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Mass Distributions on the Ideal Boundaries of
Abstract Riemann Surfaces. JΌ

By Zenjiro KURAMOCHI

We shall extend some theorems of potential theory in space to
abstract Riemann surfaces. In the present article we shall be concerned
with Evans-Selberg's theorem on Riemann surfaces with null-boundary.

G. C. Evans and H. Selberg2) proved the following theorem. Given
a closed set F of capacity zero in space, then there exists a positive mass
distribution on F whose potential is positively infinite at every point of F.
We shall extend this theorem to abstract Riemann surfaces with null-
boundary.

Let R* be a Riemann surface with null-boundary and {Rn}
(n = Q, 1, 2, •••) be its exhaustion with compact relative boundaries {3Rn}
Put R = R*-R0. Let Gn(z, p) be the Green's function of Rn-R0 with pole

at p. Clearly, GΛ(z, p) t G(z9 p) as n-+oo. Since / 3G^*» p) ds<2τr for

every n, G(z, p) is not constant infinity and harmonic in R except at p
where G(z, p) has a logarithmic singularity.

Take M large so that the set VM(p) = E[z £R: G(z, p)^M~\ is com-
pact in R. Let ωn(z) be a harmonic function in Rn—RQ— VM(p) such that
ωn(z) =0 on /dRQ + 'dVM(p) and ωn(z)=M on dRn. Then since R* is a
Riemann surface with null-boundary, limωMCε)=0. Let Gn(z, p), Gή(z, p)

and Gn(z, p) be harmonic functions in Rn—R0—VM(p) such that Gn(zy p)
= Gn'(z, p) =GΛ(z9 p) =M on dVM(p), Gn(zy p) = G^(z, p) =Gn(zy p) = Q on

3/?0 and Gn(zy p)=M, —^ U> P) _._ Q an(j Gn(z, p)=0 on 3Rn respectively.

Since 0<^GM'(2, p)<^M on dRn, we have by the maximum principle

Gn(z, P)<GΛ'(z, p)<GΛ(z, p), Gn(z, p)<G(z9 p)<Gn(z, p)
and

M(z, p)-Gn(z, p)=Mωn(z).

1) Resume of this part is reported in Proc. Japan Acad. 32, 1956.
2) G. C. Evans: Potential and positively infinite singularities of harmonic functions.

Monatsch. f. Math. u. Phys. 43, 1936, 419-424.
H. Selberg: Uber die ebenen Punktmengen von der Kapazitat Null. Avh. Norske

Vid-akad, Oslo, 1, Nr. 10, 1937, 1-10.
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Hence
lim G(z, p) = lim GΛ'(*, p) - lim GH(z9 p) = G(z, p) .
n=°° n=°° n=°°

Then by Green's formula and by the compactness of VM(p)

^f^dGgj»ds=_ f li
8 0̂ »=oo on

= - f

G(zy p) is called the Green's function of R with pole at p.
After R. S. Martin50 we shall define the ideal boundary points as

follows : let G(zy p) be the Green's function of R with pole at p. Then
by definition, the flux of G(z, p) along 3ί?0 is 2π and G(z, p) is positive.
Consider now a sequence of points {pt} of R having no point of accumu-
lation in R+dR0. In any compact part of Jf?, the corresponding functions
G(z, p^ (i = l92, •••) form, from some i on, a bounded sequence of har-
monic functions — thus a normal family. A sequence of these functions,
therefore, is convergent in every compact part of I? to a positive har-
monic function. A sequence {pt} of R having no point of accumulation
in R+*dRQy for which the corresponding G(z, pf)s

9 have the property just
mentioned, that is, converges to a harmonic function— will be called
fundamental. Two fundamental sequences are called equivalent if their
corresponding G(z, p^s

y have the same limit. The class of all funda-
mental sequences equivalent to a given one determines an ideal boundary
point of R. The set of all the ideal boundary points of R will be

denoted by B and the set R + B, by R. The domain of definition of
G(Zy p) may now be extended by writing G(zy p) = \im G(zy pt)(z e R, peB),

where [pt] is any fundamental sequence determining p. For p in

By G(zy p) is positive, harmonic and / f ' **' ds = 2τr and further G(z, p)
?>R0 on

is unbounded in Ry because if G(zy p) is bounded in R, G(z, p)=Q by

the maximum principle. This contradicts / ;?' *' ds = 2π. Evidently,
8/?0 on

the function G(zy p) is characteristic of the point p in the sense that

the identity of two points of R is equivalent to the equality of their
corresponding G(zy p)s' as a function of z. The function S(p19 p2) of two

points p1 and p2 in R is defined by

s(Pι> &)= sup
G(z9 A) G(z9 p2)

