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Abstract
In this article we prove that every entire curve in the complement of a generic

hypersurface of degreed � 586 in P3
C

is algebraically degenerated, i.e. there exists
a proper subvariety which contains the entire curve.

1. Introduction

A complex manifoldX is hyperbolic in the sense of S. Kobayashi if the hyperbolic
pseudodistance defined onX is a distance (see, for example, [10]). The hyperbolicity
problem in complex geometry studies the conditions for a given complex manifoldX
to be hyperbolic. In the case of hypersurfaces inPn we have the Kobayashi conjec-
tures [9]:

Conjecture 1. A generic hypersurface X� Pn+1 (n � 2) of degreedegX � 2n+1
is hyperbolic.

Conjecture 2. Pn n X (n � 2) is hyperbolic for a generic hypersurface X� Pn

of degreedegX � 2n + 1.

A new approach which could lead to a positive result for Conjecture 1 has been
described by Y.-T. Siu in [17] for a boundÆn � n on the degree. If we are interested
in the lower bound on the degree, Conjecture 1 is recently proved in [13] for n = 2,
d � 18 and in [16] we proved a weak form of Conjecture 1 forn = 3:

Theorem ([16]). For X � P4
C

a generic hypersurface such that d= deg(X) �
593, every entire curve f: C! X is algebraically degenerate, i.e. there exists a proper
subvariety Y� X such that f(C) � Y.

Here we study the logarithmic Conjecture 2 (proved forn = 2 andd � 15 in [7])
and prove the following result, which is a weak form of the conjecture forn = 3:
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Theorem 3. For X � P3
C

a generic hypersurface such that d= deg(X) � 586,
every entire curve f: C! P3

C
nX is algebraically degenerated i.e. there exists a proper

subvariety Y� P3
C

such that f(C) � Y.

The proof is based on two techniques.
The first one is a generalization in the logarithmic setting of an approach initiated

by Clemens [2], Ein [6], Voisin [18] and used by Y.-T. Siu [17]to construct vector
fields on the total space of hypersurfaces in the projective space. Here we construct
vector fields on logarithmic spaces.

The second one is based on bundles of logarithmic jet differentials (see [5]). The
idea, in hyperbolicity questions, is that global sections of these bundles vanishing on
ample divisors provide algebraic differential equations for any entire curvef : C !
X n D where D is a normal crossing divisor onX. Therefore, the main point is to
produce enough algebraically independent global holomorphic logarithmic jet differen-
tials. In the case ofP3 n X for a smooth hypersurfaceX � P3, we have proved the
existence of global logarithmic jet differentials when deg(X) � 92 in [14]. Therefore
to produce enough logarithmic jet differentials we take thederivative of the logarithmic
jet differential in the direction of the vector fields constructed in the first part, just as
in the compact case [16].

2. Logarithmic jet bundles

In this section we recall the basic facts and results of J. Noguchi in [11] about
logarithmic jet bundles following G. Dethloff and S. Lu [5].

Let X be a complex manifold of dimensionn. Let x 2 X. We consider germs
f : (C, 0)! (X, x) of holomorphic curves. Then the usualk-jet bundle, Jk X, is the
holomorphic fibre bundle whose fiberJk Xx is the set of equivalence classes of germs,
jk( f ), where two germs are equivalent if they have the same Taylorexpansions of or-
der k. Let � : Jk X ! X be the natural projection.

Let T�
X be the holomorphic cotangent bundle overX. Take a holomorphic section! 2 H0(O, T�

X) for some open subsetO. For jk( f ) 2 Jk XjO, we have f �! = Z(t) dt
and a well defined holomorphic mapping

e! : Jk XjO ! Ck; jk( f ) ! �
d j Z

dt j
(0)

�
0� j�k�1

.

If, moreover!1, : : : , !n are holomorphic 1-forms onO such that!1 ^ � � � ^ !n

does not vanish anywhere, then we have a biholomorphic map

(e!1, : : : , f!n)� � : Jk XjO ! (Ck)n � O

which gives the trivialization associated to!1, : : : , !n.
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Let X be a complex manifold with a normal crossing divisorD. The pair (X, D)
is called a log manifold. LetX = X n D.

