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Potential Theory and its Applications, .

By Zenjiro KURAMOCHI.

In the potential theory the Dirichlet Problem is a central one, and
this has been discussed by many authors on an abstract Riemann surface.
R. Nevanlinna® studied it in his paper under the following conditions :

1) The Riemann surface R is the compact subsurface of another
Riemann surface R.

2) The transfinite kernel of R—R is non empty.

On the other hand M. Ohtsuka®* studied under the following con-
ditions : , .

1) The projection of the Riemann surface R on another Riemann
surface R is compact.

2) When R is a closed surface of genus zero or one, R—R contains
at least three or onme point respectively.

And more precise investigation is done by him under the condition
that the connectivity is finite.

But now we shall study also this problem for a non compact surface.
This study is incomplete in many points as will be seen in the following.
This idea owes to the paper of Brelot®* and is intimate with those of
M. Bader® or P. Parreu® rather than of R. Nevanlinna or M. Ohtsuka.

1. Let F be an abstract Riemann surface, then it is well known
that there exists another non prolongable Riemann surface ¥ containing
the former in it. If F has finite number of genus, then F is a closed
Riemann surface of the same genus, but if ¥ has an infinite number of
genus, then ¥ will be an open Riemann surface. There occur two
cases: either F' is a zero-boundary or a positive-boundary Rieman sur-
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face. If F is of zero-boundary, then this problem is easy as we have
shown in the previous paper.

In the sequel we suppose F to be also a positive-boundary Riemann
surface. On the other hand it is evident that if F is a zero-boundary
Riemann surface, then there is no non-constant bounded harmonic func-
tion, hence we must first suppose F' is of positive-boundary.

2. Topology 9. On an abstract Riemann surface the most simple
topology is defined by the exhaustion of F': \"/F’n:—-ﬁ’. In this topology
we define ideal boundary elements and we obtain by adding all ideal
elements a compact closed space f In our case we introduce topology

 about 7, then 7 is a normal space, therefore 7 is a metric space. In
this topology each neighborhood of an inner point of F is homeomorphlc
to the disc of the z-plane. '

On an abstract Riemann surface there is defined nothing but Green
function from which we begin the theory of harmonic function, accor-
dingly we ought to study it and other harmonic measure of function
defined by arbitrary exhaustion F of F.

Let us denote by G(z, p) or simply by G(a) the least harmonic posi-
tive function except at an inner point p of F where G(2) has one
logarithmic singularity. By this property G(2) is uniquely determined
with respect to p and F. G(x) is continuous at every inner point of F
except for p, but we hardly know the behaviour at the boundary. If
G(x) has limit when 2« converges 1o an ideal boundary point in topo'ozy
A, then this point is called regular in 2.

If F is of planer character, then F coincides with the whole z-plane,
in which case the singular points for G(x) is a set of capacity zero.
In our case this property does not necessarily hold.

3. Harmonic measure and Green function. Let us denote by .F,
the subsurface of F’ cut by a finite number of compact analytic curves
C from F, and by , the non decreasing sequence of compact subsur-
faces such as ubF’n F

In denoting by .», the bounded harmonic function defined in F,~F
with the boundary values 0 on C and 1 on the boundary of ¥, con-
tained in ¥, and by o, the bounded harmonic function with the bound-
ary values 1 on the boundary of ¥, contained in ,F and 0 on the other
boundary contained in F—,F. .0, is decreasing with respect to », but
o, is not always so. We define the measure of a boundary contained in
J' with respect to F by the greatest lower bound of o, for every F,
such as \7{17’,,=F’. Then o,=0 is equivalent to «=0. For evidently if

o=0, then »,=0. Conversely assume that »,—=0. Then by maximum
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principle Iim G(.z p)= min G(x)=>8, >0, where p is assumed to be p& F.
xX€cC
If ©==0, then there exists a compact subsurface F, such that »,—1 on

the boundary of ¥, contained in CF, 0 on the other boundary, therefore
G(x)—8yw,(x) >0, for every F,. Therefore

G(x) =22 G(z) —60() .

