On Mappings between Algebraic Systems, II

By Tsuyoshi Fujiwara

In the previous paper [1], we have defined the \boldsymbol{P}-mappings*) and the \boldsymbol{P}-product systems*), and shown that the algebraic Taylor's expansion theorem* holds between the \boldsymbol{P}-mappings and the \boldsymbol{P}-product systems. And some fundamental results with respect to \boldsymbol{P}-mappings have been derived from this theorem.

The present paper is the continuation of the paper [1]. In the section 1 of this paper, we shall introduce the concept of the B_{W}-conjugate relation between families \boldsymbol{P} and \boldsymbol{Q} of basic mapping-formulas*), and it is a relation between \boldsymbol{P}-mappings and \boldsymbol{Q}-mappings. And, by using the algebraic Taylor's expansion theorem, we shall show that this relation is equivalent to the existence of some inner isomorphic mapping between the \boldsymbol{P}-product system $\boldsymbol{P}(\mathfrak{B})$ and the \boldsymbol{Q}-product system $\boldsymbol{Q}(\mathfrak{B})$ for every B_{W}-algebraic system \mathfrak{B}. In the section 2 , we shall define the derivations between primitive algebraic systems, by using the concepts of the (A_{V}, B_{W})-universality*) and the B_{W}-conjugate relation. And we shall show that one of these derivations is the usual one in the case of the commutative algebras over a field of characteristic 0 . Thus the derivations can be considered as the mappings which are some natural algebraic generalization of homomorphisms.
§ 1. Some relations between families of basic mapping-formulas.
Let R be a set of relations of the form

$$
b_{1}=F_{1}\left(a_{1}, \cdots, a_{m}\right), \cdots, b_{n}=F_{n}\left(a_{1}, \cdots, a_{m}\right)
$$

on a free ϕ_{W}-algebraic system $F\left(\left\{a_{1}, \cdots, a_{m}, b_{1}, \cdots, b_{n}\right\}, \phi_{W}\right)$. And let B_{W} be a system of composition-identities with respect to W. If there exists a set S of relations of the form

$$
a_{1}=F_{1}^{*}\left(b_{1}, \cdots, b_{n}\right), \cdots, a_{m}=F_{m}^{*}\left(b_{1}, \cdots, b_{n}\right)
$$

such that

[^0]\[

$$
\begin{aligned}
& F\left(\left\{a_{1}, \cdots, a_{m}, b_{1}, \cdots, b_{n}\right\}, B_{W}, R\right) \\
= & F\left(\left\{a_{1}, \cdots, a_{m}, b_{1}, \cdots, b_{n}\right\}, B_{W}, S\right),
\end{aligned}
$$
\]

i.e., R and S are B_{W}-equivalent, then the system of W-polynomials

$$
\begin{equation*}
F_{1}\left(x_{1}, \cdots, x_{m}\right), \cdots, F_{n}\left(x_{1}, \cdots, x_{m}\right) \tag{1.1}
\end{equation*}
$$

is said to be B_{W}-regular, and the system of W-polynomials

$$
F_{1}^{*}\left(y_{1}, \cdots, y_{n}\right), \cdots, F_{m}^{*}\left(y_{1}, \cdots, y_{n}\right)
$$

is called a B_{W}-inverse system of (1.1). From the above definitions, it is clear that any B_{W}-inverse system is B_{W}-regular.

Let \boldsymbol{P} and \boldsymbol{Q} be families $\boldsymbol{P}_{V, W}\left\{\xi_{1}, \cdots, \xi_{m}\right\}$ and $\boldsymbol{Q}_{V, W}\left\{\eta_{1}, \cdots, \eta_{n}\right\}$ of basic mapping-formulas respectively. If there exists a system of W polynomials

$$
\begin{equation*}
F_{1}\left(x_{1}, \cdots, x_{m}\right), \cdots, F_{n}\left(x_{1}, \cdots, x_{m}\right) \tag{1.2}
\end{equation*}
$$

such that, for any system $\left\{\mathcal{P}_{1}, \cdots, \mathscr{\varphi}_{m}\right\}$ of \boldsymbol{P}-mappings from any $\phi_{V^{-}}$ algebraic system \mathfrak{A} into any $B_{W^{-}}$-algebraic system \mathfrak{B}, the system $\left\{\psi_{1}, \cdots\right.$, $\left.\psi_{n}\right\}$ of mappings, each of which is defined by

$$
\psi_{\nu}(a)=F_{\nu}\left(\mathcal{P}_{1}(a), \cdots, \mathcal{P}_{m}(a)\right),
$$

is a system of \boldsymbol{Q}-mappings, then the system (1.2) is called a B_{W}-translator from \boldsymbol{P} into \boldsymbol{Q}. In the above definition, if the system (1.2) is $B_{W^{-}}$-regular, then we say that \boldsymbol{P} is B_{W}-conjugate to \boldsymbol{Q}, and denote it by $\boldsymbol{P} \xrightarrow{B_{W}} \boldsymbol{Q}$.

Theorem 1.1. Let \boldsymbol{P} and \boldsymbol{Q} be families $\boldsymbol{P}_{V, W}\left\{\xi_{1}, \cdots, \xi_{m}\right\}$ and $\boldsymbol{Q}_{V, W}\left\{\eta_{1}, \cdots, \eta_{n}\right\}$ of basic mapping-formulas respectively. And let

$$
\begin{equation*}
F_{1}\left(x_{1}, \cdots, x_{m}\right), \cdots, F_{n}\left(x_{1}, \cdots, x_{m}\right) \tag{1.3}
\end{equation*}
$$

be a system of W-polynomials. Then, in order that the system (1.3) is a B_{W}-translator from \boldsymbol{P} into \boldsymbol{Q}, it is necessary and sufficient that

Proof of necessity. Let \mathfrak{N} be the free ϕ_{V}-algebraic system $F\left(\left\{x_{1}, \cdots\right.\right.$, $\left.\left.x_{N(\nu)}\right\}, \phi_{V}\right)$, and \mathfrak{B} the free B_{W}-algebraic system $F\left(\left\{\xi_{1}\left(x_{1}\right), \cdots, \xi_{1}\left(x_{N(\nu)}\right), \cdots\right.\right.$, $\left.\left.\xi_{m}\left(x_{1}\right), \cdots, \xi_{m}\left(x_{N(\nu)}\right)\right\}, B_{W}\right)$. Then it is clear by Theorem 1.3 in [1] that there exists a system $\left\{\mathscr{\rho}_{1}, \cdots, \varphi_{m}\right\}$ of \boldsymbol{P}-mappings, each of which satisfies

$$
\begin{equation*}
\varphi_{\mu}\left(x_{N}\right)=\xi_{\mu}\left(x_{N}\right) \quad(N=1, \cdots, N(v)) . \tag{1.5}
\end{equation*}
$$

Now, let $\left\{\psi_{1}, \cdots, \psi_{n}\right\}$ be the system of mappings from \mathfrak{A} into \mathfrak{B}, each of which is defined by

$$
\psi_{\nu}(x)=F_{\nu}\left(\mathcal{P}_{1}(x), \cdots, \mathscr{P}_{m}(x)\right) .
$$

Then $\left\{\psi_{1}, \cdots, \psi_{n}\right\}$ is a system of \boldsymbol{Q}-mappings from \mathfrak{A} into \mathfrak{B}, because the system (1.3) is a $B_{W^{-}}$-translator from \boldsymbol{P} into \boldsymbol{Q}. Hence we have the following computation:

$$
\begin{aligned}
& =F_{\nu}\left(\mathcal{P}_{1}\left(v\left(x_{1}, \cdots, x_{N(v)}\right)\right), \cdots, \rho_{m}\left(v\left(x_{1}, \cdots, x_{N(v)}\right)\right)\right) \\
& =\psi_{\nu}\left(v\left(x_{1}, \cdots, x_{N(v)}\right)\right) \\
& =Q_{n \nu v}\left(\psi_{1}\left(x_{1}\right), \cdots, \psi_{1}\left(x_{N(\nu)}\right), \cdots, \psi_{n}\left(x_{1}\right), \cdots, \psi_{n}\left(x_{N(\nu)}\right)\right)
\end{aligned}
$$

Hence, by (1.5), the identity

$$
\begin{aligned}
& F_{\nu}\left(P_{\left.\xi_{1 v}\left(\begin{array}{c}
\xi_{1}\left(x_{1}\right), \cdots, \xi_{1}\left(x_{N(v)}\right) \\
\cdots \cdots \cdots \cdots \cdots \cdots \cdots \\
\xi_{m}\left(x_{1}\right), \cdots, \xi_{m}\left(x_{N(v)}\right)
\end{array}\right), \cdots, P_{\xi_{m v}}\left(\begin{array}{c}
\xi_{1}\left(x_{1}\right), \cdots, \xi_{1}\left(x_{N(v)}\right) \\
\cdots \cdots \cdots \cdots \cdots \cdots \\
\xi_{m}\left(x_{1}\right), \cdots, \xi_{m}\left(x_{N(v)}\right)
\end{array}\right)\right)}\right.
\end{aligned}
$$

is valid in \mathfrak{B}. This identity can be considered as the one with respect to $\stackrel{B_{W}}{=}$, because \mathfrak{B} is a free $B_{W^{-}}$-algebraic system.