The logarithmic cotangent sheafT
�
X = T�

X
(log D) is defined as the locally free sub-

sheaf of the sheaf of meromorphic 1-forms onX, whose restriction toX is T�
X and

whose localization at any pointx 2 D is given by

T
�
X,x =

lX
i =1

OX,x
dzi

zi
+

nX
j =1+1

OX,x dzj

where the local coordinatesz1, : : : , zn aroundx are chosen such thatD = fz1 � � �zl = 0g.
Its dual, the logarithmic tangent sheafT X = TX(� log D) is a locally free subsheaf

of the holomorphic tangent bundleTX, whose restriction toX is TX and whose local-
ization at any pointx 2 D is given by

T X,x =
lX

i =1

OX,xzi
��zi

+
nX

j =1+1

OX,x
��zj

.

Given log-manifolds (X, D) and (X
0
, D0), a holomorphic mapF : X

0 ! X such

that F�1(D) � D0 is called a log-morphism from (X
0
, D0) to (X, D). It induces vector

bundle morphisms

F� : T
�
X ! T

�
X0 ;

F� : T X0 ! T X.

Let s 2 H0(O, Jk X) be a holomorphic section over an open subsetO � X. We
say thats is a logarithmick-jet field if the mape! Æ sjO0 : O0 ! Ck is holomorphic for

all ! 2 H0(O0, T
�
X) for all open subsetsO0 of O. The set of logarithmick-jet fields

over open subsets ofX defines a subsheaf of the sheafJk X, which we denote byJk X.
Jk X is the sheaf of sections of a holomorphic fibre bundle overX, denoted againJk X
and called the logarithmick-jet bundle of (X, D).

A log-morphism F : (X
0
, D0) ! (X, D) induces a canonical map

Fk : Jk X0 ! Jk X.

We can express the local triviality ofJk X explicitly in terms of coordinates. Let
z1, : : : , zn be coordinates in an open setU � X in which D = fz1z2 � � �zl = 0g. Let !1 =
dz1=z1, : : : ,!l = dzl=zl ,!l+1 = dzl+1, : : : ,!n = dzn. Then we have a biholomorphic map

(e!1, : : : , f!n)� � : Jk XjU ! (Ck)n �U .

Let s 2 H0(U , Jk X) be given bys(x) = (� (i )
j (x), x) in this trivialization where the

indices i correspond to the orders of derivative. Then the sames considered as an
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element ofH0(U , Jk X) and trivialized by!1 = dz1, : : : , !n = dzn is given by s(x) =��̂ (i )
j (x), x

�
where

�̂ (i )
j =

(
zi
�� (i )

j + gi
�� (1)

j , : : : , � (i�1)
j

��
: j � l

� (i )
j : j � l + 1.

The gi are polynomials in the variables� (1)
j , : : : , � (i�1)

j , obtained by expressing first

the different components� (i )
j of (d̃zi =zi ) Æ s(x) in terms of the componentŝ� (i )

j of the

componentŝ� (i )
j of fdzi Æs(x) by using the chain rule, and then by inverting this system.

3. Logarithmic vector fields

Let X � P3 � PNd be the universal surface of degreed given by the equation

X
j�j=d

a�Z� = 0, where [a] 2 PNd and [Z] 2 P3.

In this section we generalize the approach used in [12] (see Proposition 11 of that
article) and [16] to logarithmic jet bundles. We use the notations: for� = (�0, : : : , �3) 2
N4, j�j =

P
i �i and if Z = (Z0, Z1, Z2, Z3) are homogeneous coordinates onP3, then

Z� =
Q

Z
� j

j . X is a smooth hypersurface of degree (d, 1) in P3 � PNd .

We consider the log-manifold (P3�PNd ,X ). We denote byJ3(P3�PNd ) the mani-
fold of the logarithmic 3-jets, andJv3 (P3� PNd ) the submanifold ofJ3(P3� PNd ) con-
sisting of 3-jets tangent to the fibers of the projection�2 : P3 � PNd ! PNd .

We are going to construct meromorphic vector fields onJv3 (P3 � PNd ).
Let us consider

Y =

 
ad Zd

4 +
X
j�j=d

a�Z� = 0

!
� P4 �U

where U := (a0���0d 6= 0) \ �Sj�j=d,�n+2=0(a� 6= 0)
� � PNd+1. We have the projection� : Y ! P3 � PNd and ��1(X ) = (Z4 = 0) := H therefore we obtain a log-morphism� : (Y, H ) ! (P3 � PNd , X ) which induces a dominant map

�3 : Jv3 (Y) ! Jv3 (P3 � PNd ).

