r) = limλ rf(rλ) = 0. In the latter case, since

r is not in 5, r belongs to 3G. Hence there exists a directed net (qλ)
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in 3G with limλ qλ = r and so d(r) = limλ d(qλ) = 0. Thus d(r) = 0 for any
r in R*-G\JB. This shows that

Moreover, as (pλ) is in G, so we have

d(p) = limλ d( A) = ϋmλ c(A) - 1 ,

which shows that p belongs to U. Q.E,D.
Now we shall investigate the relation between G and G* which is

the Royden's compactification of G. Corresponding to Proposition 1, we
first prove

Proposition 7. There exists a unique continous mapping p of G* onto
G fixing G elementwise such that p~L(G) = G and p is a homeomorphism
between G\Jp~\BG) and G\jBG.

Proof. The unicity of such a p is obvious. To show the existence
of such a p, consider the totality A of functions in M(G) which are
continuous on G. Then A separates points in G, since the restriction of
functions to G in M(R) belong to A. As in the proof of Proposition 1,
we can show that the totality of characters on A with the weak*
topology coincides with G. A point p in G* can be considered to be a
character on M(G) and its restriction p(p) on A is a character on A and
so p(p) is a point in G. By the similar manner as in the proof of
Proposition 1, we can prove that p is a continuous mapping of G* onto
G fixing G elementwise and p~\G) = G.

Next we shall prove that p is univalent on p~\B). For the aim,
we have to show that p(p) = p(p') implies p=p' for p and fί in the set
P~l(B). As q = p(p) = p(p') belongs to B, so we can find open neighbor-

hoods U and V of q and 3G respectively such that Ur\ V= 0. There
exists a continuous real function a(s} on Jf?* such that a(q) = 2 on t/and
a(s) = — 1 on V. As M(R) is uniformly dense in the totality of continuous
functions on /?*, so we can find a real function b(s) in M(R) such that
\a(s) — b(s)\<Λj2 on R*. Since M(R) forms a vector lattice, the function
c(s) = max (min(l, b(s))y 0) belongs to M(R) and c(s) = l on U and c(s) = 0
on V.

Let / be an arbitrary function in M(G). Then the function g(z)
defined on R by

= |/(*)Φ), on G;

\c(z), on R-G

belongs to M(R). In fact, c(z) vanishes on the open set Vr\R containing
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3G and so g is bounded a.c.T function on R and

DR(g) < (sup* I c(z) I ) DG(f) + DR(c) < oo .

Hence the restriction of g on G is continuous on G and so belongs to
A Thus g(p) = g(p(p)) and g(p'} = g(p(p}} and so

g(P) =

On the other hand, it is clear that g(r}=f(r)c(r] on G* and since c is

faA,c(p) = c(p(p)) = c(q) = l and c(£θ = Φ(ί')) = Φ) = l Hence g(p)=f(p)
and g(p')=f(P'}. Thus

for all / in M(G). This shows that p = f f .
Finally we show that p is a homeomorphism between Gw ρ~l(B) and

G\JB. For this aim, it suffices to show that limλp~1(pλ) = p~1(q) if (/>λ)
is a directed net in Gu5 converging to a point # in B in G. For thi's
qy let £7, V and c be defined by the same manner as above. Let / be
an arbitrary function in M(G). We have to prove that

For this /, define g as above. Since g and c are in A, \imλpλ = q implies

(**) ϋmλ g(pλ) = g(q)

and there exists a λ0 such that λ0<λ implies pλ£U and so c(pλ) = c(p~\pλ))
= l(λ>λ0) and c(q) = c(p~l(q)) = l. On the other hand, since g is in A,

g(p-\Pά) = g(PJ and g(p-\q)) = g(q). As g(p'l(p^)) = c(p-1(p)))f(p-l(p^)
=/(/°"1(A)) and similarly g(ρ-\q}}=f(p~\q)} for λ>λ0, so we get (*)
from (**). Q.E.D.

Next suppose, for simplicity, that 3G consists of at most a countable
number of disjoint piecewise analytic curves with no end point in R
and not accumulating in R. We denote ΓG = G* — G and by μG the canoni-
cal measure on ΓG. Corresponding to Proposition 5, we prove

Proposition 8. Let E be a compact set E in BG. The canonical
measure μ(E) of E is positive if and only if the canonical measure
μG(p~\E)) of p~l(E) is positive.