3) R. S. Martin: Minimal positive harmonic functions. Trans. Amer. Math. Soc. 39, 1941.
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Evidently, S ( ρ l y p2)—Q is equivalent to G(zy pl) = G(z, p2) for all points z
in R1 — RQ. Therefore we have G(zy A) = G(zy p2) for all points in R,
that is δ(A> P2) = Q implies pl^=p2 and it is clear that δ(p19 p2) satisfies
the axioms of distance. Therefore δ(^, p2) can be considered as the

distance between two points pl and pz of R. The topology induced by
this metric is homeomorphic to the original topology when it is restricted

in R. Since G(zy AMA Ξφ is also a normal family, both (R-RJ+dR^B
and B are closed and compact. For fixed z9 G(z, p) is continuous with
respect to this metric (we denote shortly it by δ-continuous) as a func-

tion of p in R except at z = p.
First we shall prove the following

Lemma 1. Let G{ be a compact or non-compact domain with an analy-
tic relative boundary 3Gf (ί = 1, 2, ••• , k). Let t/f (z) (i = l, 2, ••• , fe) be a
function which is harmonic in R—G{ and on 3G, , such that the Dirichlet
integral of Ut(z) taken over R—Gf is finite. Then there exists a sequence
of compact curves {γj such that ^n separates B from dR0, {γw} clusters

at B and that f ds tends to zero as n-^oay for every i.

Proof. Let ωn'(z) be a harmonic function in Rn—RQ such that ω^(z)=\
on dRn and ω/fc) =0 on 3J?0. Then lim ωn'(z)=Q, since J?* is a Riemann

w=°°

surface with null-boundary. Hence, for any given number ri there

exists a number nQ such that ωn'(£)<]-~- in Rn'—RQy for any n>nQ. We

denote by ωn(z) a harmonic function in Rn—RQ which vanishes on 3J?0

and assumes a constant value Mn on dRn and whose flux along 3R0 is
2τr. It is evident that ωn(z) = Mnωn'(z) and limMw=oo. Then for a

n=°°

number nr chosen in the manner above stated, the niveau curve with

height I> 7̂̂  is contained in Rn—Rn'.£
Put 0ωwC*>KωwGr) __ ̂ tθ ^

where ωn(z) is the conjugate harmonic function of ωn(z).
Let £7(2^) be one of Uf(z) and put

L(r) = _ r ac/te) ds,

where Cr is the part of the niveau curve Cr of ωn(z) with height r
contained in R—G.

Suppose that there exist two positive constants η and δ and in-
finitely many numbers n with the property as follows: there exists a
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closed set Fn in the interval (eM», eM"<*) such that . ^es $ ̂ η and
(βmn — 0Mn/*)

that L(r)^S for any r£Fn. Since / dθ = 2π, f dθ<2π. Then by

Schwarz's inequality, we have

-^ eMn l*tγ\ ]_ βMn §2 J^J

2τr eMn/2 r 2τr eMn-^Mn-Mn/z) r 4π*

Let n-*oo. Then the right hand side diverges. This contradicts the
finiteness of D(U(z)). Hence there exists a sequence of exceptional sets

{En} in the intervals {(eM», eM^2)} such that lim " - = 0 and

that r£En implies L(r)<^δn, where limδn — Q.
n=°°

Returning to case of Uf(z), let {Eί>n} be a sequence of exceptional
sets corresponding to U{(z) and {δ, ιM} be the corresponding quantities

Σ mes Eit n

of (Eit „} . Then we see that /"^ MM/2x
 and max ^ . « tend to zero as

n-^oo. On the other hand, the niveau curves with height 2>— * are

are contained in R—Rn', since ωMCε)<^-^ in Rn'—R0. It follows that
& -̂

every Cr with r£(eMn, eMn/2)— Σ^ ,« clusters at 5 as n-+oo and that
ί = l

ds<Lmaχδin. Consider a niveau curve Cr above men-^Γ
OH

tioned as ^n. Then we have the lemma.