Let us consider the set�0 := (Z0 6= 0)� (ad 6= 0)� P4�U . We assume that global
coordinates are given onC4 and CNd+1. The equation ofY becomes

Y0 :=

 
zd

4 +
X
� a�z� = 0

!
.
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Following [5] as explained above, we can obtain explicitly atrivialization of J3(�0).
Let !1 = dz1, !2 = dz2, !3 = dz3, !4 = dz4=z4. Then we have a biholomorphic map

J3(�0) ! C4 �U � C4 � C4 � C4

where the coordinates will be noted
�
zi , a�, � (i )

j

�
.

Let’s write the equations ofJv3 (Y0) in this trivialization. We haveJv3 (Y0) = Jv3 (Y0)\
J3(�0). The equations ofJv3 (Y0) in the trivialization of J3(�0) given by !̂1 = dz1, !̂2 =
dz2, !̂3 = dz3, !̂4 = dz4 can be written inC4 � U � C4 � C4 � C4 with coordinates�
zi , a�, �̂ (i )

j

�
:

zd
4 +

X
j�j�d

a�z� = 0,

dzd�1
4 �̂ (1)

4 +
3X

j =1

X
j�j�d

a� �z��zj
�̂ (1)

j = 0,

dzd�1
4 �̂ (2)

4 + d(d � 1)zd�2
4

��̂ (1)
4

�2
+

3X
j =1

X
j�j�d

a� �z��zj
�̂ (2)

j +
3X

j ,k=1

X
j�j�d

a� �2z��zj �zk
�̂ (1)

j �̂ (1)
k = 0,

dzd�1
4 �̂ (3)

4 + 3d(d � 1)zd�2
4 �̂ (1)

4 �̂ (2)
4 + d(d � 1)(d � 2)zd�3

4

��̂ (1)
4

�3
+

3X
j =1

X
j�j�d

a� �z��zj
�̂ (3)

j

+ 3
3X

j ,k=1

X
j�j�d

a� �2z��zj �zk
�̂ (2)

j �̂ (1)
k +

3X
j ,k,l=1

X
j�j�d

a� �3z��zj �zk�zl
�̂ (1)

j �̂ (1)
k �̂ (1)

l = 0.

The relations between the two systems of coordinates can be computed as ex-
plained above and are given by

�̂ (i )
j = � (i )

j for j � 3,

�̂ (1)
4 = z4� (1)

4 ,

�̂ (2)
4 = z4

�� (2)
4 +

�� (1)
4

�2�
,

�̂ (3)
4 = z4

�� (3)
4 + 3� (1)

4 � (2)
4 +

�� (1)
4

�3�
.

Therefore, to obtain the equations ofJv3 (Y0) in the first trivialization, we just have
to substitute the previous relations

zd
4 +

X
j�j�d

a�z� = 0,(1)

dzd
4� (1)

4 +
3X

j =1

X
j�j�d

a� �z��zj
� (1)

j = 0,(2)
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dzd
4� (2)

4 + d2zd
4

�� (1)
4

�2
+

3X
j =1

X
j�j�d

a� �z��zj
� (2)

j +
3X

j ,k=1

X
j�j�d

a� �2z��zj �zk
� (1)

j � (1)
k = 0,(3)

dzd
4� (3)

4 + 3d2zd
4� (1)

4 � (2)
4 + d3zd

4

�� (1)
4

�3
+

3X
j =1

X
j�j�d

a� �z��zj
� (3)

j

+ 3
3X

j ,k=1

X
j�j�d

a� �2z��zj �zk
� (2)

j � (1)
k +

3X
j ,k,l=1

X
j�j�d

a� �3z��zj �zk�zl
� (1)

j � (1)
k � (1)

l = 0.

(4)

Following the method used in [16] for the compact case, we aregoing to prove
that TJv3 (Y) 
 OP4(c) 
 OPNd +1(�) is generated by its global sections onJv3 (Y) n (6 [
p�1(H )), where p : Jv3 (Y) ! Y is the natural projection,6 a subvariety that will be
defined below, andc 2 N a constant independant ofd. Consider a vector field

V =
X
j�j�d

v� ��a� +
X

j

v j
��zj

+
X
j ,k

w(k)
j

�
�� (k)

j

on C4�U�C4�C4�C4. The conditions to be satisfied byV to be tangent toJv3 (Y0)
are the following:

X
j�j�d

v�z� +
3X

j =1

X
j�j�d

a� �z��zj
v j + dzd�1

4 v4 = 0,(5)