Proof of sufficiency. Let \mathfrak{A} be any ϕ_{V}-algebraic system, and \mathfrak{B} any B_{W}-algebraic system. And let $\left\{\varphi_{1}, \cdots, \varphi_{m}\right\}$ be any system of \boldsymbol{P}-mappings from \mathfrak{A} into \mathfrak{B}. Moreover, let $\psi_{1}, \cdots, \psi_{n}$ be the mappings from \mathfrak{A} into \mathfrak{B}, each of which is defined by

$$
\psi_{\nu}(a)=F_{\nu}\left(\mathcal{P}_{1}(a), \cdots, \mathcal{P}_{m}(a)\right) .
$$

Then, by using (1.4), for any $v \in V$ and any $a_{1}, \cdots, a_{N(v)} \in \mathfrak{Y}$, we have

$$
\begin{aligned}
& \psi_{\nu}\left(v\left(a_{1}, \cdots, a_{N(v)}\right)\right) \\
& =F_{\nu}\left(\varphi_{1}\left(v\left(a_{1}, \cdots, a_{N(v)}\right)\right), \cdots, \varphi_{m}\left(v\left(a_{1}, \cdots, a_{N(v)}\right)\right)\right) \\
& =F_{\nu}\left(P_{\xi_{1 v} v}\left(\begin{array}{c}
\varphi_{1}\left(a_{1}\right), \cdots, \varphi_{1}\left(a_{N(v)}\right) \\
\cdots \ldots \ldots \ldots \ldots \ldots \ldots \\
\varphi_{m}\left(a_{1}\right), \cdots, \varphi_{m}\left(a_{N(v)}\right)
\end{array}\right), \cdots, P_{\xi_{m v}}\left(\begin{array}{c}
\varphi_{1}\left(a_{1}\right), \cdots, \varphi_{1}\left(a_{N(v)}\right) \\
\cdots \ldots \ldots \ldots \ldots \ldots \\
\boldsymbol{\varphi}_{m}\left(a_{1}\right), \cdots, \varphi_{m}\left(a_{N(v)}\right)
\end{array}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =Q_{\eta \nu \nu}\left(\psi_{1}\left(a_{1}\right), \cdots, \psi_{1}\left(a_{N(v)}\right), \cdots, \psi_{n}\left(a_{1}\right), \cdots, \psi_{n}\left(a_{N(v)}\right)\right) .
\end{aligned}
$$

Hence $\left\{\psi_{1}, \cdots, \psi_{n}\right\}$ is a system of \boldsymbol{Q}-mappings from \mathfrak{A} into \mathfrak{B}. This completes the proof.

Let \boldsymbol{P} be a family $\boldsymbol{P}_{V, W}\left\{\xi_{1}, \cdots, \xi_{m}\right\}$ of basic mapping-formulas, and let \mathfrak{B} be a ϕ_{W}-algebraic system. Now let ψ be a mapping from $\boldsymbol{P}(\mathfrak{B})$ into \mathfrak{B}. If there exists a W-polynomial $F\left(x_{1}, \cdots, x_{m}\right)$ such that

$$
\psi\left(\left[b_{1}, \cdots, b_{m}\right]\right)=F\left(b_{1}, \cdots, b_{m}\right)
$$

for every element $\left[b_{1}, \cdots, b_{m}\right]$ in $\boldsymbol{P}(\mathfrak{B})$, then ψ is called an inner mapping defined by $F\left(x_{1}, \cdots, x_{m}\right)$. Moreover, let \boldsymbol{Q} be a family $\boldsymbol{Q}_{V, W}\left\{\eta_{1}, \cdots, \eta_{n}\right\}$ of basic mapping-formulas. And let $\psi_{1}, \cdots, \psi_{n}$ be mappings from $\boldsymbol{P}(\mathfrak{B})$ into \mathfrak{B}, and Ψ the mapping from $\boldsymbol{P}(\mathfrak{B})$ into $\boldsymbol{Q}(\mathfrak{B})$ which is defined by

$$
\Psi\left(\left[b_{1}, \cdots, b_{m}\right]\right)=\left[\psi_{1}\left(\left[b_{1}, \cdots, b_{m}\right]\right), \cdots, \psi_{n}\left(\left[b_{1}, \cdots, b_{m}\right]\right)\right]
$$

for all elements $\left[b_{1}, \cdots, b_{m}\right] \in \boldsymbol{P}(\mathfrak{B})$. If each ψ_{v} is an inner mapping defined by a W-polynomial $F_{\nu}\left(x_{1}, \cdots, x_{m}\right)$, then Ψ is called an inner mapping defined by the system of W-polynomials $F_{\nu}\left(x_{1}, \cdots, x_{m}\right) \quad(\nu=1$, $\cdots, n)$.

Theorem 1.2. Let \boldsymbol{P} and \boldsymbol{Q} be families $\boldsymbol{P}_{V, W}\left\{\xi_{1}, \cdots, \xi_{m}\right\}$ and $\boldsymbol{Q}_{V, W}\left\{\eta_{1}, \cdots, \eta_{n}\right\}$ of basic mapping-formulas respectively. And let

$$
\begin{equation*}
F_{1}\left(x_{1}, \cdots, x_{m}\right), \cdots, F_{n}\left(x_{1}, \cdots, x_{m}\right) \tag{1.6}
\end{equation*}
$$

be a system of W-polynomials. Then, in order that the system (1.6) is a $B_{W^{-}}$translator from \boldsymbol{P} into \boldsymbol{Q}, it is necessary and sufficient that, for any $B_{W^{-}}$algebraic system \mathfrak{B}, the inner mapping Ψ from $\boldsymbol{P}(\mathfrak{B})$ into $\boldsymbol{Q}(\mathfrak{B})$, which is defined by the system (1.6) of W-polynomials, is a homomorphism.

Proof of necessity. Let \mathfrak{B} be any $B_{W^{-}}$-algebraic system. And let $\mathscr{P}_{1}, \cdots, \varphi_{m}$ be the mappings from $\boldsymbol{P}(\mathfrak{B})$ into \mathfrak{B}, each of which is defined by

$$
\varphi_{\mu}\left(\left[b_{1}, \cdots, b_{m}\right]\right)=b_{\mu} .
$$

Then it is clear that $\left\{\mathscr{\rho}_{1}, \cdots, \mathscr{\rho}_{m}\right\}$ is a system of \boldsymbol{P}-mappings from $\boldsymbol{P}(\mathfrak{B})$ into \mathfrak{B}. Now let $\psi_{1}, \cdots, \psi_{n}$ be mappings from $\boldsymbol{P}(\mathfrak{B})$ into \mathfrak{B}, each of which is defined by

$$
\begin{aligned}
& \psi_{\nu}\left(\left[b_{1}, \cdots, b_{m}\right]\right)=F_{\nu}\left(\mathcal{P}_{1}\left(\left[b_{1}, \cdots, b_{m}\right]\right), \cdots, \mathcal{P}_{m}\left(\left[b_{1}, \cdots, b_{m}\right]\right)\right), \quad \text { i.e., } \\
& \psi_{\nu}\left(\left[b_{1}, \cdots, b_{m}\right]\right)=F_{\nu}\left(b_{1}, \cdots, b_{m}\right) .
\end{aligned}
$$

