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Abstract
In this article we prove that every entire curve in the commat of a generic
hypersurface of degree > 586 in P2 is algebraically degenerated, i.e. there exists
a proper subvariety which contains the entire curve.

1. Introduction

A complex manifoldX is hyperbolic in the sense of S. Kobayashi if the hyperbolic
pseudodistance defined ot is a distance (see, for example, [10]). The hyperbolicity
problem in complex geometry studies the conditions for a&micomplex manifoldX
to be hyperbolic. In the case of hypersurfacesPlhwe have the Kobayashi conjec-
tures [9]:

Conjecture 1. A generic hypersurface X P™! (n > 2) of degreedegX > 2n+1
is hyperbolic

Conjecture 2. P"\ X (n > 2) is hyperbolic for a generic hypersurface X P"
of degreedegX > 2n+ 1.

A new approach which could lead to a positive result for Cotujee 1 has been
described by Y.-T. Siu in [17] for a bound}, > n on the degree. If we are interested
in the lower bound on the degree, Conjecture 1 is recentlygoran [13] for n = 2,

d > 18 and in [16] we proved a weak form of Conjecture 1 for 3:

Theorem ([16]). For X C P% a generic hypersurface such that=ddeg(X) >
593, every entire curve fC — X is algebraically degeneraté.e. there exists a proper
subvariety YC X such that {C) C Y.

Here we study the logarithmic Conjecture 2 (proved fior 2 andd > 15 in [7])
and prove the following result, which is a weak form of the jesture forn = 3:
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Theorem 3. For X C IP’% a generic hypersurface such that=ddeg(X) > 586,
every entire curve fC — P2\ X is algebraically degeneratedei there exists a proper
subvariety YC P2 such that {C) C Y.

The proof is based on two techniques.

The first one is a generalization in the logarithmic settifigaio approach initiated
by Clemens [2], Ein [6], Voisin [18] and used by Y.-T. Siu [1# construct vector
fields on the total space of hypersurfaces in the projectpares. Here we construct
vector fields on logarithmic spaces.

The second one is based on bundles of logarithmic jet diffexis (see [5]). The
idea, in hyperbolicity questions, is that global sectiofigh@se bundles vanishing on
ample divisors provide algebraic differential equations &ny entire curvef: C —
X\ D where D is a normal crossing divisor oX. Therefore, the main point is to
produce enough algebraically independent global holohiorfwgarithmic jet differen-
tials. In the case of®\ X for a smooth hypersurfac& c P2, we have proved the
existence of global logarithmic jet differentials when (€yy> 92 in [14]. Therefore
to produce enough logarithmic jet differentials we take diegivative of the logarithmic
jet differential in the direction of the vector fields congtred in the first part, just as
in the compact case [16].

2. Logarithmic jet bundles

In this section we recall the basic facts and results of J.udbgin [11] about
logarithmic jet bundles following G. Dethloff and S. Lu [5].

Let X be a complex manifold of dimension. Let x € X. We consider germs
f: (C, 0) — (X, x) of holomorphic curves. Then the usuafet bundle, J X, is the
holomorphic fibre bundle whose fibelg X is the set of equivalence classes of germs,
jk(f), where two germs are equivalent if they have the same Tadpansions of or-
derk. Let w: JxX — X be the natural projection.

Let T4 be the holomorphic cotangent bundle ovér Take a holomorphic section
w € H%(O, Ty) for some open subsed. For jk(f) € kX0, we have f*w = Z(t) dt
and a well defined holomorphic mapping

- ) diz
@: kX0 = C jk(f) — <W(O)) .
0<j=<k-1

If, moreoverws, ..., w, are holomorphic 1-forms o® such thatw; A --- A @y
does not vanish anywhere, then we have a biholomorphic map

&1, .. on)x i KXo — (CH" x O
|

which gives the trivialization associated 49, . . ., wn.
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Let X be a complex manifold with a normal crossing dividdr The pair K, D)
is called a log manifold. LeX = X\ D.

