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Abstract
Let A be a finitely generated associative algebra over an algebraically closed

field. We characterize the finite dimensional modules overA whose orbit closures
are regular varieties.

1. Introduction and the main result

Throughout the paperk denotes a fixed algebraically closed field. By an algebra
we mean an associative finitely generatedk-algebra with identity, and by a module a
finite dimensional left module. Letd be a positive integer and denote byM(d) the
algebra ofd� d-matrices with coefficients ink. For an algebraA the set modA(d) of
the A-module structures on the vector spacekd has a natural structure of an affine va-
riety. Indeed, ifA' khX1, : : : , Xt i=J for t > 0 and a two-sided idealJ, then modA(d)
can be identified with the closed subset of (M(d))t given by vanishing of the entries of
all matrices�(X1, : : : , Xt ) for � 2 J. Moreover, the general linear group GL(d) acts
on modA(d) by conjugation and the GL(d)-orbits in modA(d) correspond bijectively
to the isomorphism classes ofd-dimensionalA-modules. We shall denote byOM the
GL(d)-orbit in modA(d) corresponding to (the isomorphism class of) ad-dimensional
A-module M. It is an interesting task to study geometric properties of the Zariski clo-
sureOM of OM . We note that using a geometric equivalence described in [4], this
is closely related to a similar problem for representationsof quivers. We refer to [2],
[3], [4], [5], [6], [9], [10], [11], [12], [13] and [14] for results concerning geometric
properties of orbit closures in module varieties or varieties of representations.

The main result of the paper concerns the global regularity of such varieties. Let
Ann(M) denote the annihilator of a moduleM. It is the kernel of the algebra homo-
morphism A ! Endk(M) induced by the moduleM, and therefore the algebraB =
A=Ann(M) is finite dimensional. ObviouslyM can be considered as aB-module.

Theorem 1.1. Let M be an A-module and let B= A=Ann(M). Then the or-
bit closure OM is a regular variety if and only if the algebra B is hereditaryand
Ext1B(M, M) = 0.
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Let d = dimk M. Observe that modB(d) is a closed GL(d)-subvariety of modA(d)
containingOM . Moreover, M is faithful as aB-module. Hence we may reformulate
Theorem 1.1 as follows:

Theorem 1.2. Let M be a faithful module over a finite dimensional algebra B.
Then the orbit closureOM is a regular variety if and only if the algebra B is heredi-
tary and Ext1B(M, M) = 0.

The next section contains a reduction of the proof of Theorem1.2 to Theorem 2.1
presented in terms of properties of regular orbit closures for representations of quivers.
Sections 3 and 4 are devoted to the proof of Theorem 2.1. For basic background on
the representation theory of algebras and quivers we refer to [1].

2. Representations of quivers

Let Q = (Q0, Q1; s, t : Q1 ! Q0) be a finite quiver, i.e.Q0 is a finite set of
vertices, andQ1 is a finite set of arrows� : s(�) ! t(�). By a representation ofQ
we mean a collectionV = (Vi , V�) of finite dimensionalk-vector spacesVi , i 2 Q0,
together with linear mapsV� : Vs(�) ! Vt(�), � 2 Q1. The dimension vector of the
representationV is the vector

dim V = (dimk Vi ) 2 NQ0.

By a path of lengthm� 1 in Q we mean a sequence of arrows inQ1:

! = �m�m�1 � � � �2�1,

such thats(�l+1) = t(�l ) for l = 1, : : : , m� 1. In the above situation we writes(!) =
s(�1) and t(!) = t(�m). We agree to associate to eachi 2 Q0 a path"i in Q of length
zero with s("i ) = t("i ) = i . The paths ofQ form a k-linear basis of the path algebra
kQ. We define

V! = V�m Æ V�m�1 Æ � � � Æ V�2 Æ V�1 : Vs(!) ! Vt(!)

for a path! = �m � � � �1 and extend easily this definition toV� : Vi ! Vj for any � in" j � kQ � "i , where i , j 2 Q0, as� is a k-linear combination of paths! with s(!) = i
and t(!) = j . Finally, we set

Ann(V) = f� 2 kQ j V" j ���"i = 0 for all i , j 2 Q0g,
which is a two-sided ideal inkQ. In fact, it is the annihilator of thekQ-module in-
duced byV with underlyingk-vector space

L
i2Q0

Vi .
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Let d = (di )i2Q0 2 NQ0 be a dimension vector. Then the representationsV = (Vi , V�)
of Q with Vi = kdi , i 2 Q0, form a vector space

repQ(d) =
M
�2Q1

Homk(Vs(�), Vt(�)) =
M
�2Q1

M(dt(�) � ds(�)),

whereM(d0�d00) stands for the space ofd0�d00-matrices with coefficients ink. For ab-
breviation, we denote the representations in repQ(d) by V = (V�). The group GL(d) =L

i2Q0
GL(di ) acts regularly on repQ(d) via

(gi )i2Q0 � (V�)�2Q1 =
�
gt(�) � V� � g�1

s(�)

��2Q1
.

