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Abstract

Let A be a finitely generated associative algebra over an algetbisaiclosed
field. We characterize the finite dimensional modules a&ewhose orbit closures
are regular varieties.

1. Introduction and the main result

Throughout the papek denotes a fixed algebraically closed field. By an algebra
we mean an associative finitely generatedlgebra with identity, and by a module a
finite dimensional left module. Letl be a positive integer and denote B{(d) the
algebra ofd x d-matrices with coefficients itk. For an algebraA the set mogd(d) of
the A-module structures on the vector spacehas a natural structure of an affine va-
riety. Indeed, ifA>~Kk(Xy,..., X;)/J fort > 0 and a two-sided ideal, then mod,(d)
can be identified with the closed subset bi(l))! given by vanishing of the entries of
all matricesp(X4, ..., X¢) for p € J. Moreover, the general linear group Gl)(acts
on mody(d) by conjugation and the GHj-orbits in mod\(d) correspond bijectively
to the isomorphism classes dfdimensionalA-modules. We shall denote @), the
GL(d)-orbit in moda(d) corresponding to (the isomorphism class offl-@imensional
A-module M. It is an interesting task to study geometric propertieshef Zariski clo-
sure Oy of Oy. We note that using a geometric equivalence described intf$
is closely related to a similar problem for representatiohgjuivers. We refer to [2],
[31, [4], [5], [6], [9], [10], [11], [12], [13] and [14] for results concerning geometric
properties of orbit closures in module varieties or vaggtof representations.

The main result of the paper concerns the global regulafitguch varieties. Let
Ann(M) denote the annihilator of a moduld. It is the kernel of the algebra homo-
morphism A — End((M) induced by the modulevl, and therefore the algebrd =
A/Ann(M) is finite dimensional. Obviously can be considered as Brmodule.

Theorem 1.1. Let M be an A-module and let B A/Ann(M). Then the or-
bit closure Oy is a regular variety if and only if the algebra B is hereditagnd
Exty(M, M) =0.
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Let d = dimg M. Observe that mag{d) is a closed GLd)-subvariety of mog(d)
containingOy. Moreover, M is faithful as aB-module. Hence we may reformulate
Theorem 1.1 as follows:

Theorem 1.2. Let M be a faithful module over a finite dimensional algebra B
Then the orbit closur@y, is a regular variety if and only if the algebra B is heredi-
tary and Exts(M, M) = 0.

The next section contains a reduction of the proof of Theotento Theorem 2.1
presented in terms of properties of regular orbit closucesrdépresentations of quivers.
Sections 3 and 4 are devoted to the proof of Theorem 2.1. Fsic lackground on
the representation theory of algebras and quivers we ref§t]t

2. Representations of quivers

Let Q = (Qo, Q1;s,t: Q1 — Q) be a finite quiver, i.e.Qq is a finite set of
vertices, andQ; is a finite set of arrowsr: s(x) — t(«). By a representation o€
we mean a collectio’V = (V;, V,) of finite dimensionalk-vector spaced/, i € Qo,
together with linear map¥/, : Vs) = Vi), @ € Q1. The dimension vector of the
representatiorV is the vector

dim V = (dim, Vi) € N,
By a path of lengthm > 1 in Q we mean a sequence of arrows @:
W = 0mim—1 * - - 0207,

such thats(qj+1) =t(e) for I =1,..., m— 1. In the above situation we writg(w) =
s(a1) andt(w) = t(am). We agree to associate to each Qg a pathe; in Q of length
zero with s(gj) =t(ej) =i. The paths ofQ form a k-linear basis of the path algebra
kQ. We define

V, = Vam o VO,Wl 0:++-0 VO[2 o Vall Vs(w) — Vt((u)
for a pathw = am - - - @1 and extend easily this definition t4,: V; — V; for any p in
ej -kQ- &, wherei, j € Qo, asp is ak-linear combination of paths® with s(w) =i
andt(w) = j. Finally, we set