Next, we shall consider the behaviour of G(zy p)

Lemma 2. Put Vm(p) = E[ze R : G(z, p)^nί]. Then f
*vmw _

= 2π and the Dirichlet integral DR-Vm^(G(z, p)) <L2τrmy where p£R and

Proof. We shall prove the lemma in three cases :
Case 1. peR and Vm(p) is compact.
Case 2. peR and Vm(p) is non-compact.
Case 3. peB.
Case 1. p£R and Vm(p) is compact. Let ωn(z) be a harmonic func-

tion in Rn—R0—Vm(p) such that ωn(z) = ί on 3jf?w and ωn(z)=0 on

4) In the sequel, -̂ means derivative with respect to inner normal with the exception

that —^ ' on the niveau curves of G(z, p) means derivative with respect to inner or outer

normal so that 9G( >
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'dRQ + 'dVm(p). Since R* is a Riemann surface with null-boundary,
limωn(z)=Q. Let Gn(z, p) and Gn(z, p) be harmonic functions in Rn—R0

-°Vm(p) such that Gn(z,p)=Gn(z,p) = m on 3Vm(p), G(z, p) = Gn(z, p) = 0
on 3Jf?0 and Gn(z,p)=m on dRn and Gn(z, p) = 0 an dRn respectively.

Then

Gn(z, p) >G(z, p) >Gn(z, p) and 0<Gn(zy p) - Gn(z, p) - mωn(z).

Hence lim Gn(z, p) = G(zy p) = lim Gn(zy p).
ίl=CX3 W=00

The Dirichlet integral of Gn(z, p) taken over Rn—R0—Vm(p) is

m f —n\z>J!l rfSt Therefore, we have by Fatou's lemma
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DR-Vm^(G(z, p)) ̂  lim DBn.Kΰ-Vm,p)(G(z, p)) = lim m f <*5 <? Jί ds
n=oo «=°° 3vm(.p) on

= m f

because / —;j^-^-ds — 2τr is clear by the compactness of Vm(p).

Case 2. peR and Vm(p) is non-compact. Take M large enough
so that VM(p) is compact. Then by the results of the case 1,
27tM^DR-v^p,(G(z,p))>DR-Vmw(G(z,p)). Consider G(zy p) as U(z) in
lemma 1. Then there exists a sequence of compact curves {γw} cluster-

ing at B such that jn separates B from 3J?0 and lim /

Denote by Rn' the compact component of R bounded by yn and 31?0.
On the other hand, it is obvious that

- f -ds-*- f

Since {7w} clusters at B and ^0 on 37m(^), by mentioning to

the above equality, we have

The Dirichlet integral of G( ,̂ p) is

) = / G(z, p) Λ + / G(z, P) ds .

Since {γj clusters at B and the second term on the right hand side
tends to zero as n->o°, we have

Case 3. p£B. Let {A} be a fundamental sequence determining p.
Consider the Dirichlet integral DRn-Ro-Vm^(G(z9 p)). For any given posi-
tive number £, we can find a narrow strip S such that the interior of S
contains dVm(p)r\(Rn-R0), DRn.^s-vm^(G(z9 P))^DRn-RQ-Vm^(G(z, p))-8
and that R-Vm(pd^>Rn-R^-S-Vm(p) for any />/0(S, 6), where ί.(S, £)
is a suitable number depending on S and £, because G(£, A) converges
to G(z, p) uniformly in Rn—RQ and hence the niveau curves 3Vm(A) ten(l
to 'oV^p) as ί-^oo, (Fig. 1). Since the derivatives of G(z, pt) converge
uniformly to those of G(z, p) as ί -> oo , we have
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By letting £->0 and then w

Hence, by lemma 1, we can prove the existence of a sequence of compact
curves {γw} such that <yn separates B from 3R0 and {γj clusters at B

and that lim / , p) = 0. Therefore we have

Thus we have the lemma.

Lemma 3. (Extension of Green's formula). Let q be a point in

R-Vm(p). Then for every point peR,

( 1 )

Proof. Since q£R, there exists a number ri such that Rn

f—R*^<lι
whence there exists a constant L such that Gfc, ^)^L in R—Rn'. Hence
by lemma 2, DR-Rn,(G(zy q))<ΌR-VL,p,(G(z, q)}<2πL and DR-Vm,p,(G(z9 p))
<2τtm. Therefore by lemma 1, there exists a sequence of compact
curves {jn} such that γw separates B from 3I?0, {γj clusters at β and

that both / and y p) ds tend to zero as w->oo-.