But since G(x)—8,0(x) has the same singularity as G(x«) at p, this con-
tradicts the uniqueness of G(x). '

4. Transfinite kernel. For a subsurface F, cut by C from F, if
the harmonic measure .» does not vanish, then the set of the boundary
contained in F' is not zero. It is easily seen that the set-in which
harmonic measure zero is an open set, and that the set for any subsur-
face ,F containing at least a point of this set o, >0, is a closed set.
This is called the transfinite kernel of the boundary.

By definition we have easily the following prorposition.

If and only if lim G(x) >0, V.nR has no transfinite kernel.
x—peVe
Take a closed subset A of the sum of boundary elements R, and a

non decreasing sequence F, of compact subsurfaces such that UF =F.

We denote by .o the bounded positive harmonic function déﬁned in
F ~F, with the boundary values 1 on the toundary v,(4) of F, such
that the non compact subsurface cut by 7,(4) has at least one point of
A, and the boundary value 0 on the boundary except for v,(4) and 0
on C.

Further we denote by «* the bounded positive harmonic function
defined in F, with the boundary value 1 on v,(A4), 0 on v,(A) which are
boundaries other than v,(A4).

We define the harmonic measure of A,A) by the lower limit of
«o,(w,) for every exhaustion of F,, such that uF =F.

Proposition. If and only if ;0% =0, we have o’ =0.

For by harmonic majoration we have

i =04
Let us suppose .0% =0 and % =0, then there exists a sequence of
F, such that lim .y =0.

We denote by I'; the compact curve near to C in F., and by I, the
other curve which covers A (for the closure of the subsurface cut by
I, contains A), and which floes not intersect any v,+7%, for n=n,, and
denote by A,, )\, the maxima of ,»% on I'y and I, respectively, then by
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assumption
of (@, v,(4), F,nF)<&:wely+1y,
wn (@, v (A), F,)—0, (&, v,(4), F,nF)=0:2¢€7,(4)+7,(4).

Since

oF (2, v(A), F,.nF)=0,
ok (@, V,(A), F)—.0f (2, v(4), FAF) )=\,

where » is contained in the domain bounded by C, I', and 7,(A)+#.(4).
Especially we have on I,
A:o —'6 < 7\,1 .
On the other hand
oy (@, 7(A), Fo) =2l (2, Lo+ 9,(4), F,)=0:2€v,(4)+7,(4)
(0: (z, Vn(A)’ Fn)—x'oc’): (x, F0+'7n(A)’ Fn) =0:zel,
therefore the left side term is non positive in the domain bounded by
v (A)+7,(A) and 1';. Especially on 1, we have
M<2® 0O,
Hence it follows \; =0, and we have
lim o (%, 7,(4), F,)=0.
Let us denote by .0%* the bounded harmonic positive function such
that )
w*=0:2¢€C, wi¥=1:2xeq9,4),
0<ot*<1:2€9,(4),

Qog¥
y n ds = 0.

and

an(A)
If there exists a sequence of .F,: UF,=F, such that lim o}*=0,

then we say that A is the set of harmonic capacity zero. :

This is the direct generalization of harmonic measure in the plane
domain, but »* is a not generalization of the former, and it seems as
the ordinary linear measure with respect to all the boundaries of F,
i.e. the measure of A, when ¥ is comformally represented in the unit
circle. In the sequel we denote this measure by ‘ measure” without
the adjective ‘““ harmonic ”. It is evident that the set of harmonic capa-
city zero is also of measure zero. But in the case when ACR is iso-
lated from other boundaries these two measure coincides each other, in
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the general case the set of harmonic capacity positive may be of measure
zero, for instance the inaccessible points set is of measure zero but can
be of positive harmonic capacity in the bounded simply connected domain
in the z-plane. :

5. Proposition. From F we take off disc Fy: Fy=E[G(2)>=M], and
let the compact niveau curve of G(x) = M be denoted by C, then the set
Sy = E[G(x)=8]NE is a set of harmonic capacity zero.

Put Fy= E[G(2)=¢], and C, = E[G = a].

Let us cover R by a system of neighborhoods v,, then C, may con-
verge into R.

Fy,=Fs— anv (R) has the boundary curve v,, and ¥,,, where 7, is
the boundary of F, in Zv (R) and irregular for the Dirichlet problem
and G(@)=8:2€7,;.

