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Mass Distributions on the Ideal Boundaries of
Abstract Riemann Surfaces. I

By Zenjiro KurRAMOCHI

We shall extend some theorems of potential theory in space to
abstract Riemann surfaces. In the present article we shall be concerned
with Evans-Selberg’s theorem on Riemann surfaces with null-boundary.

G.C. Evans and H. Selberg® proved the following theorem. Given
a closed set F of capacity zero in space, then there exists a positive mass
distribution on F whose potential is positively infinite at every point of F.
We shall extend this theorem to abstract Riemann surfaces with null-
boundary.

Let R* be a Riemann surface with null-boundary and {R,}
(n=0, 1, 2, ---) be its exhaustion with compact relative boundaries {9R,}.
Put R=R*-R,. Let G,(z, p) be the Green’s function of R,— R, with pole

at p. Clearly, G,(z, p) 1 G(z, p) as n—co. Since [ %‘S(Z—’p—)ds§2n for

R,
every #, G(z, p) is not constant infinity and harmonic in R except at p
where G(z, p) has a logarithmic singularity.

Take M large so that the set Vy(p) =E[z€ R:G(z, p)=M] is com-
pact in R. Let o,(2) be a harmonic function in R,— R,— V,(p) such that
0,(2)=0 on 9R+9Vy(p) and w,(2)=M on 9R,. Then since R* is a
Riemann surface with null-boundary, hm 0,(2)=0. Let G,(z, p), G/ (2, D)

and G,(z, p) be harmonic functions m R —R,— V,,(p) such that G,(z, p)
G/ (2, D) =G,(z, ) =M on 9Vy(p), G.2, ) =G, (2, ) =G,z p)=0 on

OR, and G,(z, p)= 8(} (z, 2 D) =0 and G,(z, p) =0 on 9R, respectively.
Since 0<_G,/(z, p)<M on BR,,, we have by the maximum principle
Gz, )<G,/ (2, ))<_G,(z, D), Gu(z, 1)<Glz, <G,z b)

and
0<G,(2, D) —G,(z, p) = Mo,(2).

1) Resumé of this part is reported in Proc. Japan Acad. 32, 1956.
2) G. C. Evans: Potential and positively infinite singularities of harmonic functions.
Monatsch. f. Math. u. Phys. 43, 1936, 419-424.
H. Selberg: Uber die ebenen Punktmengen von der Kapazitit Null. Avh. Norske
Vid-akad, Oslo, 1, Nr. 10, 1937, 1-10.
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Hence
lim G(z, p) =lim G/ (z, p)—hmG (z, p)=0G(z, p).

fn=0c0 n=o00

Then by Green’s formula and by the compactness of V,(p)

fBG(z p)ds—-fhmac (z & D) g fhmaG (z (@ D) g5

AR, ”n ARy n=co DV () n=co

=— aG(Z D) gs=2n.

v ON

G(z, p) is called the Green’s function of R with pole at p.

After R.S. Martin® we shall define the ideal boundary points as
follows : let G(z, p) be the Green’s function of R with pole at p. Then
by definition, the flux of G(z, p) along OR, is 2= and G(z, p) is positive.
Consider now a sequence of points {p;,} of R having no point of accumu-
lation in R+9K,. In any compact part of R, the corresponding functions
Gz, p;) (=1, 2,---) form, from some 7 on, a bounded sequence of har-
monic functions—thus a normal family. A sequence of these functions,
therefore, is convergent in every compact part of R to a positive har-
monic function. A sequence {p;} of R having no point of accumulation
in R+9R,, for which the corresponding G(z, p;); have the property just
mentioned, that is, converges to a harmonic function—will be called
fundamental. Two fundamental sequences are called equivalent if their
corresponding G(z, p;); have the same limit. The class of all funda-
mental sequences equivalent to a given one determines an ideal boundary
point of R. The set of all the ideal boundary points of R will be
denoted by B and the set R+B, by R. The domain of definition of
G(z, p) may now be extended by writing G(z, p) —-hm Gz, p)(z€R, pe B),

where {p;} is any fundamental sequence determmmg p. For p in
B, G(z, p) is positive, harmonic and /[ a—Gg?Q ds=2= and further G(z, p)

R,

is unbounded in R, because if G(z, p) is bounded in R, G(z, p)=0 by
the maximum principle. This contradicts S ing"p) ds=2=. Evidently,

3R,
the function G(2, p) is characteristic of the point p in the sense that
the identity of two points of R is equivalent to the equality of their
corresponding G(z, p), as a function of z. The function 8(p,, p,) of two
points p, and p, in R is defined by
G(z, p) G(z, p.)

b, b= _SUD |1 Gl 50 14G@. By |"

