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Remarks on the Postulates of Metric Groups

By Zen'ichiro KOSHTBA

§ 1. Introduction

Let E denote a topological space, which is an abstract group at
the same time. But we do not mean by E a topological group in the
ordinary sense. In this note we shall discuss about some relations
among the following postulates under the condition of metric comple-
teness, or under that of metric local compactness:

( 1 ) // lim xn = x, then lim xny = xyf

( 2 ) if lim yn = yy then lim xyn = xy,

( 3 ) if lim xn = x and lim yn = y, then lim xnVn — #y>
( 4 ) if lim xn = u and lim xΰ1 = v, then u~1 = v,

( 5 ) if lim xn = xy then lim xΰ1 = x~*.

Our results are the following two theorems:
Theorem I : If E is a metric complete group, then the property

(3) can be deduced from (1) and (2).
Theorem II: If E is a metric lacally compact group, then the

property (5) can be deduced from (1) and (2), and E is a metric locally
compact group in the ordinary sense.

BANACH gave in his postumas note υ a theorem that a metric
complete group satisfying (1), (2) and (4) has the property (5). From
it and Theorem I follows Theorem II (even in the case of metric com-
pleteness instead of metric locally compactness) as their logical conse-
quence. But his proof in the non-separable case is not evident for
us. In the following, let "e" denote the unit element of the group
E, Vβ or We spherical neighborhood of e, Sr(x) the spherical neigh-
borhood of x(eE) with radius r, and d(x, y) the distance between x
and y. Sr(x) means the closure of Sr(x).

§ 2. Proof of Theorem I.

Before the proof of theorem I we shall prove the following:

1) Remarques sur les groupes et les corps metriquβs, Studia Math. 10 (194ft), p. 178.
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Lemma 1 : For each element x0 of E and a natural number k, there
exist an open set G and Ve such that

( 6 ) Ve*G C Sk-i(xo)
2>-

Prpof. It is evident from (1) that for each element y of S(2k)-^ O0)
there exists a We such that

(7) w.-υq$
Let r (y) denote the radius of We and At denote the set of all ele-

ments y of 5(2^-1 (α:0) such that there exists a We as (7) whose radius
r(y) satisfies the inequality (i + l)~ι<r(y)<i-ι'd\ Then by the defini-
tion of At and (7) we have

It is easily seen that S(2k)-i O\>) is a set of the second category.
Then if the closedness of At is proved, there must be some i0 such
that At0 contains an open set G. This G is a desired one in (6)
and as Ve there we may choose Ve,io~

ι i-β the neighborhood of e with
radius tΌ"1.

The closedness of At can be^ proved as follows: Suppose that
yn€At and lim yn = y0, then y0 €Sζ2φ-i (α?0) and (i + l ^ ^ r C y J ^ i " 1 .
Without loss of generality we can suppose lim r(yn) = r, for {*•('#„)} i s

bounded. Then we have We y0 C ^ ^ - ^ l / o ) * if we choose TFβ with
radius r. In fact, if it was xyo^S(2ky^(yo) for some a? of We, then

( 8 ) ώ(^ O ί 2/o)>(2fc)- 1 .

But, since lim r (yn) = r, we have α; e We, rQyn} (the neighborhood of e
with radius r(yn)) for sufficiently large n. Hence by (7) we get for
sufficiently large n

( 9 ) d{xyni ynχmy\'.

As d(x, xf) is a continuous function on ExE, we obtain from (2) and
(9)

d(xyotyo) ^ {2k)~\

which contradicts with ($). Lemma 1 is thus proved.
Now let G (fc, x0) be any but a definit non-empty open set which satis-

fies the relation (6) for some Ve but for fixed x0 and fc. Let Go be

2) For two subsets A and £ of the group E we mean by A B the set of all elements
xy such that x € -4,>> € -B.

3) We can assume that 0 < r O ) ^ 1 for all >>€ 5(2fc)-1 C*o)
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defined by

then we have:
Lemma 2. Go is a set of the second category. Hence, it is not empty.
Proof. It is evident that G(fc) = \JxeB G(kt a?) is an open set.

G{k) is also everywhere dense in E for each fi}ff$ &> for we have by
the definition of G ( fc,4 G (fc'f a?) C Stf-1 (a?), 0 φ G (fc',a?) C G (fc> #) f O r

•all fc'>fc. Then E-G0=\jζmi(E-G(k)) is a set of the first category,
since E — G(k) is closed and non-dense. Therefore Go is a set of the
second category. Lemma 2 is thus proved.

Proof of Theorem I. First suppose that lim xn = x, lim yn = y and
2/GG0. For an arbitrary positive number 6 there exist a fc0 such that

and iV0 such that

(10) d(yni y) < 6/2 for sufficiently large n .

. Since yeGot there exists a G(&0, a?0) containing 7/ and a Ve

(11) ^Gfe^CVW

And since G(fc0, #0) is open, we have

(12) yn€G(k0,x0) for sufficiently large n.

