Supplement to "Note on Brauer's Theorem of Simple Groups"

By Osamu NAGAI

Using the modular representation theory of groups, R. Brauer obtained very interesting results¹⁾ concerning a finite group satisfying the following conditions :

(*) The group \mathfrak{G} contains an element P of prime order p which commutes only with its own powers P^i .

(**) The commutator subgroup \mathfrak{G}' of \mathfrak{G} is equal to \mathfrak{G} . Namely;

Theorem. If \mathfrak{G} is a group of finite order g satisfying the conditions (*) and (**), then g = p(p-1)(1+np)/t, where n and t are integers, and t divides p-1. The group \mathfrak{G} contains exactly 1+np subgroups of order p and t classes of conjugate elements of order p. Moreover, if n < (p+7)/3, then either (1) $\mathfrak{G} \simeq LF(2, p)$ or (2) p is a prime of the form $2^{\mu} \pm 1$ and $\mathfrak{G} \simeq LF(2, 2^{\mu})$.

In a previous note²⁾, we considered the case n < p+2 and $t \equiv 0 \pmod{2}$, and proved that p is of the form $2^{\mu}-1$ and $\mathfrak{G} \simeq LF(2, 2^{\mu})$. In this supplement we shall prove that, including the case n = p+2, the previous result is valid; that is,

Theorem. Let \mathfrak{G} be a group of finite order satisfying conditions (*) and (**). If $n \leq p+2$ and t is odd, then p is of the form $2^{\mu}-1$ and $\mathfrak{G} \simeq LF(2, 2^{\mu})$.

Before the proof, we shall mention Brauer's results³⁾ which is needed in the sequel. Under the condition (*), the order of \mathfrak{G} contains p to the first power only. So the ordinary irreducible representations of \mathfrak{G} are of

¹⁾ R. Brauer, "On the representation of groups of finite order," Proc. Nat. Akad. Sci., vol. 25 (1939) p. 291; R. Brauer, "On permutation groups of prime degree and related classes of groups," Ann. of Math., vol. 44 (1943) pp. 57-79, especially p. 70, Theorem 10. I refer to this paper as [B].

²⁾ O. Nagai, "Note on Brauer's Theorem of Simple Groups," Osaka Math. J., vol. 4 (1952) pp. 113-120.

^{3) [}B] and R. Brauer, "On groups whose order contains a prime number to the first power I, II," Amer. J. of Math., vol. 54 (1942).

four different types: (I) Representations \mathfrak{A}_{ρ} of a degree $a_{\rho} = u_{\rho}p + 1$. (II) Representations \mathfrak{B}_{σ} of a degree $b_{\sigma} = v_{\sigma}p - 1$. (III) Representations $\mathfrak{C}^{(\nu)}$ of a degree $c = (wp + \delta)/t$, where $\delta = \pm 1$ and w is a possitive integer. There exist exactly t such representations that are algebraically conjugate. (IV) Representations \mathfrak{D}_{τ} of a degree $d_{\tau} = px_{\tau}$. Denote by A_{ρ} , B_{ρ} , $C^{(\nu)}$ and D_{τ} the characters of \mathfrak{A}_{ρ} , \mathfrak{B}_{σ} , $\mathfrak{C}^{(\nu)}$ and \mathfrak{D}_{τ} respectively.

If we have x characters A_{ρ} , $\rho = 1, 2, ..., x$, and y characters B_{σ} , $\sigma = 1, 2, ..., y$, then we have

(1)
$$x+y = (p-1)/t$$
.

Furthermore, for elements G of order prime to p, we have

(2)
$$\sum A_{\rho}(G) + \delta C^{(\nu)}(G) = \sum B_{\sigma}(G).$$

In particular, for G = 1, this gives

(2)'
$$\sum a_{\rho} + \delta c = \sum b_{\sigma}$$
, or $\sum u_{\rho} + (\delta w + 1)/t = \sum v_{\sigma}$.

Since g is equal to the sum of the squares of all the degrees, we have

(3)
$$\sum u_{\rho}^{2} + \sum v_{\sigma}^{2} + \frac{w^{2}}{t} + \sum x_{\tau}^{2} = (pn - n + 1)/t ,$$

$$\sum u_{\rho}^{2} + \sum v_{\sigma}^{2} + \frac{w^{2}}{t} + \sum x_{\tau}^{2} = (p^{2} + p - 1)/t$$
 (in the case $n = p + 2$).

Since the first p-block $B_{(p)}$ is of the only lowest kind of \mathfrak{G} , the full number of irreducible representations of \mathfrak{G} whose degrees are prime to p is (p-1)/t+t.