Ann(V) = {p € KQ| Ve =0 for all'i, j € Qo},

which is a two-sided ideal ik Q. In fact, it is the annihilator of th&Q-module in-
duced byV with underlyingk-vector spaced; q, Vi-
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Letd = (di)icq, € N pe a dimension vector. Then the representatidrs(V;, V,)
of Q with Vi =k%, i € Qp, form a vector space

repo(d) = @ Hom(Ve@), Vi) = @D M(dh) x dse)),

aeQy aeQ

whereM(d’ xd”) stands for the space of x d”-matrices with coefficients ik. For ab-
breviation, we denote the representations iny(ep by V = (V). The group GL§) =
Dico, GL(d) acts regularly on reg(d) via

(gi)ier * (Va)otte = (gt(ot) . Va . gs_(i-))ate-

Given a representatiowV = (W, W,) of Q with dim W =d, we denote byOy the
GL(d)-orbit in repy(d) of representations isomorphic W.

Let M be a faithful module over a finite dimensional algela It is well known
that the algebraB is Morita-equivalent to the quotient algebkdd/l, where Q is a
finite quiver andl an admissible ideal ikQ, i.e. | is a two-sided ideal such that
(Rq)' € |1 C (Rg)? for some positive integer, where Rq denotes the two-sided
ideal of kQ generated by the paths of length one (arrows)@n Furthermore, the
algebra B is hereditary if and only ifl = {0} (in particular, the quiverQ has no
oriented cycles, i.e. pathe of positive lengths withs(w) = t(w)). According to the
above equivalence, the faithfl-module M corresponds to a representatibh= (N,)
in repg(d) for somed, such that Annll) = 1. Applying the geometric version of the
Morita equivalence described by Bongartz in [4] is isomorphic to an associated
fibre bundle GL@) xC“@ Oy. In particular, Oy is regular if and only ifOy is. By
the Artin-Voigt formula (see [8]):

COdimepQ(d) Oy = dimg EXt%?(N, N),

the vanishing of E%(N, N) means thaOy = repg(d). Consequently, one implication
in Theorem 1.2 is proved and it suffices to show the followiagtf

Theorem 2.1. Let N be a representation irepy(d) such thatAnn(N) is an ad-
missible ideal in kQ andDy is a regular variety Then Ann(N) = {0} and Oy =

repg(d).
3. Tangent spaces of orbit closures and nilpotent represeations

From now on,N is a representation in regjgd) such that Annil) is an admissible
ideal in kQ and Oy is a regular variety. The aim of the section is to prove that th
quiver Q has no oriented cycles.

Let §j]1=(H]li. Sjl«) stand for the simple representation @fsuch that§[j]; =
k is the only non-zero vector space and all linear m8pg, are zero, for any vertex
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j € Qo. Observe that the point 0 in rgfd) is the semisimple representati@ierS[i]d'.
A representationW = (Wi, W,) of Q is said to be nilpotent if one of the following
equivalent conditions is satisfied:
(1) The endomorphisnW,, € End((Ws,)) is nilpotent for any oriented cycle in Q.
(2) The ideal Ann{V) contains Rq)" for some positive integer.
(3) Any composition factor ofV is isomorphic to someji], i € Qo.
(4) The orbit closureDy in repo(dim W) contains 0.
Obviously the representatioN is nilpotent. Thus the set/o(d) of nilpotent represen-
tations in rep,(d) is a closed GLdg)-invariant subset which contair@y. Furthermore,
Ng(d) is a cone, i.e. it is invariant under multiplication by swal in the vector space
repg(d).

We shall identify the tangent spac®ep, ()0 Of repg(d) at 0 with repy(d) itself.
Thus the tangent spacgs, , is a subspace of regfd) and is invariant under the ac-

tion of GL(d), i.e. it is a GL@)-subrepresentation of rggd). Since Oy is a regular

variety, the tangent spack;, , is the tangent cone oby at 0 (see [7, llI. 4]), and
the latter is contained in the tangent coneAd$(d) at 0. Therefore

(3.1) 0 S No(d).

Lemma 3.1. Let W= (W,) be a tangent vector i3, . Then W =0 for any
loop y € Q.