We denote by U(x) the solution of Dirichlet problem with the bound-

ary value 0 on C, and 1 on C;, then U(x)__M—G

Let Ne,=E[U(2)< 1—&]NnF;, where & == 0, then we have only to
show that the set Ne¢, is of capacily zero, where

Ulz)=1 PLET,,
U)<1—-¢& :x€v,.

We denote by U,'(x) the bounded harmonic function such that

U"’(a;) =1 : wevy,,
U/)@)=1 : w€F,,
UJ(x)=0 : xecC,

then
U(z) < U,/ ()
oU ou,’ L.
Sn =5, On V., where n is inner normal.
But imU.! Ulx): (oU lim ou~
lfln LJ@)=U(x): 3 on ds = lim g on ds
Tn Tn
U~ oU .
Sén (1+s,)ds = 5—817 ds:s, >0, : lims,=0,
Tn '
V.(2)=(1+s,)U,/(2)-U@)=0 : 2€C,
I/H(a"): 1+87L—1:87l : xeryns : S’n>0’
M >> I/’n(x) = 1+Sn’—1+80 2': sn+80 >‘90 4: xevn, ’
where 8, <& .-

Therefore V,(x)=(1+s,)U,/(®)—U(x) is the required function, but
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1i7{n U, () (1+s,)—U(x)=0.

It follows that the set of C; in which U<_1-¢, is of capacity zero,
but this assertion is valid for every 8 and every &,, thus the irregular
set of Green function is of capacity zero.

Let p be a boundary element of R then if p is of positive measure,
we say that p is a boundary component, otherwise boundary point. In
the case of the z-plane, if p is a component then p is a continuum and
every point of » is regular for Dirichlet problem, but in an abstract Rie-
mann surface this does not hold necessarily.

If we want the theorems obtained in the z-plane should be valid, in
our case, we must introduce the topology 8 by means of Green function.

6. Topology B.

Consider the Green function G() of ' with a pole at an inner point
and a curve L in F.

Definition. 1) If L converges to an idea! boundary element p in U,
and 2) if on L lim G() exists, then we say that L determines an accessi-
ble boundary point p and define the length of L by the least upper tound
of Xla;, a,,,| for all sub-division of L.

Associated domain. Let p» be an accessible boundary point, then
there exists a curve L and lim G(x¢)=v corresponding to p. We denote
by G, the domain of ¥ in which y—&< G <_vy+¢&. G, is composed of
enumerably infinitely disjoint domains. Take a neighbourhood of V,(p)
of p, then D, ,=G,NV, is composed of domains. We denote every D,,,
which has at least an inner point with L except » by .U, and call it
the associated domain with the order & and =.

For two accessible boundary elements » and ¢, we define p=q if and
only if any U(p) is also an associated domain of ¢ and vice versa.

With this definition every inner point is an accessible point and,
since G(2) is continuous except at the pole of G, it is evident that %A
topology is the same as B.

Distance in B. Let p and ¢ be two accessesible points, then for
large &Y, G.»(p) contains q. If we connect by a curve L in F two
points p and ¢, and denote by L.~ the greatest lower bound of lengths

of such curves. Evidently L.~ increases with eLN

We define the distance p—>¢ by the lower limit of &+ L, for any
pair of € and L,.

By this definition it is quite easy to cez2:p—¢=qp, and (p=¢=0)
=(p=gq)and [p q|+|q r|=]|p r|.

Since to all accessible points p, L, and lim G correspond, we denote
x€ Ly

by S, the accessible boundary point where G has a limit v. Since by
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uniqueness of G it is evident that the set of >'S, is of measure zero.

2l

In B S, is closed and compact.
In fact let L,, L, ..., L,, ... be a sequence of accessible boundary
points in S, .
‘Since G, >R for large M, then we can assume without loss of
generality
|L,, L;|<1.

Take a domain associated U, to L,, then there exist infinitely many L’
of L, of which U, is associated domain, and there exists at least one
Uy in U, which is an associated domain for infinitely many of L{® of L.
Then we have a sequence of U; and a sequence of systems of L‘“.
i=1, 2, . »

Supp05e o, € 01 -U L and connect @,, @,,... by a curve L.

