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Remarks on the Pastulates of Metric Groups

By Zen’ichiro KosHIBA

§1. Introduction

Let E denote a topological space, which is an abstract group at
the same time. But we do not mean by £ a topological group in the
ordinary sense. In this note we shall discuss about some relations
among the following postulates under the condition of metric comple-
teness, or under that of metric local compactness :

(1) If lim z, =2z, then lim 2,y = 2y,

(2) if lim y, =y, then Hm 2y, = 2y,

(3) if imxz,=2 and lim y,=vy, then lim x,y,= 2y,
(4) if lim x,=u and lim a;'=v, then ul=v,

(5) if lim x, =, then lim a,;'=a"1.

Our results are the following two theorems :

Theorem 1: If E is a metric complete group, then the preperty
(3) can be deduced from (1) and (2).

Theorem II: If E is & metric lacally ecompaet group, then the
property (5) can be deduced from (1) and (2), and E is a metric locally
compact group in the ordinary sense. »

BANACH gave in his postumas note' a theorem that a metric
complete group satisfying (1), (2) and (4) has the property (5). From
it and Theorem I follows Theorem II (even in the case of metric com-
pleteness instead of metric locally compactness) as their logical conse-
quence. But his proof in the non-separable case is not evident for
us. In the following, let ‘“‘¢” denote the unit element of the group
E,V, or W, spherical neighborhood of e, S,.(x) the spherical nejigh-
borhood of x(€E) with radius r, and d (x, ) the distance between ¥
and y. S,(x) means the closure of S, ().

§2. Proof of Theorem 1.
Before the proof of theorem I we shall prove the following:

1) Remarques sur les groupes et les corps métriques, Studia Math. 10 (1948), p. 178.
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Lemma 1: For each element z, of E and o notural number k, there
exist an open set G and V, such that

(6) | VoG C Sp1(w,) ®.

Proof. It is evident from (1) that for each element y of Scz-1 (%)
there exists a W, such that

(7) Wy C Sepn-1(y).

Let 7 (y) denote the radius of W, and A, denote the set of all ele-
ments y of Sc2r)-1(&,) such that there exists a W, as (7) whose radius
7 (y) satisfies the inequality (i+1)"'<r(y)<i"'®, Then by the defini-
tion of 4, and (7) we have

Scary-1 () = \J. A,

It is easily seen that Sczr-1(%,) is a set of the second category.
Then if the closedness of A, is proved, there must be some %, such
that A;, contains an open set G. This G is a desired one in (6)
and as V, there we may choose Ve, i,-1 i.e. the neighborhood of e with
radius 7,7

The closedness of A, can be proved as follows: Suppose that
¥.€4; and lim y,=1y,, then y, 63'(2@—1(930) and (i+1)'<Zr(y,)<i ™.
Without loss of generality we can suppose lim 7 (y,) =7, for {r(y,)} is
bounded. Then we have W,.y,C Sczk-1(y,), if we choose W, with
radius r. In fact, if it was 2y, ¢ Sc2-1(¥,) for some x of W,, then

(8) d (21, o) > (2k)71.

But, since lim 7 (¢,) =1, we have x € We, r(y,) (the neighborhood of e
with radius 7 (y,)) for sufficiently large n. Hence by (7) we get for
sufficiently large n

(9) A (@Y Ya) < (2R)7T.

As d (x,2') is a continuous function on F x E, we obtain from (2) and
(9) . .
’ d (@Yo, ¥o) = (2K)71,

which contradicts with (8). Lemma 1 is thus proved.

Now let G (k, x,) be any but a definit non-empty open set which satis-
fies the relation (6) for some V, but for fixed #, and k. Let G, be

2) For two subsets A and B of the group E we mean by A-B the set of all elements
xy such that xe¢ A,y¢ B. : i _ '
3) We can assume that 0<{r (3)=<1 for all y¢ Scar)~1 Cxp).
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defined by
Gy, = [\:=1Uz€E G (k, @),

then we have :

Lemma 2. G, is a set of the second category. Hence, it is not empty.

Proof. It is evident that G (k)=\/,»x G(k, ) is an open set.
G (k) is also everywhere dense in E for each fixed k, for we have by
the definition of G (k, x), G(k' ) C Swr-1(2), 0+ G (K2) G (k, ) for
‘all ¥>k. Then E—G,= \/ ,(E—G(k)) is a set of the first category,
since K —G (k) is closed and non-dense. Therefore G, is a set of the
second category. Lemma 2 is thus proved.

Proof of Theorem I. First suppose that lim x,=, lim y, =% and
y€G,. For an arbitrary positive number & there exist a k, such that
2/k,<&/2 and N, such that

(10) d (¥ y) < &/2 for sufficiently large = .

Since y € G, there exists a G (k,, «,) containing ¥ and a V,
(11) Ve G (Ko» @) C Sko=1 (20) -
And since G (k,, x,) is open, we have
(12) Ya € G (Ko, ,) * for sufficiently large = .
Furthermore lim «-'x,=-e by (2), then we have
(13) xx, € V, for sufficiently large # .