Proof. Since E and 3G are disjoint compact sets in G — G, both

p"\E) and p~l(dG) are disjoint compact sets in ΓG. As μ and μG are
regular measures, so we can find, using Proposition 6, sequences (t/n) and
(ί/Q of open subsets UH in R* and U'n in G* such that
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and Gvp-\B)^U'n^U'n+l^p-\E) with

μ(E) = limnμ(Unr\Γ) and

respectively. Since p is homeomorphic on G\J p~l(B), the set Vn= UMr\p(U'n)
is an open set in R* such that G\jB^}Vn~^)Vn+^E and p~\Vn) is an

open set in G* such that G\Jp-\B)^p-\VH)^p=^^'^>p-1(E) with
the property

μ(E) = limHμ(VHr\Γ) and μG(p-\E)) = \imnμG(p'1(VΛ)^ΓG)

respectively. Since M(R) is a vector lattice and uniformly dense in the
totality of continuous functions on 7?*, we can find a sequence (/„) of
real functions fn in M(R) such that 0</M<1 and /„ = ! on Fw+1 and
/n = 0 outside Vn in 7?*. Moreover we can choose (fn) so as to satisfy

on jR*. Then /„ vanishes on 3G and by the property of p, we can
consider that fn is in M(G) such that fn = ί on p'X^+i) and fn = 0 out-
side p'^FJ in G*. Let un(z) and #„(» be defined by

un(z)= \
J

and

υn(z) = ^ KG(z9p)fH(p)dμG(p)

on R and G respectively, where KG(zy p) is the harmonic kernel belonging
to μc (cf. P. 149 in [5]).

Let (Rm) be a normal exhaustion of R. Let vn>m be a continuous
function on R* defined by

[harmonic, on Rmr\G;
n'm \fn> °n R* — Rmr\G.

Using Dirichlet principle and the maximum principle, we may assume,
by choosing a suitable subsequence, that (vnjm) converges in BD-topology
to a function υ'n on R and of course on G. By the property of py the
function vnm—fn vanishes on ΓG and so vnm—fn belongs to M^(G) and
hence v'n-fn is in M^(G) (cf. PP. 187-190 in [5]). From this υ^=fn = vn

on ΔG and so v'n = υn on G. Moreover vnm—fn belongs to M0(R) and so
v'n—fn = vn—fn belongs to Mj(R)y where vn is extended to R by f w ^0 on
R-G. Hence
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on ΔR. Let unm be a continuous function on /?* defined by

( harmonic , on Rm

^n,m ) T-jsfc 7-)
( v H , on R*-Rm.

By the same manner as above, we can prove that (untn) may be con-
sidered to converge to un. By the construction of (/„) and by the
maximum principle, we get

un > un+1 on R, vn > υn+l on G and un>vn on G .

If the center of μ and μG are z0 in G, then un(z0)^>vn(z0) implies
>μc(p'1(Vn+1)) and by regularity

Hence we have proved that μG(p'1(E))^>Q implies
Next assume that μ(E)^>0. Contrary to our assertion, assume that

μG(p'1(E)) = 0. Then Hmnvn(z0) = μG(p~1(E)} = 0. As the continuous function
on /?* which is harmonic in Rm and equals to υl — υn outside Rm in J?*
is just ultm — uHtfn and ulym — un,m>vl — vny so by the maximum principle,
we see that

and limw(«1w-M l l f m) = «!-«„. Hence u.-u^u^-u^. As (O con-
verges to 0 uniformly on affw, so l im n M l f f m = 0 uniformly on J?w. Here
notice that unm = υn on 3Rm. From this

on Rm. Thus by making m tend to infinity, we get

Iimn(u1-un)>u1.

Since wM>0, we finally get

In particular, limw &w(z0) = 0 together with un(zQ)>μ(Vn+ί)>μ(E) implies
μ(E) = Q, which is a contradiction. Thus μ(E}^>0 implies μG(p~l(E))^>Q.

Q.E.D.

III. Proofs of Theorems 1 and 2.

8. Let R be an arbitrary open Riemann surface and p be a point
in /?*. We say that t/ is a normal neighborhood of p in R* if U is an
open neighborhood of /> in 7?* such that Rr\ U is a subdomain of 7?



