Relations between Homotopy and Homology. I.

By Atuo Komatu.

1. Introduction.

This paper is a continuation of the author's earlier investigation [1], studying the problem of essential dimensions ¹) of continuous transformations using the method of homology with local coefficients [2]. The exact homology sequence, recently clarified by J. L. Kelley and E. Pitcher [3], can be applied to this method and give many new results some of which are already obtained by S. Eilenberg and S. Mac Lane [4], L. Pontriagin [5] and G. W. Whitehead [6].

Let K^n be the *n*-section of a complex K, then we have the following exact sequence with respect to the homotopy groups

$$\pi_{m}\left(K^{n-1}\right) \xrightarrow{i} \pi_{m}\left(K^{n}\right) \xrightarrow{r} \pi_{m}\left(K^{n} \bmod K^{n-1}\right) \xrightarrow{\partial t}$$

$$\pi_{m-1}\left(K^{n-1}\right) \xrightarrow{i} \pi_{m-1}\left(K^{n}\right)$$

The kernel-images in $\pi_m(K^n)$, $\pi_m(K^n \mod K^{n-1})$, $\pi_{m-1}(K^{n-1})$ of this sequence are essentially the same as the groups $\nu_m(K^n)$, $\mu_m(K^n)$, $\lambda_{m-1}(K^{n-1})$, respectively, which were introduced by the author in [1].

2. THE CASE OF SIMPLY CONNECTED COMPLEX.

THEOREM 1. Let α_n be the number of n-simplexes of a simply connected complex K. Then the relative homotopy group $\pi_n(K^n \mod K^{n-1})$ (n > 2) is isomorphic with the weak direct sum (I, α_n) of α_n integer groups.

PROOF. The proof is similar to that of theorem 2.1, [1]. COROLLARY 1.1.

$$\pi_n(K^n) \approx \mu_n(K^n) + \nu_n(K^n)$$
.

PROOF. The group $\mu_n\left(K^n\right) pprox \pi_n\left(K^n\right)/\nu_n\left(K^n\right)$ is a subgroup of the

¹⁾ For this definition see [1]. The essential dimension of a continuous mapping f of M in K is the least dimension of the image sets g(M), where g is any continuous mapping of the same homotopy class with f.

free abelian group $\pi_n(K^n \mod K^{n-1})$, therefore $\mu_n(K^n)$ is a direct component of $\pi_n(K^n)$.

COROLLARY 1. 2. $\lambda_n(K^n)$ is isomorphic with the direct sum of the subgroup $\lambda_n(K^n) \cap \nu_n(K^n)$ and the subgroup isomorphic with $\lambda_n(K^n)/\lambda_n(K^n) \cap \nu_n(K^n)$.

For $\lambda_n(K^n)/\lambda_n(K^n) \cap \nu_n(K^n)$ is a module, being isomorphic with a subgroup of $\pi_n(K^n \mod K^{n-1})$.

COROLLARY 1. 3. The *n*-chain group with integer coefficients L^n (K, I) of K is isomorphic with π_n $(K^n \mod K^{n-1})$.

THEOREM. 2. Let ∂_t be the homology boundary operator of $L^n(K, 1)$ (n > 3), and ∂_t the homotopy boundary operator, then there holds the relation

$$\partial_t = r \, \partial_t$$

PROOF. It is sufficient to prove the case of one simplex $1. \sigma^n \in L^n$ (K, I), for $\partial_t, r, \partial_t$ are all homomorphic mappings of abelian groups.

Let
$$\partial_{t}\left(\sigma^{n}\right)=\sum_{i}\sigma_{i}^{n-1},$$
 $\partial_{t}\left(\sigma^{n}\right)=lpha\in\lambda_{n-1}\left(K^{n-1}
ight),$

where α is a homotopy class of the continuous mapping of an (n-1)-sphere S^{n-1} on the sphere $\partial_t (\sigma^n) = \sum_i \sigma_i^{n-1}$ with mapping-degree +1. Then

$$r(\alpha) = \sum \sigma_i^{n-1}$$
, i. e. $\partial_i = r \partial_i$.