Given a representationW = (Wi , W�) of Q with dim W = d, we denote byOW the
GL(d)-orbit in repQ(d) of representations isomorphic toW.

Let M be a faithful module over a finite dimensional algebraB. It is well known
that the algebraB is Morita-equivalent to the quotient algebrakQ=I , where Q is a
finite quiver and I an admissible ideal inkQ, i.e. I is a two-sided ideal such that
(RQ)r � I � (RQ)2 for some positive integerr , where RQ denotes the two-sided
ideal of kQ generated by the paths of length one (arrows) inQ. Furthermore, the
algebra B is hereditary if and only if I = f0g (in particular, the quiverQ has no
oriented cycles, i.e. paths! of positive lengths withs(!) = t(!)). According to the
above equivalence, the faithfulB-module M corresponds to a representationN = (N�)
in repQ(d) for somed, such that Ann(N) = I . Applying the geometric version of the

Morita equivalence described by Bongartz in [4],OM is isomorphic to an associated
fibre bundle GL(d) �GL(d) ON . In particular,OM is regular if and only ifON is. By
the Artin-Voigt formula (see [8]):

codimrepQ(d) ON = dimk Ext1Q(N, N),

the vanishing of Ext1Q(N, N) means thatON = repQ(d). Consequently, one implication
in Theorem 1.2 is proved and it suffices to show the following fact:

Theorem 2.1. Let N be a representation inrepQ(d) such thatAnn(N) is an ad-

missible ideal in kQ andON is a regular variety. Then Ann(N) = f0g and ON =
repQ(d).

3. Tangent spaces of orbit closures and nilpotent representations

From now on,N is a representation in repQ(d) such that Ann(N) is an admissible

ideal in kQ and ON is a regular variety. The aim of the section is to prove that the
quiver Q has no oriented cycles.

Let S[ j ] = (S[ j ] i , S[ j ]�) stand for the simple representation ofQ such thatS[ j ] j =
k is the only non-zero vector space and all linear mapsS[ j ]� are zero, for any vertex
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j 2 Q0. Observe that the point 0 in repQ(d) is the semisimple representation
L

i2Q0
S[i ]di .

A representationW = (Wi , W�) of Q is said to be nilpotent if one of the following
equivalent conditions is satisfied:
(1) The endomorphismW! 2 Endk(Ws(!)) is nilpotent for any oriented cycle! in Q.
(2) The ideal Ann(W) contains (RQ)r for some positive integerr .
(3) Any composition factor ofW is isomorphic to someS[i ], i 2 Q0.
(4) The orbit closureOW in repQ(dim W) contains 0.
Obviously the representationN is nilpotent. Thus the setNQ(d) of nilpotent represen-
tations in repQ(d) is a closed GL(d)-invariant subset which containsON . Furthermore,
NQ(d) is a cone, i.e. it is invariant under multiplication by scalars in the vector space
repQ(d).

We shall identify the tangent spaceTrepQ(d),0 of repQ(d) at 0 with repQ(d) itself.
Thus the tangent spaceTON ,0 is a subspace of repQ(d) and is invariant under the ac-

tion of GL(d), i.e. it is a GL(d)-subrepresentation of repQ(d). SinceON is a regular

variety, the tangent spaceTON ,0 is the tangent cone ofON at 0 (see [7, III. 4]), and
the latter is contained in the tangent cone ofNQ(d) at 0. Therefore

(3.1) TON ,0 � NQ(d).

Lemma 3.1. Let W = (W�) be a tangent vector inTON ,0. Then W
 = 0 for any
loop 
 2 Q1.

Proof. Suppose that the nilpotent matrixW
 2 M(d j ) is non-zero for some loop
 : j ! j in Q1. Then there are two linearly independent vectorsv1, v2 2 kd j such
that W
 � v1 = v2 and W
 � v2 = 0. We chooseg = (gi ) in GL(d) such thatg j � v1 = v2

and g j � v2 = v1. ThenU = W + g �W belongs toTON ,0. Observe thatU
 � v1 = v2 and
U
 � v2 = v1. Hence the representationU is not nilpotent, contrary to (3.1).

