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Abstract

Non-local elliptic problem,—Av = (e’ /(/, € dx)°) with Dirichlet boundary
condition is considered on-dimensional bounded domai@ with n > 3 for p > 0.
If © is the unit ball,3<n <9 and2/n < p <1, we have infinitely many bendings
in 1 of the solution set in. —v plane. Finally ifQ2 is an annulus domain angl > 1,
we show that a solution exists for all> 0.

1. Introduction

In this paper we consider the following elliptic equationttwhon-local term:

—AvV=A—F5 X€EQ,
@ (J, e dx)®
v=0 X € 022,

wherex, p are positive constants arfel is a bounded domain iR" with smooth bound-

ary 0. Actually, usual Gel'fand problem, in the theories of themit emission ([5]),

isothermal gas sphere ([4]), and gas combustion ([1]), isfdated as the nonlinear
eigenvalue problem

—Av=0€" XeQ,
@) {

v=0 X € 092,

with a constaniv > 0. Problems (1) and (2) are equivalent through the relation

A
(Jo e dx)®’

and hence some features of the solution set

C ={(x,v) | v=uv(x) is a classical solution of (1) fok > 0}
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resemble those of the solution set for (2), denotedSby(1) is the non-local stationary
problem of

U

wW=AV+FA—— = XeQ,t >0,
‘ (Jo & dx)°

v=0 Xeo, t>0,
vl]t=0 = vo(X) X € Q.

Such problems are studied in ([2]). They arise in the studpli#nomena associated
with the occurrence of shear bands in metals being defornmeléruhigh strain rates

([3]) and Ohmic heating ([10], [11]). We note that if = 1, the motivation to study (1)

is the Keller-Segel system ([9]) which describes the chewtat aggregation of cellular

slime molds given by

ey =V - (Vu—uvev) xe,te(0,T),

Ty = Av+u xeQ,te(0,T),
3) 8—u—ua—U:v:O x €92, te(0,T),

ov v

Ult=0 = Uo(X) = 0 X € Q,

Vlt=0 = vo(X) X € Q,

where 2 is a bounded domain with smooth bound&$2, t, ¢ are positive constants,
and v is the outer unit normal vector, respectively. In the staiy state of (3), it is
reduced to (1) ([20]). In fact, since = u(x,t) > 0 and

d

—/udx:}/V~(Vu—qu)dx:0,
dt Q & Jo

the total mass is conserved, that jgi( - ,t)[l1 = [|uolls. Here and henceforthj - |,
denotes the standarld® norm. The system of equations (3) has a Lyapunov function

1
J(u,v) = / <u(log u—1)—uv+ §|VU|2> dx
Q

and it holds that

E 2 N2 —

e—J(u,v) +rellul5+ | ulV(logu —v)[“dx=0.

dt o

It implies that in the stationary state
logu—v =logo

holds for some constanrt > 0. In other words

u=oe’
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holds. Puttingx = ||up|l; we have

A

U:fgevdx

by mass conservation. Thus the second equation in (3) imfiat

v

O=Av+ri———1
’ Jq € dx

with Dirichlet boundary condition.

We have known the result of whenn = 1,2 and<2 is the unit ballB = {x € R" |
x| < 1}. Forn=1 with @ = B, if p> 1, then (1) has a unique solution for all> 0.
On the contrary if O< p < 1, there exists. > 0 such that (1) has two solutions for
L < &, (1) has one solution fok = » and (1) has no solution fok > A. Forn =2
with @ = B, if p <1, then (1) has a unique solution for all> 0. If p =1, then (1)
has a unique solution for all @ A < 87 but no solution forx > 8z. On the contrary
if 0 < p <1, there exists. > 0 such that (1) has two solutions far< A, (1) has one
solution for» = and (1) has no solution fok > A. These facts are proven in [2].

We consider thep = 1 case in [13] and expand their results to the genaral O
in this paper.