The logarithmic cotangent sheﬁf;< = TY*(Iog D) is defined as the locally free sub-
sheaf of the sheaf of meromorphic 1-forms ¥n whose restriction toX is Ty and
whose localization at any point € D is given by

| n
TX,X = Z OY,X? + Z OY,X dZJ
i=1 j=1+1

where the local coordinates, . . ., z, aroundx are chosen such th& ={z;---z =0}.

Its dual, the logarithmic tangent she@k = Tx(—log D) is a locally free subsheaf
of the holomorphic tangent bundiB;, whose restriction toX is Tx and whose local-
ization at any pointx € D is given by

n

|

_ d 0

Txx = Z Ox xZ 9z + Z Oi,xa—zj-
i-1 i

Given log-manifolds X, D) and (X, D), a holomorphic mapF: X — X such
that F~3(D) c D’ is called a log-morphism fromX, D’) to (X, D). It induces vector
bundle morphisms

F*: Txr — Tx.

Let s € H2(O, JX) be a holomorphic section over an open sub®et X. We
say thats is a logarithmick-jet field if the mapa o s0:: O’ — CX is holomorphic for
all € HY(O', Ty) for all open subset©’ of O. The set of logarithmic-jet fields
over open subsets of defines a subsheaf of the sheX, which we denote by, X.
J X is the sheaf of sections of a holomorphic fibre bundle o¢erdenoted agairy X
and called the logarithmik-jet bundle of ¥, D).

A log-morphismF: (X', D’) — (X, D) induces a canonical map

Fy: ij’ — ij.

We can express the local triviality afy X explicitly in terms of coordinates. Let
71,...,2, be coordinates in an open détC X in which D = {2125+ - -2 =0}. Letw; =
dz/z1,...,0 =dz/2,w+1=dZ41,...,0n =dZ,. Then we have a biholomorphic map

(@1, .-y @) x 0 I Xy —> (CH" x U.

Let s e HO(U, JiX) be given bys(x) = (£(x), x) in this trivialization where the
indicesi correspond to the orders of derivative. Then the sarmnsidered as an
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ele_ment of HO(U, JX) and trivialized byw; = dz, ..., wy, = dz, is given bys(x) =
(é'j(')(x), x) where

s [3E0+ o)) <1
I g0 > 1+1.

The g; are polynomials in the variablef,él),. . .,éj(i’l), obtained by expressing first
the different componentsj(i) of (d/i.ﬁ) o s(x) in terms of the componenﬁi) of the
componentﬂ” of dz os(x) by using the chain rule, and then by inverting this system.

3. Logarithmic vector fields

Let X ¢ P® x PN« be the universal surface of degrdegiven by the equation

> a,Zz*=0, where f]eP™ and [z] P>
|a|=d

In this section we generalize the approach used in [12] (sepdBition 11 of that
article) and [16] to logarithmic jet bundles. We use the tiotes: fora = (ag, ..., a3) €
N4, |o| = S and if Z = (Zo, Z1, Z,, Z3) are homogeneous coordinates B then
Zv=T] Z‘j’". X is a smooth hypersurface of degrek {) in P2 x PNo,

We consider the log-manifold? x PN¢, X). We denote byds(P? x PN¢) the mani-
fold of the logarithmic 3-jets, andy (P x PN¢) the submanifold ofJs(P® x PNe) con-
sisting of 3-jets tangent to the fibers of the projectiognn P2 x PNe — PNa,

We are going to construct meromorphic vector fields JigP® x PNe).

Let us consider

y:<adzg+2aaz“:o>cp4xu

|or|=d

where U := (8o..01 7 0) N (U\yd .08 7 0)) C PN*L. We have the projection
7:Y — P2 x PN and 771(X) = (Z4 = 0) := H therefore we obtain a log-morphism
7: (), H) = (P® x PN¢, X) which induces a dominant map

m3: B() — J (PP x PNy,

Let us consider the s&®q := (Zo 7 0)x (ag Z0) Cc P*x U. We assume that global
coordinates are given ofi* and CNe*l. The equation ofy becomes

Vo = <22+Zaaz =O>.
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Following [5] as explained above, we can obtain explicithyigialization of J3(o).
Let w! =dz, w? =dzn, 0 =dz, o* =dz/z;. Then we have a biholomorphic map

F(Q) > C*x U x CHx C* x C*

where the coordinates will be notdd;, a,, él-(i)).