Then, $\left\{\psi_{1}, \cdots, \psi_{n}\right\}$ is a system of \boldsymbol{Q}-mappings from $\boldsymbol{P}(\mathfrak{B})$ into \mathfrak{B}, because the system (1.6) is a $B_{W^{-}}$-translator from \boldsymbol{P} into \boldsymbol{Q}. Hence, by Theorem 1.1 in [1], the inner mapping

$$
\Psi:\left[b_{1}, \cdots, b_{m}\right] \rightarrow\left[F_{1}\left(b_{1}, \cdots, b_{m}\right), \cdots, F_{n}\left(b_{1}, \cdots, b_{m}\right)\right]
$$

is a homomorphism from $\boldsymbol{P}(\mathfrak{B})$ into $\boldsymbol{Q}(\mathfrak{B})$.
Proof of sufficiency. Let \mathfrak{A} be any ϕ_{V}-algebraic system, and \mathfrak{B} any B_{W}-algebraic system. Now suppose that $\left\{\mathcal{P}_{1}, \cdots, \varphi_{m}\right\}$ is a system of \boldsymbol{P}-mappings from \mathfrak{V} into \mathfrak{B}. Then, by Theorem 1.1 in [1], the mapping

$$
\Phi: \quad a \rightarrow \Phi(a)=\left[\mathcal{P}_{1}(a), \cdots, \mathcal{P}_{m}(a)\right]
$$

is a homomorphism from \mathfrak{A} into $\boldsymbol{P}(\mathfrak{B})$. Since the inner mapping

$$
\Psi:\left[b_{1}, \cdots, b_{m}\right] \rightarrow\left[F_{1}\left(b_{1}, \cdots, b_{m}\right), \cdots, F_{n}\left(b_{1}, \cdots, b_{m}\right)\right]
$$

is a homomorphism from $\boldsymbol{P}(\mathfrak{B})$ into $\boldsymbol{Q}(\mathfrak{B})$, it is clear that the mapping

$$
\Psi \Phi: a \rightarrow \Psi \Phi(a)=\left[F_{1}\left(\mathscr{P}_{1}(a), \cdots, \mathscr{P}_{m}(a)\right), \cdots, F_{n}\left(\mathcal{P}_{1}(a), \cdots, \mathscr{P}_{m}(a)\right)\right]
$$

is a homomorphism from \mathfrak{A} into $\boldsymbol{Q}(\mathfrak{B})$. Hence, by Theorem 1.1 in [1], the system $\left\{\psi_{1}, \cdots, \psi_{n}\right\}$ of mappings from \mathfrak{Y} into \mathfrak{B}, each of which is defined by

$$
\psi_{\nu}(a)=F_{\nu}\left(\mathcal{P}_{1}(a), \cdots, \mathcal{P}_{m}(a)\right),
$$

is a system of \boldsymbol{Q}-mappings. Thus, the system (1.6) of W-polynomials is a B_{W}-translator from \boldsymbol{P} into \boldsymbol{Q}. This completes the proof.

Theorem 1.3. Let \boldsymbol{P} and \boldsymbol{Q} be families $\boldsymbol{P}_{V, W}\left\{\xi_{1}, \cdots, \xi_{m}\right\}$ and $\boldsymbol{Q}_{V, W}\left\{\eta_{1}, \cdots, \eta_{n}\right\}$ of basic mapping-formulas respectively, and let

$$
\begin{equation*}
F_{1}\left(x_{1}, \cdots, x_{m}\right), \cdots, F_{n}\left(x_{1}, \cdots, x_{m}\right) \tag{1.7}
\end{equation*}
$$

be a $B_{W^{-}}$-regular system of W-polynomials. And let \mathfrak{B} be any $B_{W^{-}}$algebraic system. Now suppose that the inner mapping Ψ from $\boldsymbol{P}(\mathfrak{B})$ into $\boldsymbol{Q}(\mathfrak{B})$, which is defined by the system (1.7) of W-polynomials, is a homomorphism. Then Ψ is an isomorphism from $\boldsymbol{P}(\mathfrak{B})$ onto $\boldsymbol{Q}(\mathfrak{B})$, moreover the inverse mapping Ψ^{-1} is an inner mapping defined by a B_{W}-inverse system

$$
\begin{equation*}
F_{1}^{*}\left(y_{1}, \cdots, y_{n}\right), \cdots, F_{m}^{*}\left(y_{1}, \cdots, y_{n}\right) \tag{1.8}
\end{equation*}
$$

of the system (1.7).
Proof. Let $\left[b_{1}, \cdots, b_{m}\right]$ be any element in $\boldsymbol{P}(\mathfrak{B})$. Then, by the definition of the inner mapping Ψ, we have

$$
\Psi\left(\left[b_{1}, \cdots, b_{m}\right]\right)=\left[F_{1}\left(b_{1}, \cdots, b_{m}\right), \cdots, F_{n}\left(b_{1}, \cdots, b_{m}\right)\right]
$$

On the other hand, it is clear that

$$
F_{\mu}^{*}\left(F_{1}\left(b_{1}, \cdots, b_{m}\right), \cdots, F_{n}\left(b_{1}, \cdots, b_{m}\right)\right)=b_{\mu} \quad(\mu=1, \cdots, m)
$$

Hence we have

$$
\Psi^{-1}\left(\left[c_{1}, \cdots, c_{n}\right]\right)=\Phi\left(\left[c_{1}, \cdots, c_{n}\right]\right)
$$

for every element $\left[c_{1}, \cdots, c_{n}\right]$ in the domain of Ψ^{-1}, where Φ denotes the inner mapping from $\boldsymbol{Q}(\mathfrak{B})$ into $\boldsymbol{P}(\mathfrak{B})$ which is defined by the $B_{W^{-}}$ inverse system (1.8). Therefore the inner mapping Ψ is a one to one mapping. Hence it is the rest of our proof to show that Ψ maps $\boldsymbol{P}(\mathfrak{B})$ onto $\boldsymbol{Q}(\mathfrak{B})$. Now let $\left[c_{1}, \cdots, c_{n}\right]$ be any element in $\boldsymbol{Q}(\mathfrak{B})$. Then we have

$$
F_{\nu}\left(F_{1}^{*}\left(c_{1}, \cdots, c_{n}\right), \cdots, F_{n}^{*}\left(c_{1}, \cdots, c_{n}\right)\right)=c_{\nu} \quad(\nu=1, \cdots, n)
$$

Hence we have

$$
\Psi\left(\left[F_{1}^{*}\left(c_{1}, \cdots, c_{n}\right), \cdots, F_{m}^{*}\left(c_{1}, \cdots, c_{n}\right)\right]\right)=\left[c_{1}, \cdots, c_{n}\right]
$$

Therefore Ψ maps $\boldsymbol{P}(\mathfrak{B})$ onto $\boldsymbol{Q}(\mathfrak{B})$. This completes our proof.
Theorem 1.4. Let \boldsymbol{P} and \boldsymbol{Q} be families $\boldsymbol{P}_{V, W}\left\{\xi_{1}, \cdots, \xi_{m}\right\}$ and $\boldsymbol{Q}_{V, W}\left\{\eta_{1}, \cdots, \eta_{n}\right\}$ of basic mapping-formulas respectively. Then the following three propositions are equivalent:
(a) \boldsymbol{P} is B_{W}-conjugate to \boldsymbol{Q}.
(b) There exists a $B_{W^{-}}$-regular system of W-polynomials

$$
\begin{equation*}
F_{1}\left(x_{1}, \cdots, x_{m}\right), \cdots, F_{n}\left(x_{1}, \cdots, x_{m}\right) \tag{1.9}
\end{equation*}
$$

such that, for any $B_{W^{-}}$algebraic system \mathfrak{B}, the inner mapping from $\boldsymbol{P}(\mathfrak{B})$ into $\boldsymbol{Q}(\mathfrak{B})$, which is defined by the system (1.9), is an isomorphism from $\boldsymbol{P}(\mathfrak{B})$ onto $\boldsymbol{Q}(\mathfrak{B})$.
(c) There exists a B_{W}-regular system of W-polynomials

$$
F_{1}\left(x_{1}, \cdots, x_{m}\right), \cdots, F_{n}\left(x_{1} \cdots, x_{m}\right)
$$

such that

$$
\begin{aligned}
& F_{\nu}\left(P_{\xi_{1^{v}}}\left(\begin{array}{c}
\xi_{1}\left(x_{1}\right), \cdots, \xi_{1}\left(x_{N(v))}\right) \\
\cdots \cdots \cdots \cdots \cdots \cdots \cdots \\
\xi_{m}\left(x_{1}\right), \cdots, \xi_{m}\left(x_{N(v)}\right)
\end{array}\right), \cdots, P_{\xi_{m v}}\left(\begin{array}{c}
\xi_{1}\left(x_{1}\right), \cdots, \xi_{1}\left(x_{N(v)}\right) \\
\cdots \cdots \cdots \cdots \cdots \cdots \\
\xi_{m}\left(x_{1}\right), \cdots, \xi_{m}\left(x_{N(v))}\right.
\end{array}\right)\right) \\
& \stackrel{B_{W}}{=} Q_{n_{\nu v}}\binom{F_{1}\left(\xi_{1}\left(x_{1}\right), \cdots, \xi_{m}\left(x_{1}\right)\right), \cdots, F_{1}\left(\xi_{1}\left(x_{N(\nu)}\right), \cdots, \xi_{m}\left(x_{N(v)}\right)\right)}{\ldots \ldots \ldots}
\end{aligned}
$$

for every $\nu=1, \cdots, n$ and every $v \in V$.
Proof. $\quad(a) \Leftrightarrow(c)$ is clear from Theorem 1.1. $\quad(a) \Leftrightarrow(b)$ is obvious from Theorems 1.2 and 1.3.