Proof.

It is sufficient to prove that such group does not exist in the case n = p+2, for the case n < p+2 was discussed in the previous note²).

Let n = p + 2.

First of all, we shall prove that such group \mathfrak{G} must be simple. Let \mathfrak{G} have a proper normal subgroup \mathfrak{H} of order h. From [B], Theorem 3 and Theorem 4, $\mathfrak{G}/\mathfrak{H}$ also satisfies condition (*) and at the same time $h \equiv 1 \pmod{p}$ and $(1+np) \equiv 0 \pmod{h}$. Since n = p+2, we have $(p+1)^2 \equiv 0 \pmod{h}$, $h \equiv 1 \pmod{p}$ and $g = p(p-1) (p+1)^2/t$. We put $h = 1 + \alpha p$ and $(p+1)^2 = \beta h$, then $(p+1)^2 = \beta(1+\alpha p)$. So $\beta \equiv 1 \pmod{p}$. We put $\beta = 1 + \gamma p$. Then $(p+1)^2 = (1+\alpha p) (1+\gamma p)$. This gives $p+2 = \alpha \gamma p + \alpha + \gamma$. If $\gamma = 0$, then $\alpha = p+2$. We have $h = (p+1)^2$. Since $\mathfrak{G}/\mathfrak{H}$ also satisfies condition (**), $\mathfrak{G}/\mathfrak{H}$ can not be a metacyclic group of order p(p-1)/t. If $\gamma \neq 0$, then, since $\alpha \neq 0$, we have $\alpha = 1$ and $\gamma = 1$. So we have h = p+1. This means g/h = p(p-1) (p+1)/t. From [B], Theorem 10, t must be even⁴⁾. This is a contradiction.

Then, we shall examine the degrees of the irreducible representations of \mathfrak{G} . In the case n = p+2, n is represented as $n = F(p, u^{(\nu)}, h^{(\nu)})^{5}$ in two kinds such that $\begin{cases} u^{(\nu)} = u \\ h^{(\nu)} = 1 \end{cases}$ and $\begin{cases} u^{(\nu)} = 1 \\ h^{(\nu)} = 2 \end{cases}$. So from [B], Theorem 7, the degrees of the irreducible representations of \mathfrak{G} , as far as they are prime to p, can only have some of the values

$$\begin{split} a_{\rho} &= 1, np+1, up+1, p+1, \\ b_{\sigma} &= p-1, ((n-1)/u)p-1, (n-2)p-1, \\ c &= (np+1)/t, (up+1)/t, (p+1)/t, (p-1)/t, \\ & \left(\left(\frac{n-1}{u} \right)p-1 \right)/t, ((n-2)p-1)/t. \end{split}$$

Since n = p+2 is represented as $n = \frac{up+u^2+u+1}{u+1}$, we have $p = u^2 -u-1$ (this means $u \ge 3$). Using these relations of n and p, we can simplify some of above values such that

$$\begin{array}{l} a_{\rho} = 1 \,, \, np+1 \,, \, up+1 \,, \, p+1 \,, \\ b_{\sigma} = p-1 \,, \, ((n-1)/u)p-1 = (p+u)p/(u+1)-1 = (u-1)p-1 \,, \\ (n-2)p-1 = p^2 - 1 \,, \\ c = (np+1)/t \,, \, (up+1)/t \,, \, (p+1)/t \,, \, (p-1)/t \,, \\ \left(\frac{n-1}{u} \, p-1\right)/t = ((u-1)p-1)/t \,, \\ ((n-2)p-1)/t = (p^2-1)/t \,. \end{array}$$

Now we shall eliminate the above values of degrees one by one.

If \mathfrak{G} possesses the irreducible representations \mathfrak{Z} of degree p+1, then we can decompose the character ς of \mathfrak{Z} in the normalizer $\mathfrak{N}(\mathfrak{P}) =$ $\{P, Q\}$ of p-Sylow subgroup \mathfrak{P} into its irreducible constituents. But it is easy to find all irreducible characters of the group $\mathfrak{N}(\mathfrak{P})$ of order p(p-1)/t = pq. Let ω be a primitive q-th root of unity. We then have q linear characters ω_{μ} , ($\mu = 0, 1, 2, ..., q-1$) defined by

$$\omega_{\mu}(Q^{j}) = \omega^{\mu j}$$
 , $\omega_{\mu}(P^{j}) = 1$.