Let's write the equations od; (o) in this trivialization. We havely()o) = 3¥(Vo) N
J3(Q0). The equations o} (Vo) in the trivialization of J3(Q) given by &' =dz, &% =
dz, ®3 = dz, @* = dz, can be written inC* x U x C* x C* x C* with coordinates

(@, 2, £0);

zg+2aaz =0

la|=<d
Y Y gy 620,
j=1 |a|<d
0Z* » 9%z*
dZA1ED + d(d - (Emy? a, 2L E@ 4 a, 2L EWEW _
" ( ;o;i é ng \c%;d 0292 T

0z”
dzd 15(3)+3d(d l)Zd 22 (1)$§Z)+d(d 1)(d — 2) 3 (1) +Z Z aa (3)

=1 |a|=d

2 o
+3 TZ p@pm %7 cmpmp 0

j.k=1 |a|<d ik I=1 |e|<d

The relations between the two systems of coordinates canobgpuwied as ex-
plained above and are given by

=g ror <3,
£ = e

0= 2,60 + (1)),

0 = 26l + V0 + (1)),

Therefore, to obtain the equations @(yo) in the first trivialization, we just have
to substitute the previous relations

(1) 2+ 3=

lee|=<d

@ DY Y et =0

j=1 |a|<d
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@ APy Y a s‘2>+z Y a e g =,

j=1 |a|<d j.k=1|a|<d 9z} 92
dzﬂéf) + 3d224$(1)§(2) + d3 d (l) + Z Z (3)
=1 |a|=<d

4)
3
1 2. 33z 1)) (d
‘3 @0 MO0 = o
Zza"azazé 5k Z Za“az,azaz.é 5%

j.k=1 |a|<d ik I=1 |e|<d

Following the method used in [16] for the compact case, wegaiaeg to prove
that TJ—;O,) ® Ops(C) ® Opng4q(x) is generated by its global sections @(y) \ (2 U

p~1(H)), where p: JJ()) — Y is the natural projectiony a subvariety that will be
defined below, and € N a constant independant df Consider a vector field

V=3 g Zjaz *w o m

]
Jal=d ik 05

on C*xU x C*x C*x C* The conditions to be satisfied by to be tangent taly (Vo)
are the following:

() ZUQZ“+ZZaa—v,+dzﬂ s =0,

|a|<d j=1 |a|=<d
5(1)+ Z Wy aaaz“ &
©) ZHZ ZZ Yoz ZZ

+ dzzg_lv4§§1) + dzﬂwgl) =

=07 @, v 7w
> (L5 2 e

lel<d \ j=1 =)
3 Za 3 83
539 aa(z DY —sé”s.‘”)
(7) T3 w=d =y 0z;0z 02002
52
0z” 1),.(1 1,1 2
+ 3 Z ) Zaa w®
=a \ [t 82 0Zx

+uad’Z) (67 + d(57)7) + 20°ZueD + dzﬁwff) =0
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3 3
0z 9%z% 33z¢
® 4 @@ 4 D@D
Z(Z 97 é Z 32j8ZkEJ 5 Z 3202407 éJ &6 )va

joi=d \ j=1 % jk=1 jkl=1

3
©) Pz 2.
2 Ta( S ey S

i=1 |o|<d

'z EWEWED )
K 020207 8zm

3
WD) 4 0, WD 4 D), @)
+Z< kZ 82182 821( PECET TR 6T )

|or|<d

®

3

3
wPe@ (2 (1) w®
£33 AT P )+ 20 S

j k=1
3
+ dZZ?1 1 (%-(3) + 3d§£(11)%-£2) + d(fél)) )
B ) +£P0?) + S )~

We can introduce the first package of vector fields tangenf(oio). We denote
by §; € N® the multi-index whose j-component is equal to 1 and the otirerzero.