170 M. NAKAΪ

whose relative boundary consists of at most a countable number of
analytic Jordan curves with no end point in R and not accumulating in R.

Proposition 9. Let p0 be a point in Γ with positive canonical measure
and U be an arbitrary neighborhood of p0 in R*. Then there exists a
normal neighborhood V of pQ such that V is contained in U*^

Proof. Choose open neighborhoods Uί9 U2, t/3 and C74 of pQ in R*

such that tO Ή+i (ί = 0,1, 2, 3), where U0= U. Let ((Tίr))™=ι)n =ι) be the
family of triangulation of R such that (T£l)) is the barycentric subdivision
of (T£+1)). Let (T^) be the greatest subfamily of (T™) such that

U, and T™ r\(Rr\ t/2)Φ0. Then clearly the set

is contained in U and contains t/2. Then the set

tFi = W{-dWl

is an open neighborhood of p0 (Proposition 6) such that ϊ
and the relative boundary 3W1 of Wl consists of regular points for
Dirichlet problem. Similar construction for the pair t/3 and t/4 gives an
open neighborhood W2 of pQ such that U4(^W2(^W2(^U2 and every point
in Sΐ^ is regular for Dirichlet problem.

Let (Rn) be a normal exhaustion of R. We define the harmonic
function wn(z) on RH^(W1—W2) with boundary value φ(z) on d(Rnr\
(W,-W2})y where

| , on

{ 1, elsewhere on d(RHr\(W,-

Then (wn) forms a non-decreasing sequence and there exists the limit
function w(z) on Rr\(W1—W2) of (w^). Clearly w is harmonic on
Rr\(W,-W2) and 0<w<l and w = Q on ^(W^ W2)-3W2 and w = l else-
where on d(Wl—W2). We set w = l on W2r\R. Then ^ is continuous
on Wlr\R. Let ^ be in the open interval (0,1) such that the level curve
(z w(z) = t) contains no multiple point. Put

W =

Then the set

*) If PQ is of canonical measure zero in Γy then this assertion does not hold in general.
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is an open neighborhood (Proposition 6) of p0 in R* contained in £/ with
its closure and the relative boundary dW of W consists of at most a
countable number of analytic Jordan curves with no end point in R and
not accumulating in R.

Let Vn be an open neighborhood of p0 in R* such that W^Vn^Vn+l

and limnμ(Vnr\Γ) = μ(p0). Since M(R) is a vector lattice and uniformly
dense in the totality of continuous functions on R*, we can find a real
function /„ in M(R) such that 0</W<1 and /„ = ! on Vn+1 and /n = 0
on R*—Vn. Moreover we can assume that

on R*. Let (Rm) be a normal exhaustion of R and the continuous func-
tion vnm be defined on R* by

Γ harmonic , on Rm r\ W

""' l/.0>), on fl*-#mAΪF.

By the maximum principle and Dirichlet principle, we see that D(vn m)
<D(/J and 0<^w<sup^/w on j?*. Hence by choosing a suitable
subsequence, we may assume that the sequence (vntn) converges in BD-
topology to a function vn on R. As vnm—fn belongs to M0(R}> so vn—fn

is in Mj(R) and so

Vn(P} =

on Δ. Moreover vn is harmonic on Rr\W and vanishes on R—Rr\W.
By the maximum principle (Lemma 2.1, P. 201 in [5]), υn^>υn+l on R*.
Next define the continuous function unm on R* by

J harmonic , on Rm

Q ~ \ι>n(q)> on R*-Rm.

By the same way as above, we may assume that the sequence (unm)
converges in BD-topology to a harmonic function un in M(R) such that
un — υn belongs to M/7?). Hence

Un(P) = Vn(P) = fn(P)

on Δ. Again by the maximum principle (Lemma 2.1, ibid), un^>vn and
un>un^. As (wj ahd (x J form decreasing sequences, so there exist a
harmonic function u(z) on R and a continuous function v(z) on 7? such
that u = limnun and v = limnvn on /? respectively. The function z; is
harmonic on R r\ W and vanishes on R—Rr\W. We assert that
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on at least one component of Rr\ W. Contrary to our assertion, assume
that v(z) = Q on R. Then limnvn(z) = 0 on.R. As the continuous function
on /?* which is harmonic in Rm and equals v1 — vn on R* — Rm is just
«ι,«-w».m and uljm-un>m>v1-vny we see that