3) R. S. Martin: Minimal positive harmonic functions. Trans. Amer. Math. Soc. 39, 1941.
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Evidently, 8(p,, #,) =0 is equivalent to G(z, p,) = G(z, p,) for all points z
in R,—R,. Therefore we have G(z, p)=G(z, p,) for all points in R,
that is 8(p,, ,) =0 implies p,=p, and it is clear that 8(p,, p,) satisfies
the axioms of distance. Therefore 8(p,, p,) can be considered as the
distance between two points p, and p, of R. The topology induced by
this metric is homeomorphic to the original topology when it is restricted
in R. Since G(z, p;)(p; € R) is also a normal family, both (R—R,) +9R,+B
and B are closed and compact. For fixed z, G(z, p) is continuous with
respect to this metric (we denote shortly it by é-continuous) as a func-
tion of » in R except at z=2p.
First we shall prove the following

Lemma 1. Let G; be a compact or non-compact domain with an analy-
tic relative boundary °G; @ =1,2,--- k). Let Ui2) ¢=1,2,---,k) be a
Sunction which is harmonic in R—G; and on 9G;, such that the Dirichlet
integral of Uyz) taken over R—G; is finite. Then theve exists a sequence
of compact curves {y,} such that v, separates B from OR,, {y,} clusters
at B and that [ Q%’f)

VYn—Gi

1ds tends to zero as n—co, for every i.

Proof. Let »,/(z) be a harmonic function in R,— R, such that o, (2)=1
on OR, and »,/(2) =0 on 9K,. Then hm ®,/ (2) =0, since K* is a Riemann

surface with null-boundary. Hence, for any given number #’ there
exists a number #, such that w,,’(z)<§ in Ry—R,, for any n=n,. We

denote by o,(2) a harmonic function in K,—E, which vanishes on 9OR,
and assumes a constant value M, on 9R, and whose flux along 9R, is
2z. It is evident that o,(2)=M,»,/ (2) and hmM =oco. Then for a

number #' chosen in the manner above stated the niveau curve with

M, ;

height > 5 is contained in R,—R,.

Put emn(z)+i¢;”(z) — reie ,

where @,(z) is the conjugate harmonic function of ,(2).
Let U(2) be one of U;(z) and put

oU(2) -
ol |rd6._ s

Cr

Liry= S

Cr

oU(2)
“on { ds,

where C, is the part of the niveau curve C, of w,(2) with height »
contained in R—G.

Suppose that there exist iwo positive constants 7 and ¢ and in-
finitely many numbers # with the property as follows: there exists a
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closed set F, in the interval (eM», ¢M»/%) such that (e—,;f%gn and

that L(r)=86 for any re€F,. Since [fd0=2=, [df<2=. Then by
Cf Qr

Schwarz’s inequality, we have

DU = s/ {(°5E)+ L <ag§}z)>}rdrd zief L0 gy

1 eMy L (1,) eMy M
= — = L
27 eM,, /2 dr >27t' eM, ~n<1'£ My ¥ d?’ 4= K

Let n—>co. Then the right hand side diverges. This contradicts the
finiteness of D(U(z)). Hence there exists a sequence of exceptional sets

{E,} in the intervals {(¢M=, eM»/} such that hrn —Hﬁs-E——O and

M /2)
that » ¢ E, implies L(r)<_8,, where lim §,=0.

n=oo

Returning to case of U;(2), let {E;,} be a sequence of exceptional
sets corresponding to U;(z) and {§;,} be the corresponding quantities
x
Smes E; ,
of {E;,}. Then we see that (i%*m and max 8, , tend to zero as

]‘24" are

n—>oco. On the other hand, the niveau curves with height >
are contained in R—R,, since w,,(z)< M, in Ry—FK,. It follows that
every C, with 7€ (eMr, eMn/?)— ZE, " clusters at B as n—>o and that

BU 4
() ds<max8 Con51der a niveau curve C, above men-
C,NR-Gp

tioned as v,. Then we have the lemma.
Next, we shall consider the behaviour of G(z, p) (p€ R).

Lemma 2. Put V,(§)=FE[z€R: Gz H)=m]. Then [ aﬁgéi ds®

Vo) -
=27 and the Dirichlet integral Dg_y (G2, p)) <27nm, where pE R and
m=0.

Proof. We shall prove the lemma in three cases:

Case 1. pER and V,(p) is compact.

Case 2. p€R and V,(p) is non-compact.

Case 3. peB.

Case 1. pER and V,(p) is compact. Let o,(z) be a harmonic func-
tion in R,—R,—V,(p) such that o,(2)=1 on 9R, and ,(2)=0 on

0 s . . . .
4) In the sequel, 5, means derivative with respect to inner normal with the exception

9G(z, p)

that 5, on the niveau curves of G(z, p) means derivative with respect to inner or outer

normal so that BG(z ? )20
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OR,+9V,(p). Since R* is a Riemann surface with null-boundary,
lirg ®,(2) =0. Let G,(z, ) and G,(z, p) be harmonic functions in R,—R,
— V.a(9) such that G,(z, p) =G,(z, p) =m on 9V, (p), G(z, p) =G,(z, p)=0
on OR, and G,(z, p)=m on OR, and G,(z, p)=0 an OR, respectively.

Fig. 1.

Then

G.(z, 1) >G(z, ) >G,(z, p) and 0<G,.(2, p)—G.(2, D) =mw,(2).
Hence lim G,(z, p) = G(z, p) =1im G,(z, p).