Denote by ^ the component bounded by <yn and 3jί?0 Suppose
Apply the Green's formula to G(z, p) and G( ,̂ q) in Rf

n—Vm(p). Then

/ G<*. 9) = 2*0(9, Λ +

ds- f

/ Gfe rfs

We shall see that every term, except the first, on the right hand side

tends to zero as »-» oo. In fact, | /

z.tf)

G(z, p) 3Gjf' ds\

ds\<L f

f G(z,q)ds\<m ^ ^/ (

f

ds<*m f

dn

,1)
dn

ds and / G(z,

ds,

,P)
dn

, p)
dn

ds. On the other hand, G(z, q) on
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p). Therefore we have the lemma.
We shall consider the behaviour of the topology induced by δ-metric.

Corollary. Let vn(p) be a ^-neighbourhood of p^R, that is vn(p)

= E \z£R: δ(z, ρ)<^ — . Then for any given Vm(p), there exists a
L n J

neighbourhood vn(p) such that

Proof. The assertion is evident for p£R, because our topology is
homemorphic to the original one in R. Hence it is sufficient to prove
the corollary for p € B. Suppose that the assertion is false. Then there
exists a number mQ such that Vmo(p)^ρ(vt/(p)r\S} for infinitely many
numbers ri . Hence we can find a sequence of points {qt} in R— Vmo(p),
tending to p with respect to δ-metric. Let m^.3m0. Then we can find
a number n0 by lemma 2, such that

/
9FmC/OOtfi MO-J?03

Since q^R-V^p}, we have by (1),

f G ( z , q i } - - d s =

Since 3Gjf' ^Q on 3Vm(p), there exists one point z{ on dVm(p)r\ (Rn-R0)on
such that G(zi9 ^)^2m0. Let i tend to oo. They by the compactness
of dVm(p)r\(Rno — R0), we have G(z09 p)<3,m0, where z0 is one of limiting
points of {z{}. This contradicts G(zoy p)=m^>3mQ. Therefore we have
the corollary.

If two points p and q are contained in R, we have, by definition
Gn(p, q)=Gn(q> p), where Gn(z, p) and Gn(z> q) are Green's functions of
Rn—R0 with pole p and q respectively. Hence, by letting #->oo, we
have G(p, q) = G(q, p). Next, suppose p£B and q^R. Let {pt} be one
of fundamental sequences determining p. Then, since G(pi9 q) = G(q,pt)
and since G(z, A) converges to G(z, p) uniformly in every compact set
of R, G(piy q) has a limit denoted by G(p, q) as pi^p. More generally,

suppose that a sequence {p,} of R tends to p with respect to δ-metric
and that q belongs to R. Then we have

G(q, P) =lim G(q, A) =lim G(pi9 q) .

Hence G(z, q)(q£R) has a limit when z tends to p£R with respect to
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δ-metric. In this case we define the value of G(zy q) at p as this limit
denoted by G(p, q). Thus we have the following

Lemma 4. // at least one of two points p and q is contained in Ry

then
G(p,q)=G(q,p). ( 2 )

G(z, q) is defined in R for q € R but G(z, q) has been defined only
in R for q e B. In what follows, we shall define G(z, q) in R, even in
case qeB. For this purpose, we shall prove the following

Lemma 5. Suppose that p and q are contained in R. Let Vm(p)
= E[zeR: G(zy p)^m} and Vn>(p)=E\_z£R: G(z, p)^m'~], where w<X,
i.e. Vm(p)^>Vm'(p). Then

= 2π GVm<»(P, q) .

Proof. At first, if p£R> since G(zy q) is harmonic in R for

qeϊί, 2τrG(p,q)= f G(z, q)^j^ ds for every Vm(£) such that
9 VOTC/0 σW

Vm(p)$q. Next, if ^eβ and ^eί?, we have also by (1), 2π G(p, q)

= 2πG(q, p)= f G(z, q) 3G^> p) ds for Vm(p) $ q. Hence our assertion

Fig. 2.
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is clear if either p or q, at least belongs to R. Therefore it is sufficient
to prove the lemma when both p and q belong to B. Let {#y} be a
fundamental sequence determining q. Vm(p) may consist of at most a
enumerably infinite number of domains Dz (1=1,2, •••), (Fig. 2).

Let D be one of them. Let GD> n(z, qj) be a harmonic function in
Df\(Rn-RQ) such that GD,H(z, qs) = G(z, q,) on dDΓ\(Rn-RQ) and
GDtn(zy Qj) = Q on dRnr\D. Then we have by Green's formula

G(z, qj)>GD, n(z, qj) = * / G(ξ, 0,
-

where G?(l, 2) is the Green's function of Dr\(Rn—R0) with pole at z.