Theorem 1.5. The B_{W}-conjugate relation $\stackrel{B_{W}}{\sim}$ is an equivalence relation.

Proof of reflexive law is easy.
Proof of symmetric law. Let \boldsymbol{P} and \boldsymbol{Q} be families $\boldsymbol{P}_{V, W}\left\{\xi_{1}, \cdots, \xi_{m}\right\}$ and $\boldsymbol{Q}_{V, W}\left\{\eta_{1}, \cdots, \eta_{n}\right\}$ of basic mapping-formulas respectively. Now suppose that $\boldsymbol{P} \stackrel{B_{W}}{ } \boldsymbol{Q}$. Then, by Theorem 1.4, there exists a B_{W}-regular system of W-polynomials

$$
\begin{equation*}
F_{1}\left(x_{1}, \cdots, x_{m}\right), \cdots, F_{n}\left(x_{1}, \cdots, x_{m}\right) \tag{1.10}
\end{equation*}
$$

such that, for any B_{W}-algebraic system \mathfrak{B}, the inner mapping Ψ from $\boldsymbol{P}(\mathfrak{B})$ into $\boldsymbol{Q}(\mathfrak{B})$, which is defined by the system (1.10), is an isomorphism from $\boldsymbol{P}(\mathfrak{B})$ onto $\boldsymbol{Q}(\mathfrak{B})$. Moreover, by Theorem $1.3, \Psi^{-1}$ is an inner mapping defined by a B_{W}-inverse system of (1.10). Hence $\boldsymbol{Q}{ }^{B_{W}} \boldsymbol{P}$ follows from Theorem 1.4, because the B_{W}-inverse system is B_{W}-regular.

Proof of transitive law. Let $\boldsymbol{P}, \boldsymbol{Q}$ and \boldsymbol{R} be families $\boldsymbol{P}_{V, W}\left\{\xi_{1}, \cdots, \xi_{m}\right\}$, $\boldsymbol{Q}_{V, W}\left\{\eta_{1}, \cdots, \eta_{n}\right\}$ and $\boldsymbol{R}_{V, W}\left\{\zeta_{1}, \cdots, \zeta_{l}\right\}$ of basic mapping-formulas respectively. Now suppose that $\boldsymbol{P} \xrightarrow{B_{W}} \boldsymbol{Q}$ and $\boldsymbol{Q} \stackrel{B_{W}}{\sim} \boldsymbol{R}$. Then, by Theorem 1.4, there exist two systems

$$
\begin{align*}
& F_{1}\left(x_{1}, \cdots, x_{m}\right), \cdots, F_{n}\left(x_{1}, \cdots, x_{m}\right) \text { and } \tag{1.11}\\
& G_{1}\left(y_{1}, \cdots, y_{n}\right), \cdots, G_{l}\left(y_{1}, \cdots, y_{n}\right) \tag{1.12}
\end{align*}
$$

of W-polynomials such that, for any B_{W}-algebraic system \mathfrak{B}, the inner mappings $\Psi: \boldsymbol{P}(\mathfrak{B}) \rightarrow \boldsymbol{Q}(\mathfrak{B})$ and $\Theta: \boldsymbol{Q}(\mathfrak{B}) \rightarrow \boldsymbol{R}(\mathfrak{B})$, which are defined by the systems (1.11) and (1.12) respectively, are onto isomorphisms. Hence it is clear that the mapping $\Theta \Psi$ is an isomorphism from $\boldsymbol{P}(\mathfrak{B})$ onto $\boldsymbol{R}(\mathfrak{B})$ and it is an inner mapping defined by the system of W-polynomials

$$
\left\{\begin{array}{l}
G_{1}\left(F_{1}\left(x_{1}, \cdots, x_{m}\right), \cdots, F_{n}\left(x_{1}, \cdots, x_{m}\right)\right), \tag{1.13}\\
\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots, \\
G_{l}\left(F_{1}\left(x_{1}, \cdots, x_{m}\right), \cdots, F_{n}\left(x_{1}, \cdots, x_{m}\right)\right),
\end{array}\right.
$$

Now let

$$
\begin{aligned}
& F_{1}^{*}\left(y_{1}, \cdots, y_{n}\right), \cdots, F_{m}^{*}\left(y_{1}, \cdots, y_{n}\right) \text { and } \\
& G_{1}^{*}\left(z_{1}, \cdots, z_{l}\right), \cdots, G_{n}^{*}\left(z_{1}, \cdots, z_{l}\right)
\end{aligned}
$$

be B_{W}-inverse systems of the systems (1.11) and (1.12) respectively. Then it is easily obtained that the system of W-polynomials

$$
\begin{gathered}
F_{1}^{*}\left(G_{1}^{*}\left(z_{1}, \cdots, z_{l}\right), \cdots, G_{n}^{*}\left(z_{1}, \cdots, z_{l}\right)\right), \\
\cdots \cdots, \\
F_{m}^{*}\left(G_{1}^{*}\left(z_{1}, \cdots, z_{l}\right), \cdots, G_{n}^{*}\left(z_{1}, \cdots, z_{l}\right)\right)
\end{gathered}
$$

is a $B_{W^{-}}$-inverse system of (1.13). Hence the system (1.13) is $B_{W^{-}}$ regular. Therefore $\boldsymbol{P} \stackrel{B_{W}}{ } \boldsymbol{R}$ follows from Theorem 1.4. This completes the proof.

Finally we shall introduce the concept of $B_{W^{-}}$-similarity as a special case of the concept of B_{W}-conjugate. Now let \boldsymbol{P} and \boldsymbol{Q} be families $\boldsymbol{P}_{V, W}\left\{\xi_{1}, \cdots, \xi_{m}\right\}$ and $\boldsymbol{Q}_{V, W}\left\{\eta_{1}, \cdots, \eta_{m}\right\}$ of basic mapping-formulas respectively. If, for any ϕ_{V}-algebraic system \mathfrak{A} and any $B_{W^{-}}$-algebraic system \mathfrak{B}, any system of \boldsymbol{P}-mappings from \mathfrak{A} into \mathfrak{B} is a system of \boldsymbol{Q}-mappings, and conversely, then we say that \boldsymbol{P} and \boldsymbol{Q} are $B_{W^{-}}$-similar. As an easy consequence of the above definition we obtain