^1,W2 ^W,W _ :̂ 2/1, W+l ^W,W+1

by the usual maximum principle and limm(ulm — untn) = ul — un. Hence

As (0J converges to zero uniformly on 3Rm and unm = vn on 3 ,̂ so
l i m w w w m = 0 uniformly on Rm. From this

on 7?w. Thus by making n tend to infinity, we get

limw (#! — #„) > W j

on jf?. Since &w>0 on R, we see that

u(z) - limw Mn(^f) - 0

on R. As un=fn on Δ, so we have un(z)= \ K(z, q)fn(q)dμ(q) on .ff.
Jr

Hence if the center of μ is 2f0 in R, we get

But this is impossible since (un(z0)) converges to zero and
Hence there exists a component V of Wr\R such that v(z}^>0 on V.
Then the required V is obtained by choosing

V = V '-aV.

In fact, V i s an open set in R* (Proposition 6) such that 3V consists of
at most a countable number of analytic Jordan curves with no end point
in R and not accumulating in R. To conclude the proof, we have to
show that p0 is contained in V. Let f ( q ) = limw fn(q) on Γ. Then clearly

u(z) = ( K(zyq)f(q)dμ(q)
J r

on R. Since (q GΓ f(q) Ψθ) — (p^) has canonical measure zero, we may
rewrite the above expression as

K(z, q)dμ(q).
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This have continuous boundary value zero at any point in Δ — (p()
(Theorem 2.3, P. 199 in [5]). As u(z)>v(z)>0 on R, the same is true
for υ(z). Now assume that p0 is not in V. Then for any q in the set
9Fw(Fr\Δ), we have

lim^^ v(z) = 0 .

Hence by the maximum principle (Lemma 2.1, ibid), we have 0(2) = 0

on V. This is a contradiction and so p0 belongs to V. If p0 is in dV>

then pQ belongs to dW=dW'. This shows that p() is not in W. This

contradiction shows that p0 belongs to V=V—dV. Q.E.D.

9. Proof of Theorem 2. Let R be an almost finite Riemann surface.
Contrary to our assertion, assume that Royden's boundary Γ of R con-
tains a point p0 with positive canonical measure, i.e. μ(p0}^>0. From this
we shall derive a contradiction. If R is of finite genus, then R is em-
bedded in a compact surface R. Hence there exists a projection π of
R* = R\j'F onto R\JΎ in the sence of Proposition 1. Set £Ό = 7Γ(A)) Then
ζ0 belongs to 7 and clearly its relative harmonic measure with respect
to R considered in R is zero. Thus by Proposition 5, μ(τt~1(ζ0)) = Q. Since
the fiber τr~\ζ0) contains the point p0, μ(7^~1(ζ,))>μ(p0)^>0. This is a
contradiction. Thus we have only to consider the case where R is not
of finite genus.

Let (fOn-i be the totality of handles in R. By the definition that
R is of almost infinite genus, there exists a sequence (An) of annuli An

in R with conditions (7), (8) and (9). We divide An into two annuli AnΛ

and An>2 by a closed analytic Jordan curve jn in An such that

mod AnΛ = mod An>2 = mod An/2 .

Define the continuous function wn(p) on R* by

harmonic , on An—jn

1, on jn

0, on R*-An.

We also define gm(p) and g(p) by

and

on .R* respectively. Then it is clear that gm is in M0(R) and

on R and DR(g-gm) = Σn-m+i ^/eK) = ΣΓ=m+ι (^ft(
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- Hence by the
condition (9), we have

limmDR(g-gm) = 0.

This shows that (g"w) converges in BD-topology to g and so g belongs
to MX/2). Thus g vanishes on the harmonic boundary Δ of R and, in
particular, g(pQ) = Q, since μ(Γ — Δ) = 0 and /*(A>)>0. By the continuity
of £ on 7?*,

is an open neighborhood of />0 in jf?*. By Proposition 9, we can find a
normal neighborhood V of />0 in I?* contained in ί7. Moreover we may
assume that FC^ By the definition of C7, V contains no point in the
set \JnjH.