Proof. Suppose that the nilpotent mathi¥, € M(d;) is non-zero for some loop
y:j — j in Q. Then there are two linearly independent vectorsv, € k% such
that W, - v; = v, and W, - v, = 0. We choose = (g;) in GL(d) such thatg; - vy = v
andgj -v2 =v1. ThenU =W +g=xW belongs tOTéN,o- Observe that, - v1 = v and
U, - v2 = v1. Hence the representatidth is not nilpotent, contrary to (3.1). ]

Let Vi =k% and R ; be the vector space of formal linear combinations of arrows
a € Q1 with s(o) =i andt(x) = j, for anyi, j € Qo. We shall identify:

repp(d) = € Hom(R, j, Hom(Vi, Vj)) and  GLE) = P GL(W).
i,jeQo i€Qo
Applying Lemma 3.1 we get
To,0S P Hom(Rj, Hom(\, V).

i,jeQo
iZ]
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Since the GLg)-representations HogVi, Vj), i # j, are simple and pairwise non-
isomorphic, we have

To,0= €P fo: Rj = Hom(M, V)) | ¢(U; ) = 0}
i,j€Qo
7]
for some subspacdd; j of R j, i 7 ].

The spaceb); j are not necessarily spanned by arrews — j in Q4, and we are go-
ing to replaceN by a “better” representation in rgfd). The groupCN-} = @i’jer GL(R,))
can be identified naturally with a subgroup of automorphishshe path algebr& Q
which change linearly the paths of length 1 but do not chahgepiaths of length O.
Let § = (Gi,;) be an element ofs. Theng (Rq)P = (Rg)P for any positive integer
p, wherex denotes the action dB onkQ. For a representatioV of Q presented in
the form

W=W, W ;: R j — Hom(W, Wj))i jeqo
we define the representation
G W = (W, Wi jo(@) i jeq

Hence G acts regularly on rep(d) and this action commutes with the Gi)taction.
Therefore the orbit closur®g.n =G+ Oy is a regular varietyTs o =8+ 75, o and
the ideal Ann§j« N) =G Ann(N) is admissible as

(RQ)" =G *(Rq)" € F*Ann(N) € §x (Ro)* = (Rq)*.

Hence, replacingN by g« N for an appropriatej, we may assume that the spaces
Uij, i #j, are spanned by arrows iQ:. Consequently,

3.2) T5,.0 = 'epy(d) < repg(d)

for some subquiveQ’ of Q such thatQy = Qg and Q) has no loops.
Lemma 3.2. The quiver Q has no oriented cycles

Proof. Suppose there is an oriented cyelen Q'. Let W = (W,) be a tangent
vector in 75, o = repy(d) such that eactW,, o € (Q')1, is the matrix whose (1, 1)-
entry is 1, while the other entries are 0. Then the matiy has the same form,
contrary to (3.1). ]

Let W = (Wi, W,) be a representation o). We denote by rady{/) the radical
of W. In caseW is nilpotent, rad{V) = Zweql Im(W,). We write (w) for the sub-
representation ofNV generated by a vectap € @ieoo W,.
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Lemma 3.3. Leta:i — j be an arrow in Q such that N(v) does not belong
to rac®(v) for somev € Vi. Thena € Q.

Proof. Letd = Zier di and c = dimc(v). Then dimgradiv) =c — 1 andd >
c > 2. SinceN,(v) does not belong to rad(rag), there is a codimension one sub-
representatiolV of rad(v) which does not contaihl, (v). We choose a basigs, . . ., €4}
of the vector spac@ier V; such that:
e the vectore, belongs toV;, for some vertexy € Qo, for any b < d;
e the vectorsey, ..., €y Span a subrepresentation, siyb), of N for any b < d;
e N(c—2)=W, €1 =N,(v), N(c—1)=radv), e =v and N(c) = (v).
In fact, 0 =N(0) € N(1) c N(2) € --- € N(d) = N is a composition series dfl. In
particular, Ng(ep) belongs toN(b—1), for anyb < d and any arrows: i, — j in Q.
We take a decreasing sequence of integers

Pr>pP2>--->pPd

and define a group homomorphigm k* — GL(d) = P; o, GL(Vi) such thatp(t)(ep) =
tPe . ¢, for any b < d. Observe that

Niew) =Y ai-ei, A ek, implies @)« N)slen) = > tP~Ph -
i<b i<b

for anyb < d and any arrows: i, — j in Q4. This leads to a regular map: k — Oy
such thaty (t) = ¢(t) * N for t # 0 and(0) = 0.

