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Abstract
We give a Turaev-Viro type construction for the LMO invariabore precisely,
we construct an invariant of closed oriented 3-manifoldsmfrdata of their spines
or their simplicial decompositions and the values of Kovitse invariant of the
unknotted tetrahedron and the Hopf link by using Bar-Natarmd arhurston’s
operations.

1. Introduction

Reshetikhin and Turaev [13] gave a rigorous definition ofruan invariants of 3-
manifolds as linear sums of colored Jones polynomials ofesyr presentations. They
were extensively generalized by Le, Murakami and Ohtsuki [6hey constructed a
3-manifold invariant called the LMO invariant with values @ertain space of 3-valent
graphs by using their operator on the values of Kontsevighriant of surgery presen-
tations. It is known for integral homology 3-spheres that kMO invariant is universal
among quantum invariants coming from simple Lie groups [95,13, 4].

On the other hand, Turaev and Viro constructed a 3-manifol@riant (Turaev-
Viro invariant) from simplicial decompositions of 3-maolifls [16]. Turaev-Viro in-
variant is constructed by coloring each edge of simpliciatampositions, associating
with each 3-simplex a value called quanturjr$/mbol determined from the colors of
6 edges of it, multiplying all of them and then summing ovdraalmissible colorings.
Although the Turaev-Viro invariant of any closed orientedh@nifold M is equal to the
Reshetikhin-Turaev invariant dfl # (—M) where —M denotesM with its orientation
reversed (see e.g. [15, 12]), it is useful when a 3-manifelgresented as a simplicial
decomposition.

Knotted trivalent graphs (KTGs) are used in the Turaev-VWreory. Colored Jones
polynomial of links is extended to KTGs by associating withcle 3-valent vertex an
Ugq(slz)-module of invariants Ho)sp,)(Vk ® Vi, Vin) (Vk, Vi, Vm: irreducible Uq(sl)-
modules). Similar extension for the Kontsevich invariamtsvobtained in [8]. Since the
guantum §-symbol can be considered to be the value of the colored Joolgaomial
of the unknotted tetrahedrod\, it is natural to expect that the Turaev-Viro theory for
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the Kontsevich invarian? is similarly obtained by using?(A). For the definition of
Z, see e.qg. [8].

In this paper we give a Turaev-Viro like construction for th®O invariant. In
particular, the main result of this paper is the following:

e We construct an invariant from simplicial decompositioris3emanifolds and the
valuesZ(A), Z(IX), Z(@) by using some elementary operations.

e The invariant is equal to the LMO invariant ofl # (—M), i.e. even degree part of
the LMO invariant ofM when M is a rational homology sphere.

Such construction is effective wheM is presented as a simplicial decomposition
because if we obtained a surgery presentation directly filoensimplicial decomposi-
tion, then the presentation itself would be very complidadé®d moreover its sliced g-
tangle decomposition to compute its Kontsevich invariaould be surprizingly large
if the number of tetrahedra is large. An application of ourtod that can be con-
sidered is deducing formulas of 3-loop part of the LMO invarifor some family of
spines, for example a sequence of spines that are genematsultte patterns. We will
consider this in future work.

We should remark that it is still hard to compute completeusal of the LMO
invariants sinceZ(A) is determined by using the Drinfel'd associator. We can only
compute the values up to finite order.

We shall mainly explain the way of construction for specigings. Construction
for simplicial decompositions then easily follows as & from the case of special
spines.

2. Preliminaries

2.1. Special spines. Now we shall give a construction of an invariant for special
spines.
We say that a polyhedroX embedded into a 3-manifolt¥ is a special spinef
X satisfies the following conditions:
e M\ X is homeomorphic to an open 3-ball.
e Each small neighborhood of points X is homeomorphic to one of the following:

e Each area bounded by edges is homeomorphic to a 2-disc.
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Fig. 1. L-move andT-move

An example of a special spine f@® is depicted in the following picture:

The following proposition due to Matveev and Piergallini ifuadamental property
of special spines as representations of 3-manifolds.

Proposition 2.1 ([7, 11]). Two special spines are of the sar@ananifold if and
only if they are related by moves, T shown inFig. 1. Moreovey we can assume all
the intermediate polyhedra are special spines

2.2. Trivalent graphs. A Trivalent graph(TG) is a vertex oriented, edge ori-
ented trivalent graph with fixed vertex orientation. Uetbe a TG. AJacobi diagram
based onr" is a vertex oriented uni-trivalent graph whose univalentiees are onr.

We express the edges of TG by solid lines and those of Jacelrains by dotted
lines in pictures. LetA(T") be the vector space spanned by all Jacobi diagrams based
on I' modulo the following relations:
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STU = i i =

whereay, ay, az € {1, —1} are determined by the orientation of the edge on which the
univalent vertex is landing. If the orientation is rightigg then we set the coefficient

to be 1 and otherwise to bel. Each Jacobi diagram has a degree defined by half the
number of vertices on its dotted part.