A chain $c^n \in \pi_n$ $(K^n \mod K^{n-1})$ is a cycle, when $r \partial_i (c^n) = 0$, and is a spherical cycle, when $\partial_i (c^n) = 0$. A homology-boundary is a spherical cycle and the spherical homology group $\sum_{i=1}^{n} (K_i)$ is defined as the factor group of the group $\mu_n (K^n)$ of spherical cycles by the homology boundary $r (\lambda_n (K^n))$.

Corollary 2.1. $\sum_{n=1}^{\infty} (K) \approx \pi_n(K)/\nu_n(K) \approx \mu_n(K)$.

PROOF. The group of boundaries is $r(\lambda_n(K^n)) \approx \lambda_n(K^n)/\lambda_n(K^n) \cap \nu_n(K^n) = B^n(K)$. Therefore $\sum_{i=1}^n (K)$ is isomorphic with

$$\mu_n\left(K^n\right)/r\left(\lambda_n\left(K^n\right)\right) \approx \pi_n\left(K^n\right)/\nu_n\left(K^n\right)/\lambda_n\left(K^n\right)/\lambda_n\left(K^n\right) \cap \nu_n\left(K^n\right).$$

The last term of the above sequence of groups is easily verified to be isomorphic with $\pi_n(K)/\nu_n(K) \approx \mu_n(K)$.

COROLLARY 2.2.
$$H^{n}(K)/\sum^{n}(K) \approx \lambda_{n-1}(K^{n-1}) \cap \nu_{n-1}(K^{n-1})$$
.

Lemma 2. 1.
$$\nu_n\left(K^n\right) \approx \pi_n\left(K^{n-1}\right)/\lambda_n\left(K^{n-1}\right).$$
 Corollary 2. 3. If $\pi_i\left(K\right) = 0 \ (0 \leq i < n)$, then
$$H^n\left(K,\ I\right) \approx \sum^n\left(K\right) \approx \pi_n\left(K\right),$$

$$H^{n+1}\left(K,\ I\right) \approx \sum^{n+1}\left(K\right) \approx \pi_{n+1}\left(K\right)/\nu_{n+1}\left(K\right).$$

PROOF. By the result of W. Hurewicz any compact set of K^{n-1} is homotopic to zero in K^n . Therefore $\pi_n(K^{n-1}) \approx \lambda_n(K^{n-1})$. And so by Lemma 2.1, $\nu_n(K^n) = 0$, i.e. $\nu_n(K) = 0$. This proves the theorem by Corollaries 2.1, 2.2.

If we apply the Freudenthal's theory of "Einhängung" to the group $\nu_{n+1}(K) \approx \nu_{n+1}(K^{n+1})/\nu_{n+1}(K^{n+1}) / \lambda_{n+1}(K^{n+1})$, we can deduce the results of G. W. WHITEHEAD. For instance we get the following relations:

$$\begin{split} \text{If} & \pi_i\left(K\right) = 0 \; \left(0 < i < n\right), \\ & \pi_n\left(K^n\right) / 2\pi_n\left(K^n\right) \approx \pi_{n+1}\left(K^n\right), \\ & \pi_n\left(K^n\right) / (\lambda_n\left(K^n\right), \; 2\pi_n\left(K^n\right)) \approx \pi_{n+1}\left(K^n\right) / \lambda_{n+1}\left(K^n\right), \\ & \pi_n\left(K\right) / 2\pi_n\left(K\right) \approx \nu_{n+1}\left(K^{n+1}\right). \end{split}$$

3. THR CASE WHEN K IS NOT SIMPLY CONNECTED.

Let \overline{K} be the universal covering complex of K and \overline{K}^n the n-section of \overline{K} . \overline{K}^n (n>1) is the universal covering complex of K^n . Let $\mathfrak{F}=\{x_x\}$ be the fundamental group of K, then the n-simplex of K are represented in the form $\{x_x\,\sigma_i^n\}$, where $\{\sigma_i^n\}$ are n-simplexes of K. The mapping $u: x^2\sigma_i^n\to\sigma_i^n$ is the covering mapping of K onto K. Remembering that the homotopy groups of a complex are isomorphic with those of the covering complex, we can easily verify that the following two sequences

$$\pi_{n+1}\left(K^{n+1} \mod K^n\right) \to \pi_n\left(K^n\right) \to \pi_n\left(K^n \mod \overline{K}^{n-1}\right),$$

$$\pi_{n+1}\left(K^{n+1} \mod K^n\right) \to \pi_n\left(K^n\right) \to \pi_n\left(K^n \mod K^{n-1}\right)$$