The 15‘i=richlet integral of 7'=a,(z, p) taken over R,—R—V,(p) is
EE"(Z, P) dS
n :

Therefore, we have by Fatou’s lemma
AV, (p
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Di-vyip(Glz, D) S 1im Dy, gy, (G, ) =limm j 95D g
== n=c  QV,,(p) n

AW O ’

because [ a—Gg’—Q ds=2w is clear by the compactness of V,(p).
AV (00 n

Case 2. peR and V,(p) is non-compact. Take M large enough
so that V,(p) is compact. Then by the results of the case 1,
27M=Dg- vy p(G(2, D)) >Dr-v,,»(G(z, p)). Consider G(z, p) as U(2) in
lemma 1. Then there exists a sequence of compact curves {y,} cluster-
e D js—o,

on

ing at B such that «, separates B from OR, and lim
n=co Y, =V, (p)

Denote by R,’ the compact component of R bounded by v, and ©OR,.
On the other hand, it is obvious that

G2, P) 4o 9G(z, p) Gz, P) 4o
3‘1{; on ds ? Vm({;mR;, on ds+ V- J,‘,,q;) on ds=0.
Since {y,} clusters at B and QQgT’p—)gO on 9V, (p), by mentioning to

the above equality, we have

9GG, p) ds=2n
on )

AV, ()

The Dirichlet integral of G(z, p) is

DiyvyinGles )= [ Gla, 1) C& P ass. /. Gen 96 ) g,

V(> MR,,

Since {y,} clusters at B and the second term on the right hand side
tends to zero as #n— oo, we have

Dg- Vm«p)(G(Z, D) =2mm.

Case 3. p€B. Let {p;} be a fundamental sequence determining p.
Consider the Dirichlet integral DR,,-RO—Vm(b(G(z’ ?). For any given posi-
tive number &, we can find a narrow strip S such that the interior of S
contains OV, (PN (R,—R,), Dg,-ry-s-v,,0(G(2, p))ZDR,;RO—Vm(p)(G(Z, p)—¢
and that R—V,(p) DR,—R,—S—V,(p) for any i>i,(S, &), where 7.(S, &)
is a suitable number depending on S and &, because G(z, p;) converges
to G(z, p) uniformly in R,— R, and hence the niveau curves 9V,,(p; tend
to 9V, (p) as i — o, (Fig. 1). Since the derivatives of G(z, p;) converge
uniformly to those of G(z, p) as i — oo, we have
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Dy, -g,-s- V,,,(p)(G(Z, D) é@ Dg-v,, (G2, ;) <27m.

By letting €—0 and then #— oco.
Dg-v, (G2, P)) <27m.

Hence, by lemma 1, we can prove the existence of a sequence of compact
curves {vy,} such that v, separates B from OR, and {y,} clusters at B

and that lim \BG(z ?) }ds=0. Therefore we have

n=oo y —Vm(p)

8(;(2' P)d — f@ﬂdszzn
on

W ON R,
Thus we have the lemma.

Lemma 3. (Extension 0f Greew's formula). Let q be a point in
R—V,(p). Then for every point p€ R,

oz o), G 0 P as=Gua, . (1)
Proof. Since g€ R, there exists a number #’ such that R/—R,>gq,
whence there exists a constant L such that G(z, ¢ <L in R—R,. Hence
by lemma 2, Dg-g, (G2, 9)) ZDg- v, (G(2, q)) <27L and DR—Vm(p)(G(z) D)
<2mm. Therefore by lemma 1, there exists a sequence of compact
curves {y,} such that ¢, separates B from OR,, {y,} clusters at B and
that both S QG_M‘dS and [ g@z’ilds tend to zero as #— oo,
Y on Y= V2 on
Denote by R, the component bounded by v, and 9R,. Suppose R, R..
Apply the Green’s formula to G(z, p) and G(z, ¢) in R,—V,(p). Then

ov ‘(Q)f\Rr G(z, q) z_ag(a%’lﬂ ds=27G(q, p)+ ‘{; . Gz, p) 24! aG(z q) ds
26 0) g5 8G(z, 9)
+7n_‘{n<1” GG 2) T on ds Yn“‘{n(p) Gz a) on ds.

We shall see that every term, except the first, on the right hand side
aG(z 2, 9) 4 ds|

aG(z, q) ‘ ds,

tends to zero as #n—>o. In fact, | S G(z, p) —=
AV, (PR,

M ds<m f
on —

n

=Gz, P | S Gz 9 ds|=m S

BV, (HOMRy, Y V(D
| S Gz p)— 8G(z % 4) ds|=m [ M‘ds and[ f G(z, q) ==
Y= Vo) Yy~ Vol Yy~
ds| <L 8G(z » D) ‘ds On the other hand, G(z, q) a(;(z p)-

V= V()

aG (z 2, D)

>0 on
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oV, (p). Therefore we have the lemma.
We shall consider the behaviour of the topology induced by é-metric.

