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On the Unknotted Sphere S* in E*

By Hidetaka TErRASAKA and Fujitsugu HOSOKAWA

The construction of a locally flat, knotted sphere introduced by
Artin [1] has given rise to a series of further investigations in this
direction, [2], [3]. The construction is simply thus: Let E® be a plane
in E® which is in turn in E* and let « be a knot in E® having a segment
ab in common with E? otherwise contained wholly in the positive half

E3 of E® Call the arc «*=«x—ab an open knot with end points a, b.
Artin obtained the desired sphere S® by rotating the open knot «° around
E? as axis in E*. He showed that the fundamental group of E‘'—S? is
isomorphic to the knot group of «, that is, to the fundamental group of
E’—k. Fox and Milnor [4] showed that if a locally flat sphere S* in E*
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is cut by an E? and if the intersection S*~E® is a knot, which they
called a null-equivalent knot, then the Alexander polynomial of this knot
must be of the form f(x) f(x~")x”. As it happens, the Alexander polynomial
of S’AE® is A*x) for the sphere S* of Artin type, for then the knot in
question is the product® of «, of Alexander polynomial A(x), with its
symmetric image «* with respect to E? as will be seen in the figure.
Now the question is: what can be concluded about the knottedness
of a given locally flat sphere S* E* from the information about that
of S* A E® for any hyperplane E* of E‘? This and other related questions

1) “sum” would be a better terminology.
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are still open; in the present note we shall only show that there is a
class of non-trivial knots, called doubly null-equivalent knots, of which
each «E® admits an unknotted sphere S*< E* to pass through such
that «=S*A E°.

A cylindrical surface in E*® bounded by a pair of simple closed curves
« and «” will be called unknotted, if it is isotopic to a ringed region on
a plane of E°.

Let T be a torus in E°® with a boundary «, which is a knot. Such
a torus can be brought isotopically into the Seifert normal form [5],

Fig. 2

) 6,

Fig. 3
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cf. Fig. 3, (1) and (2). Now, if there is an arc @b joining two points a
and b of « on T such that an unknotted cylindrical surface may be
obtained by cutting 7 along ab, then « is a null-equivalent knot, [4], [6]
(cf. also [7], p. 134). If there is moreover another arc joining points ¢
and d of « on T which is disjoint from @b and not homotopic to @b and
which has the same property as above, then « will be called a doubly
null-equivalent knot. Call ab and cd conjugate cross-cuts. In Fig. 3, (1)
represents the knot 9,, of the knot table in [8] and, by taking @b and
cd as conjugate cross-cuts, it is seen to be a doubly null-equivalent knot,
while (2) is the knot 6, with the same Alexander polynomial as that of
9,s, but is undecided whether or not it is doubly null-equivalent.
The theorem we are to prove is the following :

Theorem. Let « be a doubly null-equivalent knot in a hyperplane E°
of E*. Then there is a trivial sphere S* in E* whose intersection with E*
coitncides with «.

Proof will be divided into several steps.

1st step. First we define a continuous family of curves I',, —3<¢#<3,
on the standard 2-dimensional sphere 37 in E° which is essentially a
topological map of the family of general lemniscates

(%) (=1 +3)(x + 17 +5) = K

for 0<k<2 on the northern hemisphere H, of 3’ and its symmetric
image on the southern hemisphere H_ (cf. Fig. 4):

T, is the image of the foci k=0 of (*) and consists of a pair of
points a3 and a3’.

I, for 3°>¢t>1 is the image of (*) for 0< k<1 and consists each of
a pair of simple closed curves I'; and I'Y around a3 and a3’ respectively.

T, is the image of the ordinary 8-shaped lemniscate k=1 of (*).

I, for 1>>¢=0 is the image of (*) for 1< k=<2 and is a simple
closed curve. Especially I', is the equator of X2

Further let I'_(3=¢">0) be the symmetric image of I', with respect
to the equatorial plane of =2

On the basis of I, we now define a continuous family of disjoint
surfaces @, filling up the full sphere A® of X? as follows:

Let ®, coincide with I, that is, with points «% and «f'.