We also mention the structure 6f Forn > 3 with Q = B, S is a one-dimensional
open manifold with the end points i (v) = (0,0) and &,v) = (2(n — 2), 2log(Y/|X])),
respectively, the latter being a weak solution of (2). Moegofor 3<n <9, S bends
infinitely many times with respect te aroundo = 2(n — 2). Morse indices increases
by one whenever it bends. On the other hand i 10, no bending occurs. They are
shown in [14], [15].

We define the section af cut by A > 0 as follows:

Ct={ve C¥Q)NC(Q) | v=1u(x) solves (1}.

The first theorem is concerned with the star-shaped domaithat x - v > 0 holds for
eachx € 0Q.

Theorem 1. If Q is star-shaped with respect to the origin witren3 and p< 1,
then there isk e (0, +o0) such that(1) has no solution forx > A. Moreovey Cp is
unbounded in. —v plane where(Cy stands for the connected componentagatisfying
(0, 0) € Co.

The second theorem is concerned with the ball case.
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Theorem 2. If Q is the unit ball B={x € R" | |x| < 1} with n> 3, then(C is a
one-dimensional open manifold and can be parametrized as

C={(x(s),v(-,9)) |0 <s < +oo}

with the end points in(A, v) = (0, 0) and the weak solution

(r,v) = <2w,'f(n -2 2 Iog(%)),

respectively where w, denotes the area of the unit sphere R?. Moreover for3 <
n < 9and2/n < p < 1, C bends infinitely many times with respect xoaround
% = 2wl (n — 2)'P. On the other hand if = 10 and p< 1, no bending occurs

The third theorem is on the spectral property of the linestipperator. To state
the result, we define Morse index as follows. For given) € C, the linearized eigen-
value problem is given by

e’ Jo €9 dx
Ap+r—— - pr—2— " "
4 v (o evdx)p¢ P (fo evdx)p+1

$=0 X € 9.

"= —up xeQ,

Then, the Morse index = i(x,v) and the radial Morse indekr = ir(%, v) denote
the number of negative eigenvalues and that of radially sgtrim eigenfunctions,
respectively.

Theorem 3. If Q is the unit ball with3 <n <9, 2/n < p < 1andn> 10,
p < 1, respectivelythen i=ig holds and i=i(%, v) increases by one at each bending
point

The last theorem is on the annulus dom&ip = {x € R" | a < |x| < 1} with
a € (0,1). We deal with only radial solutions. Then we define thkition set by

Ca={(»,v) | v=1u(]x]) is a classical solution of (1) fok > 0}.

Theorem 4. If Q is the annulus domain Awith n> 3 and p> 1, then(C; is a
one-dimensional open manifold and can be parametrized as

Ca={(x(s),v(-,9) |0 < s < +o0}
with the end points ir(A, v) = (0, 0) and (1, v) satisfying

lim A(s)=+oc0 and lim sup |v(X,S)| = +oo.
Sst+oo ST+00 g x<1
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This paper is composed of four sections. §& we treat a star-shaped domain and
prove Theorem 1. Next i3, we study the ball case and prove Theorems 2 and 3.
Finally, §4 is on the annulus domain case and we prove Theorem 4.

2. Star-shaped domain

In this section, we assume th& is a star-shaped bounded domain with respect
to the origin inR" with n > 3 with the smooth boundary$2 and thatv is the outer
unit normal vector.

Proof of Theorem 1. The first part of Theorem has already prawve[2], but
we provide the proof for completeness. In fact we apply thbd2aev identity ([16])
to (2).

®)
1 w\* . i ) 2—n A ,
5/39()(]})<5> dS—W/;Z(e —1)dx+ 5 (er“dX)p/g;evdx

nA
(/o € dx) P

whereds is the area element dfB with standard metric.
On the other hand it follows from (1) that

and therefore we have

22 v\ 2 1
(fg e’ dX)Z(p_l) = 3Q(X ' V)<5) dS/BQ (X-v)

Combining this inequality and (5), we have

22 _ 2nj. / 1 s
(fy e dx)?PD 7 (e dx)?t oo (xov)

<

ds.