For oy > 4:
d d d d
40.= — 4z + 62 — 47 +7] .
08y 08y s, 08y 25, 08y 35, 08y 45,

Fora; >3, a, > 1:

0 0 0

V30 — 3z -2 +3z12p———

03y 03,5, 03y, 08y _s, s,

0 0
+32 — 32z -z + 232,
0ay_2s, 3aa 251—5, 08y_3s, 08y_35,-35,
Fora; > 2, a, > 2:
0 0 0
V0= — 7 -z +2125
03y 08y s, 08y s, 08y 5,25,
0

2.2
1%

2
+ 7212 3 PP
By -25_;, Ay—25,-25,
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Forag > 2, ap > 1, oz > 1:

211, 0 d d 0
Vyiti=— —123 -2 -2z + 2,73
0a, 08y _s, 08y_s, 08y s, 08y _s,—s,

08y—5,—5,—85 B 08y—25,—5,

+ 252,23

179 P)
Qy—28,—5, Ay —28,—6,—53

Similar vector fields are constructed by permuting the ialdes, and changing
the indexa as indicated by the permutation. The pole order of the ptevieector
fields is equal to 4.

Lemma 4. For any (vj)1<i<4 € C?, there existv,(a), with degree at most in
the variables(a,), such that Vi=}_, v,(a) 9/08, + 3 13 vj 8/0Zj + vaZ4 /024 is
tangent toJ_:;’(yo) at each point

Pro_of. First, we substitute equations 1, 2, 3, 4 in equat®ns, 7, 8 to get rid
of 2, £ (1 <i <3). Then, we impose the additional conditions of vanishiagthe
coefficients ofsj(l) in the second equation (respectively@f)sél) in the third equation
and g}”gé”gﬁ” in the fourth equation) for any £ j <k <1 < 3. Then the coefficients

of £ (respectivelys ?£™ and &) are automatically zero in the third (respectively
fourth) equation. The resulting equations are

Z vaZ“+ZZaa—vJ—dv4Za¢,Z“:0,

jal=d o3 oo o
3
a2<dvaaza gb%aahaz vk_dv“azgjaa%: :
|¥d 8ZJazk ; \o% 32132 02" ~ v %a"az,aa ’
";“‘ az,azkaz, mz-l \;d m oo ‘C%a“az,azkaz,

Now we can observe that if the,(a) satisfy the first equation, they automatically
satisfy the other ones because theare constants with respect o Therefore it is
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sufficient to find ¢,) satisfying the first equation. We identify the coefficienfsz® =
Zpl P2 5P3 .
12723

3

vp+Za,,+5jvj(pj +1)—dvsa, = 0. Ul
=1

Another family of vector fields can be obtained in the follogiway. Consider
Al A2 A3 O
Al A2 A3 O
Al A2 A3 O
AL A2 A O
w® = AW for k=1, 2, 3.

a 4x 4-matrix A = € My(C) and letV := ik wﬁk) 3/0e®, where

Lemma 5. There exist polynomials,(z, a) := ng vg(a)zf’ where each co-
efficientvg has degree at most in the variables(a,) such that

0 ~
V= Z va(Z, a)a +V

is tangent toJ_g”(yo) at each point

Proof. _First, we substitute equations 1, 2, 3, 4 in equatiBnsd, 7, 8 to get
rid of zy, gﬁ') (1 <i < 3). We impose the additional conditions of vanishing for the
coefficients oft™ in the second equation (respectively P& in the third equation
and gj(l)sél)sl(l) in the fourth equation) for any & j <k <1 < 3. Then the coefficients

of £ (respectivelys @& and &) are automatically zero in the third (respectively
fourth) equation. The resulting equations are

9 Z 1,2 =0,

la|<d
(10)) Zva ZZ Ak dA, )~ az =0,
\a\<d k=1 |a|=<d la|<d
92z~ 2 - Yo
11 Vee — = A4 Al —2d A — =0,
(115%) Z az,azk ga"azjazp P QZ‘;‘a“azkazp P 4M<da‘” Z

93z 93z¢ : 932*
S — = A+ — = Al
Z az,-azkaz. v X{;a“azpazkazl P ;a”azjazpazl P
0%Z*
+ A —3dA =0
Z azjazkazp & s Z aaaZjaZk

|or|=d

(125k)
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The equations for the unknowng are obtained by identifying the coefficients of
monomialsz” in the above equations.