3X
j =1

X
j�j�d

v� �z��zj
� (1)

j +
3X

j ,k=1

X
j�j�d

a� �2z��zj �zk
v j � (1)

k +
3X

j =1

X
j�j�d

a� �z��zj
w(1)

j

+ d2zd�1
4 v4� (1)

4 + dzd
4w(1)

4 = 0,

(6)

X
j�j�d

 
3X

j =1

�z��zj
� (2)

j +
3X

j ,k=1

�2z��zj �zk
� (1)

j � (1)
k

!
v�

+
3X

j =1

X
j�j�d

a�
 

3X
k=1

�2z��zj �zk
� (2)

k +
3X

k,l=1

�3z��zj �zk�zl
� (1)

k � (1)
l

!
v j

+
X
j�j�d

 
3X

j ,k=1

a� �2z��zj �zk

�w(1)
j � (1)

k +w(1)
k � (1)

j

�
+

3X
j =1

a� �z��zj
w(2)

j

!

+ v4d2zd�1
4

�� (2)
4 + d

�� (1)
4

�2�
+ 2d2zd

4w(1)
4 � (1)

4 + dzd
4w(2)

4 = 0,

(7)
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X
j�j�d

 
3X

j =1

�z��zj
� (3)

j + 3
3X

j ,k=1

�2z��zj �zk
� (2)

j � (1)
k +

3X
j ,k,l=1

�3z��zj �zk�zl
� (1)

j � (1)
k � (1)

l

!
v�

+
3X

j =1

X
j�j�d

a�
 

3X
k=1

�2z��zj �zk
� (3)

k + 3
3X

k,l=1

�3z��zj �zk�zl
� (2)

k � (1)
l

+
3X

k,l ,m=1

�4z��zj �zk�zl �zm
� (1)

k � (1)
l � (1)

m

!
v j

+
X
j�j�d

 
3X

j ,k,l=1

a� �3z��zj �zk�zl

�w(1)
j � (1)

k � (1)
l + � (1)

j w(1)
k � (1)

l + � (1)
j � (1)

k w(1)
l

�

+ 3
3X

j ,k=1

a� �2z��zj �zk

�w(2)
j � (1)

k + � (2)
j w(1)

k

�
+

3X
j =1

a� �z��zj
w(3)

j

!

+ d2zd�1
4 v4

�� (3)
4 + 3d� (1)

4 � (2)
4 + d

�� (1)
4

�3�
+ dzd

4w(3)
4 + 3d2zd

4

�� (2)
4 w(1)

4 + � (1)
4 w(2)

4

�
+ 3d3zd

4w(1)
4

�� (1)
4

�2
= 0.

(8)

We can introduce the first package of vector fields tangent toJv3 (Y0). We denote
by Æ j 2 N3 the multi-index whose j-component is equal to 1 and the otherare zero.

For �1 � 4:

V400� :=
��a� � 4z1

��a��Æ1

+ 6z2
1

��a��2Æ1

� 4z3
1

��a��3Æ1

+ z4
1

��a��4Æ1

.

For �1 � 3, �2 � 1:

V310� :=
��a� � 3z1

��a��Æ1

� z2
��a��Æ2

+ 3z1z2
��a��Æ1�Æ2

+ 3z2
1

��a��2Æ1

� 3z2
1z2

��a��2Æ1�Æ2

� z3
1

��a��3Æ1

+ z3
1z2

��a��3Æ1�Æ2

.

For �1 � 2, �2 � 2:

V220� :=
��a� � z2

��a��Æ2

� z1
��a��Æ1

+ z1z2
2

��a��Æ1�2Æ2

+ z2
1z2

��a��2Æ�Æ2 � z2
1z2

2
��a��2Æ1�2Æ2

.
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For �1 � 2, �2 � 1, �3 � 1:

V211� :=
��a� � z3

��a��Æ3

� z2
��a��Æ2

� 2z1
��a��Æ1

+ z2z3
��a��Æ2�Æ3

+ 2z1z3
��a��Æ1�Æ3

+ 2z1z2
��a��Æ1�Æ2

+ z2
1

��a��2Æ1

� 2z1z2z3
��a��Æ1�Æ2�Æ3

� z2
1z3

��a��2Æ1�Æ3

� z2
1z2

��a��2Æ1�Æ2

+ z2
1z2z3

��a��2Æ1�Æ2�Æ3

.