Next we shall prove that Vr\R is a planer Riemann surface, i.e.
Vr\R possesses no handle. In fact, if there exists a handle H' in Vr\R,
then we can find a pair [C1? C2] of closed Jordan curves Cl and C2 with
two properties (3) and (4) with respect to R. If we consider the pair
[Ci, C2] in /?, then it belongs to a handle in R, say #„. Hence there
exists a pair [C( , Cξ] such that ^Lw is contained in the domain (Cί , CQ
and [Cj, C2] is equivalent to [Cί, Cί]. From this, jn must meet (Cx, C2),
since /„ is homotopic to each component of 3Λm in R. This shows that
the function g takes the value 1 on (Cl , C2) and so on Vr\ R. But this
cannot occur, since Vr\R<^ΊJ, on which g<^l/2.

Thus FA 7? is conformally equivalent to a plane domain G. Let G
be the Riemann sphere and G be the closure of G in G and y = G — G.
Then there exists a projection π of G* onto G in the sense of Proposi-
tion 1. As any point ζ in γ is of relative harmonic measure zero with
respect to G considereed in G, so the canonical measure of ^(ξ) is zero
with respect to G*. Then G carries no TfD-minimal function (Theorem
3. 6, P. 216 in [5]) and since this property is clearly conformally invariant,
Vr\ R carries no HD-minimal function. Thus any point in the Royden's
boundary ΓVr^R = (VnR)* — (Vr\R) of FnT? is of canonical measure zero
(Theorem 3. 6, ibid).

On the other hand, there exists a projection p of (Vr\R)* onto Vr\R
in 7?* in the sense of Proposition 7. Clearly p0 is contained in

= Vr\R-3(Vr\R) in #* and since Q0 = ρ~1(p0) is one point in (Vr\R)*
(Proposition 7), /Vo#(tfo)^>0 follows from μR(p0)^>Q by using Proposition
8, i.e. l\πR possesses a point with positive canonical measure. This
contradicts the above fact that μVn,R(p) = 0 for all p in ΓVo* Q.E.D.

Constantinescu-Cornea's class UHO of open Riemann surface R is
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defined by the property that R£OG and R carries an HD- or HD~mimmal
function. Since any HD or HD minimal function u(z) on R is of the
form

u(z) = c \ K(z, q) dμ(q),
J C Λ )

where c is a positive constant and p is a point in Γ with positive
canonical measure (Theorem 3. 6, P. 126 in [5]), the class UHD consists
of all open Riemann surfaces R whose Royden's ideal boundary contains
at least one point with positive canonical measure. Hence Theorem 2
may be restated as follows:

Theorem 2'. Any almost finite Riemann surface does not belong to
the Constantinescu-Cornea's class UHD.

10. Proof of Theorem 1. Since the general implication scheme
(ά)-^(b)-+(c)-*(d) is well known, we have to show that if R is an almost
finite surface belonging to OHD (i e R satisfies (rf)), then R belongs to
OG. Assume that R belongs to OHD-GG. Then by Royden's theorem
(c.f. Lemma 1. 4, P. 185 in [5]), Δ consists of only one point and since
μ(Δ) = l, Γ possesses a point with positive canonical measure. This
contradicts the assertion of Theorem 2. Q.E.D.

11. Finally we give a remark on the bahaviour of quasiconformal
mapping on the Royden's boundary of a Riemann surface. Let T be a
quasiconformal mapping of a Riemann surface R1 onto another surface
R2. This T can be extended so as to be a topological mapping of R*
onto R$ such that T(Δ1) = Δ2 (Theorem 5, P. 218 in [3]). Concerning
this, there naturally arises a question whether T is absolutely continuous
on Δj with respect to canonical measures or not. If this is affirmative,
then we can conclude that [/^-property is quasiconformally invariant.
But the former question is negatively answered. This follows at once
from an example of Beurling-Ahlfors.

Let Rl = R2 = (z 9 |2|<1). Beurling and Ahlfors gave an example of
quasiconformal mapping T of Rλ onto R2 and a compact set E1 in

7ι = Rι — Rι = (z°, |^|=1) with positive linear measure such that E2=T(El)
is of linear measure zero (cf. [1]). Here notice that any quasiconformal
mapping of R1 onto R2 can be extended so as to be a topological map-
ping of Rl onto R2.

Let τri be the projection of Rf onto R{ in the sense of Proposition 1.
We set

Ef = πτ\Et) .
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This set is compact in Γ, and by Propostion 5,

'μι(EΪ)>0 and &(£$) = Ό .