The monomialsz” in (9) arez]* z5* z§° with )" pj <d.

If all the components op are greater than 3, then we obtain the following system:
13. The coefficient oz” in (9) impose the condition

EE: vg = 0.

atp=p

14;. The coefficient of the monomia~%i in (10;) impose the condition

Z‘ jvg =1i(a)

a+p=p

wherel; is a linear expression in tha-variables.

the

the

the

14;. For j =1,..., 3 the coefficient of the monomia*~%i in (11;;) impose
condition

> ajlay — g =15 (a).

at+f=p

14j. For 1< j <k < 3 the coefficient of the monomiat’ %% in (11;) impose
condition

Z ajotkvg = Ijk(a).

atp=p

15;;. Forj=1,..., 3 the coefficient of the monomia’~*i in (12;;;) impose
condition

> ajey — e — 2)vf =1jj; (a).

at+f=p

15j. For 1< j < k < 3 the coefficient of the monomiat’~2i~% in (12jj)

impose the condition

Z O{j(O{j — l)ozkvg = I”k(a).

atp=p

15j. For 1< j <k <| < 3 the coefficient of the monomial—? ~%% in (12;j)

impose the condition

Z ojo Ug = |jk| (a)

atp=p
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The determinant of the matrix associated to the system iszami. Indeed, for
eachp the matrix whose columi€g consists of the partial derivatives of order at most
3 of the monomialz’~# has the same determinant, at the pdgt (1, 1, 1), as our
system. Therefore if the determinant is zero, we would haveorkidentically zero
polynomial

QD) =) a2 *
B

such that all its partial derivatives of order less or equaBtvanish atzy. Thus the
same is true for

1 1
P@=2Q(F 1) = Lo

But this impliesP = 0.
Finally, we conclude by Cramer’s rule. The systems we haveolue are never
over determined. The lemma is proved. U

REMARK 6. We have chosen the matrik with this form because we are inter-
ested to prove the global generation statementdp()) \ (X U p~1(H)) where T is

the closure ofZo = {(z, a, €W, @, ) € \]_37(yo)/det(gi(j))lii'j <3=0}

Proposition 7. The vector spacejﬁ;l'(y)®0p4(12)® Opna+1(%) IS generated by its
global sections ony (V) \ (X U p~1(H)).

Proof. From the preceding lemmas, we are reduced to CONGigey ., 340/
The conditions forV to be tangent taly ()o) are

/<3
3
07
BpIRRCILEY)
j=1 |a|<3 !
3 3
97" () 0?2y,
Z Z_éj( +Z —Sj Sk vy =0,
a53<j:1 92| {1 0292
(3 9z 5. 92 3. g
Bl LTS SR pULL SR IS
AL (i 9292 (e 0259202

We denote byWj the wronskian operator corresponding to the varialalesy, z.

We have W3 = det(éj(i))lfi‘jﬁ # 0. Then we can solve the previous system with
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V000, V100, Y010 Yoo1 @S Uunknowns. By the Cramer rule, each of the previous gyaistit
a linear combination of the,, |¢| < 3, « # (000), (100), (010), (001) with coefficients
rational functions inz, £, €@ £©). The denominator i8Vi»3 and the numerator is a
polynomial whose monomials verify either:
i) degree inz at most 3 and degree in eaéf) at most 1.
i) degree inz at most 2 and degree V) at most 3, degree i@ at most 0, degree
in €@ at most 1.
i) degree inz at most 2 and degree &Y at most 2, degree i8® at most 2, degree
in €@ at most 0.
iv) degree inz at most 1 and degree §{Y) at most 4, degree i8® at most 1, degree
in €@ at most 0.