Let Vi = kdi and Ri , j be the vector space of formal linear combinations of arrows� 2 Q1 with s(�) = i and t(�) = j , for any i , j 2 Q0. We shall identify:

repQ(d) =
M

i , j2Q0

Homk(Ri , j , Homk(Vi , Vj )) and GL(d) =
M
i2Q0

GL(Vi ).

Applying Lemma 3.1 we get

TON ,0 � M
i , j2Q0

i 6= j

Homk(Ri , j , Homk(Vi , Vj )).
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Since the GL(d)-representations Homk(Vi , Vj ), i 6= j , are simple and pairwise non-
isomorphic, we have

TON ,0 =
M

i , j2Q0
i 6= j

f' : Ri , j ! Homk(Vi , Vj ) j '(Ui , j ) = 0g

for some subspacesUi , j of Ri , j , i 6= j .
The spacesUi , j are not necessarily spanned by arrows�: i ! j in Q1, and we are go-

ing to replaceN by a “better” representation in repQ(d). The groupeG =
L

i , j2Q0
GL(Ri , j )

can be identified naturally with a subgroup of automorphismsof the path algebrakQ
which change linearly the paths of length 1 but do not change the paths of length 0.
Let eg = (egi , j ) be an element ofeG. Theneg ? (RQ)p = (RQ)p for any positive integer
p, where? denotes the action ofeG on kQ. For a representationW of Q presented in
the form

W = (Wi , Wi , j : Ri , j ! Homk(Wi , Wj ))i , j2Q0,

we define the representation

eg ?W = (Wi , Wi , j Æ (egi , j )
�1)i , j2Q0.

HenceeG acts regularly on repQ(d) and this action commutes with the GL(d)-action.

Therefore the orbit closureOeg?N =eg ?ON is a regular variety,TOeg?N ,0 =eg ? TON ,0 and
the ideal Ann(eg ? N) =eg ? Ann(N) is admissible as

(RQ)r =eg ? (RQ)r �eg ? Ann(N) �eg ? (RQ)2 = (RQ)2.

Hence, replacingN by eg ? N for an appropriateeg, we may assume that the spaces
Ui , j , i 6= j , are spanned by arrows inQ1. Consequently,

(3.2) TON ,0 = repQ0(d) � repQ(d)

for some subquiverQ0 of Q such thatQ0
0 = Q0 and Q0

1 has no loops.

Lemma 3.2. The quiver Q0 has no oriented cycles.

Proof. Suppose there is an oriented cycle! in Q0. Let W = (W�) be a tangent
vector in TON ,0 = repQ0(d) such that eachW�, � 2 (Q0)1, is the matrix whose (1, 1)-
entry is 1, while the other entries are 0. Then the matrixW! has the same form,
contrary to (3.1).

Let W = (Wi , W�) be a representation ofQ. We denote by rad(W) the radical
of W. In caseW is nilpotent, rad(W) =

P�2Q1
Im(W�). We write hwi for the sub-

representation ofW generated by a vectorw 2Li2Q0
Wi .
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Lemma 3.3. Let � : i ! j be an arrow in Q1 such that N�(v) does not belong
to rad2hvi for somev 2 Vi . Then� 2 Q0

1.

Proof. Let d =
P

i2Q0
di and c = dimkhvi. Then dimk radhvi = c � 1 and d �

c � 2. Since N�(v) does not belong to rad(radhvi), there is a codimension one sub-
representationW of radhvi which does not containN�(v). We choose a basisf�1, : : : , �dg
of the vector space

L
i2Q0

Vi such that:
• the vector�b belongs toVib for some vertexib 2 Q0, for any b � d;
• the vectors�1, : : : , �b span a subrepresentation, sayN(b), of N for any b � d;
• N(c� 2) = W, �c�1 = N�(v), N(c� 1) = radhvi, �c = v and N(c) = hvi.
In fact, 0 = N(0) � N(1) � N(2) � � � � � N(d) = N is a composition series ofN. In
particular, N�(�b) belongs toN(b�1), for anyb� d and any arrow� : ib ! j in Q1.
We take a decreasing sequence of integers

p1 > p2 > � � � > pd

and define a group homomorphism': k� ! GL(d) =
L

i2Q0
GL(Vi ) such that'(t)(�b) =

t pb � �b for any b � d. Observe that

N� (�b) =
X
i<b

�i � �i , �i 2 k, implies ('(t) � N)� (�b) =
X
i<b

t pi�pb�i � �i

for any b� d and any arrow�: ib ! j in Q1. This leads to a regular map : k!ON

such that (t) = '(t) � N for t 6= 0 and (0) = 0.
Assume now thatpc�1 � pc = 1. Applying the induced linear mapT ,0 : Tk,0 !

