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On the Set of Non Normal Points of an Analytic Set

By Takeo ASAMI

Introduction. In the present paper we shall consider the set of non
normal points in an analytic set and discuss under which condition an
analytic set is normaΓ)2).

First of all let us recall definitions ([8], p. 260) which are funda-
mental for our arguments. Let M be an analytic set in a domain D of
the space of n complex variables Cn(zly ••• , zn), i. e., the set which is locally
expressible as common zeros of a finite number of holomorphic functions.
A function / on M is called holomorphic, when the following conditions
are satisfied: (1) / is uniquely defined at every regular point of M, (2)
for every regular point x of M, / coincides in a neighborhood of x with
some holomorphic function in the ambiant space, and (3) for every point
x of M, / is bounded in a neighborhood of x. A function is called
holomorphic at a point x of M when it is holomorphic in a neighborhood
on M of x. For a holomorphic function / on M we shall denote by SN(f)
the set of those points of M in any neighborhood on M of which / is
not the restriction of a holomorphic function in the ambiant space. By SN

we shall mean the set of those points of M at each of which some holo-
morphic function in the intersection of M with a neighborhood of this
point can not be expressed as restriction of a holomorphic function in
the ambiant space. At a point of M not belonging to SN, M is called
normal ([3] Expose XIV, this is called "la propriete (H}" in [8]X Similarly
for a holomorphic function / on M, we call M normal with respect to f
at a point of M not belonging to SN(f) ("la propriete (H}" of / in [8]).

1) The author was inspired to study this subject, when he attended Prof. K. Oka's seminar
at Kyoto University.

2) After having prepared this paper, the following two papers appeared quite recently :
W. Thimm : Uber Moduln und Ideale von holomorphen Funktionen mehrerer Variablen,

Math. Ann., 139 (1959).
W. Thimm : Untersuchungen iiber das Spurproblem von holomorphen Funktionen auf

analytischen Mengen, ibid,
in which the problem treated in this paper and related ones are thoroughly studied Theorem
3 of the present paper is included as a special case in Satz 9 of the second paper. But it
seems to the author of the present paper that his approach to this theorem is different from
Thimm's,
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In the theory of functions of several complex variables one often
encounters the problem to extend functions given on an analytic set to the
ambiant space, which was first treated by H. Cartan [1]. As to this,
fundamental theorems of a holomorpically convex domain ([9] Theoreme
V and VII) or of a Stein manifold ([3] Theoreme A and B) say: A
holomorphic function /on an analytic set M of a holomorphically convex
domain (or a Stein manifold) X is extendable to the whole space X, if
and only if the set SN(f) is empty — precisely we should say that there
exists a continuation / of / such that SN(f) is empty, but for the brevity
we write in this way throughout this paper. From this point of view it is
important to see under which condition the set SN(f) is empty and
generally to decide the structure of SN(f) and SN.

When an analytic set M is of 1 codimension, and if codim.S^/)
:>3, then SN(f) is empty ([8] Lemme 1, p. 261). About the set SN some
facts are known ([4] Fxpose X and XI, and [6] §7).

After explanation in § 1 about the notations and conventions used in
this paper, in § 2 we shall show the analyticity of the set SN(f) from which
that of the set SN ([4] Theoreme 3 bis of Expose X) is directly derived
on the basis of "Lemme fundamental" ([8], p. 275) next we shall discuss
about the structure of the set SN. In § 3 for an analytic set M of 2
codimensions we give two theorems, Theorem 3 and Theorem 3 bis, as
a generalization of Lemme 1 mentioned above. For lower dimensional
cases the corresponding results are also expected, though we have not
obtained them here3).

§1. Preliminaries. Throughout this paper we denote by M an
analytic set of a domain D in the space of n complex variables Cn. Since
about the definition of a holomorphic function on an analytic set and
about that of the sets SN and SN(f) we wrote in Introduction, we do
not repeat them here.

When we indicate for an analytic set M its dimension or its codimen-
sion ( = n-dim. M), we always mean that M is of pure dimension, i. e., all
components of M are of the same dimension.

When we speak of a neighborhood of a point of an analytic set, the
neighborhood is meant by an open set in the ambiant space.