Corollary. Let v,(p) be a S-neighbourhood of p€R, that is v,(p)

=E[z€R: o(z, p)<%]. Then for any given V,(p), there exists a
neighbourhood v,(p) such that

V(D) D@, (p)NR).

Proof. The assertion is evident for p€ R, because our topology is
homemorphic to the original one in R. Hence it is sufficient to prove
the corollary for p€ B. Suppose that the assertion is false. Then there
exists a number m, such that V,, ($) D@,/ (p)NR) for infinitely many
numbers »’. Hence we can find a sequence of points {g;} in R—V,, (p),
tending to p with respect to é—-metric. Let m>=3m,. Then we can find
a number #, by lemma 2, such that

oG (z,

OV (HI Ry~ Ry - Onm

2 D) s>

Since g;€ R—V,, ($), we have by (1),

Glz, )2 P ds . dt 4)%¢& D js=2nGlq,, p)<2mm,.

AV (PR~ Ry

Since SG(z )

>0 on 9V,,(p), there exists one point z; on OV,,(p)N (R, —R,)

such that G(z,, q,)<2m,. Let i tend to o. They by the compactness
of oV, (PN (R, —R,), we have G(z,, p)<2m,, where z, is one of limiting
points of {z;}. This contradicts G(z,, p)=m=3m,. Therefore we have
the corollary.

If two points p and ¢ are contained in R, we have, by definition
G,(p, 9 =G,(q, p), where G,(z, p) and G,(z, q) are Green’s functions of
R,— R, with pole p and ¢ respectively. Hence, by letting #— oo, we
have G(p, 9) =Gl(g, p). Next, suppose p€ B and g€ R. Let {§;} be one
of fundamental sequences determining p. Then, since G(p;, q) =Glq, p;)
and since G(z, p;) converges to G(z, p) uniformly in every compact set
of R, G(p;, ¢) has a limit denoted by G(p, g) as p,—p. More generally,
suppose that a sequence {p,} of R tends to p with respect to &-metric
and that ¢ belongs to . Then we have

G(g, D) =1ii_~{g G(q, p) =1j:mm G(pi, q).

Hence G(z, g¢)(g€ R) has a limit when z tends to p€ R with respect to
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d-metric. In this case we define the value of G(z, q) at p as this limit
denoted by G(p, q). Thus we have the following

Lemma 4. If at least one of two points p and q is contained in R,
then
G(p, 99 =G(q, D). (2)

G(z, q) is defined in R for g€ R but G(z, ¢) has been defined only
in R for g€ B. In what follows, we shall define G(z, ¢) in R, even in
case g€ B. For this purpose, we shall prove the following

Lemma 5. Suppose that p and q ave contained in R. Let V,(p)
=E[z€R: Gz, p)=m] and Vy(p)=E[z€ R: Gz, p)=m'], where m<_m,
ie. V,(p) DOV, /(D). Then

— 9G(z, D) 4¢- 9G(z, p)

27 Gy,p (P, q)——m{wG(z, Q=5 dsgwmf(p) Gz, @) =32+ ds

=27 Gy, (b, 9) .

Proof. At first, if p€R, since G(z, ¢g) is harmonic in R for
4€R, 27G(p, )= S Gz, q) %é@ ds for every V,(p) such that
BV, (2 n

Vb)) $q. Next, if pe€6 B and g€ R, we have also by (1), 27 G(p, q)
=27G(g, p)= \ f( G(z, q) a—G(a’%ﬂ) ds for V,(p) $¢q. Hence our assertion
Vo2

Fig. 2.
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is clear if either por ¢, at least belongs to K. Therefore it is sufficient
to prove the lemma when both p and ¢ belong to B. Let {g;} be a
fundamental sequence determining ¢. V,,(p) may consist of at most a
enumerably infinite number of domains D, (/=1, 2, --), (Fig. 2).

Let D be one of them. Let G, ,(z, ¢;) be a harmonic function in
DN\ (R,—R,) such that G, ., ¢)=G(,¢) on 9D\ (R,—R) and
Gp, 42, g)=0 on 9R,nD. Then we have by Green’s formula

G(z q])>GD ,,(z q])_- f G(é;, ]) aG (g Z)d

27 DN R,-Ry

where G2(&, z) is the Green’s function of DN (R,—R,) with pole at z.

Since GP(, z) is increasing with respect to #, Gy (g 2) TaGD(E 2)

at every point & on 9D, where GP(¢, z) is the Greens functlon of D.
Hence

G(z, 4) ZCp(2, ¢) =1im G, ,(2, 4) =5 [ G, g) oGP (5 9GP, 2) 4o

We call Gy(z, g;) the solution of Dirichlet problem in D with boundary
value G(z, ¢;) on 9D. Let g; tend to ¢. Then, since G(, ¢;) tends to
G(, q) at every point £ on 9D, we have by Fatou’s lemma

Gz @) =lim Gz, ¢)=1im Gylz, 4) = 5 [ 1im G(E, 4) P00 ds

j=o

1 9GP ¢, 2) ;.
—2731.{‘6(5’ Q)Tds—co(z» q), (3)

where Gp(z, q) is the solution of Dirichlet problem in D with the
boundary value G(z, q).