£M has a pole of order 26® has a pole of order 3 angl® has a pole of order
4, therefore the previous vector field has order at most 12. U

Corollary 8. The vector spacej;F(Psxde) ® Op3(12) ® Opng (%) Is generated by
its global sections ordy (P2 x PN \ (3(X) U X).

REMARK 9. If the third derivative off: (C, 0) — P3 x PNe\ X' lies insiden3(X)
then the image off is contained in a hyperplane.

4. Logarithmic jet differentials

In this section we recall the basic facts about logarithreicdifferentials follow-
ing G. Dethloff and S. Lu [5]. LetX be a complex manifold with a normal crossing
divisor D.

Let (X, D) be the corresponding complex log-manifold. We start wité tirected
manifold (X, Tx) whereTx = Tx(— log D). We defineX; := P(Tx), D; = 7#*(D) and
Vi C TX1:

Vi) =€ € Txypp(— l0g D1); 7.6 € Cv}

wheren: X; — X is the natural projection. Iff : (C, 0) - (X \ D, x) is a germ of
holomorphic curve then it can be lifted %, \ Dy as fpy.

By induction, we obtain a tower of varietieX{, Dk, Vk) with mx: Xy — X as
the natural projection. We have a tautological line bun@e (1) and we denotel :=

c1(Ox. (1))
Let's consider the direct imagew.(Ox,(m)). It's a locally free sheaf denoted
Ek,mT; generated by all polynomial operators in the derivativeomfer 1, 2,.. .,k

of f, together with the extra function lsg(f) along thej-th component oD, which
are moreover invariant under arbitrary changes of pararaéitn: a germ of operator
Qe Ek,mf’; is characterized by the condition that, for every gernXih D and every
germ ¢ € Gy of k-jet biholomorphisms of €, 0),

Q(f o) =¢™Q(f) 0 9.
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The following theorem makes clear the use of jet differdstia the study of hyper-
bolicity:

Theorem ([8], [3], [5]). Assume that there exist integersnk> 0 and an ample
line bundle L on X such that

HO(Xk, Ox, (M) @ 1LY ~ HO(X, ExmTyx ® LY

has non zero sections,, ..., on. Let Z C X be the base locus of these sections
Then every entire curve :fC — X \ D is such that §(C) c Z. In other words for
every globalGy-invariant polynomial differential operator P with valués L~1, every
entire curve £ C — X\ D must satisfy the algebraic differential equatior( f = 0.

If X c P3is a smooth hypersurface, we have established in [15] the nesxilt:

Theorem ([15]). Let X be a smooth hypersurface Bt such that d= deg(X) >
92, and A an ample line bundlehen Eg,mﬂlg ® A! has global sections for m large
enough and every entire curve € — P3\ X must satisfy the corresponding algebraic
differential equation

The proof relies on the filtration OEgymT; obtained in [14]:
Gr'E3,mT; = @ < @ 1"(?»1,?»2,?»3)?;)
0<y<m/5 \{A1+242+3hg=m—y;Ai —Aj>y,i<]}

whereT is the Schur functor.
This filtration provides a Riemann-Roch computation of theEcharacteristic [14]:

. 389 6913
P2, EgmTpe) = M° - i
X (P, BamTps) (81648000008 34020000000
6299 1513
8_ +O(m®).
4252500000 6378750

In dimension 3 there is ho Bogomolov vanishing theorem (&f) ps it is used
in dimension 2 to control the cohomology grot?, therefore we need the following
proposition obtained in [15]:

Proposition ([15]). LetA = (A1, A2, A3) be a partition such that; > A, > A3 and
Al =>_ X >3d+2. Then

h2(P3, T ps) < g(A)(d + 14) +r (1)
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where dA) = (31A[%/2) HA»M (A — A;) and r is polynomial inA with homogeneous
components of degrees at maést

This proposition provides the estimate [15]
h2(P3, Gr*EamTps) < C(d + 14)m° + O(mP)
whereC is a constant.