Since /\U1 determlnes only one point in topology A, and lim G=0

on L, therefore in our metric lim|L{, L|=

Thus we get B by completion from SB.

7. Topology €. If a curve L in F converges to a point in topology
9 and on it G(x) of F has a limit, then we say that L determines an
accessible boundary point of F', and as the associated domain we take
the domain V,nFnG,.,. The distance |p,, p;| is analogously defined as
the preceding relative to F, then -it is evident that this metric satisfies
the axioms of metric. This topelogy at an inner point of F' coincides
with 2 and B and the relative boundary point of F coincides with the
accessible boundary point in the z-plane “ ramifié ”.

8. Measurability of ideal boundary points in topology .

We have introduced the measure of a closed set A C R.

Lemma. If for any finite number of closed sets A,C R :A,nA;=0,
then

2T m(4,) <1.

Since A, 4,=0, we can cover A; by V,:V,> A4, such that V,nV,=0
and that all the boundaries of V, are compact in F.

On the other hand take a subsurface ¥, of which all boundary curves
v.+%, are contained in >V, .

If we denote by ,v, the curves contained in >'V,, then the non
compact domain cut by ,v, contains A4, .

As the measure of A is the lower limit of the harmonic function
such that

(Un(Ai) - 1 xe wVis wn(Ai) == 0 r EZ 7;7]+7zr7j—717i »
J¥i
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then Z o, ; <1, for any F, and V,, therefore > m(A4,) < 1.

Fm a sequence of closed sets A,C R having no common point each
other

Eim(At) =m> 4.

Proof. For any given positive number ¢&, there exists a compact
subsurface F',, with the boundary 7,(3"(4,)) and ,(3}(4,)), such that

wm(Z Ai) = m(E] At)_5 ’

o(A)=1 : 2€7,34)
0 (04)=0 : x€7,(DA4).

On the other hand, for this F,,, 7,3 4,)< 3 v.(4,), and f?m(Z A)
) f\;?m(Al)y thus ‘

where

2lo(A) =1 1 wer (2 A4),
2o 4)=0 @ 2€y,(X Al) s

therefore
Z mm(Ai) 2 wm(z Az)_g ’
finally
23 mA) =m(3A).
Since

1=3>1m(A),
from Lemma above, we can find for any given positive number &, i, such
that
SVm(A) = SYm(A)—E ¢ i,
For such ¢,, we can find a system of V. such as V.nV;=0:V,> 4, and
we denote by F./ the set F‘,,':F‘"'r\i‘—f] V,, then there exists a compact

subsurface F,, containing the boundary of V,:i <i,. We denote by ok
the positive bounded harmonic function such that

wh=1 : xe')’,m(At).

on=0 : 2€7,(4), ;

wp=2on=1 : x€37,(4,),

o,=0 1 xe nF,(4).

ip
7 20

Sm(A) < D mA)+E <m I (A)+eE,
which holds for any any F,,, then

2Im(A) =m3(4).

1) 1In this manner we can prove w(A;) is harmonic.

Thus
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From this fact any Borel set in F is measurable in , but in this
topology one point can have positive measure, such points being at
most enumerable, by Lemma.

Measurability in B or €.

We can define closed subsets 4 of B in B or €, and we can cover
A by the sequence of associated domains corresponding to any point of
A. Thus defines measure as above, which satisfy the condition of addi-
tivity or directly we see that every Borel set in B8 or € is also measur-
able, because the transformation from ®B or € to A is continuous.

Remark. If F' is mapped conformally onto |z|< 1, and if the image
of ACR has outer measure zero on |z|=1, then it is clear that the
measure of A with respect to F' is zero.

Measure of inaccessible boundary point set.

We map F' onto |z|< 1 conformally by using the universal covering
surface F~ of F. We denote by A(x) the conjugate harmonic function
of G(x) in F, then w=e %" =w(x) maps F on |w|<1:w(m(x))=w(z):
mxz)==z:|z|< 1.

Taking any one branch of (), it is a uniform function defined in
the circle, then by Fatow’s theorem, the limit of w(z) by radial approach-
ing to |z| =1 exists except at most linear measure zero on |z|=1, which
will be denoted by W,. We have only to show that the image L in F
of | in |z|< 1 converges in 2 to a point and lim G(x) exists on L.