TON ,0 and using the fact thatN�(�c) = �c�1, we obtain a tangent vectorW = (W�) 2
TON ,0 such thatW�(�c) = �c�1 6= 0. Thus� 2 Q0

1.

Lemma 3.4. For any arrow�: i ! j in Q1, there exists a path! in Q0 of posi-
tive length such that s(!) = i and t(!) = j .

Proof. Since Ann(N) is an admissible ideal inkQ, there is a vectorv 2 Vi such
that N�(v) 6= 0. Let ! = �m � � � �2�1 be a longest path fromi to j with N!(v) 6= 0.
Hence N�(v) = 0 for any � 2 � j � (RQ)m+1 � �i . We show that the path! satisfies the
claim. Let v0 = v and vl = N�l (vl�1) for l = 1, : : : , m. According to Lemma 3.3, it
is enough to show thatvl 62 rad2hvl�1i for any 1� l � m. Indeed, if vl 2 rad2hvl�1i
for some l , then vm 2 radm+1hv0i, or equivalently, N!(v) = N�(v) for some� 2 � j �
(RQ)m+1 � �i , a contradiction.

Combining Lemmas 3.2 and 3.4, we get

Corollary 3.5. The quiver Q does not contain oriented cycles.
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4. Gradings of polynomials on repQ(d)

Let � : repQ(d) ! repQ0(d) denote the obvious GL(d)-equivariant linear projection
and let N 0 = �(N). Then�(ON) = ON 0 and we get a dominant morphism

� = � jON
: ON ! ON 0 .

Lemma 4.1. ON 0 = repQ0 (d).

Proof. Since Ker(�)\TON ,0 = f0g, the morphism� is étale at 0. This implies that

the varietyON 0 is regular at�(0) = 0 (see [7, III. 5] for basic information about étale
morphisms). Since it is contained in repQ0(d), it suffices to show thatTON0 ,0 = repQ0 (d).
The latter can be concluded from the induced linear mapT�,0: TON ,0 ! TON0 ,0, which
is the restriction ofT� ,0 = � .

Let R = k[X�, p,q]�2Q1, p�dt(�),q�ds(�) denote the algebra of polynomial functions on
the vector space repQ(d) and m = (X�, p,q) be the maximal ideal inR generated by
variables. Here,X�, p,q maps a representationW = (W�) to the (p, q)-entry of the
matrix W� . Using � , the polynomial functions on repQ0 (d) form the subalgebraR0 =
k[X�, p,q]�2Q0

1, p�dt(�),q�ds(�) of R. By Lemma 4.1,

(4.1) I (ON) \ R0 = f0g,
where I (ON) stands for the ideal of the setON in R.

Let X� denote thedt(�) � ds(�)-matrix whose (p, q)-entry is the variableX�, p,q,
for any arrow� in Q1. We define thed j � di -matrix X� for � 2 " j � kQ � "i , with
coefficients inR, in a similar way as for representations ofQ.

The action of GL(d) on repQ(d) induces an action on the algebraR by (g � f )(W) =

f (g�1 � W) for g 2 GL(d), f 2 R and W 2 repQ(d). We choose a standard maximal
torus T in GL(d) consisting ofg = (gi ), where allgi 2 GL(di ) are diagonal matrices.
Let eQ0 denote the set of pairs (i , p) with i 2 Q0 and 1� p � di . Then the action of
T on R leads to aZeQ0-grading onR with

(4.2) deg(X�, p,q) = es(�),q � et(�), p,

where fei , pg(i , p)2eQ0
is the standard basis ofZeQ0.

Proposition 4.2. Q0 = Q.

Proof. Suppose the contrary, which means there is an arrow� in Q1 nQ0
1. Since

the quiver Q has no oriented cycles, we can choose� minimal in the sense that any
path! in Q of length greater than 1 withs(!) = s(�) and t(!) = t(�) is in fact a path
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in Q0. We conclude from (3.2) thatX�,u,v 2 m2 + I (ON) for u � dt(�) and v � ds(�).

Since the polynomialsX�,u,v as well as the idealsm2 and I (ON) are homogeneous
with respect to the above grading, there are homogeneous polynomials f�,u,v in the
ideal m2 such that

X�,u,v � f�,u,v 2 I (ON) and deg(f�,u,v) = es(�),v � et(�),u.