Let J be an analytic ideal on a domain D a system of a finite
number of holomorphic functions (Fl, , Fm] at a point x e D is called
a pseudo-base of <3 at x, if at any point y of a neighborhood of x
FI> '" > F™ generate the stalk Jy of J ([7], p. 6). An analytic ideal is
coherent, if and only if it has a pseudo-base at every point of D by
Theoreme 4 of [8].

3) These are affirmatively resolved by Satz 9 of the second paper mentioned in 2).



Set of non Normal Points 179

To an analytic set M in a domain D corresponds an analytic ideal
J(M) on D such that the stalk <3(M}X, xeD, consists of function-germs

which are represented by holomorphic functions in a neighboshood U

of x vanishing on Ur\Midentically. The analytic ideal <3(M) is coherent
([8] Theoreme de H. Cartan) hence, J(M) has a pseudo-base at every

point of D, and in particular when D is a relatively compact subdomain
of a holomorphically convex domain (or a Stein manifold) X, there are a
finite number of holomorphic functions in X which constitute a pseudo-
base of J(M) at every point of D ([9] Theoreme V).

Let 0 be the sheaf of holomorphic functions in a domain D the stalk
Oxy x£D, consists of all function-germs which are represented by

holomorphic functions at x. For an analytic set M we can consider the
quotient sheaf O/J(M], whose restriction to M is an analytic coherent
sheaf on M. This sheaf is denoted by Jl(M) an element of the stalk
Jί(M)χy #eM, is a germ represented by the restriction to M of a
holomorphic function at x in the ambiant space that is, Jl(M) is the
sheaf of holomorphic functions on M which are induced on M by
holomorphic functions in the ambiant space.

Let M be an analytic set of k dimensions in a domain D of Cn.
When we limit our consideration within a neighborhood of a point on
M, after a linear transformation, we can choose the coordinates zl9 ••• 9 zn

such that M spreads ("ausgebreiten" see, for example, [5] p. 255) over
a domain of the space Ck(z1, , zk) further, we can consider the complex
space M* ("dσmaine multiple" in [8]) corresponding to M which spreads
over the same domain of C*(z19 ••• , zk). In these cases we shall say simply
that M and M* spread over Ck(z19 ••• , zk).

Since the problems treated in this paper are essentially local, it is
sufficient to prove propositions only in a neighborhood of an arbitrary
point of an analytic set M of a domain D, and accordingly we may
assume that the domain D is a small neighborhood of a point. In the
course of proofs we often denote the intersection Ur\M of a neighbor-
hood U of a point with M simply by M, when there is no fear of confusion.

§2. Theorem 1. Let M be an analytic set of a domain D in Cn(zl9

••• , zn). Then, for a holomorphic function f on M, the set S N ( f ) of M is
an analytic set of D4).

4) Mr. E. Ohnishi showed: Let / be a holomorphic function on a 1 codimensional analytic
set M, and let a- be a 2 codimensional analytic subset of M. On every component of σ if there
is at least one regular point of σ which does not belong to Sjy(/), all regular point sof <r also
do not belong to Sjy(/) From this fact, by using Lemme 1 of [8], we get Theorem 1 for the
codimensional case.
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Proof. Suppose, in a neighborhood U of x £ M, M be common zeros of

' ΦΛ*!,- ,Zn) = 0,

(D
, Φ/(*ι, ••• , *„) ^ 0,

where Φ, (i = l, •••,/) are holomorphic functions in U. By assumption we
can set \f(y)\<jn (m>0) for regular points y of M. As is well known,
for the function / there exists a unitary polynomial P(zl9 ••• , 2w,w;) in w,
whose coefficients are holomorpoic functions in C7, such that P ( y 9 f ( y ) ) = Q
for all regular points y of M. Consider the analytic set M determined by

Φ (? ... ? } = 0
^ 1\*1 > > -<•«/ W>

( 2 )

