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Abstract
In this paper, we prove the following. L€R, m) be ad-dimensional Cohen-
Macaulay local ring with multiplicitye and embedding dimension = e + d — Kk,
wherek > 3 ande—k > 1. If A(m3/Jm?) =1 andm® € Jm, whereJ is a minimal
reduction ofm, then3 <s <t +k — 1, wheres is the degree of thé&-polynomial
of R andr is the Cohen-Macaulay type d}.

1. Introduction

Let (R, m) be ad-dimensional Noetherian local ring of multiplicity. The Hilbert
function of R is by definition the Hilbert function of the associated gihding of R:

G =P m"/m",

n>0

Hg(n) = di mR/mm”/mn+1.

The Hilbert series ofR is the power eries

Pr(z) = > Hr(n)z".

n>0

It is known that there is a polynomidl(z) € Z[z] such thatPg(z) = h(z)/(1 — 2)¢ and
h(1) =e. This polynomialh(z) = hg+hyz+-.-+hgz® is called theh-polynomial of R.

Let (R, m) be ad-dimensional Cohen-Macaulay local ring with embedding dime
sionv =e+d —k, wherek > 3. Let J be a minimal reduction ofn. Let r be the
Cohen-Macaulay type oR, h=v —d and v; = A(m'*1/Jm!) for everyi; then there
are at least two possible Hilbert series Rf J: Pg/3(2) =1 +hz+Z2+ ... + Z“ and
Pr/3(2) =1+hz+ (k- 1)z2. In the first caseR is stretched (cf. definition below) and
we havemk ¢ Jm; in the second case, following [3], we say thatis short and we
havem® € Jm andv; =k — 1.
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Let (R, m) be ad-dimensional local Cohen-Macaulay ring of multiplicity and
embedding dimension. If d =0, thenR is calledstretchedif e—v is the least integer
i such thatm'*' = 0. If d > 0, thenR is stretchedif there is a minimal reductior)
of m such thatR/J is stretched (cf. [6]), or equivalently,mf + J)/J is principal.
Regular local rings are not stretched since fields are netctted. However, for any
d-dimensional local Cohen-Macaulay ringr,(m) having infinite residue field, iv =
etd—1withe>1orv=e+d—2 with e > 2, thenR is stretched. Moreover, if
v=e+d — 3 and R is Gorenstein, therR is stretched. These stretched rings have
been studied in [6], [7] and [8]. In [4], Rossi and Valla exded the notiorstretched
There they defined, for each-primary ideall, | is stretchedif there is a minimal
reductionJ of | such thatl?2nJ =1J andA(12/(J1 +13)) =1.

In [6], Sally studied the structure of stretched local Gatem rings, and use it
to show in [8] that if R, m) is a d-dimensional Gorenstein local ring with embedding
dimensionv = e+d — 3, then the associated graded ringR®fs Cohen-Macaulay. This
result has been generalized by Rossi and Valla in [3] asvisllo

Theorem 1.1 ([3, Theorem 2.6]). If (R, m) is a d-dimensional Cohen-Macaulay
local ring of multiplicity e= h + 3 and A(m%/Jm?) = 1, then s< t + 2, where s is the
degree of the h-polynomial of.R

In [4], Rossi and Valla generalized Theorem 1.1 to stretchegrimary ideals. In this
note, we are able to generalize Theorem 1.1 in a differentneraim Section 4 as
follows. In which, we do not assumR is stretched. In stead, we assume tRais
short andv, = 1.

Theorem 1.2. Let(R,m) be a d-dimensional Cohen-Macaulay local ring of multi-
plicity e = h +k, where k> 3 and e—k > 1. If A(m3/Jm?) =1 and m® C Jm, where
J is a minimal reduction ofm, then3 <s <t +k — 1, where s is the degree of the
h-polynomial of R

In the final section, we provide several examples to answeresguestions raised
by Rossi and Valla in [3].

2. One dimensional local Cohen-Macaulay ring

We state several facts of one dimensional local Cohen-Magatihgs. These re-
sults can be derived easily from [1] and [5].