Let
Q

l�n X�l , pl ,ql be a monomial inR of degreees(�),v � et(�),u. Then

#f1� l � n j s(�l ) = i , ql = r g � #f1� l � n j t(�l ) = i , pl = r g
=

8<
:

1 (i , r ) = (s(�), v),�1 (i , r ) = (t(�), u),
0 otherwise.

Thus by (4.2), up to a permutation of the above variables, we get that! = �m � � ��1 is
a path inQ for somem� n such that (s(�1), q1) = (s(�), v), (t(�m), pm) = (t(�), u) and
ql = pl�1 for l = 2, : : : , m. Consequently, deg(X�m+1, pm+1,qm+1 � � � � � X�n, pn,qn) = 0. Since
Q has no oriented cycles, the only monomial inR with degree zero is the constant
function 1. Hencem = n and the homogenous polynomialf�,u,v is the following linear
combination:

f�,u,v =
X �(u, �m, pm�1, �m�1, : : : , p1, �1, v)

� X�m,u, pm�1 � X�m�1, pm�1, pm�2 � � � � � X�2, p2, p1 � X�1, p1,v,
where the sum runs over all paths! = �m � � � �1 in Q with s(!) = s(�), t(!) = t(�)
and positive integerspl � dt(�l ) for l = 1, : : : , m� 1. Since f�,u,v belongs to the ideal
m2, we may assume thatm � 2. Then the arrows�1, : : : , �m belong to Q0

1, by the
minimality of �. In particular, f�,u,v belongs toR0.

We claim that the scalars�(u, �m, pm�1, �m�1, : : : , p1, �1, v) do not depend on the
integersu, pm�1, : : : , p1 and v. Indeed, takeu0 � dt(�), v0 � ds(�) and p0l � dt(�l ) for
l = 1, : : : , m� 1. We chooseg = (gi ) in GL(d) with eachgi being the permutation
matrix associated to a specific permutation�i 2 Sdi . Then the multiplication byg in
the algebraR permutes the monomials inR. We assume that

�s(�)(v) = v0, �s(�)(v0) = v, �t(�)(u) = u0, �t(�)(u
0) = u,

�t(�l )(pl ) = p0l and �t(�l )(p0l ) = pl , for l = 1, : : : , m� 1.

Since g � X�,u0,v0 = X�,u,v, the polynomial

f�,u,v � g � f�,u0,v0 = g � (X�,u0,v0 � f�,u0,v0)� (X�,u,v � f�,u,v)
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belongs to the idealI (ON), as the latter is GL(d)-invariant. Thus f�,u,v = g � f�,u0,v0 ,
by (4.1). Hence the claim follows from the fact that the monomial

X�m,u, pm�1 � X�m�1, pm�1, pm�2 � � � � � X�2, p2, p1 � X�1, p1,v
appears ing � f�,u0,v0 with coefficient�(u0, �m, p0m�1, �m�1, : : : , p01, �1, v0).

Let 4 denote the set of all paths� in Q0 of length greater than 1 withs(� ) = s(�)
and t(� ) = t(�). Then there are scalars�(� ), � 2 4, such that

f�,u,v =
X

�=�m:::�124 �(� ) � X
p1�dt(�1)

� � � X
pm�1�dt(�m�1)

X�m,u, pm�1 � � � � � X�1, p1,v
for any u � dt(�) and v � ds(�). This equality means thatf�,u,v is the (u, v)-entry of
the matrix X� , where� =

P�24 �(� ) � � 2 kQ0. Consequently, the entries of the matrix

X��� belong to the idealI (ON). This implies that� � � belongs to Ann(N). Since� � � does not belong to (RQ)2, the ideal Ann(N) is not admissible, a contradiction.

Combining Lemma 4.1 and Proposition 4.2 we get

(4.3) ON = repQ(d).

Hence the following lemma finishes the proof of Theorem 2.1.

Lemma 4.3. Ann(N) = f0g.
Proof. Suppose the contrary, that there is a non-zero element � in " j �Ann(N) � "i

for some verticesi and j . Observe that the set of representationsW = (W�) in repQ(d)
such thatW� = 0 is closed and GL(d)-invariant. HenceW� = 0 for any representation
W = (W�) in repQ(d), by (4.3). Of course,� is a linear combination of paths inQ
of length greater than 1 withs(!) = i and t(!) = j . Let !0 be a path appearing in� with coefficient� 6= 0. We choose a representationW = (W�) in repQ(d) such that
W� is the matrix whose (1, 1)-entry is 1 and the other entries are0 if the arrow �
appears in the path!0, and W� = 0 otherwise. Then the (1, 1)-entry ofW� equals�,
a contradiction.
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