Consider Tas the topological mapping of Rf onto R$ (resp. Rί onto R2)
and denote it by T* (resp. T). Then for any point p in Rf

In fact, this is true for any p in Rί9 Let p be in IV We can find a
directed net (pλ) in R1 snch that \imλpλ=p. Then by the continuity of
^ and T*, Iimλjr1(/>) = τr1(^) and limλΓ*(/>λ)= T*(/>) in ̂  and Uf respec-
tively. Hence f(τr1(ρλ)) = τr2(Tήί(pλ)) implies the desired conclusion. From
this we see that

T*(Ef ) = Eί .

Thus T* carries a set with positive canonical measure onto a set with
canonical measure zero.

Appendix

12. Proof of Theorem 3. Let G be a subdomain of R whose closure
G in R* is a neighborhood of E and f ( z ) be a meromorphic function in
G possessing continuous boundary value zero at each point of E in #*.
We have to show that f(z)=Q on G.

First we show that we can reduce the proof to the case where G = R.
To show this, we first remark that we can assume £ is a compact subset
of Δ and the relative boundary 3G of G consists of at most a countable
number of piecewise analytic Jordan curves without end point in R and
not accumulating in R. In fact, since μ is a regular Borel measure on
Γ with μ(Γ— Δ) = 0, we may clearly assume that E is compact and con-
tained in Δ. To verify the second assertion, we choose an open set U
in R* such that EC^C^C (the open kernel of G in #*). Since Rr\U
is an open set in R, we can decompose Rr\U into at most a countable
number of connected components Uk: Rr\U= \J^^Uk C/VfC°o). We can
choose points zk in Uk and arcs ak connecting z0 and zk in G such that
(ak)k does not accumulate in 9G. We then set U' = (\J^1 ak)\J U. Let
(T^m))w be triangulations of R whose each triangle have piecewise analytic
contour such that (TΓ+1))« is the bary centric subdivision of (T^)n.
Consider the totality (Tk)k of triangles Tk in (7T+l:>)»,m such that fk(^G

and f Λ Af/ x Φ0. Then the set G/ = (the open kernel in R of \JkTk) is a
subdomain of G with piecewise analytic boundary curves not ending and

not accumulating in R and G'^)Rr\U=U^)E shows that Gr is a neigh-
borhood of E in /?*f Hence we have only to replace G by Gx.
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Let p be the projection of G* (Royden's compactification of G) onto
G (the closure of G in /?*) in the sense of Proposition 7 and E* = p~l(E).

Since E is contained in BG = Gr\Γ — dG and μ(E)^>0, we can conclude
that μG(E*)^>0 by Proposition 8. By the continuity of /o, / is a mero-
morphic function on G possessing continuous boundary value zero at
each point of E* in G*. Hence we can reduce the proof of Theorem 3
to the case where G = R.

Contrary to our assertion, assume that /(z)φθ on R. Let

Then F is an open set in R and F is a neighborhood of E in /?*, since
/ has continuous boundary value zero at each point of E. Let

be the decomposition of F into connected components Fk and set

Let pk be the projection of Ff (Royden's compactification of Fk) onto Fk

(the closure of Fk in I?*) in the sense of Proposition 7 and set Ef = p^l(Ek\
First we assert that

(*) μFk(Ef) ^> 0 for at least one k .

If this is not the case, μFk(Ef) = Q for all k. Since Ek is contained in

BFk = rr\Fk — dFk, we conclude that μ(Ek} = Q for all & by Proposition 8.
In this case we must have N=°°. In fact, if N<^°°, then from F =

\J"-ι Fk=\JJk-ι*'k> we have E=\J^,1Ek and so we get the following
contradiction : O</Λ(£) < Σ^ M )̂ = 0.

Since μ is a regular Borel measure, we can find an open set U in
R* such that £C^C^C (the open kernel of F) and

μ(Ur\Γ-E)<μ(E)/2.

As M(7?) is dense in the totality of continuous functions on R* in the
sense of uniform convergence and M(R) forms a vector lattice, so we
can find a function /U in M(J?) with 0<f^<l on # such that

M , on E;
J°° lθ , on R*-U.

For n, !<«<^cχ3, we define functions /„ on R by

on ' ' ~.