Lemma 2.1. Let (R, m) be a one dimensional local Cohen-Macaulay tirtgen
Am"/m™) = e — A(m™1/Jm"), where J is any minimal reduction afi.

Lemma 2.2. Let (R, m) be a one dimensional Cohen-Macaulay local ring with
embedding dimensio®. Then @R) is Gorenstein
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Corollary 2.3. Let (R, m) be a d-dimensional Cohen-Macaulay local ring with
embedding dimension €1. Then GR) is Gorenstein

3. Cohen-Macaulay local rings of embedding dimensiore +d — k

Let (R, m) be ad-dimensional Cohen-Macaulay local ring with embedding dime
sionv=e+d —k, wherek > 3 ande— k > 1. Let r be the Cohen-Macaulay type
of R, h=v—d andv; = A(m'*'/Jm') for everyi. Let J be a minimal reduction of
m; then one of the possible Hilbert series Bf J is 1 +hz+ (k — 1)z2. In this case,
m® C Jm andv; =k — 1. If k=3, it is shown in [3, Theorem 2.6] that if, = 1 then
s <t +2, wheres is the degree of thé-polynomial of R. We are able to generalize
this result in this section.

Theorem 3.1. Let(R, m) be a d-dimensional Cohen-Macaulay local ring of multi-
plicity e=h+k, where k> 3 and e—k > 1. If A(m3/Jm?) =1 and m® € Jm, where
J is a minimal reduction ofm, then3 <s < 7 +k — 1, where s is the degree of the
h-polynomial of R

REMARK 3.2. (i) Notice that the assumption, = 1 ensures that the depth of
G is at leatd — 1 (cf. [3]). Therefore to show Theorem 3.1, we need only tostber
the case whemnl = 1.
(i) If d=1, thens is the least integer for which(ms/ms*) =e.
(iii) Notice that A(m?/Jm) = k — 1. Moreover, ifm? = Jm + (U, ..., Uk_1), then
{ug, ..., Uk_1} is part of a generating set of the socle &f

By Remark 3.2, we may assume from now on tHat 1 andv, = 1.

Lemma 3.3. Let r be the reduction number ofi with respect to J If r < 3,
then Theorem 3.1holds

Proof. Ifr < 3, thenm®* = Jm®, so thatA(m3/m?) =g, it follows thats < 3 <
t +k — 1 by the choice os.

O

By Lemma 3.3, we may assume in the sequel that4.

Lemma 3.4. The following hold for R
(i) If m®=Jm?+(ab) for some be mathfracnt and ac m, thenm'*! = Jm' +(a'~b)
for every i> 2.
(i) 1f ym® ¢ Jm? for some ye m, then y* ¢ Jm?. In particular, there is an element
y € m such thatm'*! = Jm' + (y'*1) for every i> 2.

Proof. (i) If m'*!=Jm +(@ 'b) for somei > 2, thenm'*2 = Jm'*1+a' tbm C
Jmitl+a—1m3 = Jmitl + (ai b) C mt2,
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(i) Suppose thatym? ¢ Jm?. Then there arai, v € m such thatuvy ¢ Jm?
andm® = Jm? + (yuv). Therefore,m* = Jm®+ (y?uv). It follows that y°u ¢ Jm? and
m? = Jm? + (y?u). Thus, m* = Jm® + (y3u) and theny® ¢ Jm2. Now, choosey € m
such thatym? ¢ Jm?, thenm'*? = Jm! + (y'*1) for everyi > 2. O

Lemma 3.5. Let J= (x) be a minimal reduction ofn. If there is an element
y € m such thatm'*! = Jmi + (y'*1) for every i > 2, then yx' is a generator of the
module(Jtm' +m'**1) /(I m! -1+ m"**1) whenever2 < | < r, where r is the reduction
number of m with respect to J

Proof. If not, y'x' € J™m/~1 + m'**1 so thaty'x! € x"*'m' 1, it follows that
y" € Jm'~1, a contradiction. Therefore, the conclusion holds. O

Theorem 3.6. Let (R, m) be a one dimensional Cohen-Macaulay local ring
of multiplicity e= h + k, where k> 3 and e— k > 1. Assume that.(m3/Jm?) =
Am?/Im®) =1 and m® € Jm, where J= (x) is a minimal reduction ofm. Then
there is a basis{x, y1, ..., ¥z, 21, ..., Zork} Of m, elements ug, ..., U1 cON-
tained inm and elementgc; |i=1,...,k—1, j=1,..., |} contained in the ideal
(Yo, « ooy Yk, 2, -y Ze_r—k) With Zik;f jilk —i) =e— 1 — k such that J= (x) and
the following hold
(i) m'l=Jm' +(y;™) for every i> 2.