⁴⁾ Furthermore, by considering the automorphism of \mathfrak{H} induced by the element of \mathfrak{H} , we can find $p+1=2^{\mu}$ and \mathfrak{H} must be an abelian group of type $(2, 2, \dots, 2)$. Thus in the case $t\equiv 0 \pmod{2}$, the structure of the non-simple group \mathfrak{G} is determined: that is, \mathfrak{G} contains an abelian normal subgroup of type $(2, 2, \dots, 2)$ and the factor-group $\mathfrak{G}/\mathfrak{H}\cong LF(2, p)$ and $p=2^{\mu}-1$. This remark is due to Mr. N. Itô.

⁵⁾ Cf. [B], Theorem 7.

Besides, we have t conjugate characters $Y^{(\tau)}$ of degree q such that $Y^{(\tau)}(Q^j) = 0$ for $j \equiv 0 \pmod{q}$.

By [B], Lemma 3, $\varsigma(N)$ (N in $\Re(\mathfrak{P})$) contains only two linear characters: $\varsigma(N) = \omega_{\mu}(N) + \omega_{\nu}(N) + \sum Y^{(\tau)}(N)$. So the determinant of $\mathfrak{Z}(Q^{j})$ ($j \equiv 0 \pmod{q}$) has the value

$$\omega^{j(\mu+\nu)} \cdot \omega^{t(1+2+\dots+q-1)} = \omega^{j(\mu+\nu)} \cdot (-1)^{(q+1)t} = \omega^{j(\mu+\nu)} \cdot (-1)^{t}$$

Since t is odd, we have $|\Im(Q^j)| = -\omega^{j(\mu+\nu)}$. But since the determinant of $\Im(G)$ (G in \mathfrak{G}) forms a representation of degree 1 of \mathfrak{G} , this value must be equal to 1 for all $j \equiv 0 \pmod{q}$. This is obviously impossible, except the case q = (p-1)/t = 2. But in this excluded case, if \mathfrak{G} possesses the irreducible representation of degree p+1, then by (2)'

$$c = ((u-1)p-1)/t$$
 or $(p^2-1)/t$.

If c = ((u-1)p-1)/t, then by (2)', 1 = (u-2)/t. But since $p-1 = u^2 - u - 2$ and (p-1)/t = 2, we have u+1 = 2. This is impossible. If $c = (p^2-1)/2$, then by (2)', 1 = (p-1)/t. This is impossible.

Thus S does not possess the irreducible representation of degree p+1.

Since t is odd, \mathfrak{G} does not possess the representations of degree p-1, (p-1)/t and $(p+1)/t^{6}$. Furthermore, according to the relation (3), \mathfrak{G} does not possess the irreducible representations of degree np+1 and (np+1)/t.

If \mathfrak{G} possesses the representations of degree p^2-1 , then we can assume that the first *p*-block $B_1(p)$ contains one character of degree 1, *x* characters of degree up+1, y_1 characters of degree (u-1)p-1, y_2 characters of degree p^2-1 and *t* conjugate characters of degree $(wp+\delta)/t$. From (3), we have

$$u^2 x + (u - 1)^2 y_1 + p^2 y_2 + w^2 / t \leq (p^2 + p - 1) / t$$
.

Now it is sufficient to draw a contradiction only in the case t = 1. For, if $t \ge 3$, then above inequality shows $p^2 y_2 \le (p^2 + p - 1)/3$. This is impossible.

Let t = 1. In this case the character $C^{(\nu)}(G)$ is considered as one of those $A_{\rho}(G)$ $(\rho \neq 1)$ or $B_{\sigma}(G)$. So we again assume that $B_1(p)$ consists of one character of degree 1, x characters of degree up+1, y characters of degree (u-1)p-1 and y_2 characters of degree p^2-1 , where $1+x+y_1$ $+y_2 = p$. From (3), we have

230

⁶⁾ Cf. The relation (2)'.

$$u^2 x + (u-1)^2 y_1 + p^2 y_2 \leq p^2 + p - 1$$
.

From (2), $x \neq 0$. Then we have

$$u^2 + y_1 + p^2 \leq p^2 + p - 1$$
,
 $u^2 + y_1 \leq p - 1 = u^2 - u - 2$.

This is impossible.

Thus \mathfrak{G} does not possess the irreducible representations of degree p^2-1 . Furthermore, above calculations show that \mathfrak{G} does not possess the representations of degree $(p^2-1)/t$.

Then, it remains only the following cases to be considered; $B_1(p)$ consists of one character of degree 1, x characters of degree up+1, y characters of degree (u-1)p-1 and either t characters of degree (up+1)/t or those of degree ((u-1)p-1)/t.