'Ή*l,

in the set U= {(z, 9 ••• 9 zn9 w ) \ ( z 1 9 ••• 9 zn)€U9 \w\<jn] of the space
Cn+1(z19 " , zny w) moreover, on M and M consider the sheaves <Jl(M)
and Jί(M). It is easily seen that the analytic mapping π: M-^M deter-
mined by the projection (zl9 ••• , 2Λ, ^)^(2Ί, ••• , zn) is non degenerate and
proper. Hence, the τr-irnage of Jl(M}, denoted by Jl*y is a coherent
analytic sheaf on M ([8] Theoreme 1, and [6] Satz 27,). Then the sheaf
Jl(M) is a subsheaf of c_^?* and the quotient shaef Jl*IJl(M) is also coher-
ent. Now, a point y of M is included in SN(f)9 if and only if the stalk
(Jl*I'Jl(M))y of Jl*l' JL(M) does not vanish. In order to see this, it is
sufficient to observe the structure of <Jl*. Let (yy w} be a point of M and
let π-loπ\\yy w)~] consist of (y9 tυ™)9 ~ 9 ( y 9 wcm)),' where ww = w. An element
of ^(MJo^co) is a germ represented by a restriction of φα)(2, w) to M,
which is a holomorphic function of (z9 w) at (j>, ^Cί:))(f = 1, ••• , ra). Then,
ί̂*^ is the module consisting of all vectors of the form {Φw(z9 fw(z))y ••• ,

Φ™(z9 /cm)U))} where /α) is a branch of a root of P(£, w) = 0 passing
through (jy, ^Cz')), and where ^ runs over M in a neighborhood of y.^ On
the other hand, the set of points y^M for which (Jl*j^Ά(M))y^Q is
analytic ([4] lemme 1 of Expose X), which completes our proof.

Corollary ([4] Theoreme 3 bis of Expose X). Let M be an analytic
set of a domain D of Cn(zly ••• , zn). Then the set SN of M is an analytic
set of D.

5) There is no fear of misunderstanding though we do not distinguish here a germ from
its representative,
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Proof. Let x be a point of M and U its neighborhood. Then, by
"Lemme fundamental" of [8], we can construct a finite number of
holomorphic functions in U, ΨΛ2), ••• , ^p(z) and u0(z), in the following
way : For every holomorphic function / at any point y G Mr\ U there
exists a holomorphic function F(z) in V, a neighborhood of y contained in
Uy such that F is a linear combination of Ψ/s, where the coefficients are
holomorphic functions in V, and the restriction of F to M is equal to fuQ .
Further, the lemma says that the functions /i = Ψ, /«0(ί = l, ••• , p} are
holomorphic functions on M. From both facts, it follows SN=SN(fl)\J •••
vSfir(fp). Since SN(ft) are the analytic sets by Theorem 1, it follows that
SΛΓ is also an analytic set. (q. e. d.)

In the following, by the singularity of an analytic set M we under-
stand the subset of non regular points of M which is also an analytic set.

As is well known ([4] Expose X and XI, and [6] Satz 21), if an
analytic set M of k dimensions is normal, the singularity S of M is of
at most k — 2 dimensions and M is locally irreducible. We remark that
the converse is also true. Suppose an analytic set M have these pro-
perties, and let 2°= (2°, ••• , 2°) be a point of M and U a neighborhood of
2°. Further consider a complex space M* correspoding to M spread over
the space Ck(zlt ••• , zk)9 then using n — k (one- valued) holomorphic func-
tions Λ+1, ••• , /„ on M*, M is representable in U as (z19 ••• , zk, fk+1, ••• , /„).
Since M is irreducible at every point of a neighborhood of 2°, we can
determine one and only one point x* of M* over (2?, ••• , 2?) with the
following properties : a) There exists no point y* of M* over (2?, ••• , 2°)
other than x* which satisfies fj(y*) = fj(x*) = z*(j = k + ].y , r i ) , that is,
for some j0 , x* is not a "point equivoque" with respect to //0 (£8], p. 264)
for, otherwise, M would be reducible at 2° and the singularity would
pass through 2°. b) For every ramification variety σ * of M* through x*
there exists at least one //0 with respect to which σ * is of "premiere
espece" (£8], p. 264), that is, when //0 is developed around σ * at a point
corresponding to a regular point of an analytic subset of M correspond-
ing to σ *, then the term of the first degree of //0 does not vanish on σ *
identically^; for, otherwise, M would have a singularity of k — ί dimensions
through 2°. Then, we can choose coefficients ck+19 ••• ,cn (<Vιι r l-0) such
that, when we set f=ck+lfk+1