(i) m?=Jm+(y2 y1¥2, ..., Y2Vt YisaUtsd, - - -, Yko1Uk—1), Where t= A((yim+Jm)/Jm).
(i) {y2, yaYz, - - -, Y1¥e, YeeaUtet, - - -y Yke1Uk—1, Yks - - -, Yz} IS @ generating set of the
socle of R

(iv) y1yi €e Jm fori >t+1 and yz € Jm for every i

(v) yim® € Jm?3 for every i> 2 and zm3 < Jm? for every i> 1.

WD) {21+ o Ze—eaid = U ud 20 MG m+dm)/Im) =k—i and m? = Jm+ Y15 20
foreveryi=1,...,k—21and j=1,..., j.

(vii) cjZ0), € IJmifi <iori=i"but j<]j.

i) y3¢ J(za, ..., Zo—r—x) + ImZ

Proof. By Lemma 3.4, there is an elemeyt € m such that (i) hold. Let
t = A((yim + Jm)/Jm); then there arey,, ..., Yk_1, Ut+1, - . ., Uk_1 € m such that
m? = Jm+ (Y2, Y1z, - - - Y2 Yeraltsds - - -, Yie1Uk—1) @and yim + Jm = (y2, yiys, . . .,
yiyt) + Jm. We may assume thay, € Jm? for 2 <i <t by replacingy; by yi +iy;
if necessary, and assume thaty; € Jm for t + 1 < j < k — 1 by replacingy; by
yj +Aiy1+- -+ Ay if necessary. It follows thaym3 = (yiy3) + Jm® = Jm?® for every
i <k — 1. Since the Cohen-Macaulay type & is = and {yZ, yi¥o, ..., Y1\,
Vi+1Ui+1, - - ., Yk—1Uk—1} iS part of a generating set of the socle Rf we may choose
Yis s Yoo 22, -+ y Ze—r—k € m SuUch that{yx, ..., ¥:, 21, ..., Ze_.—x} IS part of a gen-
erating set ofm and {yf, Vive, -+ -y ViV Ye+1Utsds - - - Yee1Uk—1, Yko - - -» Yo IS @ gen-
erating set of the socle oR. If zy; ¢ Jm for somei, then we may replace by



COHEN-MACAULAY LOCAL RINGS 821

Zi +a1yr + - - + oy if necessary and assume that, € Jm for everyi. Therefore
zm® C Jm® +zym? € Jm3. Hence, the basi$x, y1, ..., Ve, Z1, .. ., Ze—r—k} Of m
satisfies (i) to (v) so far.

Claim. For any integer i=1,...,k—1, there is an integer;j a basis{x, y1,. . -,
Ver 22y -+ -y Ze—r—k} Of m and elements{c., | j =1,...,]i} contained in the ideal
(Y2, - - -4 Yk-1, Z1, - - -, Ze_z—k) SUch that not onlyi) to (v) but also the following hold
(@) 2(@ym+ Im)/Im) =k i, m*= Im + 2 a2 Vey).
(b) c.,z € Jm for every | if j < j" and g;z € Jm for every generator of the ideal
generated by Swhere $=1{z1,...,2% - «} — { ) |1<i"<i,1<j<j,1=1<
k—i}.

Note that (vi) and (vii) follows from the Claim.