Hence sincep <1 andv > 0 in 2, we have

5 < 2n / 1 ds < 2n /‘ 1 ds
- e dx)i P Jag (X-v) T IQUEP Jig (Xev)
(fo e dx)

where |2] is the measure of2. This givesx in the statement.
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We denote byC; the branch of solutions of (1) starting frorh, {) = (0,0). Suppos-
ing thatC; is bounded, we prove unboundedness of the compaiehy contradiction
by making use of the standard degree argument similar ta \\& provide the proof
for completeness and proceed it in the same mathod as in Pug}ing

eV
(Jo & dx)™

we apply the implicit function theorem. Then there existomtson (A,v) for 0 < A <
1. C; is compact from the assumption and the existence of the upmemd i < +oc.
Because

F(A,v)=Av+A

¢ n{xr=0}={(0,0),
we can take open sét containingC; with the properties
oubNC=0 and U, =0 for r>1,
andi, NC is composed of the solution of (1) with;(x,v) > 0 for 0 < A < 1, where
U, ={veC(Q)|®v)eu}

In Banach spacé:(ﬁ), Leray-Schauder degred(V;, 0,U4,) is taken for anyr > O,
where v, = Ic(ﬁ) — ®; with

ev
(Jo e dx) a

From the homotopy invariance ([18]3(W;, 0,u4,) is independent of. > 0. However
by existence and nonexistence of the solution of (1), we have

@, (v) = (-A) "2

d(\ll)“ O,Z/{)\) =0 fora > 1,
d(qj)\, O,Z/[)L) =1 forO0O< A < 1,

which is a contradiction. ]

3. Ball case

In this section, we assume th&t= B, whereB = {x € R" | |X| < 1}.

Proof of Theorem 2. According to [6], any solution of (1) igdia@ly symmetric.
Hence we have

U

&
(Jo & dx)P
v(1)=0, v/(0)=0,

"Ry +arnt =0 forr >0,
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where
v=o(r) for r=|x|.

We begin with the parametrization of the solution Setfollowing [7], [13], [14] and
[15]. In fact, any solution is obtained as a solution of thiiah value problem

©) ") +or"le' =0 forr >0,
v(0)=A, V/(0)=0,

with a certain positive constarA. Through the Emden transformation

12
@ o(f) = w(t) — 2t + A r:{Z(n—Z)} e,

oeh
(6) is reduced to the autonomous ordinary differential éqna

w+r(n—2w+2n—-2)Ee”—-1)=0
®) Jim @t - 20) = lim_e (i) —2) = 0.

Then there exists a unique global solutian= w(t) of (8) by [14]. The orbit©® =
{(w(t), z(t)) = (w(t), w(t)) | t € R} starts att = —oo along and below the ling = 2
with w = —oc0, and approaches the origin (0,0) as> +oo. If 3 <n <9, it proceeds
clockwise in{(w, z) | z < 2}, crosses infinitely many timez and w-axes alternately,
while it keeps to stay if(w,2) | w <0, 0< z < 2} in the case ofh > 10. Through
the Emden transformation (8), the boundary condition inigl¢onverted to

w(t)—2t+A=0

with

{Z(n —_ 2)}1/2ef =1

oeh

Therefore for anyr € R, (o,, v;) defined by

9) v (r) = w(t) — 2t — {w(r) — 2t} = w(logr + ) — w(r) — 2 logr
with r = €'=7 and

(10) A, =2t —w(), o;=20—2) A=2n-2e"®

satisfies (1). Conversely every solution of (1) can be exaesn the form of (9)
and (10). According to [7], [13], [14] and [19], the total s&tof the solution &, v)
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of (2) is homeomorphic ta@D through the relation (7) with the constanés o deter-
mined by (10). This means that is homeomorphic taD. Each point ofO is given
as (), z(r)) and hence’ is parametrized by € R. Then we have