Murakami-Ohtsuki defined an invariant of KTG with values {I") as an exten-
sion of the Kontsevich invarianZ : Kg([T) — A(T"), where £G(T") = {framed embed-
dings:T" — S%}. For its precise definition, see [8]. In this paper we assuna¢ any
KTG is integer framed, i.e. it has a blackboard framing pnésstEon.

2.3. TG operations. TG operationsare defined by the following picture:

Connected sum: | ta > < 6 | —>
Unzip: >—< —

Connected sum is defined by band summing two disjoint cordetGs between edges.
Unzip is defined only when the orientation is consistent i picture. These operations
are well defined and have the following good property.

TG

I8

Proposition 2.2 ([14]). Let G;,G,,G3 be embeddings of connected TGgI,,
'3 respectively into & Let X,Y be TGs If we write X#.; Y the connected sum
between edges e in X and f in, ¥nd UZ¢(X) the unzip along the edge e in, X
then the following identities hold

2(Gl Hee, G2) = Z(Gl) Here, Z(GZ)v
Z(UZe,(G3)) = UZe,(2(Gy)).
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That is the following diagrams are commutative

H#erer UZey
KG(T) UT) —22s KG(T) #0e, Ts) KG(Ts) ——s KG(UZ,, (T'5))
V4 VA ! V4 UZF}
Horer ver
AT UTY) 22 AT e Ta) A(Ts) —22 s AUZo(T)

By using this property, Bar-Natan and Thurston construdtesl Kontsevich in-

variant of links by associating?() with each crossing of a link diagram and
doing TG operations. It is different from our constructiomce we do not use link
diagrams. However, the above property is fundamental fas @oo.

3. Constructing the invariant

Let M be a closed oriented 3-manifold. We construct the invarieorh a special
spine X of M by the following procedure. First we shall define a linear map

¢nt A(A)®" — A@)esn

where N is the number of 4-valent vertices ox and A(%)%=" is the space of 3-
valent graphs of degree at mastwith no underlying TG (the precise definition will
be given later).

3.1. Step 1: Associating tetrahedra. Let X be a special spine df1. First we
label each area and each edgeXofo that different area (edges) have different labels.
By the definition of special spine, the singularity set Xfmust be a 4-valent graph.
We associate a labeled tetrahedwas with each 4-valent vertexX) as follows:

X

As a result, we get a disjoint union of labeled tetrahedra.

3.2. Step 2: Joining the tetrahedra. Any point in the interior of an edge
of X joining two 4-valent vertices?, Q, has a neighborhood consisting of exactly 3
sheets meeting at the edge. These sheets determine adbijegtbetween the pair of
three edges around vertices eachognand og corresponding tox.
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Let I', I'" be connected TGs with the labels as follows:

a a
r=| ¢ >b x, F/:X<b G
fe ]

Then we define their product by

~ %
Cxp IV:=| G bl g

L o\

so that the edges are glued togetherhyy This operation is well defined since it is
realized by connected sum and unzip as follows:

Sl =

Here we first connect a pair of edges related to each othdr,byContinuing in this
manner, we join the all tetrahedra along a maximal theg xo, ..., Xn_1} in the 1-
skeleton ofX:

Gln(og, ® - - - ® 0gy) := (- - - ((0Q, *hy, 9Q,) *hy, 0Q5) =+ ) ¥y, , TQy

to make a connected TG, where the gluing maps (hy,, ..., hy,,) are determined
by X.

3.3. Step 3: Contraction among the remaining 3-valent verties. The con-
nected TG obtained in the last step still has 3-valent vesticNow we shall contract
them. If we follow Turaev-Viro's construction, it is natlréo replace a pair of re-

a a
a
maining verticese b simply with p — % == )=—_ for a contrac-
X X c -
c c

tion because in their formula for the contraction, a valughef invariant of the Hopf

link is just multiplied (see [16]). However this is not welkfined in this case since
the result depends on the positions of dotted legs lying entlinee edges incident to
X. But this is just a technical problem that we can avoid by diedirthe contraction

as follows:
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connected

2-0- iy
unzips unzip
— « . — < % —

-> do the same process to
other pairs

Dotted parts (1, 3-valent graph parts) are omitted in théupgc In the first picture,
we choose a patly on the TG connecting the pair of vertices that we now want to
contract. In the second, disjoint union to it o@€CD) and someZ(A)s as many
as the number of vertices op. Then we continue unzipping and connect summing
to obtain the last picture. Note that the result is still noiquely determined but is
uniquely determined when it is considered modulo the Kirbgves, which we will
explain later, along the circle of the Hopf link. Indeed tiidl suffice for our purpose.
We denote by cnir(I") the result of all contractions among verticesigfwhereh’ is a

set of bijections used to contract vertices. Then we obtaielement without 3-valent
vertices:

cnthy OGlh(OQ1 R Q GQN) e AO---Q).