Similar vector fields are constructed by permuting the z-variables, and changing
the index� as indicated by the permutation. The pole order of the previous vector
fields is equal to 4.

Lemma 4. For any (vi )1�i�4 2 C4, there existv�(a), with degree at most1 in
the variables(a
 ), such that V:=

P� v�(a) �=�a� +
P

1� j�3 v j �=�zj + v4z4 �=�z4 is

tangent toJv3 (Y0) at each point.

Proof. First, we substitute equations 1, 2, 3, 4 in equations5, 6, 7, 8 to get rid
of z4, � (i )

4 (1� i � 3). Then, we impose the additional conditions of vanishing for the

coefficients of� (1)
j in the second equation (respectively of� (1)

j � (1)
k in the third equation

and � (1)
j � (1)

k � (1)
l in the fourth equation) for any 1� j � k � l � 3. Then the coefficients

of � (2)
j (respectively� (2)

j � (1)
k and � (3)

j ) are automatically zero in the third (respectively
fourth) equation. The resulting equations are

X
j�j�d

v�z� +
3X

j =1

X
j�j�d

a� �z��zj
v j � dv4

X
j�j�d

a�z� = 0,

X
j�j�d

v� �z��zj
+

3X
k=1

X
j�j�d

a� �2z��zj �zk
vk � dv4

X
j�j�d

a� �z��zj
= 0,

X
j�j�d

�2z��zj �zk
v� +

3X
l=1

X
j�j�d

a� �3z��zj �zk�zl
vl � dv4

X
j�j�d

a� �2z��zj �zk
= 0,

X
j�j�d

�3z��zj �zk�zl
v� +

3X
m=1

X
j�j�d

a� �4z��zj �zk�zl �zm
vm � dv4

X
j�j�d

a� �3z��zj �zk�zl
= 0.

Now we can observe that if thev�(a) satisfy the first equation, they automatically
satisfy the other ones because thev� are constants with respect toz. Therefore it is
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sufficient to find (v�) satisfying the first equation. We identify the coefficientsof z� =
z�1

1 z�2
2 z�3

3 :

v� +
3X

j =1

a�+Æ j v j (� j + 1)� dv4a� = 0.

Another family of vector fields can be obtained in the following way. Consider

a 4� 4-matrix A =

0
BB�

A1
1 A2

1 A3
1 0

A1
2 A2

2 A3
2 0

A1
3 A2

3 A3
3 0

A1
4 A2

4 A3
4 0

1
CCA 2 M4(C) and leteV :=

P
j ,k w(k)

j �=�� (k)
j , where

w(k) := A� (k), for k = 1, 2, 3.

Lemma 5. There exist polynomialsv�(z, a) :=
Pj�j�3 v�� (a)z� where each co-

efficientv�� has degree at most1 in the variables(a
 ) such that

V :=
X
� v�(z, a)

��a� + eV
is tangent toJv3 (Y0) at each point.

Proof. First, we substitute equations 1, 2, 3, 4 in equations5, 6, 7, 8 to get
rid of z4, � (i )

4 (1 � i � 3). We impose the additional conditions of vanishing for the

coefficients of� (1)
j in the second equation (respectively of� (1)

j � (1)
k in the third equation

and � (1)
j � (1)

k � (1)
l in the fourth equation) for any 1� j � k � l � 3. Then the coefficients

of � (2)
j (respectively� (2)

j � (1)
k and � (3)

j ) are automatically zero in the third (respectively
fourth) equation. The resulting equations areX

j�j�d

v�z� = 0,(9)

X
j�j�d

v� �z��zj
+

3X
k=1

X
j�j�d

a� �z��zk
A j

k � d Aj
4

X
j�j�d

a�z� = 0,(10j )

X
�

�2z��zj �zk
v� +

X
�, p

a� �2z��zj �zp
Ak

p +
X
�, p

a� �2z��zk�zp
A j

p � 2d Aj
4

X
j�j�d

a� �z��zk
= 0,(11jk)

X
�

�3z��zj �zk�zl
v� +

X
�, p

a� �3z��zp�zk�zl
A j

p +
X
�, p

a� �3z��zj �zp�zl
Ak

p

+
X
�, p

a� �3z��zj �zk�zp
Al

p � 3d Al
4

X
j�j�d

a� �2z��zj �zk
= 0.

(12jkl )
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The equations for the unknownsv�� are obtained by identifying the coefficients of
the monomialsz� in the above equations.