(11) M) = 0P22P(n — 2)17P(2 — z(7))Pell- P,
In fact, puttingK = [; e’dx we have
AL/P-1 = k1-py1/p-1
because olKP = 1/o. By (10), we have
AYP = K Pa/Pl = K P(2(n — 2)gv™M)H/P-L,
Integrating (1) overB, we have
2K P = /(1) = wn(z(z) — 2)

by (7). Finally combining two equations, we have the desimtw. Hence the
behaviour oft = +o¢ follows at once. On the other hand lm_, v, = 0 and
lim,., _ o =0 imply that lim._._,, A, =0. The rest follows.

In the use of (11), we have

Mr) = 0f27P(n = 2)17P(2 - 2(2))P e PO(L — p)z(x)(2 - 2(x)) — p2(r)).

If n > 10 andp < 1, A(zr) > O for all € R which proves the statement. Next
we concentrate on the case of 8 n < 9 and 2Zn < p < 1. To do so, we put
o(r) = (1 — p)z(r)(2 — z(z)) — pz(r). Then we have

(12) 9(r) = 2(1 - P)(2 - 2(x))z(z) + (PN — 2)2(x) + 2p(n — 2)e" (7).

Let Ok (k > 2) denote the successive pointsaxis andz = —2(e” — 1) crossed by the
orbit ©® in w — z plane in order. Moreover we s€; = (—o0, 2). Theni(z) > 0 and
X(r) < 0 on the arcOx_304_2 and Ox_104, respectively fork > 1. On the other
hand g(r) < 0 and§(r) > 0 on the arcOx_20x_1 and OxOx+1, respectively for
k > 1. Hence there exists a unique poifit= (w(z),z(r)) on the every ar@u_>Oun_1
and O O4e1 respectively fork > 1 such thati.(r) = 0. The proof is complete. [J

We proceed the proof of Theorem 3 in the same argument and uwtatign as
in [15].

Proof of Theorem 3. As far as we consider negative eigensdlu¢4), the corre-
sponing eigenfunctions are radially symmmetric ([12],]]13Hencei (A,v) = ir(%,v) for
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(A, v) € C. We denote by.! thel-th eigenvalue of (4) inX(z),v(r)) € C coresponding
to radially symmetric eigenfunctions. Any of them is simplé (A(7), v(z)) € C is the
turning point ofC, then there existé > 1 such thatu! = 0 by the implicit function
theorem. On the contrary;!. = 0 for somel > 1 at ((z), v(r)) € C implies that it
is a turning point by the bifurcation theorem from the catipoint of odd multiplic-
ity ([17], [18]). Sincepn!, > O for sufficiently larger > 0, we havei(x, v) = 0 for
(A(z),v(r)) e C forn> 10 andp < 1.

For3<n<9and 2Zn < p <1, let Tx = (A\(=), v()) for 71 < o < --- denote
the turning point ofC. Then we haveu'rk = 0 for somel > 1 and we have only to
show thatu!_, <0 for all k > 1.

Differentiating (1) with respect ta, we have

o e’ e'v [z €'vdx
Ab+ A + A —Ap—B——— _e'=0 xeB,
(13) (/s evdx)p (/s evdx)p (/s eudx)p+l
v=0 X € 9B,
and hence
) e’y %y dx
Avg + Ay o K 5 — AkP /B K p+le"k =0 xeB,
(Jp €% dx) (/5 e dx)
‘i)kzo XE(’)B,

for vk =v(-, ). Then we have
v(r, ) =w(logr +t) — w(r) # 0,

and thereforepy is an eigenfunction of (4) corresponding to= erk = 0. Then, the
standard perturbation theory ([8]) guarantees the exist&ii¢p = ¢(-,t) and u = u(r)
satisfying (4),¢( -, ) = ¥, and u(zn) = ¥ = 0. Differentiating (4) and (13) with
respect tor, subtracting each other with = r,, multiplying by v and integrating it
over B, we have

