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Abstract
Non-local elliptic problem,�1v = ��evÆ�R� ev dx

�p�
with Dirichlet boundary

condition is considered onn-dimensional bounded domain� with n � 3 for p > 0.
If � is the unit ball,3� n � 9 and 2=n � p � 1, we have infinitely many bendings
in � of the solution set in��v plane. Finally if� is an annulus domain andp � 1,
we show that a solution exists for all� > 0.

1. Introduction

In this paper we consider the following elliptic equation with non-local term:

(1)

8<
:�1v = � ev�R� ev dx

�p x 2 �,

v = 0 x 2 ��,

where�, p are positive constants and� is a bounded domain inRn with smooth bound-
ary ��. Actually, usual Gel’fand problem, in the theories of thermonic emission ([5]),
isothermal gas sphere ([4]), and gas combustion ([1]), is formulated as the nonlinear
eigenvalue problem

(2)

��1v = �ev x 2 �,v = 0 x 2 ��,

with a constant� > 0. Problems (1) and (2) are equivalent through the relation

� =
��R� ev dx

�p ,

and hence some features of the solution set

C = f(�, v) j v = v(x) is a classical solution of (1) for� > 0g
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resemble those of the solution set for (2), denoted byS. (1) is the non-local stationary
problem of 8>><

>>:
vt = 1v + � ev�R� ev dx

�p x 2 �, t > 0,

v = 0 x 2 ��, t > 0,vjt=0 = v0(x) x 2 �.

Such problems are studied in ([2]). They arise in the study ofphenomena associated
with the occurrence of shear bands in metals being deformed under high strain rates
([3]) and Ohmic heating ([10], [11]). We note that ifp = 1, the motivation to study (1)
is the Keller-Segel system ([9]) which describes the chemotactic aggregation of cellular
slime molds given by

(3)

8>>>>>>>><
>>>>>>>>:

"ut = r � (ru� urv) x 2 �, t 2 (0, T),�vt = 1v + u x 2 �, t 2 (0, T),

�u�� � u
�v�� = v = 0 x 2 ��, t 2 (0, T),

ujt=0 = u0(x) � 0 x 2 �,vjt=0 = v0(x) x 2 �,

where� is a bounded domain with smooth boundary��, � , " are positive constants,
and � is the outer unit normal vector, respectively. In the stationary state of (3), it is
reduced to (1) ([20]). In fact, sinceu = u(x, t) � 0 and

d

dt

Z
� u dx =

1"
Z
� r � (ru� urv) dx = 0,

the total mass is conserved, that is,ku( � , t)k1 = ku0k1. Here and henceforth,k � kp

denotes the standardL p norm. The system of equations (3) has a Lyapunov function

J(u, v) =
Z
�
�

u(log u� 1)� uv +
1

2
jrvj2� dx

and it holds that

" d

dt
J(u, v) + �"kvtk22 +

Z
� ujr(log u� v)j2 dx = 0.

It implies that in the stationary state

log u� v = log�
holds for some constant� > 0. In other words

u = �ev
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holds. Putting� = ku0k1 we have

� =
�R� ev dx

by mass conservation. Thus the second equation in (3) implies that

0 =1v + � evR� ev dx

with Dirichlet boundary condition.

We have known the result onC whenn = 1,2 and� is the unit ballB = fx 2 Rn jjxj < 1g. For n = 1 with � = B, if p � 1, then (1) has a unique solution for all� > 0.
On the contrary if 0< p < 1, there exists� > 0 such that (1) has two solutions for� < �, (1) has one solution for� = � and (1) has no solution for� > �. For n = 2
with � = B, if p < 1, then (1) has a unique solution for all� > 0. If p = 1, then (1)
has a unique solution for all 0< � < 8� but no solution for� � 8� . On the contrary
if 0 < p < 1, there exists� > 0 such that (1) has two solutions for� < �, (1) has one
solution for � = � and (1) has no solution for� > �. These facts are proven in [2].

We consider thep = 1 case in [13] and expand their results to the genaralp > 0
in this paper.

We also mention the structure ofS. For n � 3 with � = B, S is a one-dimensional
open manifold with the end points in (� ,v) = (0, 0) and (� ,v) = (2(n�2), 2 log(1=jxj)),
respectively, the latter being a weak solution of (2). Moreover for 3� n � 9, S bends
infinitely many times with respect to� around� = 2(n� 2). Morse indices increases
by one whenever it bends. On the other hand ifn � 10, no bending occurs. They are
shown in [14], [15].

We define the section ofC cut by � > 0 as follows:

C� =
�v 2 C2(�) \ C

��� �� v = v(x) solves (1)
	
.

The first theorem is concerned with the star-shaped domain, so that x � � > 0 holds for
eachx 2 ��.

Theorem 1. If � is star-shaped with respect to the origin with n� 3 and p� 1,
then there is� 2 (0, +1) such that(1) has no solution for� > �. Moreover, C0 is
unbounded in��v plane, whereC0 stands for the connected component ofC satisfying
(0, 0)2 C0.