Suppose L does not converge to a point in F, then there exists two
sequences p; and ¢, :limp,=p = ¢=limgq,, and sequence of arcs L, be-
tween p, and q,, on V\;hich w(x) converges to W, uniformly.

If p is an ideal boundary point in 2, then there is a neighborhood
V, with only relative boundary curve v, such as V,3¢:i >i,, in which
another boundary curve 7' near to v, is taken.

From the compact domain bounded by v, and 7/, we can find a ring
domain bounded by two compact curves, denoted by R. In this ring
domain there are infinitely many curves of L,, having a limit curve L
in it. We cut this domain into simply connected domain R’, then L,
converges to L and w(x) converges uniformly to W, on L. As w(x) is
an infinitely many valued function, we take a branch of this function
corresponding to L,, denoted by w,x). From this family of functions
we can extract a normal family w,(2): 1i4m wy(x)=w(x) but w(x) converges
to W, on L, from which follows that w(2)=W, but for any i, |w,(2)|
=|w(x)|=e ¢. This is a contradiction.

On L, G(z) clearly converges, because |w| is one valued and equal
to e ¢. Then by definition L determines an accessible point, and we
have:
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Proposition. The mesure of inaccessible boundary point is zero.

9. Lemma. Let U(x) be subharmonic in F bounded from above and
for all accessible boundary points lim U(x) < 0. Then U(x) <0 in F.

Otherwise if U(x) >8>0, we denote by D; the domain in which
U(xz) > 38, then on the boundary of D;, U(x)=3, but this boundary does
not converge to any assessibly boundary point, but this boundary is
situated in F or converges to inaccessible boundary point, on the other

hand the measure of inaccessible boundary point is zero, for any &< 534 R

then there exists a subsurface F,’ bounded by /, and bounded harmonic
function o, with the boundary value 1 and 0 on the other boundary.

Ux)<Mw,:limw, =0, then 6< €.

M. Brelot proved the following lemma.

Lemma. The upper cover (defined by the supremum at each point)
of a class of positive harmonic functions in F is continuous in F and
subharmonic or equal to the constant.

In topology €, we can define a real Borel measurable function ¢ on
the boundary B of F, the lower class I, is defined by all the bounded
above and' continuous subharmonic functions such that lim U(p') < @(p)

inclusive except at most set of measure zero of B, therf Hl% follows by
lemma the upper cover l_ﬂlg of I; , which will be called hypo-function, is
harmonic or equal to the constant co, or —co in each component of F.
Similarly the upper class Sj; and its lower cover ﬁg which wﬂl be called
hyper-function, are defined for superharmonic function and H! has the
similar character as HY. HY < ﬁg on p, and if they coincide at a point,
then they areuidentical in the component containing the point. When
H=H, we shall denote it by H, and call it the general solution, and
moreover if H is finite, » will be called a resolutive boundary function.

10. Barrier function. In topology €, let us denote all boundary
point sets by B. If U(x) has the following property, then it will be
called a barrier function at x € B.

1. U(x)=0, where « is an accessible boundary point of B.

2. U(z) is continuous in F+B and U(z) > 0.

3. U(z) is super-harmonic in F'.

4. For every associated domain V(z,), there exists a constant ¢ such

that U(x)=a_>0:2 € F—V(x,).

This Ndeﬁnition is the same as in the z-plane when 2 is an inner

point of F.

For any function ¢ defined on accessible boundary points B, if
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im (p') < H < H < Tim #(»")

c
n’>p bro>p

then p is called regular for Dirichlet problem.
Proposition. B has barrier function except at o set of measure zero.
Let peS,nB, then p has a barrier function. In fact, we take a
sequence of associated domains of p:V,NGe,nF: one component of
V.NGe,nF where V, has a compact boundary vy relative F', then min G(x)
on v is 8, >0. Define

v 1 ) —
or)= Min (5,, &) Min (G, &, 6,): 2 € VinG NF,

w@)=1 e F-ViNnG,
and

p=nVinG. NF,

then the function U(z)= i —;% is a barrier function.
r=1

If at p barrier exists, then p is regular for Dirichlet problem.