Put G™(z, q) =min [M, G(z, ¢9)]. Then GM(z, q) is superharmonic in
R. Let GM(z, q), GM(z,q) and GM(z,q) be harmonic functions in
DN (R,—R) such that (_?M(z q) =GM(z, 9 =GM(z, ) =GM(z,q) on
oDN (R,—R,) and GM(z, q) =M, GM(z, q9) =GM(z, q) and GM(z, g =0 on
OR,ND respectively. Then GM(z q) >GM(z, q) >GM(z, q) and GM(z, q)
—GM(z, q) <Mow,(2), where ,(2) is a harmonic function in R,—R, such
that ©,(z) =0 on 9R, and »,(z) =1 on 9R,, whence

¥z, @) =lim G(z, q) =lim G}(z, q) = lim G'(z, g) .
~ Evidently, G¥(z, g) is the solution of Dirichlet problem in D with the

boundary value G™(z, g) on 9D and G¥(z, g) =—— J‘GM(S, )BG (E €, 2) 4.
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Therefore
lim GHl(z, 9) =Gpl(z, q).

In the sequel, we denote briefly by G, (2, ¢) the function which
is equal to GD,(z, q) which is the solution of Dirichlet problem in D,
with boundary value G(z, q), in every domain D, (/=1, 2, ---).

Consider the Dirichlet integral of G¥ (2, ¢ which is equal to the
solution of Dirichlet problem G,’,”l (z, ¢y with the boundary value G™(z, q),
in every domain D,. Then by Dirichlet principle

Z DD,F\(R,,—R‘,)(G%(Z, N= 2 Dp,~r(GM(2, 9)) =Dvm(q>(GM(Z; q)) <27 M,

because the Dirichlet integral of G™(z, gq) over R equals Dg vy, (G(2, q))
<2zM. Let n—>c. Then

Dy,,ip(GV 0@ @) < 1im 33 Dy (G, 4(2, 9) <27M.

Since Dy, 5 (GY (2, q)) and Dg-v, ) (G(2, P))(<27m’) are bounded, there
exists, by lemma 1, a sequence of compact curves {v,} separating B from

OR, such that {y,} clusters at B and that both L,(y,) = BG(z b }ds

Y~ Vi (D

GV,,,(p)(Z (I)

and L,(y,) = ’ 2" {ds tend to zero as n— . Denoting by

YV (D) on
R, the compact component of R bounded by v, and OR,, apply the
Green’s formula to G¥, (,,(2, ¢) and G(z, p) in (V,,(p)—V,/(p)NR,/. Then

Yoo d CELds— T GY 0z 0) 2CE D ds

AV PRy, OV PR,

G ,
— f G(z, p) Mds_ f va(p)(z q) aGé%_ez dS

AV, (PIMRY, on YV V()= Vit (62D

oGM
+ S Gz p) ——V—Q%( > 9) ds+ S Gz, p)i"_"(_’”m

BV,,/(PIMRY, Y (V)= Vi (0 on

ds.

It can be proved, as in lemma 3, that every term on the right hand
side tends to zero as #—co, by the fact that L;(y,) ((=1,2) tends to

SG(z P)ZO on 3V, (p)+2V,/(p). Hence

zero. Now G¥ (2, q)

S vacp)(z q) — 9G(z 2 P ds= f G L (25 q) aG(g b) ds.

BV (s BV (b

By letting M —c and by (3)
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aG(Z, p) - aG(Z, 1))
3Vn‘./(‘ﬁ) G(z’ 9 on ds= f va(p)(z; q) on ds
o
=/ vacp)(z 9 — aG(z p) ds< [ Gz, 9q) G'(az’ j2) ds.
OVl P> on OV D n

Thus we have the lemma.
Definition of G(z, q) for z and q belonging to R.

Since Gy, (b, ) = 27[ f G(z, q) aﬁg;—m ds 1is increasing with

respect to m, Gy (9, q) has a limit as m—>co which we denote by
G(p, q). We define the value of G(z, ¢)(¢€ R) at p€ R by this limit. It
is easily seen that this definition of G(p, ¢) coincides with what was
given previously in case either p or ¢ is contained in R. In fact, it is

evident that Gy (9, q) :2% aVf(p)G(z, q) ?G_z(;;_@ ds=G(p, q) for pEeR

and V,(p) #¢ and that, by (1) Gy, (2, q):L I Gz, q) %éi;;@ ds

27 BV,
=G(g, p)—hm G(g, p,)—hm G(p:, q) =G(p, q) for pe B and g€ R, where
{p;} is a fundamental sequence determining ».

Definition of Superharmonicity at a point peE.

Suppose a function U(z) in R. If U(p)gz_ f U( )SG(z D) g

holds for the niveau curves of G(z, p), we say that U(z) is superharmomc
in the weak sense at a point p.

In what follows, we shall show that G(z, ¢) (z and g€ R) defined as
above, has the essential properties of the logarithmic potential in the
plane. Now we have the following

Theorem 1. The Greew's function in R has the following properties :
1) G(p, p)=roo.