The monomialsz� in (9) are z�1
1 z�2

2 z�3
3 with

P �i � d.
If all the components of� are greater than 3, then we obtain the following system:
13. The coefficient ofz� in (9) impose the condition

X
�+�=� v

�� = 0.

14j . The coefficient of the monomialz��Æ j in (10j ) impose the condition

X
�+�=� � j v�� = l j (a)

where l j is a linear expression in thea-variables.
14j j . For j = 1, : : : , 3 the coefficient of the monomialz��2Æ j in (11j j ) impose

the condition X
�+�=� � j (� j � 1)v�� = l j j (a).

14jk . For 1� j < k � 3 the coefficient of the monomialz��Æ j�Æk in (11jk) impose
the condition X

�+�=� � j�kv�� = l jk(a).

15j j j . For j = 1, : : : , 3 the coefficient of the monomialz��3Æ j in (12j j j ) impose
the condition X

�+�=� � j (� j � 1)(� j � 2)v�� = l j j j (a).

15j jk . For 1� j < k � 3 the coefficient of the monomialz��2Æ j�Æk in (12j jk )
impose the condition

X
�+�=� � j (� j � 1)�kv�� = l j jk (a).

15jkl . For 1� j < k < l � 3 the coefficient of the monomialz��Æ j�Æk�Æl in (12j jk )
impose the condition

X
�+�=� � j�k�lv�� = l jkl (a).
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The determinant of the matrix associated to the system is notzero. Indeed, for
each� the matrix whose columnC� consists of the partial derivatives of order at most
3 of the monomialz��� has the same determinant, at the pointz0 = (1, 1, 1), as our
system. Therefore if the determinant is zero, we would have anon-identically zero
polynomial

Q(z) =
X
� a�z���

such that all its partial derivatives of order less or equal to 3 vanish atz0. Thus the
same is true for

P(z) = z�Q

�
1

z1
, : : : , 1

z3

�
=
X
� a�z� .

But this implies P � 0.
Finally, we conclude by Cramer’s rule. The systems we have tosolve are never

over determined. The lemma is proved.

REMARK 6. We have chosen the matrixA with this form because we are inter-
ested to prove the global generation statement onJv3 (Y) n (6 [ p�1(H )) where6 is

the closure of60 =
�
(z, a, � (1), � (2), � (3)) 2 Jv3 (Y0)=det

�� ( j )
i

�
1�i , j

� 3 = 0
	
.

Proposition 7. The vector space TJv3 (Y)
OP4(12)
OPNd +1(�) is generated by its

global sections onJv3 (Y) n (6 [ p�1(H )).

Proof. From the preceding lemmas, we are reduced to considerV =
Pj�j�3v��=�a� .

The conditions forV to be tangent toJv3 (Y0) areX
j�j�3

v�z� = 0,

3X
j =1

X
j�j�3

v� �z��zj
� (1)

j = 0,

X
j�j�3

 
3X

j =1

�z��zj
� (2)

j +
3X

j ,k=1

�2z��zj �zk
� (1)

j � (1)
k

!
v� = 0,

X
j�j�3

 
3X

j =1

�z��zj
� (3)

j + 3
3X

j ,k=1

�2z��zj �zk
� (2)

j � (1)
k +

3X
j ,k,l=1

�3z��zj �zk�zl
� (1)

j � (1)
k � (1)

l

!
v� = 0.

We denote byWjkl the wronskian operator corresponding to the variableszj , zk, zl .

We haveW123 := det
�� (i )

j

�
1�i , j�3 6= 0. Then we can solve the previous system with
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v000, v100, v010, v001 as unknowns. By the Cramer rule, each of the previous quantity is
a linear combination of thev�, j�j � 3, � 6= (000), (100), (010), (001) with coefficients
rational functions inz, � (1), � (2), � (3). The denominator isW123 and the numerator is a
polynomial whose monomials verify either:
i) degree inz at most 3 and degree in each� (i ) at most 1.
ii) degree inz at most 2 and degree in� (1) at most 3, degree in� (2) at most 0, degree
in � (3) at most 1.
iii) degree inz at most 2 and degree in� (1) at most 2, degree in� (2) at most 2, degree
in � (3) at most 0.
iv) degree inz at most 1 and degree in� (1) at most 4, degree in� (2) at most 1, degree
in � (3) at most 0.� (1) has a pole of order 2,� (2) has a pole of order 3 and� (3) has a pole of order
4, therefore the previous vector field has order at most 12.