I 0 , elsewhere on R .
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Then clearly fn is bounded and a.c.T. on R and since

we get

0*(/«-/~) = ΣΓ=n+1 DFk(fJ - 0

as n tends infinity and, in particular, /„ is in M(R). Noticing the relation

(\Jnk=ιFk}=\Jn

k=lFk and that /„ is continuous on jR*, we see that

1, on \ΛU£*;
fn I U , on

By the Royden's decomposition (c.f. Theorem 1.1 (harmonic decomposi-
tion), P. 188 in [5]) and the definition of μ (c.f. P. 194 in [5]),

fn = Un

where gn vanishes on Δ and

un= ( K(z,p)fn(p)dμ(p)
Jr

and

D(un}<D(fn} (!<»<oo).

From the integral representation of un, we see that the sequence (un)n

is monotone non-decreasing and dominated by u^ . Hence there exists
a harmonic function u on R such that u = limnun on R and u<^u^ . As
the harmonic decomposition of fn—f^ is as follows:

so we have

By Fatou's lemma,

Thus u — u00 = c is a non-negative constant. Choose a point ^0 in E1 which
is contained in Δ. Then un(p0) - un(p0) + gn(pj =fn(p0) = 1 (l<w<oo).
Hence lim/?3^^o (un(p) — u00(p)) = Q. Combining this wish
U^ — UK on R, we get c = 0 or u = uco. Thus

w.0 - limn un

on ί?. Let >ε0 be the center of μ. Then for w<^oo,



CLASSIFICATION OF RIEMANN SURFACES 179

un(z0)= ( K(z.,p)fn(p)dμ(p)
Jr

= ( K(zΛ, p} dμ(p) (H = (\u/:_1 Fk) A Γ A £7)
JH

) + X(Vϊ=ιή)A(ΓΛ U-E))

r\U-E)<μ(E)/2.

Thus u00(z0)<^μ(E)/2. But this is impossible, since

f fu^(z0) = I K(z0, P) foo(p) dμ(p) ^> I K(z0, p)dμ(p) = μ(E).
Jr J E

Thus we have proved (#).
Now we close our proof by showing the following:

($) for each k, μFk(EΪ) = 0.

If we can show this, then the impossibility of validity of both of (#)
and (I) implies that our assumption /(z)φθ on R is false and we have
f ( z ) = Q on R. To show ($), contrary to the assertion, assume that
μFk(Ef)^>0 for some k. Let z$ be in Fk such that /(^Ϊ)ΦO. We may
assume that the center of μFk is z$ (c.f. Corollary to Theorem 2.1, P. 196
in [5]). As f(z) has continuous boundary value zero at each point of
E%, so we can find an open set Vn in Ff such that Vn^>Ef and

on Vnr\Fk.

We can find a continuous function kn on F$ such that 0<^W<1 on
Ff and

on Ef

0, on F*-Vn.

Let wn(z)= I Kpk(z> P)kn(p)dμFk(p). Then ^M is harmonic on FΛ and
J -^/fe

continuous on FJ and 0<^W<1 on Ff and ιvn = 0 on ΔF A ?—Fw. Let

w (̂ ) = -log I/O) I .

Then w(z) is positive superharmonic on Fk and w(z)^n on FMnF^.
From these, we conclude that

w(z)/n l>wn(z)

on Fk. In fact, if this is not so, then there exists a negative number
such that a component Z of (26 F*. w(z)/n — wn(z)<^s) is a non-
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empty Jordan subdomain of Fk. Clearly s + wn(z) — w(z)ln is a non-constant
//jB-function on Z vanishing on the relative boundary 3Z of Z with
respect to Fk, or Z£SOHB. On the other hand, Zr\AFk = 0 shows that
ZeSOHB (c.f. Lemma 2. 2, P. 202 in [5]). This is a contradiction. Thus

Since μFk(Ef)^>0, this is a contradiction and so we get (%}. Q.E.D.
From this Lusin-Privaloff type theorem, we can conclude at once that

if R 6 UHD, then there exists no non-constant meromorphic function on R
continuous on R* (or continuous near HP-minimal point), in particular,
UHD(^0AD (Constantinescu-Cornea's generalization [2] of Kuramochi's
theorem).

NAGOYA UNIVERSITY
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