are equivalent as homomorphism sequences. In particular we have

²⁾ After this paper was submitted for publication, I have read G. W. WHITEHEAD'S paper [6] that recently came to Japan. Although the proof is only sketched, it seems to me that his method is different from that of mine. I could not read the paper of H. HOPF: Über die Bettischen Gruppen, die zu einer beliebigen Gruppen gehören Comment. Math. Helv. 17, 1944,

$$\lambda_n\left(K^n\right) pprox \lambda_n\left(K^n\right)$$
, $\mu_n\left(\overline{K}^n\right) pprox \mu_n\left(K^n\right)$, $\nu_n\left(\overline{K}^n\right) pprox \nu_n\left(K^n\right)$.

As is shown in § 2, $\pi_n(\overline{K}^n \mod \overline{K}^{n-1})$ is isomorphic with the chain group $L^n(\overline{K},I)$, and its elements can be represented in the form $\sum a \, x_x \, \sigma_i^n$, where a' s are integers. Clearly the elements of the form $\sum a \, 1 \, \sigma^n$, where 1 is the unit element of \mathfrak{F} , form a subgroup of $L^n(\overline{K},I)$ which is isomorphic with the chain group $L^n(K,I)$. We suppose that $L^n(K,I)$ is imbedded in $\pi_n(\overline{K}^n \mod \overline{K}^{n-1}) \approx L_n(\overline{K},I)$ by the above isomorphism.

We remark that $L_n(K, I)$ is a direct summand of $\pi_n(\overline{K}^n \mod \overline{K}^{n-1})$ and the natural homomorphism of the latter group onto the former is induced by the covering mapping $u: x_{\alpha} \sigma_i^n \to \sigma_i^n$. We denote by Γ^n the kernel of the last homomorphism.

Then we have the following important

THEOREM 3. The homology boundary operator ∂_i of $L^n(K, I)$ (n > 3) can be decomposed into 3 successive operators, i.e.

$$\partial_r = u r \partial_t$$
.

PROOF. It is sufficient to prove the case of one simplex σ^n . Let

$$egin{aligned} \partial_t\left(\sigma^n
ight) &= \sum \sigma_i^{n-1} \ \partial_t\left(\sigma^n
ight) &= lpha \in \lambda_{n-1}\left(K^{n-1}
ight) pprox \lambda_{n-1}\left(ar{K}^{n-1}
ight), \end{aligned}$$

where α is the homotopy class of continuous mapping f of S^{n-1} on the (n-1)-sphere $\sum_{i} \sigma_{i}^{n-1}$ of K^{n-1} with mapping degree +1, or the mapping \bar{f} of S^{n-1} on an (n-1)-sphere $\sum_{i} x_{\alpha} \sigma_{i}^{n-1}$ of \bar{K}^{n-1} . The mapping f is equal to the mapping $u\,\bar{f}$. The image sphere $\sum_{i} x_{\alpha} \sigma_{i}^{n-1}$ is invariant by the relativisation r, as in theorem 2 and by the covering mapping u it reduces to the sphere $\sum_{i} \sigma_{i}^{n-1}$, i. e. $\partial_{l} (\sigma^{n})$. Therefore for every chain c^{n} of $L^{n}(K, I)$

$$\partial_t(\mathbf{c}^n) = ur \, \partial_t(\mathbf{c}^n).$$

A chain $c^n \in L^n(K, I) \subset \pi_n(K^n \mod K^{n-1})$ is called spherical, when it satisfies $\partial_t(c^n + \gamma^n) = 0$ for some $\gamma^n \in \Gamma^n$, and is called simple, when

it satisfies $r \partial_t (c^n + \gamma^n) = 0$ for some $\gamma^n \ni \Gamma^n$. Then we see easily that c^n is a spherical cycle or a simple cycle if and only if it is an image under u of a spherical cycle or a cycle of \overline{K} , respectively.

THEOREM 4. Homology boundaries are spherical.

PROOF. Let c^n be the boundary of a chain c^{n+1} , that is, $\partial_t (c^{n+1}) = u \ r \ \partial_t (c^{n+1}) = c^n$ or $r \ \partial_t (c^{n+1}) = c^n + \gamma^n$ for some $\gamma^n \in \Gamma^n$. Using relation $\partial_t r = 0$, we have then $\partial_t (c^n + \gamma^n) = \partial_t r \ \partial_t (c^{n+1}) = 0$.