Jι ----- \~cnfny a) x* is not a "point equivoque"
with respect to /, and b) every ramification variety through x* is of
"premiere espece" with respect to/; thus, after transforming M from the
space C*(z19 •••, zn) into the space Cn(z(, •••,2 )̂ by

z't = *f (ί = 1,-,*)

( 3 ) *ί+1 - ck+lzk+l+ ••• +cw2w,

6) We mean that, when /yo is developed as G2 in (12),
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by the projection (z[9 •••, zή)-*(z{, •• ,2ί+ι)> we can map M biholomorphically
onto an analytic set Mf of k dimensions in the & + 1 dimensional space,
which has no k—1 dimensional singularity. Now, for a holomorphic
function /0 on M in the neighborhood of z°, we can determine the image
/o on M' which is holomorphic except at points of an at most k — 2 dimen-
sional analytic set of M' because Mhas no singularity of k—1 dimensions,
and at regular points of M, /0 is locally expressed as holomorphic func-
tion of (z{, - , z'k+1). Since Lemme 1 of [8] is applicable to M' and /£,
there exists a holomorphic function of (z{, •- , z'k+1) which induces the
function /o on M' and this induces also the function /0 on M.

From this remark we can conclude:

Theorem 2. The set SN of a k dimensional analytic set M of a domain
D in Cn (w^>&2>0) consists of:

1) k— 1 dimensional components of the singularity of M,
2) the closure of the set of all reducible points of M.

Proof. Let S/ be the union of these sets. S' is evidently an analytic
set. It is easily seen that, for any regular point x of S', there exists
an at least holomorphic function at x on M with respect to which M is
not normal at x hence, the every regular points of S' are contained in
SN. Since SN is an analytic set by Corollary to Theorem 1, and hence
a closed set, so non regular points of S' are also contained in SN. On the
other hand, SN has no component other than those of S', which was
shown by the above remark. Thus, SN coincides with S'. (q. e. d.)

§ 37). In this paragraph we consider the 2 codimensional case of
Lemme 1 of [8].

Theorem 3. Let M be a 2 codimensional analytic set in a domain D
of Cn and suppose M be expressed as common zeros of holomorphic functions
F(z) and G(z) in D. Moreover, we assume (F, G) be a pseudo-base of the
ideal J(M) at every point of D. Then, if, for a holomorphic function f
on M, codim.SN(f)^4:y S N ( f ) is empty.

REMARK 1. The minimum number of generators of an ideal cor-
responding to a 2 codimensional analytic set is not always 2 even locally85:
for example, considering in the space (x, y, z) a curve determinad by the
equations x = t3, y = t4 and z = t5, we can show that its pseudo-base at the
origin consists of at least three functions.

7) Results of this paragraph were obtained during the term mentioned in 1).
8) Though this fact may be well known, we illustrate it here because it seems that for

the analytic case there is no explicit explanation about this matter in bibliography. Of this
example the author was informed by Mr. E. Ohnishi.



Set of non Normal Points 183

REMARK 2. Though our proof proceeds on a similar line as in the
Lemme 1 often cited hitherto, we note that for our case we use "Theoreme
du reste" ([7], p. 15).

Proof. Taking an arbitrary point possibly belonging to S N ( f ) , we
may assume it to be the origin (0). Owing to Weierstrass, after a linear
transformation of coordinates, we can choose a neighborhood U of (0) in
the space ( z ί 9 ••• , 2 W _ 2 , w19 w2) satisfying the following conditions :

1) U = ZxW, where Z= {(z19 ••• , *Λ_ 2) | |*y|<r (j = 1, ••• , n-2)} and
W={(wl,w,)\\wk\<r' (6 = 1,2)} (r,r'>0).

2) In ί/, M spreads over Z.

3) F(z19 ••• , 2M-2, &Ί, M>2) and G(2Ί, ••• , £ M _ 2 , MΊ, w2) are unitary polynomials
in w2 whose coefficients are holomorphic functions for (zl9 •- , 2M_2) G Z
and ^, \WI\<^JT'.

4) For any (2', wQ, zf ^Z and |«;ί|<>', all the roots w2 of the equation
F(z' f, ί̂ , ^2) = 0 are smaller than rr in modulus, and the same holds
for the equation G(z', w{ , w2) = 0.