2) Gz, q) is lower semicontinuous in R with respect to 6—-metric.

3) Gz, q) is superharmonic in the weak sense at every point of R.
4) G(p, 9) =Gl(g, p).

Proof. 1) and 3) are clear by the definition of G(z, g).
Proof of 2). Suppose that {;} tends to p with respect to é-metric.

Since Gy (D, q):—l— J G(z, q) 9z, ) ds, there exists a number #,
m 27 v, on
for any given positive number & such that
1

Gy, b =5 G(z, q) - aG(z 2, P) ds+¢&, for n=n,.

27 v, Ry~ Ry

Here (R, —R)N9V,(p) is composed of at most a finite number of
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analytic curves. We make a narrow strip S in R, ,,— R, such that the
interior of S containes 9V, (p)N (R, —R,) and 9S cuts 9V, (p) orthogon-
ally at the end points of 9V, (p)N (R, —R,). We divide S into a finite
number of narrow strips S, (/=1,2,---,k) so that 9S, intersects
oV,(p) with angles being not equal to 0 or # and map S, onto a rec-
tangle: 0<Im ¢ <8 (6 is sufficiently small), —1<Re{ <1, on the ¢{-plane
so that every vertical line: Ref=s (—1<s<1) intersects only once
oV,.(p) for j=j,, where j, is a suitable number. This is possible,
because G(z, p;) tend to Gz, p) that is, 9V, (p;) tends to OV,(p) and

S
oR,
oV,.(p)
S,
e V(D)
OV (b
oV, (pi)

the derivatives of G(z, p) tend to those of G(z, p) on R, —R,. We
make a point «; of 9V, (p;) correspond to a point a of 9V, (p) so that
Rea;= Rea. Then we have

lim S G 8P ds= 1 G g CeD s,

j=c0 SMAV,,(p SMOV,,(p)

oG(«;

n’p f) ds>0 and uniformly bounded in S,

because 86(%,-’;417,-) ds

_)ﬂ;g"%ﬂ) ds and G(«a;, p;) —G(«a, p). Hence

im 27Gy, (05, D =1lim  J Glz, q) 205 P ds

j=oo

G, )8G(z P)d Y ) 298 D) g

= lim
Tj=ee BV (MR, ~ Ry

—&=27Gy, b, 9)—¢,
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whence by letting €—0,

].iim GVm(pj)(pj) Q)ZGVm(p)(p’ Q) .

j=o
Hence Gy ,(p, ¢) is lower semicontinuous at p for fixed m. Since
Gy, (D, @) 1 G(D, 9), G(p, g) is also lower semicontinuous at p. Therefore
G(z, q) is lower semicontinuous in R.

Proof of 4). If por g belongs to R, 4) is clear by (2). We suppose
that both p and ¢ belong to B. Let £ and 5 be points in R. Then by
(1) and (2) we have the following

Gt =Gl D=y [ Clarn) “EPds for ng Valp), (4)
Gt =Con D=5 [ Gen) CPds for e Vu(p. (5)

m

Since Gy, (5, q) ZQL S G, q) %’((3% é

ds and since {V,(q)} clusters
T d3V,,(p

at B as n— oo, there exists a number # for any given positive number
&, such that

1 9G(E, p)
GVm(P)(p, Q)—Eég B_V‘,/,,‘(,D)G(g, q) “on ds,

where 9V,,(p) is the part of 9V, (p) outside of V,g).
Suppose that & is on 9V, (p), then £¢ V,(g), whence

G 0 =Cla, H= o5 1 Gl 209 s,

Zf AV, (>
Accordingly we have
-1 9G(n, @) 8(}(& ) 4
va(p)(p; q— #47z avf(m(avn‘/(‘q)G(% £) ~ om ds)

=2 S S G » Q-G-é%ﬂ ds) gGgZﬁl ds.

47Z V(@ 0V (P
Now by (4) and (5)
1 90(5 5 D) g~ 9G(, p)
5773!,{(;: GE, » ds _27t ‘f GE, ) Td

= G("h 1’) - G(ﬁ) 7]) for n ¢ Vm(p) .
1 ) BCE B 4o 1 2GE, B)
S 66 o Pas< o 1 o 5L as

2 v,

=Gy, p)=G(p,n) for 5€V,(p).

m
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On the other hand,
1

(o)
GVn<q)(q» y2)] :*27; an(znG(p, "7) ﬁé’:;i) ds.

n

Hence

LS T Gl ) 295D gy 90 D g

Gy, (D, @) —
v Dr 4 = 47f2 BV, (@) BV ()

-

f G(77; 17) aﬁéﬂ& dS: GV,,(q)(qy 17) .
) n )

<_—
o 27T 9V,,(q
Thus by letting €—0,
. GV,,,(p)(py ) éGV,,@(q, b).

Since the inverse inequality holds for the other pair of V,/(p) and V,(q)
and since Gy, (5, 9 1 G(p, 9 and Gy (g, p) 1 Glg p,), we have 4).