. [ge'vdx / >
14 A= vedX,
G Jeed® " Js

where ;i = 1(r), A = AMw), v = v(-, ) and v = v( -, 7). As is stated in the proof
of Theorem 2,

(15)  A(r) =wf2 P2 - 2(r))P e P g(r) = wfo (1) P2 - 2(r))* g(r),
whereg(z) = (1 — p)z(r)(2 — z(z)) — pz(z). Differentiating (15), we have
(1) = wPo (1) P2 — 2(1))P2
X (1= p)(=2(r)? + 22(1) + 2(1))g(r) + (2 = 2(x))§(v)}-
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Sincei(r) =0 att = 1y, it holds thatg(z) = 0, namely,
(1= P)z(r)(2 — 2(w)) — pz(w) =0
from (15). We have. = o} (2 — 2)Po1~P from (10) and (11),
rA=of2- 2" 02 - 20 6(1- p) - p2)
by differentiating, and

,_@-2a-p

p
att = 7. Hence we have
A(r) =wlo(t) P(2—z(r))P*
16 _ _ — — -
(16) y {2(p 1)2502 20)? , (pn—2)(1 pp)(z 7)) , pa(r)}dm

att =7, Sinceo =1/(f5 € dx)®, it holds that

A . [gervdx
Joerd)® 7 (fyedx)™

17) G =

Hence we have

) ) e’y dx)? _ _
i f i ax= ‘”%w#am (2 2(r))"?
5 {Z(P — 12 — z(1))? N (pn—=2)1— p)(2— z(1))

p p

+ pa(r)}

at t = 7 from (14) and (16). Let/; €’vdx = 0. Then (17) means that = 0 and
o = 0 vanish atr = 7, simultaneously. However it is impossible from (10) and (11)
Finally we havey < 0 att = 7. [l

4. Annulus domain

In this section, we assume th&= A, = {x € R" | a < |X] < 1} with a € (0,1)
and consider radially symmetric solutions of (1).

We cite known results in [14] for the case of<8n < 9. Radial solutions of (2)
satisfy
(18) {(r“lv’)’ +or"ler=0 fora<r <1,

v(a) = v(0) = 0.
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We can continue the solution of (18) up to= +0 satisfying

H ’ L —_
Ir|¢m0 <v (r)— rnl) =0

. L ~
lrI?(]J (U(r) + m) =M

for somelL, M > 0. Through the modified Emden transformation

and

v(r) =w()—2t+M, r=Bé

with

oeM

5= {Z(n - 2)}1/2’

(18) is reduced to the autonomous ordinary differentialatign

w+M—2w+2n—2)Ee”—-1)=0,
(19) Jim (w(t) -2t +ae” ) =0,
Jim e (i(t) — 2 - a(n — 2)e ™) =,

wherea = LB~ ("2 /(n — 2).

169

Then there exists a unique global solutien= w,(t) of (19) for everya > 0. The
orbit O, = {(w(t), z(t)) = (we(t), we(t)) | t € R} starts att = —oco above the linez = 2
with w = —o0, and approachs the origin (0, 0) s> +oo. Then the family of orbits
{Ou}e=0 forms a foliation, that isO, N Og =9 if « 7Z . Every orbitO, with « > 0
crosses the ling = 2 just once. Moreover itt > g > 0, O, lies in the left side of
Op ast increases. For every poinid, o) € X = {(w,2) | w > 0, z > 2}, there is a

unique nonnegativer such that fo, &) € O,.

Let w, = we(t) be the solution of (19). Then every poinb,(z) on O, determines

the timet so that the boundary condition
v(@=v(1)=0
is converted into
(20) wt)—2t"+M=0 and w(t)-2t"+M=0

for

a 1
21 t~ =log — d t"=log—=.
(21) og 5 an og 5
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Henceforward we omit the subscripts and so on unless there is any confusion.
Further w* and z* denote w, (t*) and z,(t*), respectively. From (20) and (21), it
holds that

(22) w"—w =-2loga and t*—t =—loga.