5) S N ( f ) does not meet F i W V a W V g , where

V, = {(zί9 ••• , zw-2, ̂ , w;2)| ky|<r (j = 1, ••• , «-4, w-2),

) I kyl<^ (j = 1, ••• , «-4, w-3),

(* = l ,2})and

y |<r ( = 1, ••• , n-3y n-2),

By 2) over each point z of Z there are at most a finite number of points
of M. Let λ and λ' be the degrees of F and G respectively as unitary
polynomials in w2. 5) is surely realized because codim.SAΓ(/)^4.

Since V^S^f) is empty, by Theoreme 2 of £7] there exists a
holomorphic function /^(s, w) in V^ which induces / on M; similarly
there exist F2(z, w) and F3(z, w] in V2 and F3 respectively. The functions
Fi — Fj belong to <5(M) at every point of Ff A F y ; hence, there exist

holomorphic functions ^(z, w) and bk(z, w) in K AFy ((/, j, k) is a cyclic
interchange of (1, 2, 3,)) such that

n

(4) \ F2-F3 = af+bβ in

3-F, - a2F+b2G in



184 T. ASAMI

([7] Theoreme 1). By 4) we can apply ak to and F "Theoreme du reste"
in ViΓ\Vjy and we get

(5) ak = a'k + a"kG ,

where a'k and a"k are holomorphic functions in V ^ n V y , and moreover a'k
are polynomials in w2 of degree λ' — 1. In V1r\V2r\V3, summing up both
sides of (4), we have, by means of 5),

(6) (a[ + aϊ + a'*)F= -{_(a^ai + aϊ)F+b^b2 + b^G

For any z' = (z[> ••• , z'n-2) of Z, on account of 2), there are only a finite
number of common zeros of F(z', wly w2} = 0 and G(z'y w19 w2) = 0 in W
we denote them by (w[l\ w2

2)), ••• , (w^\ w^). If w{ whose modulus is
smaller than r is not equal to any ι05°(ί = l, ••• , λ') and if the discriminant
of G does not vanish at (z{, ••• , ^_ 2> wj, then GUί, ••• , zή-2> ^ί> ^2) = 0
has exactly λ' roots smaller than r' in modulus, which we denote by
w£\ ••• , ̂ 2λ/). We have F(z{, - , ̂ _2, w ί, ̂ ?:))ΦO (i = 1, — , V). Especial-
ly, when we take (z{, ••• , z'n-2, w() such that (z[, — , z'n-2, w[, w^) for
all ί are contained in V^r\V2r\Vzy and substitute them into (6), its right
hand side has λx roots as a polynomial in w2y while its left hand side
has at most λx-l zeros. Hence, a((z(, ••• , 4,_2, w{, wJ + aίteΊ, ••• , ^ή-2> ^ί,
^2) + ^3Uί> •*• > zfn-2> w\-> ^2)

==0 for all w2 whose modulus is smaller than
r '. Since (z(, ~ , z'n_2, w{) is arbitrarily taken, provided keeping away
from an at least 2 codimensional analytic set, this means

a((Zι, ••• > Zn-2, u>ι> W2) + a'ι(Zι, '" > ^«-2> "Ί, ^2) + ̂ (^, ••• , *n-2, ̂ , w;2) = 0

in Vlr\V2r\V^ identically. Hence, in Vlr\V2r\V5

( 7 ) (aϊ + afί + a'i)F) + (b, + b2 + b,) = 0

identically. Then, by applying to bk and F "Theoreme du reste" in
V i r\ Vj as we did to ak ,

( 8 ) bk = b',, + b!F (* = 1,2,3)

where bk and ft^ are holomorphic functions in Vir\Vί and 6J are polyno-
mials in w2 of degree λ — 1. From (7) and (8), we have in V1r\V2r\V3

( 9 ) b( + δ^2 + ftj = - (*!* + βί + aS + *ίx H- &ί + bζ)F

By a similar consideration as above, we obtain #ί + #2 + 63 = 0 in Fjn F2A
Thus, we have the following three identities in Vlr\V2r\V3
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(10)

and we get from (4)