Assume now thatp._; — pc = 1. Applying the induced linear mafy o: 7,0 —
T5,.0 and using the fact thaN,(ec) = €c—1, we obtain a tangent vectol = (W,) €
T5,.0 Such thatw, () = ec-1 # 0. Thusa € Q. O

Lemma 3.4. For any arrowa: i — j in Qy, there exists a patl in Q" of posi-
tive length such that(®) =i and t(w) = j.

Proof. Since Annli{l) is an admissible ideal ikQ, there is a vectow € V; such
that N,(v) # 0. Letw = o --- @201 be a longest path from to j with N,(v) # 0.
HenceN,(v) =0 for any p € €j - (RqQ)™?! - ¢. We show that the path satisfies the
claim. Letvg=v andvy = Ny (v_1) for | =1,..., m. According to Lemma 3.3, it
is enough to show that, & racf(v_1) for any 1< < m. Indeed, ifv e rac(y_1)
for somel, then vy, € rad™(vg), or equivalently, N, (v) = N,(v) for somep € ¢ -
(Rq)™*. ¢, a contradiction. O

Combining Lemmas 3.2 and 3.4, we get

Corollary 3.5. The quiver Q does not contain oriented cycles
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4. Gradings of polynomials on reg,(d)

Let w: repg(d) — repy(d) denote the obvious GHf-equivariant linear projection
and letN’ =z (N). Thennz(Oy) = On and we get a dominant morphism

Lemma 4.1. O = repy(d).

Proof. Since Kerf)N75, o= {0}, the morphisny is étale at 0. This implies that
the varietyOy; is regular aty(0) = 0 (see [7, Ill. 5] for basic information about étale
morphisms). Since it is contained in ggfd), it suffices to show thafs , o = repy (d).
The latter can be concluded from the induced linear g 75, o — 75, 0, Which
is the restriction ofZ, o = x. O

Let R = K[ X4, p.qlecqs, p<d).q<dy, dENOte the algebra of polynomial functions on
the vector space rggd) and m = (X,,pq) be the maximal ideal inRR generated by
variables. Here, Xz ,q maps a representatiow = (W,) to the (o, g)-entry of the
matrix Wg. Using r, the polynomial functions on rep(d) form the subalgebr&’ =
K[ X, p.alacQ), p<di q<dsy Of R By Lemma 4.1,

(4.1) 1(On)NR = {0},

where | (Oy) stands for the ideal of the sy in R.

Let X, denote thed;) x dsu)-matrix whose f, g)-entry is the variableXy, p g,
for any arrowa in Q;. We define thed; x di-matrix X, for p € ¢j - KQ - &, with
coefficients inR, in a similar way as for representations Qf

The action of GL{) on rep,(d) induces an action on the algebiRaby (g * f)(W) =
f(gt*W) for ge GL(d), f e RandW e repg(d). We choose a standard maximal
torus T in GL(d) consisting ofg = (g;), where allg, € GL(d;) are diagonal matrices.
Let (NQO denote the set of pairs,(p) with i € Qo and 1< p <d,. Then the action of
T on R leads to aZ‘Nl’O-grading onR with

(4.2) degie,p,a) = Es().q — €(),p:
where{e p}i ped, IS the standard basis viioll
Proposition 4.2. Q' =Q.
Proof. Suppose the contrary, which means there is an gfrinvQ; \ Q;. Since

the quiverQ has no oriented cycles, we can chogiseninimal in the sense that any
pathw in Q of length greater than 1 with(w) = s(8) andt(w) =t(B) is in fact a path
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in Q. We conclude from (3.2) thaXg,,,, € m? + | (On) for u < dys and v < dgg).
Since the polynomialsXs ., as well as the idealsa? and | (Oy) are homogeneous
with respect to the above grading, there are homogeneoysigulals fg ., in the
ideal m? such that

Xpuw — fpuv € 1(On) and  degfsu.) = €sp),0 — &p),u-
Let [T <, Xu.p.q b€ @ monomial inR of degreees), — &g),u. Then

#Hl<l<n|s(m)=i,g=r}—#l<l<n|t(w)=i, p=r}

1 G,r)=(s(B), v),
=1-1 @,r)=(t(B) v,

0 otherwise.