Since Gj?(£, z) is increasing with respect to n, ± j
on on

at every point ξ on 3D, where GD(ξ, z) is the Green's function of D.
Hence

ft) = lim GΛ M(^, ίy) =- / G(ξy q

We call GDCε, ̂  ) the solution of Dirichlet problem in D with boundary
value G(z, q,) on 3D. Let qs tend to .̂ Then, since G(l, ̂  ) tends to
G(?, )̂ at every point ξ on 3J9, we have by Fatou's lemma

G(z, q) -lim Gfe, ^)^lim G^fe, ίy)^^- / lim G(£,

where GD(zy q) is the solution of Dirichlet problem in D with the
boundary value G(zy q).

Put GM(z, q) =min [M, Gfe, ^)]. Then GM(z, q) is superharmonic in
R. Let (r^fo ^), G ,̂ q) and G^ ,̂ <y) be harmonic functions in
Dr\ (Rn-R0) such _ that Gftz, q) = G™(z, q) = GW

M(^, q) = GM(z, q) on
dDr\(Rn-R0) and G™(z, q)=M, G™(z, q) = GM(z, q) and G^U, )̂ = 0 on

respectively. Then Gffe q)>G™(z, q)^>G^(z9 q) and Gf (z, q)
q)^tMωn(z)y where ωn(z) is a harmonic function in Rn—RQ such

that ωw(2) = 0 on dR0 and ωw(^) — 1 on 3^?w, whence

, q) = lim G^(z9 q) = lim G^fe, q) = lim G^ («, )̂ .
W=CX3 «=00 M=00

Evidently, GD(Z, q) is the solution of Dirichlet problem in D with the

boundary value GM(z, q) on 3D and G (̂2, q) =~ f GM(ξ, q) <*P&Jl ds.
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Therefore

In the sequel, we denote briefly by GVfn^(z9 q) the function which
is equal to GD (zy q) which is the solution of Dirichlet problem in Dt

with boundary value G(z, q)y in every domain Dl (/=!, 2, •••).
Consider the Dirichlet integral of Gγm^(zy q) which is equal to the

solution of Dirichlet problem G™(z, q) with the boundary value GM(zy q),
in every domain Όt. Then by Dirichlet principle

Σ DDlΓKRn-Ro,(G^(zy q))^DDίπR(GM(z, q}}=DVm^(GM(z, q))<2τrM,

because the Dirichlet integral of GM(zy q) over R equals DR-VMu>(G(z, q))
^2τrM. Let «-*oo. Then

Since DVm^(Gym^(zy q)) and DR-Vm,^(G(zy p))(<2τrm') are bounded, there
exists, by lemma 1, a sequence of compact curves {γj separating B from

O/^ / ̂  A.\

9J?0 such that {γj clusters at B and that both L^γJ = / —~ -̂ ds

and L2(7n)= f
, q)

ds tend to zero as n~>w. Denoting by

R'n the compact component of R bounded by jn and 3j?0, apply the
Green's formula to G^m^(z, q) and G(z, p) in (Vm(p)—Vm'(p))r\Rn'. Then

Γ ΓM (y n\ > //e rJ ί*vm<;p )(Zj Q) — or: — as~~ J
^r^Rk

 m OH *

= f G(z, / » ' ds- f
vm'tp» n

r nt W j Γ n( 3G^(z, q)
f G(z,p) - ̂ - - ds+ f G ( z 9 p ) - ̂  - ds.

on

It can be proved, as in lemma 3, that every term on the right hand
side tends to zero as 72-^00, by the fact that LfyJ (/ = !, 2) tends to

zero. Now Gψm,p,(zy q)dG(p)^Q on dVM(p)+dVm>(p). Hence

ΓM

v
p)

By letting M->oo and by (3)
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Thus we have the lemma.

Definition of G(z, q) for z and q belonging to R.

Since Gv^(p9q)=J^ / G(z, q)^Jj^- ds is increasing with
m 2τr ai^c/o dw

respect to m,GVm^(p,q) has a limit as m-»oo which we denote by

G(A 0). We define the value of G(z, q)(q£R) at peRby this limit. It
is easily seen that this definition of G(p, q) coincides with what was
given previously in case either p or q is contained in R. In fact, it is

evident that GW(A tf) = ^f G(*> 9) ds = G(p, q) for peR

and Vm(p)jq and that, by (1) GVm,p,(py q) =

= G(q, p)=limG(q, pi)=limG(piy q)=G(pyq) for p£B and ^€J2, where
i=oo < = 00

is a fundamental sequence determining ^>.

