On the Unknotted Sphere S^{2} in E^{4}

By Hidetaka Terasaka and Fujitsugu Hosokawa

The construction of a locally flat, knotted sphere introduced by Artin [1] has given rise to a series of further investigations in this direction, [2], [3]. The construction is simply thus: Let E^{2} be a plane in E^{3} which is in turn in E^{4}, and let κ be a knot in E^{3} having a segment $a b$ in common with E^{2}, otherwise contained wholly in the positive half E_{+}^{3} of E^{3}. Call the arc $\kappa^{0}=\overline{\kappa-a b}$ an open knot with end points a, b. Artin obtained the desired sphere S^{2} by rotating the open knot κ^{0} around E^{2} as axis in E^{4}. He showed that the fundamental group of $E^{4}-S^{2}$ is isomorphic to the knot group of κ, that is, to the fundamental group of $E^{3}-\kappa$. Fox and Milnor [4] showed that if a locally flat sphere S^{2} in E^{4}

Fig. 1
is cut by an E^{3}, and if the intersection $S^{2} \cap E^{3}$ is a knot, which they called a null-equivalent knot, then the Alexander polynomial of this knot must be of the form $f(x) f\left(x^{-1}\right) x^{n}$. As it happens, the Alexander polynomial of $S^{2} \cap E^{3}$ is $\Delta^{2}(x)$ for the sphere S^{2} of Artin type, for then the knot in question is the product ${ }^{11}$ of κ, of Alexander polynomial $\Delta(x)$, with its symmetric image κ^{*} with respect to E^{2}, as will be seen in the figure.

Now the question is: what can be concluded about the knottedness of a given locally flat sphere $S^{2} \subset E^{4}$ from the information about that of $S^{2} \cap E^{3}$ for any hyperplane E^{3} of E^{4} ? This and other related questions

[^0]are still open; in the present note we shall only show that there is a class of non-trivial knots, called doubly null-equivalent knots, of which each $\kappa \subset E^{3}$ admits an unknotted sphere $S^{2} \subset E^{4}$ to pass through such that $\kappa=S^{2} \cap E^{3}$.

A cylindrical surface in E^{3} bounded by a pair of simple closed curves κ^{\prime} and $\kappa^{\prime \prime}$ will be called unknotted, if it is isotopic to a ringed region on a plane of E^{3}.

Let T be a torus in E^{3} with a boundary κ, which is a knot. Such a torus can be brought isotopically into the Seifert normal form [5],

Fig. 2

Fig. 3
cf. Fig. 3, (1) and (2). Now, if there is an arc $a b$ joining two points a and b of κ on T such that an unknotted cylindrical surface may be obtained by cutting T along $a b$, then κ is a null-equivalent knot, [4], [6] (cf. also [7], p. 134). If there is moreover another arc joining points c and d of κ on T which is disjoint from $a b$ and not homotopic to $a b$ and which has the same property as above, then κ will be called a doubly null-equivalent knot. Call $a b$ and cd conjugate cross-cuts. In Fig. 3, (1) represents the knot 9_{46} of the knot table in [8] and, by taking $a b$ and $c d$ as conjugate cross-cuts, it is seen to be a doubly null-equivalent knot, while (2) is the knot 6_{1} with the same Alexander polynomial as that of 9_{46}, but is undecided whether or not it is doubly null-equivalent.

The theorem we are to prove is the following :
Theorem. Let κ be a doubly null-equivalent knot in a hyperplane E^{3} of E^{4}. Then there is a trivial sphere S^{2} in E^{4} whose intersection with E^{3} coincides with κ.

Proof will be divided into several steps.
1st step. First we define a continuous family of curves $\mathrm{r}_{t},-3 \leqq t \leqq 3$, on the standard 2 -dimensional sphere Σ^{2} in E^{3}, which is essentially a topological map of the family of general lemniscates

$$
\begin{equation*}
\left((x-1)^{2}+y^{2}\right)\left((x+1)^{2}+y^{2}\right)=k^{2} \tag{*}
\end{equation*}
$$

for $0 \leqq k \leqq 2$ on the northern hemisphere H_{+}of Σ^{2} and its symmetric image on the southern hemisphere H_{-}(cf. Fig. 4):
Γ_{3} is the image of the foci $k=0$ of $(*)$ and consists of a pair of points α_{3}^{\prime} and $\alpha_{3}^{\prime \prime}$.
Γ_{t} for $3>t>1$ is the image of $\left(^{*}\right)$ for $0<k<1$ and consists each of a pair of simple closed curves Γ_{t}^{\prime} and $\Gamma_{t}^{\prime \prime}$ around α_{3}^{\prime} and $\alpha_{3}^{\prime \prime}$ respectively.
Γ_{1} is the image of the ordinary 8 -shaped lemniscate $k=1$ of (*).
Γ_{t} for $1>t \geqq 0$ is the image of (*) for $1<k \leqq 2$ and is a simple closed curve. Especially Γ_{0} is the equator of Σ^{2}.

Further let $\Gamma_{-t}(3 \geqq t>0)$ be the symmetric image of Γ_{t} with respect to the equatorial plane of Σ^{2}.