5. Proof of Theorem 3

Let us consider an entire curve: C — P32\ X for a generic hypersurface @°.
By Riemann-Roch and the proposition of the previous seatienobtain the following
lemma:

Lemma 10. Let X be a smooth hypersurface Bf of degree ¢ 0 < § < 1/18
then (P2, EgmTpe ® Kpo') > e(d, 8)m® + O(me), with

a(d, 8) = 6677376003 +19451° — 829561° — 968320

40824000000
+180468@°25 + 127008008%5% — 940896@%5° + 37635840 5>

—857952@5 — 508032005 — 105840@35° — 10503@°3s
—50181120° + 12165120 + 6047041 + 78408@°%52).
Proof. EzmTps ® ?g ™ admits a filtration with graded pieces

F(xl,xz,xs)f]; ® K];fm — F(Alfsm,)\gfsm,)\gfsm)f];

for Ay +20+3kz3=m—y; 4 —Aj >y, i <j, 0<y <m/5.
We compute by Riemann-Roch

(B EzmTos @ Kpt™) = x (X, Gr*EamTos @ K ).
We use the proposition of the previous section to control

h2(X, EamTpe ® Kpa'):
h?(P3, [(amdMmAemdmAa—dmTy < g(oy — 8m, Ap — 8m, Az — Sm)(d + 14)

+r(ky —8m, A — M, Az — &m)

under the hypothesi§_ 1 —33m > 3d +2. The conditions verified by imply > A; >
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m/6 therefore the hypothesis will be verified if
1
m<— - 38) > 3d + 2.
6
We conclude with the computation
X(P%, EamTrs @ Kps ) — (P2, Gr*EgmTas ® Kpo ') < hO(P3, EgmT s ® Ko ). O

REMARK 11. If we denote I3 x PM+)3 the quotient of 32 (P3 x PN¢) by the
reparametrization groufz, one can easily verify that each vector field given at Sec-
tion 3 defines a section of the tangent bundle of the manifBFdx(IP’Nd)g.

We have a section
o€ HO(P?, EamTas @ Kps ) = HO((P3)3, O, (M) @ 73K s ).
with zero setZ and vanishing ordeém(d — 4). Consider the family
X CP3 x PN

of hypersurfaces of degres in P3. General semicontinuity arguments concerning the
cohomology groups show the existence of a Zariski openUget PN¢ such that for
any a € Uq, there exists a divisor

Z.=(Pa=0)C (P33
where
=
Pa € H((P2)s, Opeayo(m) @ 75K g3y )

such that the family R,)acu, Vvaries holomorphically. We considdt as a holomorphic
function on J3(P2). The vanishing order of this function is no more tharat a generic
point of P2. We have fi5(C) C Za.

Then we invoke Corollary 8 which gives the global generatién

Tap@sxpre) ® Ops(12) ® Opna ()

on JJ(P3 x PN \ (mr3(Z) U X).

If fi3(C) lies in m3(X), f is algebraically degenerated. So we can suppose it is
not the case.

At any point of f;3(C) \ n3(X) where the vanishing oP is no more thanm,
we can find global meromorphic vector fields, ..., vp (p < m) and differentiateP
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with these vector fields such that - - - v, P is not zero at this point. From the above
remark, we see that; - - - v, P corresponds to an invariant differential operator and its
restriction to P3); can be seen as a section of the bundle

O, (M) ® Ops(12p — sm(d — 4)).

Assume that the vanishing order &f is larger than the sum of the pole order of the
vi in the fiber direction ofr: P2 x PN¢ — PNe, Then the restriction of; - - -vpP to P3
defines a jet differential which vanishes on an ample diviSdrerefore fj3;(C) should
be in its zero set.

To finish the proof, we just have to see when the vanishingroofleP is larger
than the sum of the pole order of the. This will be verified if

5(d — 4) > 12.

So we wants > 12/(d — 4) anda(d, §) > 0. This is the case fod > 586.
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