By this theorem we can define the spherical homology group $\sum_{i=1}^{n} (K, I)$ and the simple homology group $\Theta^{n}(K, I)$ of K as subgroups of $H^{n}(K, I)$.

THEOREM 5.

$$\sum_{i=1}^{n} (K, I) \approx \sum_{i=1}^{n} (K, I) / \sum_{i=1}^{n} (K, I) \cap \Gamma^{n},$$

 $\Theta^{n}(K, I) \approx H^{n}(K, I) / H^{n}(K, I) \cap \Gamma^{n}.$

PROOF. We shall prove only the former relation. The proof of the latter is similar.

Let c^n be the homology boundary of c^{n+1} and d^n , d^{n+1} , respectively, the image chains $u(c^n)$, $u(c^{n+1})$ in K. Then for a suitable element $\gamma^{n+1} \in \pi_{n+1}(\overline{K}^{n+1} \mod K^n)$

$$egin{aligned} c^{n+1} &= d^{n+1} + \gamma^{n+1}, \ u \ r \ \partial_t \ (d^{n+1}) &= u \ r \ \partial_t \ (c^{n+1} - \gamma^{n+1}) \ &= u \ r \ \partial_t \ (c^{n+1}) - u \ r \ \partial_t \ (\gamma^{n+1}) &= u \ (c^*) = d^n. \end{aligned}$$

Hence the mapping u defines a homomorphism of $\sum_{i=1}^{n} (K, I)$ in $\sum_{i=1}^{n} (K, I)$. Let d^n be a spherical cycle in K. With a suitable γ^n the sum $\gamma^n + d^n = c^n$ is a spherical cycle in K, i. e.

$$\partial_t (\gamma^n + d^n) = 0$$
,

and $u(c^n) = d^n$. Hence $u(\sum^n (K, I)) = \sum^n (K, I)$.

Let d^n be a boundary in K and c^n the original element $u^{-1}(d^n)$ in $\sum^n (\overline{K}, I)$. These conditions are written

$$c^{n}=d^{n}+\gamma^{n}, \gamma^{n}\in L\left(K^{n},I
ight),$$
 $(1) \qquad \qquad \partial_{t}\left(c^{n}
ight)=0,$
 $(2) \qquad ur \ \partial_{t}\left(d^{n+1}
ight)=d^{n}, \quad d^{n+1}\in L^{n+1}\left(K^{n+1},I
ight).$

From (2) for a suitable $\gamma^{\prime n}$

$$r \partial_t (d^{n+1}) = d^n + \gamma'^n$$
,

hence

$$(3) \quad \partial_t \left(d^n + \gamma'^n \right) = 0.$$

From (1) and (3)

$$\partial_t \left(\gamma^n - \gamma'^n
ight) = 0$$
, i.e. $\gamma^n - \gamma'^n \in \sum^n \left(\overline{K}, I \right) \bigcap \Gamma^n$,

and

$$c^n = r \, \partial_t \left(d^{n+1} \right) + (\gamma^n - \gamma'^n).$$

Therefore the original element $c^n = u^{-1}(d^n)$ is contained in the subgroup $\sum_{i=1}^{n} (K, I) \cap \Gamma^n$ of $\sum_{i=1}^{n} (\overline{K}, I)$.

LITERATURE.

- 1. A. Komatu: Zur Topologie der Abbildungen von Komplexen, Jap. Jour. of Math., vol. 17, 1941.
- 2. N. E. Steenrod: Homology with local coefficients, Ann. of Math. 44, 1943.
- 3. J. L. Kelley and E. Pitcher: Exact homomorphism sequences in homology theory, Ann. of Math. 48, 1947.
- 4. S. EILENBERG and S. Mac Lane: Relations between homology and homotopy groups of spaces, Ann. of Math. 46, 1945.
- 5. L. Pontrjagin: Mappings of the three dimensional sphere into an *n*-dimensional complex, Comp. Rendus URSS, 34, 1942.
- 6. G. W. Whitehead: On spaces with vanishing low-dimensional groups, Proc. Nat. Acad. Sci., 1948.

(Received February 18, 1949)