Proof of the Claim. We proceed by induction onLet z be any generator of the
ideal (1, ..., 2 ¢ k). Sincey,z yiz e Jm for everyi > k, there is an elemernt e
(Y2, o1 Yk-1, 21, - . ., Ze—r—) SUch thatz ¢ Jm. If for any generating sdiz;, ...,z ,_,}
of the ideal ¢1,..., 2. . k) there is no element € (y2, ..., Yk_1,21, ..., Ze k) SUCh
thatm? = (cZ, ..., cZ_,) + Jm, then the Claim holds for = 1. If not, we may as-
sume thatm? = (cllzl, ..., C11Z_1) +Im for somecys € (Yo, - - -, Yke1s 22 - - -+ Zo—r—K)-
Set Zgi =z. Let z be any generator of the ideaik( <y Ze—r—k)- If c112 ¢ Jm, then
there are elements; such thatcy;z — (Z, -1 cllz(' ) € Jm, so that we may replace

Z by Z:‘ 11 zgl if necessary and assume thatz € Jm. If for any generating set

{zi, ..., z,_, ) of the ideal &, ..., Ze—_,—k) there is no element € (y2, ..., Yk-1,
Z1, ..., Ze—r—k) SUCh thatm? = (cz, ..., cz,_,)+Jm, then again the Claim holds for
i =1. If not, we may use the same trick to filgh, C13, ... so that the Claim holds
fori=1.

Suppose now we have shown that the Claim holds for any intégeii for some
i>1. Letm= Z:,zl ji(k =i and § = {zZm+1, - - -, Ze_r—x}. If for any generating set
{Zhw1r -+ -1 Zo_,_i) Of the ideal generated b§ there is no element e (Yo, ..., Yk-1,
21, ..., Ze ) such thatm? = (cZ,,,, . . ., CZyy_;_4) + Jm, then the Claim holds for
i +1. If not, we may assume that for some,l,l € (Y2, ooy Yke1y 22y« + oy Zot—K)s
M2 = (Gi+1 1Zm1s - - -+ Gi+1, 1Zmek—i—1) + Jm. Setz|+1 1= Zm+. As before, we may assume
that G4+ 12 € Jm for every generator of the ideal ¢m—i,. .., Z—.—k). If for any gen-
erating set{z, ., i,....Z .} Of the ideal Zmik—i,. .., Ze—.—k) there is no element e
(Y21 Y1, 24,y - - -1 Ze—r—k) SUCH thatm? = (CZue_is - - -» CZpuak_si_2) +Jm, then again
the Claim holds fori + 1. If not, we may use the same trick to firgy 5, Cit13, - . .
so that the Claim hods far+ 1. The Claim is now fulfilled. O

To finish the proof, assume thaf € J(z1, ..., ze.—«) + Im2. Then there are

& € R not all in m such thaty; — e ksizx € Jm2. Lett be the smallest integer
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for which & is a unit; theny? — i:_f_k Sizx € Jm? Letz=g¢j if z = zi(}) for
somel; thenz - (Zie;t"k 81z)x — zy; € Jm®, so thatz- (Zie:f_k 8z) e m® C Jm
asze (Y2, ..., Yke1, 21, - - ., Ze——k). However,z- ( erky, z) ¢ Jm by the Claim,
a contradiction. Therefore (viii) holds. U

Now, we are ready for:

Proof of Theorem 3.1. From the above, we may assumedhatl, r > 2 and
r > 4, wherer is the reduction number of some minimal reductidrof m. By Theo-
rem 3.6, there is a basix, y1, ..., ¥z, 21, . .., Ze_r_k} Of m, elementSut+1, ..., U 1
contained inm and elementdc; |i =1,...,k—1, j =1,..., jj} contained in the
ideal (2, ..., Yk-1, Z1, - - -+ Ze_¢r_k) With Z!:ll ji(k—i)=e— 17 —k such thatJ = (x)
and the following hold:
() m'l=Jm' +(y;™) for everyi > 2.
(i) m?=Jm+(y2 yiy2,. .., ViV, YestUesd, - - o Yeo1Uk—1), Wheret = A((ysm+Jm)/Jm).
(iii) {yf, ViYo, o« oy Y1Ve Ve+1Ut+1s - - Ye—1Uk—1, Yk, . - -, Yo} IS @ generating set of the
socle of R.
(iv) vayi e Jm for i >t +1 andy,z € Jm for everyi.
(v) ym® € Jm3 for everyi > 2 andzm?® € Jm?® for everyi > 1.
W) (22, - Ze i} = U ud 4} (G m+ Im)/Im) =k—i andm? = IJm+ Y5 2{)c;
foreveryi=1,...,k—1andj=1,..., j.
(vii) 6z, e Imif i <i’ori=i"butj<j"
(i) y3¢ Iz, ..., Zerx) + Im2
If t>h, thens<e—1=h+k—-1<t+k—-1 by [2] and we are done. Therefore,
we may assume that < h. To show thats < t + k — 1, it is enough to show that
A(mT=1/m™*k) = e by Remark 3.2 (ii). Moreover, by Lemma 3.5 ™%, yi*™2x, ...,
y2x™*=3} are generators of the modut&**~1/(J7*2m+m™), therefore to show that
Am™*=1/m™*) = e it is enough to show that