Note that in general, vertex orientations of vertices on piah connecting two
vertices labeledk may not be as in the picture. For example, it may be as

In such cases, it suffices to disjoint uni@{[]) for y insteaed ofZ(A).
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3.4. Step 4: Replacing solid lines with dotted graphs. We then replace solid
lines with dotted graphs by the mag: A(O - - Q) - AW®)E" defined by Le-
Murakami-Ohtsuki. Hered(#)=" denotes the vector space spanned by all Jacobi di-
agrams without univalent vertices with degree at mosjuotiented by the IHX, AS
relation in the following picture.

As Bl == e

The spaceA(?)=" has an algebraic structure with a product defined by disjaiion.
For the explicit description of,, see [6]. The map, has the following remarkable

property.

Proposition 3.1 ([6]). o Z is invariant under the second Kirby movéhat is

ol )t

Through the Steps 2 to 4, we have obtained a well defined map
ons AA)™ - A@)=D
defined by
on(0Q, ® ... ® 0q,) :=tn o CNtlly 0 Gly(0g, ® - - - ® 0q,,) € AW@)EN.
Let g be the number oZ(CD)s used in Step 3 and let
Xl = tn(Z(@)) 9 (Z(A) - - ® Z(A)) € AB)E.

Note that:,(Z(CD)) is invertible, which can be verified by direct computatioriThe
details about such computations are found in [10].
Then we have

Theorem 3.2. |X], does not depend on the choice of the special spines of M
So it is an invariant of M

The proof of this theorem will be given in the next section.
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4. Background and invariance proof

Let Ty, 1<i < k be copies ofA. Then the construction until Step 3 is summa-
rized as in the following diagram.

KGN Uy U+ UTy) —> KGO #Th - - uTy) —> - - —> KGO U+ - L)

V4 V4 Z

AT UT U UTy) — s AT #- - #T) AOU---uQ)

More precisely, we go at first from the upper-left corner to lineer-left corner. Then
go to the right until getting to the lower right corner. By tbemmutativity of the dia-
gram, we can obtain the same result by passing the uppdraigher. So the result of
Step 3 is equal to the Kontsevich invariant of some framekl liduch obtained framed
links have been first studied by Roberts [12He showed the following strong claim.

Proposition 4.1 ([12]). The framed link obtained above is a surgery presentation
of M# (—M).

This can be proved by using the technique of handle decotmposn 4 dimension.
From this proposition, it follows thatX|, is equal to then-th part of the LMO in-
variant of M # (—M) and hence is an invariant dfl. The main point in this paper
is that we give a way to compute the LMO invariant for the franfiedd by using the
data of spines and the TG operations and a fgw

Now we shall give an alternative elementary proof of the iiarece by using the
Matveev-Piergallini theorem (Proposition 2.1) withoutngsiRoberts’ result.

Proof of Theorem 3.2. By the Matveev-Piergallini theorensiffices to show that
| X|n is invariant under thd., T-moves in Fig. 1.

We prove only for theL-move since for theél -move is similar. The left hand side
of the L-move in Fig. 1 yields the following framed link.

1He obtained such framed links, which he calls ‘chain maidin from Heegaard diagrams. They
are equivalent to those obtained now.
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On the other hand, the right hand side of thenove yields the following framed link.

L LS
/ Kirby /
IT
-/ T ey T @°
' <
SR (!
‘_‘framing: £ ,:___:jf ’:__:\f
T e e
L_Jdbo Kirby L_Jdbo Kirby L J
isotopy 0 mcIy\I/e O 0
@ 0
-l-ls0

- 0 5 0 5 Q0

0 o

Kirby 0
move ®'>
II 0
—> @3 0
-1-150

Lemma 4.2 below allows one to claim that the Hopf links in thetye vanish by the
correction term, and hence the both sides of the move ard.equa O

Lemma 4.2. 1, (Z(f @)0)) =1, (2(0@)0)).

Proof. By applying the second Kirby moves, one has the fallgnwsequence:

By Proposition 3.1, one has

n(2(F(D0))n(2(0(D0)) = n(2(* (D00 (D))
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=n(2(F(OuF (D)) =un(2(F (2°))n(2(* ()
Sincetn<2<f®)0>> is invertible, the result follows. O

5. Construction from simplicial decomposition

Let X be the 2-skeleton of dual of a simplicial decompositionhdf Note that in
this case the same procedure agshdoes not work since disjoint union of O-framed
unknots may occur (this corresponds to connected sur§®of S's). To construct an
invariant from X, we make a special spine frotd. Since X has at least one closed
chamber, we need to join them into a single chamber to make=eiadpspine. This is
done as follows.

Let A,B be two vertices of the simplicial decomposition such thaytlare con-
nected by an edgé\B. Let the label of the area dual t&B be a. After we apply
Step 1, we do the following modifications to the tetrahedrpnaoluding an edge la-

belled by a.
* unzip
a > >

This process corresponds to the following picture. We caoithis process until we
obtain a special spine. This construction of a spine is du€asler [2]. Then we
apply subsequent steps and get the invariant.
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