Conversely, if there exists a pair of poinks"(w*, z") on O, satisfying (22), we have
a radial solutionv = v(r) for (18) with some positive constamt. In fact, we define
B, M, L, o andu(r) as

B=zae! =el,

M=2t" —w =2t —w",

L =a(n — 2)a"2e ("2 = g(n — 2)e~ -2
o=2(n—2)e" =2(n—2)a %",

v(r) =w(t) —2t + M.

Therefore the structure of the solution of (18) is reducedhtt of pairs of P*
on O,. We call {P*} the boundary pair or¥), associated with the annulus, in R".

For everya € (0, 1), there exists a unique pair of poin®s™ = P*(wZ, zF) satis-
fying (22) on each orbiO, (¢ > 0). The pointsP, and P, lie below and above the
line z = 2 respectively, and further, these poi®§ depend onx continuously. Con-
versely for each pointuf,(t), z,(t)) on O, with z,(t) < 2 (z,(t) > 2), there exists a
uniquea* = a*(t) € (0, 1) @. = a.(t) € (0, 1)) such that

we (t) — we(t +loga*) = —2loga*.

(wa(t - |Og a*) - wot(t) =-2 Iogaek)

Hence we have only to studi, = {P;(w;,z;) | « > 0} to get the structure of

solution of (18). The seK, forms a continuous curve iR?, which is homeomorphic
to R. Now we have two lemmas.

Lemma 1 ([14], Lemmas 4.8 and 4.9).For any fixed ac (0, 1), we have

lim w; = lim w, = —oo,
a—0 a—0

H + - —
lim z, = lim z, =2,
a—0

a—0

lim llvalle(m) =0,

limg_o0, =0,

+ z*+) are the pair of boundary points on  Qassociated with A

al T

where P(w



NON-LOCAL ELLIPTIC PROBLEM 171
Lemma 2 ([14], Remark 6.1). For any fixed a< (0, 1), we have

: +_ - —
lim w, = lim w, =—o0,
a—+00 a—+00

M0 valle(m) = +oo.

lim o, =0,

a—+00

where Pf(w*, z%) are the pair of boundary points on Oassociated with 4

Proof of Theorem 4. We concentrate on the case of B8 < 9. The behaviour
of A, andv, asa — +0 follows from Lemma 1, that is,

P
oI,iTo Ay = D[iLno O (/Aa gl dx) =0 and aingnvanc(x) =0.
Integrating (1) overA,, we have
(23) r=wP@Mh - 2)a%e" ) P@" 2%z —2)— (' - 2))
in the same way as we deduce (11). Now it holds that

lim z, =+oo.
a—>+00
In fact, we assume that; < M for any @ € R, whereM is a positive constant owing
to z; > 2. SinceK, is homeomorphic taR, there is a constanK > 0 such that
w, < K for anya € R by Lemma 2. By settingQ = {(w,2) | w < K, 2<z < M},
it holds thatOg N Q = ¢ for somep e R. Actually, for (w,z) = (K, M) there is
o > 0 such that K, M) € O, because of K,M) € ¥ C [J,-qO«. Sincez- and
w-coordinate are decreasing and increasing with respettrespectively in{(w, 2) |
w > g(2), z> 0}, O, N Q = (K, M). Hence if we putp =« +4 for any § > 0, we
have O N Q = ¢ becauseQy lies in the left side ofO, ast increases. The points
{(w;,z;) | « > 0} on Og don't satisfyw, < K, z, < M simultaneously, which is a
contradiction. Therefore we have lim. z; = +oco. Finally from (23),z, < 2 and
p > 1, we have lig_+x A, = too. In the case oih > 10, we chagex and K by
{(w,2) | w <0, z> 2} and a negative constant, respectively. U
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