Transfinite Diameter. Let A be a 6—closed subset of B (closed with
respect to 6-metric). We define the transfinite diameter of A of order
n as follows:

n

1 e %
1/ADn—éﬁnC2 (1nf,bs 2 G(ps’ pt))

s(tsltl

Then we have the following :
a) From the definition, it is clear that A, DA zmplzes 4, D,=4,D,.

b) Put Q,,=R—R,,+23Q,, and let 1/5,D, =45~ (inf E G(p,, D).

27[;1 2 Ps D1€Q)y
Then every P, is situated on 9Q,,
In fact,

2 G(ﬁs; pt 2 G(ﬁh P;) + 2 G(Ps;ﬁi) .
:Fj_l:s its
The sum of the first term does not depend on p, and by 2) of Theorem 1,
SVG(p,, p)=U(p,) is superharmonic at every point p, of R for fixed
i

p:. We make V,(p) correspond to every point p; (@==s) such that
U(py=M in V,(p), where M= min U(p)+1. Since U(p,) is é-lower

P5€0Q,,
semicontinuous, U(p,) attains its the minimum m, at z, on a é-closed set

Q,, (Q,, is the closure of ©,). We show that z,€9Q,,. U(p) does not
attain its minimum in (Q,— > Vy,(p)) "R by the minimum principle,
because U(p) is harmonic and bounded in Q,,— ) Vyu(p)) "R and
R* is a Riemann surface with null-boundary. Next, siuppose, U(z)) <m,

— min U(p) (€ B). Then by 3) of Theorem 1, U(zo)gél;t— S U

P5€0,, OV
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><,(£g—;i~z‘2 ds, where M’ is large so that V,/(z)=E[z€R: G(z, z) =M"]

is contained in Q,,, whence there exists at least one point 2’ in Q,, "R
such that U(z')<m,. This contradicts the minimum principle. Hence
U(p,) attains its minimum on 9%Q,,. Therefore every p, is on 9Q,,.

We can discuss mass distributions on R by Gz, p), that is, the
potential of an unit mass at p is given by Gz, p) and we can define
also the energy integral of mass distributions as in space. In our case,
since 9Q,, is compact, it is easily proved that there exists the unique
unit mass distribution # on Q,, called the equilibrium distribution,
whose energy I(#) is minimal and that whose potential U(z)
=/ Gz, p) dp(p) is a constant on 9Q,, that is, URR) =0,,(2), where
w,,(2) is a harmonic function in R,—R, such that o,() =0 on 9K,

®,,(2) =M,, on OR,, and f ©,,(2) ds=2n. Moreover, it is easily proved
8n

3R,
by (b) as in space that the transfinite diameter g D= lim g, D, is equal

to 1/I(p) =1/2=M,,.
Given a system of #z points p,, p,, -, p, on A, we can choose an
(n+ 1)st pOint b (P:P(Pu b2, -+, D)) on A such that

V(D)= (3} G(p, p))[27n

is minimal, because the above function is é-lower semicontinuous on A.
Let ,V, be the least upper bound of the minimum above defined as
bpiy Dsy 5 Ds vary on A. Then there exists a system (p*, p*, -, 5,5
such that

1
V(P; pl*) pz*; o ,Pn*),ZAVn——f;r; for p on A.
Denote by V(z) the potential
_ 1 3 *
V(z) —%(E Gz, p™).

This is the potential of a certain distribution of equal point mass on A

le_ﬁ for all points
of A admitting o as a possible value of either member. Furthermore,

of total mass unity and it is clear that V(2)=>,V,—

since V(z) is o-lower semicontinuous, lim V(z;)>,V,— 5 for every

z;74€A 2
sequence {z;} tending to A with respect to é-metric.
NOW, Since G(pi) p]) =G(pjy pi)y

n+1l

<”-é-1>/AD"‘H=2i min ( E G(pu px))g “21—‘%_1; E (pi, pn))-

T p Di€EA i<
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Hence ,V,>1/.D,.,, whence

V(&) 21/ 4Dy —

Sen on A.

Since A Q,, for every m and lim M, = oo.

oo =1/ ,D=1im1/,D,=1lm ( >} Glps, $)/.C).
o n=e ps, D1€A
Therefore, for any given large number M, we can find a system of »#(M)
points p,, %, -+, b, such that the function

V@) =g (316G p)=M  on A.

Theorem 2. Let A be a 6—closed subset of B. Then there exists a
potential U(2) such that 1°. U() is harmonic in R. 2°. U{R)=0 on OR,.
3°. The flux of UR) along OR, is 2=. 4°. lim U(2) = oo.

2534

Proof. Let N be an integer larger than 3. Then since lim ,D,=0,

n=00

there exists, for any positive integer m, n(N, m) number of points
pu pz; ,P,, such that

V@) =g (3166, p)=N"  on A.