t+k—2 ,t+k—1 T+k—2 r+k72}
1 1

X Z1X vy Zomr—kX

{y1x

is a linearly independent set ixk—2m + m™**)/m™*k,
Suppose not, there arg g, & in R not all in m such that

e—7-k
O{y1XT+k72+ﬂXT+k71+ Z aizixf+k72 c mr+k.
i=1

Then

e—1—k
r,t+k—2 r—1,t+k—1 t+k—2, -1 T+ +k—1
ay;X +BYy; X + E §zXTTy T em ,
i=1
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so thatay;x™*=2 e x™*Im'~1 asy,z € Jm, it follows thate € m by the choice of
r. Thereforex ™1+ Y 7 5z x™* 2 c m™k, If 5 e m for everyi, thenx™*1 ¢
”k , Which is impossible. So, there is an integesuch thats; is a unit. By replacing
z by z + B/8ix, we may assume thg € m. Hence) ;- KsizxTH 2 e m™_ Lett
be the smallest integer for which is a unit; thend "~ K5z xTHK—2 € m7+k,
Leta <7 +k be the integer such thaT*," %5z x"*2 Jrk-ame — grHksl-oga-1,
If Y szx2 € 37 3m3, then Y57 sizx € md = (y3) + Jm? so that
z:x € Jm? by (viii), it follows that Y"*2"75;z € m?, a contradiction. There-
fore, a > 4. Sincem® = (y®) + Jm*! and A(m*/Jm*~1) = 1, there is aunit A,
such that

e—r k5|

e—1—k

Q) Z 8z X*2 — A1Y] € Jmet

Letz=cj if z = zﬂ), thenz- ( etk 8iz) ¢ Im by (vi) and (vii). Moreover,

e-1—k
z( Z 5i zix‘”2> —Ayiz e Ime.
i=t

Furthermore,y3z € Jm? by (v), we havez(X 75 % §izx*~3) € m*. Therefore, there
is an elemenf, of R such that

e—t—k
(2) Z( Z 8iZ Xa_3> — )Lzy% e Jm* !
i=t

From (1) and (2), we see that there is an elemenof R such that

e—t—k
(Z—A3X)< Z 8.2.) X4 em* L,

=t

Let B <o —4 <t +k —4 be the non-negative integer such that

e—7—k
(z— A3x)< > s zi)xf’ e mP*2\ Jmf*2,

i=t

Sincez- (X5 7%8iz) ¢ Im, z—rax) (X5 81z) ¢ Im?, B exists. Moreover, there
is aunit A4 of R such that

e—1—k

3) (z— A3X)< Z (Siz;)xﬁ — hayP*? € JmP*2,

i=t
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On the other hand, from (1), we have

e—1—k
r a+1< Z 8|ZI> yHlG er,

or equivalently,

e—7—k
r +1 -3 r
o <Z 8.z|> xS em.

Sincem' = (y}) + Jm' 1, there is an elemenis of R such that

e—7—k
() Y ‘“1< Z 8,2.) 3 _ sy, € Jm !