Theorem 1.6. Let \boldsymbol{P} and \boldsymbol{Q} be families $\boldsymbol{P}_{V, W}\left\{\xi_{1}, \cdots, \xi_{m}\right\}$ and $\boldsymbol{Q}_{V, W}\left\{\eta_{1}, \cdots, \eta_{m}\right\}$ of basic mapping-formulas respectively. Then, in order that \boldsymbol{P} and \boldsymbol{Q} are $B_{W^{-}}$-similar, it is necessary and sufficient that

$$
P_{\xi_{\mu v}}\left(\begin{array}{l}
y_{11}, \cdots, y_{1 N(v)} \\
\cdots \ldots \ldots \ldots, \ldots \\
y_{m 1}, \cdots, y_{m N(v)}
\end{array}\right) \stackrel{B_{W}}{=} Q_{n_{\mu} v}\left(\begin{array}{c}
y_{11}, \cdots, y_{1 N(v)} \\
\cdots \ldots \ldots \ldots \ldots \ldots \\
y_{m 1}, \cdots, y_{m N(v)}
\end{array}\right)
$$

for every $\mu=1, \cdots, m$ and every $v \in V$.
§2. Families of $\left(A_{V}, B_{W}\right)$-homomorphism type and families of $\left(A_{V}, B_{W}\right)$-derivation type.
Let \boldsymbol{P} be a family $P_{V, W}\left\{\xi_{1}, \cdots, \xi_{m}\right\}$ of basic mapping-formulas. If the basic mapping-formulas of \boldsymbol{P} are of the form

$$
\xi_{\mu}\left(v\left(x_{1}, \cdots, x_{N(v)}\right)\right)=P_{\xi_{\mu v}}\left(\xi_{\mu}\left(x_{1}\right), \cdots, \xi_{\mu}\left(x_{N(v)}\right)\right) \quad(\mu=1, \cdots, m ; v \in V),
$$

then \boldsymbol{P} is called a family of $\left(\phi_{V}, \phi_{W}\right)$-homomorphism type. Moreover let A_{V} and B_{W} be systems of composition-identities with respect to V and W respectively. If \boldsymbol{P} is $\left(A_{V}, B_{W}\right)$-universal and B_{W}-similar to some family of (ϕ_{V}, ϕ_{W})-homomorphism type, then \boldsymbol{P} is called a family of $\left(A_{V}, B_{W}\right)$-homomorphism type.

Next let \boldsymbol{P} be a family $\boldsymbol{P}_{v, W}\left\{\xi_{1}, \cdots, \xi_{m}, \delta\right\}$ of basic mapping-formulas. If the basic mapping-formulas of \boldsymbol{P} are of the form

$$
\xi_{\mu}\left(v\left(x_{1}, \cdots, x_{N(v)}\right)\right)=P_{\xi_{\mu v}}\left(\xi_{\mu}\left(x_{1}\right), \cdots, \xi_{\mu}\left(x_{N(v)}\right)\right) \quad(\mu=1, \cdots, m ; v \in V)
$$

and

$$
\delta\left(v\left(x_{1}, \cdots, x_{N(v)}\right)\right)=P_{\delta v}\left(\begin{array}{l}
\xi_{1}\left(x_{1}\right), \cdots, \xi_{1}\left(x_{N(v)}\right) \\
\cdots \cdots \cdots \cdots \cdots \cdots \cdots \\
\xi_{m}\left(x_{1}\right), \cdots, \xi_{m}\left(x_{N(v)}\right. \\
\delta\left(x_{1}\right), \cdots, \delta\left(x_{N(v)}\right)
\end{array}\right) \quad(v \in V)
$$

then \boldsymbol{P} is called a family of (ϕ_{V}, ϕ_{W})-derivation type. Moreover let A_{V} and B_{W} be systems of composition-identities. If \boldsymbol{P} is $\left(A_{V}, B_{W}\right)$-universal and B_{W}-similar to some family of (ϕ_{V}, ϕ_{W})-derivation type, then \boldsymbol{P} is called a family of (A_{V}, B_{W})-derivation type.

Let \boldsymbol{P} be a family of (A_{V}, B_{W}) -derivation type. If there exists a family \boldsymbol{Q} of $\left(A_{V}, B_{W}\right)$-homomorphism type such that \boldsymbol{P} and \boldsymbol{Q} are $B_{W^{-}}$ conjugate, then \boldsymbol{P} is called a family of improper $\left(A_{V}, B_{W}\right)$-derivation type. Otherwise, \boldsymbol{P} is called a family of proper $\left(A_{V}, B_{W}\right)$-derivation type.

If $V=W$ and $A_{V}=B_{W}$ in the above definitions, then we simply say " A_{V}-homomorphism" or " A_{V}-derivation" in place of " $\left(A_{V}, B_{W}\right)$-homomorphism" or " $\left(A_{V}, B_{W}\right)$-derivation". Let \boldsymbol{P} be a family of A_{V}-homomorphism (or A_{V}-derivation) type, and let U be a subset of V. If the family, which consists of all the basic mapping-formulas of \boldsymbol{P} concerning all the compositions $v \in V-U$, is of homomorphism type, then \boldsymbol{P} is called a family of $A_{V^{-}} U$-homomorphism (or $A_{V^{-}} U$-derivation) type.

Let \boldsymbol{P} be a family of $A_{V^{-}} U$-derivation type. If \boldsymbol{P} is $A_{V^{-}}$-conjugate to some family of $A_{V^{-}} U$-homomorphism type, then \boldsymbol{P} is called a family of U-improper $A_{V^{-}} U$-derivation type. Otherwise, \boldsymbol{P} is called a family of U-proper $A_{V^{-}} U$-derivation type.

Let K be a commutative field of characteristic 0 , and V the set-sum of $\{+, \cdot\}$ and K. And let R_{V} be the system of composition-identities with respect to V, which define the commutative algebras over K. In the following, we shall determine the form of the family $\boldsymbol{P}_{V, V}\left\{\mathcal{P}_{1}, \cdots, \mathscr{P}_{m}\right\}^{*}$ of $R_{V^{-}}\{\cdot\}$-homomorphism type, and that of the family $\boldsymbol{P}_{V, V}\{\varphi, \delta\}^{*)}$ of $R_{V^{-}}\{\cdot\}$-derivation type.

Theorem 2.1. Let \boldsymbol{P} be a family $\boldsymbol{P}_{V, V}\left\{\mathscr{\varphi}_{1}, \cdots, \mathscr{P}_{m}\right\}$ whose basic mapping-formulas concerning the compositions different from • are of homomorphism type. Then, in order that \boldsymbol{P} is a family of $R_{V^{-}}\{\cdot\}$-homomorphism type, it is necessary and sufficient that the basic mapping.

[^1]formulas of \boldsymbol{P} concerning - are of the form
$$
\mathcal{P}_{\mu}(x y)=P_{\varphi_{\mu}}\left(\mathcal{P}_{\mu}(x), \varphi_{\mu}(y)\right) \stackrel{R_{V}}{=} h_{\mu} \varphi_{\mu}(x) \mathcal{\rho}_{\mu}(y), \quad h_{\mu} \in K \quad(\mu=1, \cdots, m)
$$

Proof. The sufficiency can be easily obtained by Theorem 3.2 in [1]. In the following, we shall prove the necessity. Since the com-position-identity $(x+y) z=x z+y z$ is contained in R_{V}, and \boldsymbol{P} is R_{V}-universal, it follows from Theorem 3.2 in [1] that

$$
\begin{array}{r}
\left.F_{\varphi_{\mu(c x+y) z)}\left(\mathscr{P}_{\mu}(x),\right.} \varphi_{\mu}(y), \varphi_{\mu}(z)\right) \\
\stackrel{R_{V}}{=} F_{\varphi_{\mu(x z+y z)}\left(\varphi_{\mu}(x), \varphi_{\mu}(y), \varphi_{\mu}(z)\right) .} .
\end{array}
$$

Hence, by Theorem 2.1 in [1], we have

$$
\begin{aligned}
& P_{\varphi_{\mu}} \cdot\left(\mathcal{P}_{\mu}(x)+\mathcal{P}_{\mu}(y), \mathscr{P}_{\mu}(z)\right) \\
\stackrel{R}{=} & P_{\varphi_{\mu}} \cdot\left(\varphi_{\mu}(x), \varphi_{\mu}(z)\right)+P_{\varphi_{\mu}} \cdot\left(\mathcal{P}_{\mu}(y), \varphi_{\mu}(z)\right) .
\end{aligned}
$$

Similarly we have

$$
\begin{aligned}
& P_{\varphi_{\mu}} \cdot\left(\varphi_{\mu}(x), \varphi_{\mu}(y)+\varphi_{\mu}(z)\right) \\
\stackrel{R_{V}}{=} & P_{\varphi_{\mu}} \cdot\left(\varphi_{\mu}(x), \varphi_{\mu}(y)\right)+P_{\varphi_{\mu}} \cdot\left(\boldsymbol{\rho}_{\mu}(x), \varphi_{\mu}(z)\right),
\end{aligned}
$$

because the composition-identity $x(y+z)=x y+x z$ is contained in R_{V}. Therefore we have

$$
P_{\varphi_{\mu}} \cdot\left(\mathcal{P}_{\mu}(x), \varphi_{\mu}(y)\right) \stackrel{R_{V}}{=} h_{\mu} \mathcal{P}_{\mu}(x) \mathscr{\rho}_{\mu}(y), \quad h_{\mu} \in K
$$