We denote by f(x) or f(x) the upper envelope of f(2) in B or lower
envelope on B, then f(x) (f(#)) is upper semi-continuous.

Let D, be a small associated domain, then

F@)—& < fwe) < flwp) < flx)+ &
(@) = f(@o)—&—CU(x):C >0,
@) < f(w0): 2 € F =D, , g(x) < f(x)—¢ < f(@).

Thus ¢(x)€1”, and analogously

Y(@) = f(2)+ &+ C(U(x)) : () € ST
Since U(z,)=0,
(%) =i(xo)_£ ’ ‘I’(xo) 2«1(370)“28 ’
lim H(z) = f(x,) .

Since (x) = f(x,)+&,
W) < f(wy)+2€:w€D,,
finally
H(x,) < f(,).

As H is the lower limit of «, then H(z,) > f(,), similarly for ¢, then
f(ao) < H(xo) < H(w,) < fla,) -

The boundary of F is accessible except at a set of measure zero,
and composed of two different kinds, that is, a boundary point which is
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an inner point B, of F or a boundary B, of F simultaneously. We take
an exhaustion F, of F, then the boundary of F, contained in F, is all
regular except at a set of harmonic capacity zero relative to F,, by the
theorem of Bouligand for every =, and the part B, is contained in S,
and also accessible except at a set of measure zero relative to F', and
S, is regular except a set of measure zero relative to F', accordingly except
a set of measure zero relative to F. Thus every boundary of B has barrier
function except the set of measure zero relative to F'.

11. Uniqueness of topelogy. The property of existence of barrier
at a boundary point is local. If we take a compact surface F, and
bounded harmonic function U(x) with the boundary value 0 on the
boundary of F, and 1 on R, then U(x) is called a conducter potential.

Let G'(z) be the Green function with a pole at 9’ 4-p, then G’
induces another topology B’ or €'.

Proposition. Topology &' is the same as € expect o set of measure
zero.

If p,=p, in (€), then for any given positive number & >0, there
exists 6 such as G'(2) < &/2:0€Gy: Gy=FE[G< 8] but p, =p, in (€),
then p, and p, are connected in G;NF with a curve L having the length
< &/2, therefore |p, p,|< & in (€'), whence it follows that |p, p,|=0
and vice versa. ’

In FAF the accessibility or topology does not depend on G or on
G' but on F, and further at every inner point of ¥ we have €=8B=9I.

Dirichlet Problem. Let ¢ be a bounded Borel function on B, then
@ 18 resolutive.

Since every Borel function on B is measurable, there exists by N.
Lusin’s theorem for any number % such an open set G, in B, B>G

n

1 . . .
mes Gn<»—n— . In B—G,, ¢ is continuous, therefore the solution H,,
H, determined on the value on B—G

n e

— 1
\H,—H,|<2M -,
accordingly
H=H.

Analogously we have the following proposition.
1_‘1;’ is the upper cover of Hy, where ¢ < ¢ and r 48 Lounded above
and upper semi-continous. Similarly for Hy, and

Hp)=Hp)= | p am(p)
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where m(p)=m(p)=m(p): 2(B) is a characteristic furction of B.
2(B) 2(B)
The fundamental theorem of the cluster set theory holds also.

If pis a point of measure zero and further p, is regular for Dirich-
let problem for topology A, B, €, then

lim (lim U(p)) = lim U(p),
P> po p—p’ P—bo
PP
and if f(x) is one valued analytic function, the we can omit the regu-
larity of p.

If ¥ has null-boundary, then there exists topology 2 only, conse-
quently we cannot consider Dirichlet problem on F. But for F in this
case we have seen that all theorems in z-plane holds except a set of
capacity zero. If F has two disjoint positive measure sets in B of B,
€, then we can define a non constant real boundary function, therefore
on F there is a bounded non constant harmonic function. The above
condition is only sufficient and not a necessary one. In this meaning
topology € is also very simple and incomplete but we do not know a
more precise topology having an adequate notion of regular point. If
we restrict ourselves to the case when all boundary points are point-
wise, then our topology is precise.
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