( + #2 + ̂ 3 = 0,

[+bi + bί = 0,

!*+*: + *ί+W + *ί+δί = 0;

n

F2-F3 = a(F+b(G-^(a/{ + f{b)FG in

in

(4')

Now we have reached the situation where we can apply Cartan's lemma
[2] as in Lemme 1 of [8] that is, by applying Cartan's lemma to each
system of ( a { y a ί 9 a ' 3 ) , (b{, b'2y bί) and (aϊ + bf, aζ +bζ, a£+ δί), and by
modifying Fk(k = l, 2, 3) and finally by using Hartogs theorem of analytic
continuation, we obtain a holomorphic function in U which induces / on
M. We omit details, because these are only repetitions of the last part
of the proof of Lemme 1 in [8]. (q. e. d.}

Next we shall examine under which condition the assumptions of
Theorem 3 are fulfilled. For this purpose we define the intersection
number of two 1 codimensional analytic sets. This is already done in
p. 314 of [6], but for the present use we do it in the following way.
Let 2jj and Σ2 be 1 codimensional analytic sets in a domain D whose
ideals are generated by Fl and F2 respectively, and set

(ii) ' Gί =

where a, β(a^β) are complex parameters. We consider the analytic set
2 determind by G^O and also the complex space Σ* corresponding to
2 We can assume that 2* is spread over the space (z19 ~ , £w-ι)>
because, after a linear transformation of coordinates, this is surely pos-
sible by Satz 9 of [5]. Let us take a component σ of ΣιAΣj2 > and let us
determine the intersection number of ΣιAΣL on σ. To σ corresponds
the set σ-* on Σ* which is a component of the surface given by £?2 = 0,
where G2 is a restriction of G2 to Σ. In these circumstances, except
a special pair (<#, /?), the order of zeros of G2 on σ* ([8], p. 269 and p. 270)
is a uniquely determined value, which we call the intersection number
of ΣιAΣ2 on σ Here we must make clear what we mean by "special
pair (a, B)". Let XQ be a regular point of σ*, and let its coordinates
be (0) for convenience, and further, let σ* be given by zn-1 = Q in a neigh-
borhood of (0), where G2 is developed in t (t = zl

n

f\\ \> is the index of
ramification of σ*) as follows:
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(12) G2 - akt
k + ak+1t

k+1 + - (akφQ, k^Q) '

where the coefficients aί=aj(zl9 ••• , 2M_ 2, ay β) (j=k, & + 1, •••) are holomor-
phic in (z) in a neighborhood of (0) and rational in (α, β). The pairs
(α, /3) satisfying ak^0 identically for (z19 ••• , 2 W _ 2 ) form an analytic set
in the space of pairs (cc9 β) because they are common zeros of infinitely
many equations in (ay β). These pairs (a9 β) are what we mean by
special pairs (<x9 β). Thus, we can determine the intersection number
of Σi^ΣL for every component of ΣιnΣ2 unless the pair (α, β) belongs
to an exceptional set of first category in the space of pairs (α, β).
This definition is obviously symmetric for F1 and F29 and morever it is
independent of the particular choice of generators Fί9 and F2, because,
even if we rewrite (11) as

using everywhere non zero holomorphic functions ω, ω/ in D, we obtain the
same values, which is shown by a direct calculation of a/s in (12).

Lemma. // an analytic set M of 2 codimension in a domain D of Cn

is the intersection of two 1 codimensional analytic sets Σi and Σ2 whose
intersection number is 1 on every component, then M is not contained in the
singularity of Σi and that of ^2-

Proof. Let Gl and G2 be generators of the ideals corresponding to
Σi an(i Σ2 respectively. If dGJdZj and 3G2/3zy 0" = 1, •••,«) are all
identically zero on M, then it is easily verified that the coefficient a1 in
(12) is also identically zero on M for all (α, β) This contradicts the
assumption.

Theorem 3 bis. Let M be a 2 codimensional analytic set in a domain
D of Cn(zly -" , zn), and suppose M be the intersection of two 1 codimensional
analytic sets whose intersection number is 1. Then9 if codim.SN(f)^4:
for a holomorphic function f on M, SN(f) is empty.