Put ﬁ V™) /2" =U(2). Then, clearly U(z) is the function required.
m=1
For an F, set of R, the capacity of F, is defined usually. Let A

be an F, subset of R of capacity zero. Then both AnR (R is open)
and AnB are F, sets. Hence we have at once the following

Corollary. Let A be an F, subset of R of capacity zero. Then there
exists a potential U(2) satisfying the four conditions of Theorem 2.
Let {G,} be a decreasing sequence of non compact subsurfaces of

R with compact relative boundaries {9G,} such that /\G,=0. Two
n>1

such sequences {G,} and {G,} are called equivalent if for given m,
there exists a number # such that G,, >G, and G,/ >G,. We consider
that any equivalent sequences determine an unique ideal boundary
component. Denote the set of all the ideal components by B. A topo-
logy is introduced on R+ B+9R, by the usual manner and it is easily
seen that R+ B+9R, and B are closed and compact. Let A be a closed
subset of B and let A be the set of ideal boundary points on A. Then
since {G(z, p)} for p;,€ A is a normal family, A is also a é—closed set.
Hence we have

Theorem 3. Let A be the subset of B on a closed subset A of B.
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Then there exists a harmonic function UQR) satisfying the conditions of
Theorem 2 and moreover 5°. lim U(z)< oo,

z2>qt A

It is sufficient to prove that the condition 5° is satisfied, since the
other four conditions are clearly satisfied. Let ¢ be a point of the com-
plementary set of A. Then there exists a component G(g) of R—R,
(m is a suitable number with a compact relative boundary 9G(g) such
that G(@ >¢ and G(@NA=0. Then max U(g)<M, which implies

2€95(q)
sup) U(z) <M, by the maximum principle, because U(z) is harmonic and
zE€G(Q

bounded in G(g) and R* is a Riemann surface with a null-boundary.

Corollary. Let A be the subset of R on an F, subset of R+B of
capacity zevo. Then therve exists a harmonic function U(2) satisfying the
conditions of Theovem 3.

R.S. Martin defined the ideal boundary points by the use of the

function Ki(z, p):G(z,ﬂp ), where O is a fixed point of R. However, in

GO, p)

case R* is a Riemann surface with null-boundary, since G(z, 0)>6 >0 in
R—R,, K(z, p) is a multiple of Gz, p), where R,€0. G(z, p) plays
consequently the same role as Kz, p). Hence Martin’s assertions hold
even in our case.

Let U(z) be a positive harmonic function in R vanishing on 9K,.
If U =V() >0 implies V(z) = KU(z) for any harmonic function V(2)
in R, U(z) is called a minimal function. Martin proved that every
minimal function is a multiple of some G(z, p)(p€ B) and that every
positive harmonic function vanishing on 9R, is represented uniquely by
an integral form of minimal functions.

The condition 5° of Theorem 3 is not always satisfied under the as-
sumptions of Theorem 2, that is,a positive harmonic function U(2) such
that U@)=oco on a S-closed set A and U(z)< oo except on A does not
always exist.

Example. Suppose that there exist # minimal function Glz, p)
(¢(=1,2,---,n with pole p, on a boundary component p. Then every
Green’s function G(z, p*)® with pole p* on p, being not minimal, must

be a linear from Gz, p*)——EcG(z ) (c;=0, Zc =1). Put A= \jp,
Then clearly A is a 8—closed set and 6(p*, A)>O Denote by U(z) a
positive harmonic function in Theorem 2, that is, U@ =0 on

or,, U@ 4o

27 and U(z) = at every point of A. Then
3R, “on

5) See 4).
6) Clearly, there exists a fundamental sequence }p;*} determining p*.
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Uk) =/ Gz, ¢.) dp(gs)  (gu€ B).
By the symmetry of the Green’s function,
Up") = J G, g2 dr(g)” = [ G(qa, D) dplgs) = S g;ciG(qm p) dr(g.)
=310/ Glpi, 02 dplgd =31 cU().

Hence U() =< on A implies U(p*) =o. Therefore any positive har-
monic function that is infinite at every point of A must be infinite at
any point of B lying on p. Thus there exists no positive harmonic
function infinite only on A.

As an application to classification of types of Riemann surfaces, we
have

Theorem 4. R* is a Riemann surface with null-boundary, if and
only if there exists a harmonic function U(z) with one negative logarith-
mic singularity at a point of K* such that U(z) has limit «~ as z tends
to B.

Proof. If the function above stated exists, R* is clearly a Riemann
surface with null-boundary and it is easy to construct the function in
this theorem from the function in Theorem 3, by putting A=B and by
the alternating process of Schwarz.

Many other applications, for instance, to Nevanlinna’s first and
second fundamental theorems, will be omitted here.

(Received April 30, 1956)

7) Since Grmp¥y(p*, ga) is measurable for fixed p* and since Gymcpsy(D%, qa) 1 G(H*, quw)
for gu€ B, 1im [Gymepy(#* ga)dp(qa) = 1im Grmcpxs (9%, a)du(ga).

Hence U(p*)= lim Urncpn (59 = 1im Sormcrno(§ Gz, ga)du(ga)) *C 2 2 a5
J}E;.f Gy mcpso (D%, qu)dpu(ga) =J (m]lzf?o va(p*)(P*, 4))dp(ga) =§ G(p*, qa)dun(qa).