Definition of Superharmonicity at a point

Suppose a function ί/(s) in R. If U(p)>^~ f U(z) 3Gjf ?

holds for the niveau curves of G(z, p), we say that U(z) is superharmonic
in the weak sense at a point .̂

In what follows, we shall show that G(z9 q) (z and q G R) defined as
above, has the essential properties of the logarithmic potential in the
plane. Now we have the following

Theorem 1. The Green's function in R has the following properties :

2) G(z, q) is lower semi continuous in R with respect to 8-metric.
3) G(z, q) is superharmonic in the weak sense at every point of R.
4) G(p,q) = G(q,p).

Proof. 1) and 3) are clear by the definition of G(z, q).
Proof of 2). Suppose that {A} tends to p with respect to δ-metric.

Since Gv cf»(A<7)=-ό— / G(z, q) f ' **' dsy there exists a number n0m ΔTT <ivmtp) on

for any given positive number 8 such that

GVm,p^(p,q}<,~ S G(z,q)^j^ds + S, for

Here (Rno—R0)r\dVm(p) is composed of at most a finite number of
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analytic curves. We make a narrow strip S in Rno+l—R0 such that the
interior of S containes dVm(p)r\(Rno—RQ) and 3S cuts ^Vm(p) orthogon-
ally at the end points of 'dVm(p}r\(R^ — R^. We divide S into a finite
number of narrow strips S, (/=!, 2, ••• , k) so that 3S/ intersects
dVm(P) with angles being not equal to 0 or TT and map S/ onto a rec-
tangle: 0<lImf<;S (δ is sufficiently small), —l<LReζ<l, on the f-plane
so that every vertical line: Reζ = s (—l<ls<ll) intersects only once
dVm(pi) for j^>JQ, where jQ is a suitable number. This is possible,
because G(z, pj) tend to G(zy p) that is, 3Vm(pj) tends to dVm(p) and

Fig. 3.

the derivatives of G(zy pj) tend to those of G(z, p) on Rno—R0. We
make a point Λ, of 3Vm(pj) correspond to a point a of dVm(p) so that

*j = Rea. Then we have

lim

because
on

and

lim

and uniformly bounded in S,

" Hence

f
'

-
on

/
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whence by letting £^0,

, q) .

Hence GVm^(py q) is lower semicontinuous at p for fixed m. Since

GVm(Pϊ(p, q) \ G(p, q), G(py q) is also lower semicontinuous at p. Therefore

G(zy q) is lower semicontinuous in R.

Proof of 4). If p or q belongs to R, 4) is clear by (2). We suppose
that both p and q belong to B. Let ξ and η be points in R. Then by
(1) and (2) we have the following

f G(z,v)~>ds for η£Vm(p)9 (4)
v^c/o on

f G ( Z , η ) - d s f o r ηtVm(P). ( 5 )

Since GVm,p,(p9q) = ^f G ( ξ 9 q ) - d s and since {Fm(<z)} clusters

at 5 as «— > oo, there exists a number ^ for any given positive number

6, such that

where dVm(p) is the part of dVm(p) outside of Vn(q).
Suppose that ξ is on <5Vm(p), then ξ£ Vn(q), whence

)=-- f
Z7t %Vnίq

Accordingly we have

Now by (4) and (5)

f G ^ - d s f

= G(η, p] = G(P, η) for ^ jί Vm(p) .

for
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On the other hand,

Hence

y P) ΛO\ ^G(ηy q)—-

Thus by letting £->0,

GVmw (A Φ ̂ GVn^ (q, p) .

Since the inverse inequality holds for the other pair ofVm'(p) and Vn'(q)
and since GVrn^(py q) \ G(A q) and GVn^(q, p) t G(q A), we have 4).

Transfinite Diameter. Let A be a δ-closed subset of B (closed with
respect to δ-metric). We define the transfinite diameter of A of order
n as follows :

l/AA,= o- (inf Σ G(A, A))

Then we have the following :
a) From the definition, it is clear that Al'^A2 implies

b) Put £lm = R-Rm + -dam and let l/^mDn = « - (inf Σ

Then every pt is situated on
In fact,

n.n

s<t
G(p,, ρt)= Σ G(A, Λ )+Σ

The sum of the first term does not depend on ps and by 2) of Theorem 1,

Σ G(ps, ps) = U(ps) is superharmonic at every point ps of R for fixed
i

pi. We make VM(p,) correspond to every point p{ (/Φs) such that
U(ps)^M in VM(pt), where M^ min U(ps) +1. Since U(ps) is δ-lower