This completes the proof.
Theorem 2.2. Let \boldsymbol{P} be a family $\boldsymbol{P}_{V, V}\{\rho, \delta\}$ whose basic mapping. formulas concerning the compositions different from • are of homomorphism type. Then, in order that \boldsymbol{P} is a family of $R_{V^{-}}\{\cdot\}$-derivation type, it is necessary and sufficient that the basic mapping-formulas of \boldsymbol{P} concerning are of the form

$$
\begin{align*}
\mathcal{P}(x y) & =P_{\varphi \cdot} \cdot(\varphi(x), \varphi(y)) \stackrel{R_{V}}{=} h \varphi(x) \varphi(y) \quad \text { and } \tag{2.1}\\
\delta(x y) & =P_{\delta} \cdot(\varphi(x), \varphi(y), \delta(x), \delta(y)) \\
& \stackrel{R_{V}}{=} a \varphi(x) \varphi(y)+b \varphi(x) \delta(y)+b \delta(x) \mathcal{P}(y)+d \delta(x) \delta(y),
\end{align*}
$$

where $a, b, d, h \in K$ and $b h+a d=b^{2}$.
Proof. The sufficiency can be easily obtained by Theorem 3.2 in [1]. In the following, we shall prove the necessity. Now suppose that \boldsymbol{P} is a family of $R_{V^{-}}\{\cdot\}$-derivation type. Then (2.1) can be similarly obtained as in the proof of Theorem 2.1. Next, since the composition-
identity $(x+y) z=x z+y z$ is contained in R_{V}, and \boldsymbol{P} is R_{V}-universal, it follows from Theorem 3.2 in [1] that

$$
\begin{array}{r}
F_{\delta((x+y) z)}(\varphi(x), \varphi(y), \varphi(z), \delta(x), \delta(y), \delta(z)) \\
\stackrel{R_{V}}{=} F_{\delta(x z+y z)}(\mathcal{P}(x), \varphi(y), \varphi(z), \delta(x), \delta(y), \delta(z)) .
\end{array}
$$

Hence, by Theorem 2.1 in [1], we have

$$
\begin{aligned}
& P_{\delta} \cdot(\mathcal{P}(x)+\mathscr{P}(y), \mathscr{P}(z), \delta(x)+\delta(y), \delta(z)) \\
\stackrel{R_{V}}{=} & P_{\delta} \cdot(\mathcal{P}(x), \varphi(z), \delta(x), \delta(z))+P_{\delta} \cdot(\mathcal{P}(y), \mathscr{P}(z), \delta(y), \delta(z)) .
\end{aligned}
$$

Similarly we have

$$
\begin{aligned}
& P_{\delta}(\varphi(x), \varphi(y)+\varphi(z), \delta(x), \delta(y)+\delta(z)) \\
\stackrel{R_{V}}{=} & P_{\delta} \cdot(\mathcal{P}(x), \varphi(y), \delta(x), \delta(y))+P_{\delta \cdot}(\mathcal{P}(x), \varphi(z), \delta(x), \delta(z)),
\end{aligned}
$$

because the composition-identity $x(y+z)=x y+x z$ is contained in R_{V}. Therefore we can easily obtain

$$
\begin{aligned}
& P_{\delta} \cdot(\varphi(x), \varphi(y), \delta(x), \delta(y)) \\
\stackrel{R_{V}}{=} & a \varphi(x) \varphi(y)+b \varphi(x) \delta(y)+c \delta(x) \varphi(y)+d \delta(x) \delta(y),
\end{aligned}
$$

where $a, b, c, d \in K$. Moreover we have $b=c$, because the compositionidentity $x y=y x$ is contained in R_{V}. Hence we have

$$
\begin{align*}
& P_{\delta} \cdot(\mathcal{P}(x), \varphi(y), \delta(x), \delta(y)) \tag{2.3}\\
\stackrel{R_{V}}{=} & a \varphi(x) \varphi(y)+b \varphi(x) \delta(y)+b \delta(x) \varphi(y)+d \delta(x) \delta(y) .
\end{align*}
$$

Since the composition-identity $(x y) z=x(y z)$ is contained in R_{V}, it follows from Theorem 3.2 in [1] that

$$
\begin{array}{r}
\quad F_{\delta((x y) z)}(\mathcal{P}(x), \varphi(y), \varphi(z), \delta(x), \delta(y), \delta(z)) \\
\stackrel{R_{V}}{=} F_{\delta(x(y z))}(\mathcal{P}(x), \varphi(y), \varphi(z), \delta(x), \delta(y), \delta(z)) .
\end{array}
$$

Hence, by using (2.3) and Theorem 2.1 in [1], we have

$$
b h+a d=b^{2} .
$$

This completes the proof.
Theorem 2.3. Let \boldsymbol{P} be a family $\boldsymbol{P}_{V, V}\{\varphi, \delta\}$ whose basic mappingformulas concerning the compositions different from • are of homomorphism type. Then, in order that \boldsymbol{P} is a family of $\{\cdot\}$-proper $R_{V^{-}}\{\cdot\}$-derivation type, it is necessary and sufficient that the basic mapping-formulas of \boldsymbol{P} concerning • are of the form

$$
\left\{\begin{array}{l}
\mathcal{P}(x y)=P_{\varphi} \cdot(\mathcal{P}(x), \varphi(y))=\frac{R_{V}}{=} h \varphi(x) \varphi(y) \text { and } \tag{2.4}\\
\delta(x y)=P_{\delta} \cdot(\varphi(x), \varphi(y), \delta(x), \delta(y)) \\
\quad \stackrel{R_{V}}{=} a \varphi(x) \varphi(y)+h \varphi(x) \delta(y)+h \delta(x) \varphi(y), \\
\text { where } a, h \in K, \text { and at least one of them is not } 0 .
\end{array}\right.
$$

Proof of sufficiency. Suppose that \boldsymbol{P} is of the form (2.4). Then it is clear from Theorem 2.2 that \boldsymbol{P} is a family of $R_{V^{-}}\{\cdot\}$-derivation type. Hence it is sufficient to prove that \boldsymbol{P} is not R_{V}-conjugate to any family $\boldsymbol{Q}=\boldsymbol{Q}_{V, V}\left\{\psi_{1}, \cdots, \psi_{m}\right\}$ of $R_{V^{-}}\{\cdot\}$-homomorphism type, i.e., there exists no R_{V}-regular $R_{V^{-}}$-translator from \boldsymbol{Q} into \boldsymbol{P}. Now, by Theorem 2.1, we may assume that the basic mapping-formulas of \boldsymbol{Q} concerning - are of the form

$$
\begin{equation*}
\psi_{\mu}(x y)=Q_{\psi_{\mu} \cdot}\left(\psi_{\mu}(x), \psi_{\mu}(y)\right) \stackrel{R_{V}}{=} h_{\mu} \psi_{\mu}(x) \psi_{\mu}(y) \quad(\mu=1, \cdots, m) \tag{2.5}
\end{equation*}
$$

And let

$$
\begin{equation*}
F_{1}\left(x_{1}, \cdots, x_{m}\right), F_{2}\left(x_{1}, \cdots, x_{m}\right) \tag{2.6}
\end{equation*}
$$

be an R_{V}-translator from \boldsymbol{Q} into \boldsymbol{P}. Then, by Theorem 1.1, we have

$$
\begin{aligned}
& F_{\nu}\left(\psi_{1}(x)+\psi_{1}(y), \cdots, \psi_{m}(x)+\psi_{m}(y)\right) \\
\stackrel{R_{V}}{=} & F_{\nu}\left(\psi_{1}(x), \cdots, \psi_{m}(x)\right)+F_{\nu}\left(\psi_{1}(y), \cdots, \psi_{m}(y)\right) \quad(\nu=1,2) .
\end{aligned}
$$

Hence we have

$$
F_{\nu}\left(x_{1}, \cdots, x_{m}\right) \stackrel{R_{V}}{=} \alpha_{\nu} x_{1}+\cdots+\beta_{\nu} x_{m}, \quad \alpha_{\nu}, \cdots, \beta_{\nu} \in K \quad(\nu=1,2)
$$