Furthermore lim x~1xn = e by (2), then we have

(13) x'Ύxn e Ve for sufficiently large n .

Then, since both x~xxnyn and yn are contained in Sko-i(xo) by (11),
(12), and (13), we have

(14) d(x~lxnyn, yn) < 2/k0 < 8/2 for sufficiently large n .

Hence from (10) and (14)

d{χ-Ύxnyni y) <, d(x~lxnyn, yn) + d(yn, y) < 6

for sufficiently large w, which says that lim x'^yn — y- Then by (2),
lim xnyn = xy.

Now for the case y£GQ we can take z0 such that yzoeGo since
Go is not empty. By (1), lim ynzo = yzo(yzoeGo), then we get by the
first part of the proof that lim xnynz0 = xyz0. Therefore again by (1),
lim xnyn = %y. Thus the proof is completed.

This theorem holds also when E is metric locally compact.
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§ 3. Proof of Theorem II.

Before the proof of Theorem II we shall prove the following:
Lemma 3: For each element x0 of E, every neighborhood U (#0) of

x0, and a natural number k, there exist a non-empty open set Gf coτir
tained in V(x0) and a natural number i0 such that

(15) 2/ Vk-ι ^ Sio-ι fa) for all y e G',

where Vr is a spherical neighborhood of e with radius r.
Proof. We may assume that F*-i is compact for all natural num-

ber fc. Let us take U'(x0) (neighborhood of x0) and r ( > 0 ) such that

U'(Zo) C U ίx0) and. r<k~\

then V' (α?0) is a set of the second category and Vrjs compact.
Now let A/ be the set of all elements of y of Vf (x0) such that the

relation y Vr^Si-ι{y)^ is satisfied, then we have

A/ must be closed. In fact, suppose that lim yn = y0 and yn € A/,
then yn Vr^>Si-i(y?ι). Let x be an element of Si-i(y0), then d(x,yn)
O ' " 1 for sufficiently large n, therefore x can be represented^in such a
way that % = ynvn, where^eF,. . By the compactness of Vr we may
assume that lim vn = v0 G Vr. Then by theorem I we have

x = y0vo where v0 e Vr d Vk-*.

Then from (16) and the closedness of At', there must be some i 0

such that A'io, contains an open set G', which is a desired one in (15).
Lemma 3 is thus proved.

Now let G' (fc, x0) be any but a definit non-empty open set which
satisfies the relation (15) for some iot but for fixed x0 and fc. Let
.Go' be defined by

then we have:
Lemma 4 : Go' is a set of the second category. Hence, it is not empty.
Proof. G'(Jc)=\Jx(:E G

r(?c, x) is open and everywhere dense in Έ
for each fixed fc, for there exists a non empty Gf (Jc, x) C^U (x) for
every U(x) by Lemma 3. By the same way as in the proof of Lemma
2, we obtain easily that Go' is a set of the second category, which
was to be proved.

4) This is possible, since y'Vr is an open set containing y by ζSΓ).
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Proof of Theorem II. By (2), for every neighborhood V (x~ι) of ar1,
there exists a neighborhood Vko-ι of e such that

(17) x-Wko-i C ^C^" 1 ) .

Suppose that lim xn = x. Now take an [element y0 of the non-
empty Go'. Then by (1) and (2) we have lim yoxnx~ι = yo By the
definition of Go

r (3 y0) there exists an open set Gr (k0, x0) containing
y0 such that

(18) yVko-i ^ Sfo-i (2/) (*o = h (fc0)) for all y e G' (fc0, a?0).

Since G'(fc0, α?0) is open, (18) holds for y=yoxnx~1 for sufficiently large
w, i.e.

(19)

But since io~
ι is independent of ^ and lim 2/0^^~1 = 2/0» we have

(20) Sio-i (yoXnX-1) 3 y0 for sufficiently large n .

Hence by (19) and (20), yo%n%~1Vko-i3yo, from which it follows that xΰι

ea - Ψ v 1 . then by (17) Λ J ^ C 1 7 ^ " 1 ) -
 F r o m this and Theorem I

follows that E is a metric locally compact group in the ordinary sense.

§ 4. Remark

In the general case without metric, the elements-convergence in
the five postulates (l)-(5) should be replaced by suitable statements
in the term of neighborhood: for example, (1) must be replaced by
the following:

(Γ) If xy = z, then for an arbitrary neighborhood U(z) of z, there
exists a neighborhood U(x) of x such that U(x) yC^U(z).

In such a general case as this we can give an example of the
completely regular space for which Theorem I does not hold, as follows :

Let E = R2 denote a plane i. e, the set of all pairs of real numbers.
The group-composition is defined by the ordinary vector-addition. We
introduce topology into R2 by the definition of neighborhoods Ό (z) of
z such that U(z) = S—Aa9 where S is a sphere of centre z = (x,y),
and Aa is the set of all w = (u, v) which satisfies the inequality

1 ^^\^ a <ί ( X o( < C^r)> ao being a fixed constant.
u — x\ V 2/
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