Then, since both z~'z,y, and y, are contained in Sk,-1(z,) by (11),
(12), and (13), we have

(14) d (27 Yn Ya) < 2/ky < &/2 for sufficiently large = .
Hence from (10) and (14)

A (@'Y ¥) < A(X78Y0 Yu) + 4 Yy ¥) < €

for sufficiently large n, which says that lim x~!z,5,=y. Then by (2),
lim .y, = xy. . ’

Now for the case y¢ G, we can take z, such that ¥z, € G, since
G, is not empty By (1), lim .z, = yz, (¥2, € Gy), then we get by the
first part of the proof that lim x,y,2, = xyz,. Therefore again by (1),
lim «,y,=ay. Thus the proof is completed. _

This theorem holds also when E is metric locally compact.
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§ 3. Proof of Theorem II.

Before the proof of Theorem II we shall prove the following:

Lemma 3: For each element x, of E, every neighborhood U (&,) of
o, ond a natural number k, there exist a mon-empty open set G' con.
teined in U (2,) and o naturel number i, such that

(15) yVe-1 D Sig-1(y)  for ell ye G,

where V, is a spherical neighborhocﬁl of e with radius r. A
Proof. We may assume that V-1 is compact for all natural num-
ber k. Let us take U’ (x,) (neighborhood of x,) and r(*>0) such that

U(xy) C U(x,) and. 7 < k!,

then U’ (x,) is a set of the second category and V, is compact.
Now let 4, be the set of all elements of y of U’ (x,) such that the
relation y+V- > S;-1(y) ¥ is satisfied, then we have

(16) 0" () = \J, A/

A,/ must be closed. In fact, suppose that lim y, =1y, and y,€ 4/,
then %,.V, > Si-1(y,). Let x be an element of Si-1(y,), then d(w, %,)
<47! for sufficiently large =, therefore a can be represented in such a
way that @ =y,v,, where v,€V,. By the compactness of V, we may
assume that lim v, =, €V-. Then by theorem I we have

x = yw, where v,€V, C Ve,

Then from (16) and the closedness of A4/, there must be some i3,
such that A . contains an open set G’, which is a desued one in (15).
Lemma 3 is thus proved.

Now let G'(k, «,) be any but a definit non-empty open set which
satisfies the relation (15) for some ¢,, but for fixed x, and k. Let
.G,' be defined by

Gy = [\:=l\jz€ﬂ G (k, ),
then we have:
Lemma 4: G| is a set of the second category. Hence, it is not empty.
Proof. G'(k)=\U,cs G'(k, ) is open and everywhere dense in ¥
for each fixed k, for there exists a non empty G'(k, 2) CU(x) for
every U (x) by Lemma 3. By the same way as in the proof of Lemma

2, we obtain easily that G, is a set of the second category, which
was to be proved.

4> This is possible, since j-V} is an epen set containing y by (2).
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Proof of Theorem II. By (2), for every neighborhood U (2-!) of x-!,
there exists a neighborhood Vi,-1 of e such that

a7 V-1 CU(x7Y).

Suppose that lim x,=. Now take an _element y, of the non-
empty G,'. Then by (1) and (2) we have lim y,x,2 !=y, By the
definition of G,'(>y,) there exists an open set G'(k,, #,) containing
¥, such that ‘

(18) Vi1 D Sip-1(y) (=149 (ko)) for all ye G (Ko, %) .

Since G’ (k,, x,) is open, (18) holds for y=y,x,x~! for sufficiently large
n, i.e.

(19) '.’/oxna'rlvko“1 > Sio_l (yownxhl) .
But since 4,7! is independent of # and lim y,x,2"! =y, we have
(20) Sip-1 (Yox,™t) 3 y, for sufficiently large = .

Hence by (19) and (20), yo%,2 " V&,-13 y,, from which it follows that z;!
€2 Wko-1, then by (17) 2,'CU(2"'). From this and Theorem I
follows that F is a metric locally compact group in the ordinary sense.

§4. Remark

In the general case without metric, the elements-convergence in
the five postulates (1)-(5) should be replaced by suitable statements
in the term of neighborhood: for example, (1) must be replaced by
the following:

(1) If xy =z, then for an arbitrary neighborhood U (z) of z, there
exists a neighborhood U () of « such that U (x).y C U (z).

In such a general case as this we can give an example of the
completely regular space for which Theorem I does not hold, as follows :

Let E = R? denote a plane i. e, the set of all pairs of real numbers.
The group-composition is defined by the ordinary vector-addition. We
introduce topology into R? by the definition of neighborhoods U (z) of
z such that U(z)=S—A4,, where S is a sphere of centre z =(z, y),
and A, is the set of all w = (u,v) which satisfies the inequality

|tan-l HI <a<a, (< %) a, being a fixed constant.
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