Therefore the $R_{V^{-}}$-translator (2.6) is not R_{V}-regular in the case of $m \neq 2$. Hence, in the following, we may assume that $m=2$, i.e.,

$$
\begin{aligned}
& F_{1}\left(x_{1}, \cdots, x_{m}\right)=F_{1}\left(x_{1}, x_{2}\right) \stackrel{R_{V}}{=} \alpha_{1} x_{1}+\beta_{1} x_{2} \\
& F_{2}\left(x_{1}, \cdots, x_{m}\right)=F_{2}\left(x_{1}, x_{2}\right) \stackrel{R_{V}}{=} \alpha_{2} x_{1}+\beta_{2} x_{2} \text { and } \\
& \boldsymbol{Q}=\boldsymbol{Q}_{V, V}\left\{\psi_{1}, \cdots, \psi_{m}\right\}=\boldsymbol{Q}_{V, V}\left\{\psi_{1}, \psi_{2}\right\}
\end{aligned}
$$

Therefore, by using (2.4), (2.5) and Theorem 1.1, we have

$$
\begin{aligned}
& \quad \alpha_{1} h_{1} \psi_{1}(x) \psi_{1}(y)+\beta_{1} h_{2} \psi_{2}(x) \psi_{2}(y) \\
& \stackrel{R_{V}}{=} h\left(\alpha_{1} \psi_{1}(x)+\beta_{1} \psi_{2}(x)\right)\left(\alpha_{1} \psi_{1}(y)+\beta_{1} \psi_{2}(y)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \quad \alpha_{2} h_{1} \psi_{1}(x) \psi_{1}(y)+\beta_{2} h_{2} \psi_{2}(x) \psi_{2}(y) \\
& \underline{R_{V}}=a\left(\alpha_{1} \psi_{1}(x)+\beta_{1} \psi_{2}(x)\right)\left(\alpha_{1} \psi_{1}(y)+\beta_{1} \psi_{2}(y)\right) \\
& \quad+h\left(\alpha_{1} \psi_{1}(x)+\beta_{1} \psi_{2}(x)\right)\left(\alpha_{2} \psi_{1}(y)+\beta_{2} \psi_{2}(y)\right) \\
& \quad+h\left(\alpha_{2} \psi_{1}(x)+\beta_{2} \psi_{2}(x)\right)\left(\alpha_{1} \psi_{1}(y)+\beta_{1} \psi_{2}(y)\right) .
\end{aligned}
$$

Hence we have

$$
\begin{gather*}
h \alpha_{1}^{2}-\alpha_{1} h_{1}=0, \tag{2.7}\\
h \alpha_{1} \beta_{1}=0 \\
h \beta_{1}^{2}-\beta_{1} h_{2}=0, \tag{2.9}
\end{gather*}
$$

and

$$
\begin{align*}
& a \alpha_{1}^{2}+2 h \alpha_{1} \alpha_{2}-\alpha_{2} h_{1}=0, \tag{2.10}\\
& a \alpha_{1} \beta_{1}+h \alpha_{1} \beta_{2}+h \alpha_{2} \beta_{1}=0, \tag{2.11}\\
& a \beta_{1}^{2}+2 h \beta_{1} \beta_{2}-\beta_{2} h_{2}=0 \tag{2.12}
\end{align*}
$$

By using (2.7)-(2.12), we shall prove that the $R_{V^{-}}$translator (2.6) in not R_{V}-regular in any case.
(a) The case of $h=0$. By the assumption of this theorem, we have $a \neq 0$. Hence, by using (2.7), (2.9), (2.10) and (2.12), we have $\alpha_{1}=\beta_{1}=0$, and hence the $R_{V^{-}}$-translator (2.6) is not $R_{V^{-}}$-regular.
(b) The case of $h \neq 0$ and $h_{1}=h_{2}=0$. By using (2.7) and (2.9), we have $\alpha_{1}=\beta_{1}=0$. Hence the R_{V}-translator (2.6) is not R_{V}-regular.
(c) The case of $h \neq 0, h_{1} \neq 0$ and $h_{2}=0$. By (2.9), we have $\beta_{1}=0$. Hence by (2.11) we have $\alpha_{1} \beta_{2}=0$, i.e., $\alpha_{1}=0$ or $\beta_{2}=0$. Therefore the R_{V}-translator (2.6) is not R_{V}-regular.
(d) The case of $h \neq 0, h_{1}=0$ and $h_{2} \neq 0$. It is similarly obtained as in the case (c) that the R_{V}-translator (2.6) is not R_{V}-regular.
(e) The case of $h \neq 0, h_{1} \neq 0$ and $h_{2} \neq 0$. By (2.8), we have $\alpha_{1}=0$ or $\beta_{1}=0$. If $\alpha_{1}=0$, then by (2.11), we have $\alpha_{2} \beta_{1}=0$, i.e., $\alpha_{2}=0$ or $\beta_{1}=0$. Hence, in the case of $\alpha_{1}=0$, the $R_{V^{-}}$-translator (2.6) is not R_{V}-regular. If $\beta_{1}=0$, then by (2.11), we have $\alpha_{1} \beta_{2}=0$, i.e., $\alpha_{1}=0$ or $\beta_{2}=0$. Hence, in the case of $\beta_{1}=0$, the R_{V}-translator (2.6) is not R_{V}-regular. This completes the proof of sufficiency.

Proof of necessity. In Theorem 2.2, we have shown that, if \boldsymbol{P} is a family of $R_{V^{-}}\{\cdot\}$-derivation type, then the basic mapping-formulas of \boldsymbol{P} concerning - are of the form

$$
\begin{aligned}
\mathcal{P}(x y) & =P_{\varphi} \cdot(\varphi(x), \varphi(y)) \stackrel{R_{V}}{=} h \varphi(x) \varphi(y) \quad \text { and } \\
\delta(x y) & =P_{\delta} \cdot(\mathcal{P}(x), \varphi(y), \delta(x), \delta(y)) \\
& \stackrel{R_{V}}{=} a \varphi(x) \varphi(y)+b \varphi(x) \delta(y)+b \delta(x) \varphi(y)+d \delta(x) \delta(y),
\end{aligned}
$$

where $b h+a d=b^{2}$. Hence it is sufficient to show that, if the basic mapping-formulas of \boldsymbol{P} concerning • are not of the form (2.4), then \boldsymbol{P} is not a family of $\{\cdot\}$-proper $R_{V^{-}}\{\cdot\}$-derivation type in any case.
(a) The case of $d \neq 0$. Let \boldsymbol{Q} be a family $\boldsymbol{Q}_{V, V}\left\{\psi_{1}, \psi_{2}\right\}$ of homomorphism type. Then it is clear from Theorem 1.4 that the system of V-polynomials

$$
F_{1}\left(x_{1}, x_{2}\right)=x_{1}, \quad F_{2}\left(x_{1}, x_{2}\right)=b x_{1}+d x_{2}
$$

is an R_{V}-regular R_{V}-translator from \boldsymbol{P} into \boldsymbol{Q}. Hence, in this case, \boldsymbol{P} is not a family of $\{\cdot\}$-proper $R_{V^{-}}\{\cdot\}$-derivation type.
(b) The case of $d=0$. From $b h+a d=b^{2}$, we have that $b=0$ or $b=h$. Hence we have that

$$
\begin{aligned}
& P_{\delta \cdot}(\varphi(x), \varphi(y), \delta(x), \delta(y)) \stackrel{R_{V}}{=} a \varphi(x) \varphi(y) \text { or } \\
& P_{\delta \cdot}(\mathcal{P}(x), \varphi(y), \delta(x), \delta(y)) \stackrel{R_{V}}{=} a \varphi(x) \mathcal{P}(y)+h \mathcal{P}(x) \delta(y)+h \delta(x) \mathcal{P}(y) .
\end{aligned}
$$

Now it is sufficient to show that \boldsymbol{P} is not a family of $\{\cdot\}$-proper $R_{V^{-}}\{\cdot\}$-derivation type in the case of $a=0$ and $h=0$. Since, in this case, we have

$$
P_{\delta \cdot}(\mathcal{P}(x), \mathscr{P}(y), \delta(x), \delta(y)) \stackrel{R_{V}}{=} 0
$$

it is clear that \boldsymbol{P} is not a family of $\{\cdot\}$-proper $R_{V^{-}}\{\cdot\}$-derivation type. This completes the proof.