Let ®, for 3> >2 consist each of a pair of disjoint hemispheres
bounded by I'; and I')’ respectively.

Let ®, be a pair of hemispheres having a single point in common
and bounded each by I'% and I'y respectively.
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Fig. 4

Let ®, for 2°>f_>1 be each a cylindrical surface bounded by IV
and I.

Let &, be a torus bounded by the 8-shaped curve T,.

Finally let ®, be for 1”>#=0 a torus bounded by I}.

For negative ¢, 0 =¢= —3, the family of surfaces {®,} should be as
a whole homeomorphic to {®_,} defined above, ®,={®,} ~ {®_,} being
mapped onto itself by this homeomorphism.

2nd step.

We now provide in the hyperplane x,=0, which we denote by E3,
a continuous family of not necessarily disjoint surfaces 7T,, —3<¢<3,
of the following kind (cf. Fig. 5, where T, are shaded):

k,= is the given doubly null-equivalent knot spanned with a torus
T,, with conjugate cross-cuts «,b, and c,d,.

For 0<¢t<1, T, is a torus bounded by a knot «,.

T, is a torus bounded by the union «, of two trivial knots »; and
«;’ having in common a single point a,=b,, which is the limit of the
cross-cut a,b, on T,.
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For 1< ¢< 2, T, is an unknotted cylin-
drical surface bounded by a pair of trivial
knots «; and «}’.

T, is the union of two disks bounded
by x5 and by «% respectively and having a
single inner point in common.

For 2<¢<3, T, consists of two dis-
joint disks bounded by knots «, and «}’
respectively.

T, consists of a pair of distinct points
rs and x5,

For —3<¢<0, T, is homeomorphic
with T_,, provided that the common point
of «, and «”; of T_, is the limit of the
cross-cuts c,d, of T,.

Final step.

Now let E? be the family of parallel
hyperplane x,=¢ in E* for —3<¢<3.

To each ¢ of —3<¢<3 project the
surface T, just defined in E} into E2, and
denote it by F,. Then, since T,, and hence
F,, is homeomorphic to &,, the union

F,=D 1is clearly a full sphere in

-3<r<3

E*, and consequently its boundary D =

ry, 1, =, Y., must be a trivial
-3<r<3

sphere S* in E‘. But S*~ E3} is nothing
other than the original knot x,=#, which
proves our theorem.

ReEMARK. By the same method of proof
it can be easily shown that any product
of doubly null-equivalent knots has the
same property as the doubly null-equivalent
knot in the theorem.

(Received September 29, 1961)

269



270

[1]
[2]
[3]
[4]

[5]
[6]
L7]
L8]

H. TErRAsAkA and F. HosokAawA

References

Artin, E.: Zur Isotopie zweidimensionaler Fliachen im R,, Abh. Ham-
burg 4 (1926), 174-177.

Kampen, E. R. van: Zur Isotopie zweidimensionaler Flachen im R,, Abh.
Hamburg 6 (1928), 216.

Andrews, J. J. and Curtis, M. L.: Knotted 2-spheres in the 4-sphere,
Ann. of Math. 70 (1959), 565-571. '

Fox, R. H. and Milnor, J. W.: Singularities of 2-spheres in 4-space and
equivalence of knots (unpublished, cf. Bull. Amer. Math. Soc. 63 (1957),
p. 406).

Seifert, H.: Uber das Geschlecht von Knoten, Math. Ann. 110 (1935),
571-592.

Terasaka, H.: On null-equivalent knots, Osaka Math. J. 11 (1959), 95—
113.

Kinoshita, S. and Terasaka, H.: On unions of knots, Osaka Math. J. 9
(1957), 131-153.

Reidemeister, K.: Knotentheorie, Berlin (1932, Chelsea (1948)).