Proof. By assumption M is expressed as common zeros of F(z1, ,
zn) = 0 and G(zl, , zn) = 0, where F and G are holomorphic functions in
D and the intersection number of two 1 codimensional analytic sets
defined by F=Q and G = 0 respectively is 1. It will be sufficient to show
that at every point of D (F, G) is a pseudo-base of an ideal <3(M) that
is, if U is a neighborhood of a point ZQ of D, and if Φ(z) is holomorphic
function in U and vanishes on ί/nM, then Φ(z) is a linear combination
of F and G whose coefficients are holomorphic functions in U. For
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simplicity let z° be the origin (0). By the above Lemma the intersection
of M with the singularity of the analytic set defined by F=0 is an analytic
set of at least 3 codimensions and besides, non regular points of the
analytic set determined by G = 0 on the analytic set defined by F=0 form
also an analytic set of at least 3 codimensions. We denote by M0 the
union of these special sets. M0 is of at least 3 codimensions. It is obvious
that at each point of U—MQ our assertion is already satisfied. Here we
suppose that U= {(z19 ••• , zn)\ |zy|<> (/=!, — , «)} (r>0), and that F and
G are unitary polynomials in zn and we set Vί= {(z19 ••• , zn)\ \Zj\<^r
(;• = !, - , n-3, »-l, n), r'<\zH-2\<r} and V2= {(z19 - , zn)\ \ZJ\<T (j = I,
— ,n-2,n), r'<\zH-ι\<r} (0<V<>) such that M,r\(V^\jV2) is empty,
These are possible by applying a linear transformation of coordinates
and by substituting a smaller neighborhood of (0) for C7, if necessary.
By Theoreme 1 of [7] there exist holomorphic functions a^z), b^z) in V1

and a2(z), b2(z) in V2 such that

ί Φ = α1F+ί1G in F,,

I Φ = a2F+b2G in F2.

By using "Theoreme du reste" as in the proof of Theorem 2, we get

where a( , 6ί are polynomials of degree λ7 — 1 in zn and <22 , 62 are similarly
of degree λ— 1 (λ, λ' are the degrees of F and G respectively). Thus,
(13) becomes

in

in

and in Vlr\V2

Then, by a similar consideration as in the proof of Theorem 3, we obtain
in Vlr\V2 a( = a'2, b{ = b2 and aϊ + bζ = aϊ + bζ therefore there exist holomor-
phic functions A(z), B(z) and C(z) in Vlr\V2 such that

A(z) = a't(z), B(z) = b't(z) and C(z) = a ! ( z ) + bl(z)

in yf- (ι = l,2). Thus,

(15) Φ - AF+ BG + CFG in K w V2.

Since the holomorphic envelope of Vl\uV2 coincides with Uy the holomor-
phic functions A, B and C in V^r\ V2 are holomorphically continued onto
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U and (15) holds also there. This completes the proof.

Corollary. Let M be a 2 codimensional analytic set in a domain D of
Cn which satisfies the conditions of Theorem 3 or Theorem 3 bis. Then all
reducible points of M are contained in the 3 codimensional singularity of M.

Proof. Let x be a reducible point of M through which the intersec-
tion of several components of M passes, and assume the codimension of
the intersection be larger than 3. Then, there exists a holomorphic func-
tion / at x whose SN(f) is not empty and is of larger codimension
than 3. This contradicts Theorem 3 or Theorem 3 bis. (q. e. d.)

For lower dimensions we do not know if the analog to Theorem 3
holds or not9), but, for example, when the analytic set M of n — k codimen-
sions of a domain D in C*(zl9 ••• , zn] (n^>k^>0) is given by

(16)

^lUl, ••• , **, **+!, • ' • > *„) = 0,

F2(zly ••• , zk, zk+1, ••• , Zn-J = 0,

Γ n-k-ι\2ι> "* 9 Zkι %k+i> Zk\2J == U,

where Fi(zl9 ••• , zk, zk+l, ••• , zn-i+1) (/ = !, ••• , n — k) are unitary polynomials
in zn_i+l whose coefficients are holomorphic functions in D, and moveover,
if (F19 ••• ,Fn_k) form a pseudo-base of the ideal <9(M) at every point of
D, then, a for holomorphic function / on M the codimension of whose SN(f)
is larger than 3, SN(f) is empty. This is shown by repeting the procedure
used in the proof of Theorem 3.

(Received March 19, 1960)
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