^€8Qm

semicontinuous, U(ps) attains its the minimum m0 at z0 on a δ-closed set

Ωm (Ωm is the closure of ΩJ. We show that *0€3ίlm. C/(A) does not

attain its minimum in (Ωm—^VM(pύ)(~\R by the minimum principle,
i __

because U(ps) is harmonic and bounded in (Ωm—^VM(pt}}r\R and
i

R* is a Riemann surface with null-boundary. Next, suppose, U(z^^mQ

= min C7(A) feo^-B). Then by 3) of Theorem 1, U(z0)^~ f U(z)
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-<fe' where M is large so that VM'fc0) ==£[>£#: G(z, z»

is contained in ίlm, whence there exists at least one point zf in Ωmr\R
such that U(z')<jnQ. This contradicts the minimum principle. Hence
U(ps) attains its minimum on 3Om. Therefore every pt is on 3θm.

We can discuss mass distributions on R by G(z, p), that is, the
potential of an unit mass at p is given by G(z, p) and we can define
also the energy integral of mass distributions as in space. In our case,
since 3Om is compact, it is easily proved that there exists the unique

unit mass distribution μ on Ω,m called the equilibrium distribution,
whose energy I(μ) is minimal and that whose potential U(z)
=fG(z,p)dμ(p) is a constant on Θf2m, that is, U(z)=ωm(z)> where
<om(z) is a harmonic function in Rm—R0 such that ωm(z)= 0 on 3j?0,.̂ \ / »
ωm(z)= Mm on 37?w and / — <%*^-ds = 2π. Moreover, it is easily proved

dκ0 on
by (b) as in space that the transfinite diameter ΩmD= limamDn is equal

to l/I(μ) = l/2πMm.
Given a system of n points p1 , p2 , , pn on Ay we can choose an

(n+l)st point p (P — p(plί P2> ••• , Pn)) on A such that

is minimal, because the above function is δ-lower semicontinuous on A.
Let AVn be the least upper bound of the minimum above defined as
Pi 9 p2 ,-'• >Pn varY °n -A Then there exists a system (p*y p2*, ••• , p*)
such that

A*, A*, - , A*)^^^— for j> on A.

Denote by V(z) the potential

This is the potential of a certain distribution of equal point mass on A

of total mass unity and it is clear that V(z)^>AVn— -= — for all points

of A admitting oo as a possible value of either member. Furthermore,

since V(z) is δ-lower semicontinuous, lim V(Zj)^AVn— ^ — for every
Zj +qZA

sequence {Zj} tending to A with respect to δ-metric.
Now, since G(A, PJ)=G(pjy A),

min ( Σ G(pt, P.))< ~^l(ΊlG(pί, pj) .
p Piς.A «<-κ Z ZTT κ=l « = i

κ
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Hence AVn^l/ADn+1, whence

on A.

Since Aζ^Ωm for every m and limMm = oo.
m=°o

oo = 1/AD= lim l/ADn = lim ( Σ G(&, A)/«C2) .

Therefore, for any given large number M, we can find a system of n(M)
points A> A> -" , pn such that the function

V(z) = ( Σ Gfe, A)) 2>M on 4 .

Theorem 2. L^ί ^4 δ# # ^-closed subset of B. Then there exists a
potential U(z) such that 1°. U(z) is harmonic in R. 2°. U(z)= 0 on 3J?0.
3°. TA0 ./Zw* of U(z) along 3R0 is 2π. 4°. lim U(z) = 00.

Proof. Let N be an integer larger than 3. Then since lim ADn = 0,
7l = °°

there exists, for any positive integer m, n(N, m) number of points

A, A, ••• ,Pn such that

= - ( Σ Gfe, A)) ̂ ΛT on ̂  .

Put Σ y l f lte)/2m=C/fe). Then, clearly C/fe) is the function required.
m=l

For an Fσ set of R, the capacity of Fσ is defined usually. Let A

be an Fσ subset of R of capacity zero. Then both Ar\ R (R is open)
and Ar\B are Fσ sets. Hence we have at once the following

Corollary. Let A be an Fσ subset of R of capacity zero. Then there
exists a potential U(z) satisfying the four conditions of Theorem 2.