On the basis of Γ_{t} we now define a continuous family of disjoint surfaces Φ_{t} filling up the full sphere Δ^{3} of Σ^{2}, as follows:

Let Φ_{3} coincide with Γ_{3}, that is, with points α_{3}^{\prime} and $\alpha_{3}^{\prime \prime}$.
Let Φ_{t} for $3>t>2$ consist each of a pair of disjoint hemispheres bounded by Γ_{t}^{\prime} and $\Gamma_{t}^{\prime \prime}$ respectively.

Let Φ_{2} be a pair of hemispheres having a single point in common and bounded each by Γ_{2}^{\prime} and $\Gamma_{2}^{\prime \prime}$ respectively.

Fig. 4
Let Φ_{t} for $2>t>1$ be each a cylindrical surface bounded by Γ_{t}^{\prime} and $\Gamma_{t}^{\prime \prime}$.

Let Φ_{1} be a torus bounded by the 8 -shaped curve Γ_{1}.
Finally let Φ_{t} be for $1>t \geqq 0$ a torus bounded by Γ_{t}.
For negative $t, 0 \geqq t \geqq-3$, the family of surfaces $\left\{\Phi_{t}\right\}$ should be as a whole homeomorphic to $\left\{\Phi_{-t}\right\}$ defined above, $\Phi_{0}=\left\{\Phi_{t}\right\} \cap\left\{\Phi_{-t}\right\}$ being mapped onto itself by this homeomorphism.

2nd step.
We now provide in the hyperplane $x_{4}=0$, which we denote by E_{0}^{3}, a continuous family of not necessarily disjoint surfaces $T_{t},-3 \leqq t \leqq 3$, of the following kind (cf. Fig. 5, where T_{t} are shaded) :
$\kappa_{0}=\kappa$ is the given doubly null-equivalent knot spanned with a torus T_{0}, with conjugate cross-cuts $a_{0} b_{0}$ and $c_{0} d_{0}$.

For $0<t<1, T_{t}$ is a torus bounded by a knot κ_{t}.
T_{1} is a torus bounded by the union κ_{1} of two trivial knots κ_{1}^{\prime} and $\kappa_{1}^{\prime \prime}$ having in common a single point $a_{1}=b_{1}$, which is the limit of the cross-cut $a_{0} b_{0}$ on T_{0}.

For $1<t<2, T_{t}$ is an unknotted cylindrical surface bounded by a pair of trivial knots κ_{t}^{\prime} and $\kappa_{t}^{\prime \prime}$.
T_{2} is the union of two disks bounded by κ_{2}^{\prime} and by $\kappa_{2}^{\prime \prime}$ respectively and having a single inner point in common.

For $2<t<3, T_{t}$ consists of two disjoint disks bounded by knots κ_{t}^{\prime} and $\kappa_{t}^{\prime \prime}$ respectively.
T_{3} consists of a pair of distinct points κ_{3}^{\prime} and $\kappa_{3}^{\prime \prime}$.

For $-3 \leqq t<0, T_{t}$ is homeomorphic with T_{-t}, provided that the common point of κ_{-1}^{\prime} and $\kappa_{-1}^{\prime \prime}$ of T_{-1} is the limit of the cross-cuts $c_{0} d_{0}$ of T_{0}.

Final step.
Now let E_{t}^{3} be the family of parallel hyperplane $x_{4}=t$ in E^{4} for $-3 \leqq t \leqq 3$.

To each t of $-3 \leqq t \leqq 3$ project the surface T_{t} just defined in E_{0}^{3} into E_{t}^{3}, and denote it by F_{t}. Then, since T_{t}, and hence F_{t}, is homeomorphic to Φ_{t}, the union $\bigcup_{-3 \leqq t \leq 3} F_{t}=D$ is clearly a full sphere in E^{4}, and consequently its boundary $\dot{D}=$ $\bigcup_{-3 \leqq t \leqq 3} \kappa_{t}, \kappa_{t}=\kappa_{t}^{\prime} \cup \kappa_{t}^{\prime \prime}$, must be a trivial sphere S^{2} in E^{4}. But $S^{2} \cap E_{0}^{3}$ is nothing other than the original knot $\kappa_{0}=\kappa$, which proves our theorem.

Remark. By the same method of proof it can be easily shown that any product of doubly null-equivalent knots has the same property as the doubly null-equivalent knot in the theorem.
(Received September 29, 1961)

Fig. 5

References

[1] Artin, E.: Zur Isotopie zweidimensionaler Flächen im R_{4}, Abh. Hamburg 4 (1926), 174-177.
[2] Kampen, E. R. van : Zur Isotopie zweidimensionaler Flächen im R_{4}, Abh. Hamburg 6 (1928), 216.
[3] Andrews, J. J. and Curtis, M. L.: Knotted 2-spheres in the 4-sphere, Ann. of Math. 70 (1959), 565-571.
[4] Fox, R. H. and Milnor, J. W.: Singularities of 2-spheres in 4-space and equivalence of knots (unpublished, cf. Bull. Amer. Math. Soc. 63 (1957), p. 406).
[5] Seifert, H.: Über das Geschlecht von Knoten, Math. Ann. 110 (1935), 571-592.
[6] Terasaka, H.: On null-equivalent knots, Osaka Math. J. 11 (1959), 95113.
[7] Kinoshita, S. and Terasaka, H. : On unions of knots, Osaka Math. J. 9 (1957), 131-153.
[8] Reidemeister, K.: Knotentheorie, Berlin (1932, Chelsea (1948)).

[^0]: 1) "sum" would be a better terminology.