Case A: $B_1(p)$ contains the characters of degree (up+1)/t. If x = 0, then from (2)'

$$(u+1)/t = y(u-1).$$

But from the relations 1+x+y=(p-1)/t and $p=u^2-u-1$, we have

$$(u+1)/t = (u^2-u-2) (u-1)/t - (u-1),$$

 $t(u-1) = (u+1) (u^2-3u+1),$
 $(u+1)/t = (u-1)/(u^2-3u+1).$

Since $(u+1)/t \ge 1$, $u-1 \ge u^2 - 3u + 1$. Hence u = 3. But $u+1 \equiv 0 \pmod{t}$. (mod t). This contradicts $t \equiv 0 \pmod{2}^{7}$. Thus we can assume $x \ge 1$.

The degree a_{ρ} must divide the order g of \mathfrak{G} . But using $p = u^2 - u - 1$, a_{ρ} and g are decomposed into the forms:

$$\begin{aligned} a_{\rho} &= up + 1 = (u-1)^2 \ (u+1), \\ g &= p(p-1) \ (p+1)^2/t = (u^2 - u - 1) \ (u-2) \ (u+1) \ u^2 \ (u-1)^2/t. \end{aligned}$$

This gives $(u-2)u^2 \equiv 0 \pmod{t}$. But since $u+1 \equiv 0 \pmod{t}$, t=3 or t=1.

If t = 1, then by (2)' and by (1), we have

$$ux+u+1 = y(u-1)$$
 and $1+x+y = p-1$.

So

$$u(u^2-u-3-y)+u+1 = y(u-1),$$

 $y(2u-1) = u^3-u^2-2u+1.$

⁷⁾ If t=1, then the character of type C may be considered as one of those of type A_{ρ} or of type B_{σ} . So even in this case $B_1(p)$ contains the character of degree up+1.

Since $((u^3-u^2-2u+1), (2u-1))=1$, such y cannot be a rational integer. If t=3, then we have

$$ux + (u+1)/3 = y(u-1)$$
 and $1 + x + y = (p-1)/3$.

So

$$u((u^2-u-2)/3-y-1)+(u+1)/3 = y(u-1),$$

$$3y(2u-1) = u^3-u^2-4u+1.$$

But $8(u^3 - u^2 - 4u + 1) = (2u - 1) (4u^2 - 2u - 17) - 9$. This means $9 \equiv 0 \pmod{(2u-1)}$. Hence u = 5. So y = 3, p = 19 and x = 2. Thus $g = 2^5 \cdot 3 \cdot 5^2 \cdot 19$, $a_1 = 1$, $a_2 = 2^5 \cdot 3$, $b_{\sigma} = 5^2 \cdot 3$ and $c = 2^5$. Since the characters $A_2(G)$ and $C^{(v)}(G)$ are of highest kind for 2 and since $B_{\sigma}(G)$ is of highest kind for 3 and furthermore since the normalizer $\Re(\mathfrak{P})$ of p-Sylow subgroup \mathfrak{P} contains an element Q of order (p-1)/t = 6, we have

$$A_1(Q) = 1, A_2(Q) = 0, B_{\sigma}(Q) = 0 \text{ and } C^{(\nu)}(Q) = 0$$

This contradicts (2).

Case B: B(p) contains the characters of degree ((u-1)p-1)/t. If y = 0, then from (1) and (2)'

$$u'((p-1)/t-1) = (u-2)/t$$
,
 $u^3 - u^2 - 3u + 2 = ut$.

So $2 \equiv 0 \pmod{u}$. This is impossible. Thus we can assume $y \ge 1$.

As in the case A, since $b_{\sigma} = (u-1)p-1 = u(u-2)$ must divide the order g of \mathfrak{G} , we have t = 3 or t = 1.

If t = 1, then from (2)' and (1), we have

$$ux = y(u-1)+u-2$$
 and $1+x+y = p-1$.

So

$$u(u^2-u-3-y) = y(u-1)+u-2,$$

$$y(2u-1) = u^3-u^2-4u+2.$$

But such y cannot be a rational integer.

If t = 3, then we have

$$ux = y(u-1) + (u-2)/3$$
 and $1 + x + y = (p-1)/3$.

So

$$3u((p-1)/3-y-1) = 3y(u-1)+u-2$$
,
 $3y(2u-1) = u^3-u^2-6u+2$.

But such y cannot be a rational integer.

Thus, in the case n = p+2, such group can not exist.

Combining this with the previous result, we get the Theorem.

(Received September 21, 1953)

232