Thus by (4.2), up to a permutation of the above variables, etetltatw = o - - -1 is

a path inQ for somem < n such that §(«1), g1) = (s(8), v), (t(@m), pm) = (t(8),u) and

g =p-1forl=2,...,m Consequently, deXl,....pms.ms - """ ° Xan, pngn) = 0. Since
Q has no oriented cycles, the only monomial Rhwith degree zero is the constant
function 1. Hencem=n and the homogenous polynomié} , , is the following linear
combination:

fﬂ,u,v = Z )"(uy Um; pm—11 OUm—1y -+« p11 o1, U)

' Xam,u,pm,l ' Xam—lv Pm-1,Pm-2 " " """ Xavaval : Xalypi,vv

where the sum runs over all paths= oy, - -- @1 in Q with s(w) = s(B), t(w) =t(B)
and positive integerg < dy,) forl =1,..., m—1. Since fg,,, belongs to the ideal
m?, we may assume thah > 2. Then the arrowss, ..., oy belong toQ), by the
minimality of 8. In particular, fz,, belongs toR'.

We claim that the scalars(u, om, Pm-1, @m-1, - . ., P1, @1, v) do not depend on the
integersu, Pm-1, ..., p1 andv. Indeed, takeu' < dyg), v' < dsp) and p < dy, for
I=1,...,m—1. We choosegg = (g) in GL(d) with eachg; being the permutation
matrix associated to a specific permutatiane S;. Then the multiplication byg in
the algebraR permutes the monomials iR. We assume that

crs(ﬁ)(v) = U/, crs(/;)(v’) =, O't(/;)(u) = U/, O’t('g)(u/) =u,
oie)(P) =P and oy () =p, for 1=1,...,m—1

Since g * Xg,u,» = Xg,u,v, the polynomial

fﬁ,u,v —gx* f/\‘i,u’,v’ =0=x* (Xﬁ,u’,v’ - fﬂ,u’,v’) - (Xﬂ,u,v - fﬂ,u,v)
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belongs to the ideal (Oy), as the latter is Gld)-invariant. Thusfgu, =9 x* fgu,v,
by (4.1). Hence the claim follows from the fact that the moram
Xamxuxpm—l : Xam—lxpm—lvpm—z .... Xaprprl ! XUllrpLU
appears ing = fg . with coefficientA(U’, om, pr_q, ¢m-1, ..., P}, @1, V).
Let E denote the set of all pathisin Q" of length greater than 1 with(¢) = s(8)
andt(§) =t(B). Then there are scalaig§), & € E, such that

fguw = Z A(E) - Z Z Xamtpms - - Xy, prv

E=am..01€E P1=0h(ey) Pm—1=<0t(e,_1)

for any u < dygy and v < dgg). This equality means thatg , , is the (i, v)-entry of
the matrix X,, wherep =3 . - A(£)-£ € kQ. Consequently, the entries of the matrix
Xp—, belong to the ideal (Oy). This implies thatg — p belongs to Annkl). Since

B — p does not belong toR)?, the ideal Annl) is not admissible, a contradiction.
]

Combining Lemma 4.1 and Proposition 4.2 we get

(4.3) On = repy(d).

Hence the following lemma finishes the proof of Theorem 2.1.
Lemma 4.3. Ann(N) = {0}.

Proof. Suppose the contrary, that there is a non-zero eleméne; - Ann(N)- g
for some vertices and j. Observe that the set of representatidis= (W) in repg(d)
such thatW, = 0 is closed and Gld)-invariant. HenceW, = 0 for any representation
W = (W,) in repy(d), by (4.3). Of coursep is a linear combination of paths i@
of length greater than 1 witls(w) =i andt(w) = j. Let wp be a path appearing in
p with coefficienti # 0. We choose a representatigvi = (W,) in repy(d) such that
W, is the matrix whose (1, 1)-entry is 1 and the other entries (atié the arrow o
appears in the patlg, and W, = 0 otherwise. Then the (1, 1)-entry ¥, equalsa,

a contradiction. ]
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