Corollary 8. The vector space TJv3 (P3�PNd ) 
 OP3(12)
 OPNd (�) is generated by

its global sections onJv3 (P3 � PNd ) n (�3(6) [ X ).

REMARK 9. If the third derivative of f : (C, 0)! P3�PNd nX lies inside�3(6)
then the image off is contained in a hyperplane.

4. Logarithmic jet differentials

In this section we recall the basic facts about logarithmic jet differentials follow-
ing G. Dethloff and S. Lu [5]. LetX be a complex manifold with a normal crossing
divisor D.

Let (X, D) be the corresponding complex log-manifold. We start with the directed
manifold (X, T X) where T X = TX(� log D). We defineX1 := P(T X), D1 = ��(D) and
V1 � TX1:

V1,(x,[v]) := f� 2 T X1,(x,[v])(� log D1); ��� 2 Cvg
where� : X1 ! X is the natural projection. Iff : (C, 0)! (X n D, x) is a germ of
holomorphic curve then it can be lifted toX1 n D1 as f[1] .

By induction, we obtain a tower of varieties (Xk, Dk, Vk) with �k : Xk ! X as
the natural projection. We have a tautological line bundleOXk (1) and we denoteuk :=
c1(OXk (1)).

Let’s consider the direct image�k�(OXk (m)). It’s a locally free sheaf denoted

Ek,mT
�
X generated by all polynomial operators in the derivatives oforder 1, 2,: : : , k

of f , together with the extra function logsj ( f ) along the j -th component ofD, which
are moreover invariant under arbitrary changes of parametrization: a germ of operator
Q 2 Ek,mT

�
X is characterized by the condition that, for every germ inX n D and every

germ � 2 Gk of k-jet biholomorphisms of (C, 0),

Q( f Æ �) = �0mQ( f ) Æ �.
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The following theorem makes clear the use of jet differentials in the study of hyper-
bolicity:

Theorem ([8], [3], [5]). Assume that there exist integers k, m> 0 and an ample
line bundle L on X such that

H0(Xk, OXk(m)
 ��k L�1) ' H0(X, Ek,mT
�
X 
 L�1)

has non zero sections�1, : : : , �N . Let Z � Xk be the base locus of these sections.
Then every entire curve f: C ! X n D is such that f[k](C) � Z. In other words, for
every globalGk-invariant polynomial differential operator P with valuesin L�1, every
entire curve f: C ! X n D must satisfy the algebraic differential equation P( f ) = 0.

If X � P3 is a smooth hypersurface, we have established in [15] the next result:

Theorem ([15]). Let X be a smooth hypersurface ofP3 such that d= deg(X) �
92, and A an ample line bundle, then E3,mT

�
P3 
 A�1 has global sections for m large

enough and every entire curve f: C! P3n X must satisfy the corresponding algebraic
differential equation.

The proof relies on the filtration ofE3,mT
�
X obtained in [14]:

Gr�E3,mT
�
X =

M
0�
�m=5

 M
f�1+2�2+3�3=m�
 ;�i�� j�
 ,i< j g 0

(�1,�2,�3)T
�
X

!

where0 is the Schur functor.
This filtration provides a Riemann-Roch computation of the Euler characteristic [14]:

�(P3, E3,mT
�
P3) = m9

�
389

81648000000
d3 � 6913

34020000000
d2

+
6299

4252500000
d � 1513

63787500

�
+ O(m8).

In dimension 3 there is no Bogomolov vanishing theorem (cf. [1]) as it is used
in dimension 2 to control the cohomology groupH2, therefore we need the following
proposition obtained in [15]:

Proposition ([15]). Let � = (�1,�2,�3) be a partition such that�1 > �2 > �3 andj�j =
P �i > 3d + 2. Then:

h2(P3, 0�T�
P3) � g(�)(d + 14) +r (�)
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where g(�) = (3j�j3=2)
Q�i>� j

(�i � � j ) and r is polynomial in� with homogeneous
components of degrees at most5.

This proposition provides the estimate [15]

h2(P3, Gr�E3,mT
�
P3) � C(d + 14)m9 + O(m8)

whereC is a constant.