Let \boldsymbol{P} be a family $\boldsymbol{P}_{V, V}\{\varphi, \delta\}$ of $\{\cdot\}$-proper $R_{V^{-}}\{\cdot\}$-derivation type. Then, by Theorem 2.3, the basic mapping-formulas of \boldsymbol{P} concerning are of the form

$$
\begin{aligned}
\varphi(x y) & =P_{\varphi \cdot}(\varphi(x), \varphi(y)) \stackrel{R_{V}}{=} h \varphi(x) \varphi(y) \text { and } \\
\delta(x y) & =P_{\delta \cdot}(\varphi(x), \varphi(y), \delta(x), \delta(y)) \\
& \stackrel{R_{V}}{=} a \varphi(x) \varphi(y)+h \varphi(x) \delta(y)+h \delta(x) \varphi(y),
\end{aligned}
$$

where $a \neq 0$ or $h \neq 0$ or both. Now, if $h=0$, then \boldsymbol{P} is called a family of trivial $\{\cdot\}$-proper $R_{V^{-}}\{\cdot\}$-derivation type. And if $h \neq 0$, then \boldsymbol{P} is called a family of non-trivial $\{\cdot\}$-proper $R_{V^{-}}\{\cdot\}$-derivation type.

Theorem 2.4. (I) Any family $\boldsymbol{Q}_{V, V}\{\psi, \theta\}$ of trivial $\{\cdot\}$-proper $R_{V^{-}}\{\cdot\}$-derivation type is $R_{V^{-}}$conjugate to the family $\boldsymbol{P}_{V, V}\{\rho, \delta\}$ of trivial $\{\cdot\}$-proper $R_{V^{-}}\{\cdot\}$-derivation type whose basic mapping-formulas concerning are of the form

$$
\varphi(x y)=0 \quad \text { and } \quad \delta(x y)=\varphi(x) \varphi(y)
$$

(II) Any family $\boldsymbol{Q}_{V_{V},}^{*}\left\{\psi^{*}, \theta^{*}\right\}$ of non-trivial $\{\cdot\}$-proper $R_{V^{-}}\{\cdot\}$-derivation type is R_{V}-conjugate to the family $\boldsymbol{P}_{V, V}^{*}\left\{\mathcal{P}^{*}, \delta^{*}\right\}$ of non-trivial $\{\cdot\}$-proper $R_{V^{-}}\{\cdot\}$-derivation type whose basic mapping-formulas concerning \cdot are of the form

$$
\begin{aligned}
& \varphi^{*}(x y)=\varphi^{*}(x) \varphi^{*}(y) \quad \text { and } \\
& \delta^{*}(x y)=\varphi^{*}(x) \delta^{*}(y)+\delta^{*}(x) \rho^{*}(y) .
\end{aligned}
$$

(III) Any family of trivial $\{\cdot\}$-proper $R_{V^{-}}\{\cdot\}$-derivation type is not $R_{V^{-}}$-conjugate to any family of non-trivial $\{\cdot\}$-proper $R_{V^{-}}\{\cdot\}$-derivation type.

Proof of (I). By the above definition, the basic mapping-formulas of $\boldsymbol{Q}_{V, V}\{\psi, \theta\}$ concerning • are of the form

$$
\begin{aligned}
& \psi(x y)=Q_{\psi} \cdot(\psi(x), \psi(y)) \stackrel{R_{V}}{=} 0 \quad \text { and } \\
& \theta(x y)=Q_{\theta \cdot} \cdot(\psi(x), \psi(y), \theta(x), \theta(y)) \stackrel{R_{V}}{=} a \psi(x) \psi(y) .
\end{aligned}
$$

Then, by Theorem 1.4, the system of V-polynomials

$$
F_{1}\left(x_{1}, x_{2}\right)=x_{1}, \quad F_{2}\left(x_{1}, x_{2}\right)=a x_{2}
$$

is an R_{V}-regular R_{V}-translator from $\boldsymbol{P}_{V, V}\{\varphi, \delta\}$ into $\boldsymbol{Q}_{V, V}\{\psi, \theta\}$. Hence $\boldsymbol{P}_{V, V}\{\varphi, \delta\}$ is R_{V}-conjugate to $\boldsymbol{Q}_{V, V}\{\psi, \theta\}$.

Proof of (II). By the above definition, the basic mapping-formulas of $\boldsymbol{Q}_{V, V}^{*}\left\{\psi^{*}, \theta^{*}\right\}$ concerning - are of the form

$$
\begin{aligned}
\psi^{*}(x y) & =Q_{\psi^{*}}^{*}\left(\psi^{*}(x), \psi^{*}(y)\right) \stackrel{R_{V}}{=} h \psi^{*}(x) \psi^{*}(y) \text { and } \\
\theta^{*}(x y) & =Q_{\theta^{*}}^{*}\left(\psi^{*}(x), \psi^{*}(y), \theta^{*}(x), \theta^{*}(y)\right) \\
& \stackrel{R_{V}}{=} a \psi^{*}(x) \psi^{*}(y)+h \psi^{*}(x) \theta^{*}(y)+h \theta^{*}(x) \psi^{*}(y),
\end{aligned}
$$

where $h \neq 0$. Then, by Theorem 1.4 , the system of V-polynomials

$$
F_{1}\left(x_{1}, x_{2}\right)=\frac{1}{h} x_{1}, \quad F_{2}\left(x_{1}, x_{2}\right)=x_{2}-\frac{a}{h^{2}} x_{1}
$$

is an R_{V}-regular R_{V}-translator from $\boldsymbol{P}_{V, V}^{*}\left\{\mathcal{P}^{*}, \delta^{*}\right\}$ into $\boldsymbol{Q}_{V, V}^{*}\left\{\psi^{*}, \theta^{*}\right\}$. Hence $\boldsymbol{P}_{V, V}^{*}\left\{\boldsymbol{\varphi}^{*}, \delta *\right\}$ is R_{V}-conjugate to $\boldsymbol{Q}_{V, V}^{*}\left\{\psi^{*}, \theta^{*}\right\}$.

Proof of (III). It is sufficient to show that $\boldsymbol{P}_{V, V}\{\mathcal{P}, \delta\}$ is not $R_{V^{-}}$ conjugate to $\boldsymbol{P}_{V, V}^{*}\left\{\varphi^{*}, \delta^{*}\right\}$. Now let a system of V-polynomials

$$
\begin{equation*}
F_{1}\left(x_{1}, x_{2}\right), \quad F_{2}\left(x_{1}, x_{2}\right) \tag{2.13}
\end{equation*}
$$

be an R_{V}-translator from $\boldsymbol{P}_{V, V}^{*}\left\{\rho^{*}, \delta^{*}\right\}$ into $\boldsymbol{P}_{V, V}\{\rho, \delta\}$. Then it is similarly obtained as in the first part of the proof of sufficiency of Theorem 2.3 that the V-polynomials (2.13) are of the form

$$
F_{1}\left(x_{1}, x_{2}\right) \stackrel{R_{V}}{=} \alpha_{1} x_{1}+\beta_{1} x_{2} \quad \text { and } \quad F_{2}\left(x_{1}, x_{2}\right) \stackrel{R_{V}}{=} \alpha_{2} x_{1}+\beta_{2} x_{2}
$$

Hence, by Theorem 1.1, we have

$$
F_{1}\left(\varphi^{*}(x) \varphi^{*}(y), \varphi^{*}(x) \delta^{*}(y)+\delta^{*}(x) \varphi^{*}(y)\right) \stackrel{R_{V}}{=} 0
$$

and hence we have

$$
\alpha_{1} \varphi^{*}(x) \varphi^{*}(y)+\beta_{1}\left(\varphi^{*}(x) \delta^{*}(y)+\delta^{*}(x) \varphi^{*}(y)\right) \stackrel{R_{V}}{=} 0
$$

Therefore $\alpha_{1}=\beta_{1}=0$, and therefore the system (2.13) is not R_{V}-regular. Hence $\boldsymbol{P}_{V, V}\{\boldsymbol{\rho}, \delta\}$ is not R_{V}-conjugate to $\boldsymbol{P}_{V, V}^{*}\left\{\boldsymbol{\rho}^{*}, \delta *\right\}$. This completes the proof.
(Received July 8, 1960)

Reference

[1] T. Fujiwara: On mappings between algebraic systems, Osaka Math. J. 11 (1959), 153-172.

[^0]: *) Cf. [1].

[^1]: *) For convienence, we use below the letters φ, ψ in places of the letters ξ, η.