Let {Gn} be a decreasing sequence of non compact subsurfaces of
R with compact relative boundaries {3Gn} such that f\Gn = 0. Two

w>l

such sequences {Gn} and {Gn'} are called equivalent if for given my

there exists a number n such that Gm^)Gn' and Gm'^)Gn. We consider
that any equivalent sequences determine an unique ideal boundary
component. Denote the set of all the ideal components by B. A topo-
logy is introduced on R + B+dR0 by the usual manner and it is easily
seen that R+B+dRQ and B are closed and compact. Let A be a closed
subset of B and let A be the set of ideal boundary points on A Then
since [G(z> A)} for Pi^A is a normal family, A is also a δ-closed set.
Hence we have

Theorem 3. Let A be the subset of B on a closed subset A of B.
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Then there exists a harmonic function U(z) satisfying the conditions of
Theorem 2 and moreover 5°. lim

«-><z£4

It is sufficient to prove that the condition 5° is satisfied, since the
other four conditions are clearly satisfied. Let q be a point of the com-
plementary set of A. Then there exists a component G(q) of R—Rm

(m is a suitable number with a compact relative boundary 3G(#) such
that G(q)^q and G(q)r\A = 0. Then maχ[/(z)^M, which implies

*eθ0ujo
sup U(z)<M, by the maximum principle, because U(z) is harmonic and

zζGKq*)

bounded in G(q) and R* is a Riemann surface with a null-boundary.

Corollary. Let A be the subset of iR on an Fσ subset of R+B of
capacity zero. Then there exists a harmonic function U(z) satisfying the
conditions of Theorem 3.

R. S. Martin defined the ideal boundary points by the use of the

function K(z, p) = -^ΐ , where 0 is a fixed point of R. However, in
G(0, p)

case #* is a Riemann surface with null-boundary, since G(z, 0):>δ^>0 in
R-Rn*9K(zyp) is a multiple of G(z, p), where /?„'€(). G(z, p) plays
consequently the same role as K(z, p). Hence Martin's assertions hold
even in our case.

Let U(z) be a positive harmonic function in R vanishing on 3/?0.
If Γ7(*)^Ffc)>0 implies V(z)=KU(z) for any harmonic function V(z)
in R, U(z) is called a minimal function. Martin proved that every
minimal function is a multiple of some G(z, p) (p £ B) and that every
positive harmonic function vanishing on 3/?0 is represented uniquely by
an integral form of minimal functions.

The condition 5° of Theorem 3 is not always satisfied under the as-
sumptions of Theorem 2, that is,a positive harmonic function U(z) such
that U(z) — oo on a ^-closed set A and U(z) <^ oo except on A does not
always exist.

Example. Suppose that there exist n minimal function G(z, pf)
(/ = !, 2, ••• , n) with pole p{ on a boundary component p. Then every
Green's function G(z, p*)6^ with pole p* on p, being not minimal, must

be a linear from G(z, p*) = Σ dG(z, A) fo:>0, ΣX = 1). Put A = \JPi
ί = 1 t = 1 <

Then clearly A is a δ-closed set and δ(p*, A)^>0. Denote by U(z) a
positive harmonic function in Theorem 2, that is, U(z) = 0 on

dR f^^ds-=2τr and J7fe) = oo at every point of A. Then

5) See 4).
6) Clearly, there exists a fundamental sequence }pi*} determining p*.
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U(z) = / G(z, qa) dμ(qΛ) (qa 6 B).

By the symmetry of the Green's function,
n

U(p*) = f G(p*> qά dμ(q^ = f G(qΛ, p*) dμ(qΛ] = / Σ ciG(qoίy A) dμ(qΛ)ί-i

= Σ ct f G(p{, qa] dμ(qa] = Σ c{U(pt) .
ί=L i=i

Hence U(z) = oo on A implies U(p*) = oo. Therefore any positive har-
monic function that is infinite at every point of A must be infinite at
any point of B lying on p. Thus there exists no positive harmonic
function infinite only on A.

As an application to classification of types of Riemann surfaces, we
have

Theorem 4. /?* is a Riemann surface with null-boundary, if and
only if there exists a harmonic function U(z) with one negative logarith-
mic singularity at a point of R* such that U(z) has limit ^ as z tends
to B.

Proof. If the function above stated exists, /?* is clearly a Riemann
surface with null-boundary and it is easy to construct the function in
this theorem from the function in Theorem 3, by putting A=B and by
the alternating process of Schwarz.

Many other applications, for instance, to Nevanlinna's first and
second fundamental theorems, will be omitted here.

(Received April 30, 1956)

7) Since GVwc/**)^*, Qa) is measurable for fixed p* and since Gγ-mζ.ρ*ϊ(P*t Q<Λ) \ G(/»*, QO)

for qΛ 6 B, im .fGV«o>*:>O*»

Hence t/G>*)= lim £W/>*)(/>*)= lim
on

lim J Gr»cp»(p*, tf*)^*)^ O«n G . . (Λ