5. Proof of Theorem 3

Let us consider an entire curvef : C ! P3 n X for a generic hypersurface ofP3.
By Riemann-Roch and the proposition of the previous sectionwe obtain the following
lemma:

Lemma 10. Let X be a smooth hypersurface ofP3 of degree d, 0 < Æ < 1=18

then h0
�
P3, E3,mT

�
P3 
 K

�Æm
P3

� � �(d, Æ)m9 + O(m8), with

�(d, Æ) =
1

408240000000
(67737600Æ3 + 1945d3�82956d2�968320

+ 1804680d2Æ + 12700800d2Æ3�9408960d2Æ2 + 37635840dÆ2

�8579520dÆ�50803200dÆ3�1058400d3Æ3�105030d3Æ
�50181120Æ2 + 12165120Æ + 604704d + 784080d3Æ2).

Proof. E3,mT
�
P3 
 K

�Æm
P3 admits a filtration with graded pieces

0(�1,�2,�3)T
�
P3 
 K

�Æm
P3 = 0(�1�Æm,�2�Æm,�3�Æm)T

�
P3

for �1 + 2�2 + 3�3 = m� 
 ; �i � � j � 
 , i < j , 0� 
 � m=5.
We compute by Riemann-Roch

��P3, E3,mT
�
P3 
 K

�Æm
P3

�
= ��X, Gr�E3,mT

�
P3 
 K

�Æm
P3

�
.

We use the proposition of the previous section to control

h2
�
X, E3,mT

�
P3 
 K

�Æm
P3

�
:

h2
�
P3, 0(�1�Æm,�2�Æm,�3�Æm)T

�
P3

� � g(�1 � Æm, �2 � Æm, �3 � Æm)(d + 14)

+ r (�1 � Æm, �2 � Æm, �3 � Æm)

under the hypothesis
P�i �3Æm> 3d + 2. The conditions verified by� imply

P�i �
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m=6 therefore the hypothesis will be verified if

m

�
1

6
� 3Æ� > 3d + 2.

We conclude with the computation

��P3, E3,mT
�
P3 
 K

�Æm
P3

��h2�P3, Gr�E3,mT
�
P3 
 K

�Æm
P3

� � h0�P3, E3,mT
�
P3 
 K

�Æm
P3

�
.

REMARK 11. If we denote (P3 � PNd )v3 the quotient ofJv3 reg
(P3 � PNd ) by the

reparametrization groupG3, one can easily verify that each vector field given at Sec-
tion 3 defines a section of the tangent bundle of the manifold (P3 � PNd )v3.

We have a section

� 2 H0
�
P3, E3,mT

�
P3 
 K

�Æm
P3

� ' H0
�
(P3)3, O(P3)3

(m)
 ��3 K
�Æm
P3

�
.

with zero setZ and vanishing orderÆm(d � 4). Consider the family

X � P3 � PNd

of hypersurfaces of degreed in P3. General semicontinuity arguments concerning the
cohomology groups show the existence of a Zariski open setUd � PNd such that for
any a 2 Ud, there exists a divisor

Za = (Pa = 0)� (P3
a)3

where

Pa 2 H0�(P3
a)3, O(P3

a)3
(m)
 ��3 K

�Æm
(P3

a)

�
such that the family (Pa)a2Ud varies holomorphically. We considerP as a holomorphic
function on J3(P3

a). The vanishing order of this function is no more thanm at a generic
point of P3

a. We have f[3](C) � Za.
Then we invoke Corollary 8 which gives the global generationof

TJv3 (P3�PNd ) 
OP3(12)
OPNd (�)
on Jv3 (P3 � PNd ) n (�3(6) [ X ).

If f[3](C) lies in �3(6), f is algebraically degenerated. So we can suppose it is
not the case.

At any point of f[3](C) n �3(6) where the vanishing ofP is no more thanm,
we can find global meromorphic vector fieldsv1, : : : , vp (p � m) and differentiateP
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with these vector fields such thatv1 � � � vpP is not zero at this point. From the above
remark, we see thatv1 � � � vp P corresponds to an invariant differential operator and its
restriction to (P3

a)3 can be seen as a section of the bundle

O(P3
a)3

(m)
OP3(12p� Æm(d � 4)).

Assume that the vanishing order ofP is larger than the sum of the pole order of thevi in the fiber direction of� : P3�PNd ! PNd . Then the restriction ofv1 � � �vp P to P3
a

defines a jet differential which vanishes on an ample divisor. Therefore f[3](C) should
be in its zero set.

To finish the proof, we just have to see when the vanishing order of P is larger
than the sum of the pole order of thevi . This will be verified if

Æ(d � 4)> 12.

So we wantÆ > 12=(d � 4) and�(d, Æ) > 0. This is the case ford � 586.
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