However, from (1), we have

e—t—k
(®) y&‘“( Z 8i Zi)XO‘2 — Ay, € Jm™t
i=t

Thus, from (4) and (5), we obtain that

e—1—k
(6) y1 ‘(1 — KGX)< Z 8i Zi)XO‘_4 em' 1,
i=t

for some elemenkg of R. Now, if we can show that

e—1—k
) yy P 3( Z 5.2.)x/’em

e~

for some elemeny/, - 3 e mr=A=3\ Jm'~#-4, then from (3) and (7), we see that

e—1—k
(z— rax)yy "~ 3( Z b‘.a>xf‘ Ayl € gt

—_~—

and € — rax)y; P (T M 8iz)xf € zmt + Jm't = Jm' ! by (v), therefore

A yf“sy; F=3 ¢ Jm'~1, which contradicts to the choice of Hence, we conclude that

(yixTH=2 xmHk=1 z xmk=2 7o . XT*2}) is a linearly independent set iRk 2m +
m”k)/m”k
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Finally, by (6), we may prove (7) by reverse induction. Suggave have shown
that for somes, 8 < 4§ <a — 4,

___ [e-t—k
y;-83< Z (SI ZI>X5 e mr—l
i=t

for some elemenj/;*‘“3 em' =3\ Jm'~%~4. Then there is an elemeh§ € R such that

i=t

_—__ [e—1—k
®) ylyi“’( P zi>x‘S — ey, € Jm' L,

From (5) and (8), we see that

—— [e-1-k
y£52< Z 5i zi>x‘S eJm' !
i=t

for some elemeny, % € m"=3-2\ Jm" =93, it follows that

_—— [eTk
y5‘5‘2< Z 5i zi>x‘Sl em L. O
i=t

We end this section by providing the following example.

ExamMPLE 3.7. LetK be a field andR=K][[X, Y, z1, ..., Z_1]]/|, wherel is
the ideal of R generated by the set

(ZB—xy, Y2 ya, ..., Ya 1, a2, ..., 0z} U{zz | 2<i < j <k-1}.

The it is easy to see the following hold:

() R is a 1-dimensional Cohen-Macaulay local ring with maximakaldm =
X, ¥ z1, ..., zZx1)/I.

(i) x is a regular element oR and xR is a minimal reduction ofn.

(i) v=k+1, h=k ande = 2k.

(iv) m® € xm, {Z}} is a basis ofm®*/xm? and {Z2, z12,, ..., 121} is a basis of
A(m?/xm).

(V) Hr(@ =1+K+1)z+ 2k —1)22+> 2, 2kZ = (L+kz+ (k — 2)2 + %) /(1 — 2) and
HR/xR(Z) =1+kz+(k— 1)22.

(vi) s=r =3.

(vii) depthG =0.
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4. Examples

In [3], Rossi and Valla raised the following questions:

QUESTION 1. Let (R, m) be ad-dimensional Cohen-Macaulay local ring with
embedding dimension =e+d — 3. If > h, then is deptlG >d — 1?

QUESTION 2. If (R, m) is a d-dimensional Cohen-Macaulay local stretched do-
main with multiplicity e=h+ 3 andr = 2, then isG Cohen-Macaulay?

We give counterexamples to these questions as follows.

EXAMPLE 4.1. LetK be a field andR = K[[x,Y,z,u,v]] /(u® —xzv3—yz u* v*
uv, Z%, zu, zv); then R, m) is a 2-dimensional Cohen-Macaulay local ring and is a
regular sequence af, wherem = (X, y, z,u, v)R. Moreover,h=3, e=6 andt =3 as
{u?, v?, z} generates the socle &. However,z € (m®: (X, y)) and z ¢ m?, therefore
the depth ofG is 0.

EXAMPLE 4.2. LetK be a field andR = K[[t5, t8, t*4]]; then (R, m) is a one-
dimensional Cohen-Maculay local domain, where= (t°, t8, t1)R. Let x =t5 y=1t6
andz =t thenh=2, e=5=h+3 andr = 2 as{z, y°} generates the socle d.
Moreover,

PR/XR(Z) =1+2z+ 22 + 23
and

1+2Z+722+7

Pr(2) = ———

HenceR is stretched and is not Cohen-Macaulay. In facgx e (m*: x) andzx ¢ m®.
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gestions that improved the paper a lot.
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