The second theorem is concerned with the ball case.
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Theorem 2. If � is the unit ball B= fx 2 Rn j jxj < 1g with n� 3, then C is a
one-dimensional open manifold and can be parametrized as

C = f(�(s), v( � , s)) j 0< s< +1g
with the end points in(�, v) = (0, 0) and the weak solution

(�, v) =

�
2!p

n (n� 2)1�p, 2 log

�
1jxj
��

,

respectively, where!n denotes the area of the unit sphere inRn. Moreover for 3 �
n � 9 and 2=n � p � 1, C bends infinitely many times with respect to� around� = 2!p

n (n� 2)1�p. On the other hand if n� 10 and p� 1, no bending occurs.

The third theorem is on the spectral property of the linearized operator. To state
the result, we define Morse index as follows. For given (�,v) 2 C, the linearized eigen-
value problem is given by

(4)

8><
>:
1� + � ev�R� ev dx

�p� � p�
R� ev� dx�R� ev dx

�p+1
ev = ��� x 2 �,

� = 0 x 2 ��.

Then, the Morse indexi = i (�, v) and the radial Morse indexi R = i R(�, v) denote
the number of negative eigenvalues and that of radially symmetric eigenfunctions,
respectively.

Theorem 3. If � is the unit ball with3 � n � 9, 2=n � p � 1 and n � 10,
p � 1, respectively, then i = i R holds and i= i (�, v) increases by one at each bending
point.

The last theorem is on the annulus domainAa = fx 2 Rn j a < jxj < 1g with
a 2 (0, 1). We deal with only radial solutions. Then we define the solution set by

Ca = f(�, v) j v = v(jxj) is a classical solution of (1) for� > 0g.
Theorem 4. If � is the annulus domain Aa with n� 3 and p� 1, then Ca is a

one-dimensional open manifold and can be parametrized as

Ca = f(�(s), v( � , s)) j 0< s< +1g
with the end points in(�, v) = (0, 0) and (�, v) satisfying

lim
s"+1 �(s) = +1 and lim

s"+1 sup
a<x<1

jv(x, s)j = +1.
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This paper is composed of four sections. In§2, we treat a star-shaped domain and
prove Theorem 1. Next in§3, we study the ball case and prove Theorems 2 and 3.
Finally, §4 is on the annulus domain case and we prove Theorem 4.

2. Star-shaped domain

In this section, we assume that� is a star-shaped bounded domain with respect
to the origin inRn with n � 3 with the smooth boundary�� and that� is the outer
unit normal vector.

Proof of Theorem 1. The first part of Theorem has already proven in [2], but
we provide the proof for completeness. In fact we apply the Pohozaev identity ([16])
to (1).

1

2

Z
��(x � �)

��v��
�2

ds =
n��R� ev dx

�p

Z
�(ev � 1) dx +

2� n

2

��R� ev dx
�p

Z
� evv dx

� n��R� ev dx
�p�1 ,

(5)

whereds is the area element of�B with standard metric.
On the other hand it follows from (1) that

��R� ev dx
�p�1 =

Z
�(�1v) dx =

Z
��
���v��

�
ds,

and therefore we have

�2�R� ev dx
�2(p�1) �

Z
��(x � �)

��v��
�2

ds
Z
��

1

(x � �)
ds.

Combining this inequality and (5), we have

�2�R� ev dx
�2(p�1) � 2n��R� ev dx

�p�1

Z
��

1

(x � �)
ds.

Hence sincep � 1 andv > 0 in �, we have

� � 2n�R� ev dx
�1�p

Z
��

1

(x � �)
ds� 2nj�j1�p

Z
��

1

(x � �)
ds,

where j�j is the measure of�. This gives� in the statement.
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We denote byC1 the branch of solutions of (1) starting from (�,v) = (0,0). Suppos-
ing thatC1 is bounded, we prove unboundedness of the componentC1 by contradiction
by making use of the standard degree argument similar to [18]. We provide the proof
for completeness and proceed it in the same mathod as in [19].Putting

F(�, v) = 1v + � ev�R� ev dx
�p ,

we apply the implicit function theorem. Then there exists a solution (�,v) for 0< ��
1. C1 is compact from the assumption and the existence of the upperbound� < +1.
Because

C \ f� = 0g = f(0, 0)g,
we can take open setU containingC1 with the properties

�U� \ C = ; and U� = ; for �� 1,

andU� \ C is composed of the solution of (1) with�1(�,v) > 0 for 0< �� 1, where

U� =
�v 2 C

��� �� (�, v) 2 U
	
.

In Banach spaceC
���, Leray-Schauder degreed(9�, 0,U�) is taken for any� > 0,

where9� = IC(�) �8� with

8�(v) = (�1)�1� ev�R� ev dx
�p .

From the homotopy invariance ([18]),d(9�, 0,U�) is independent of� > 0. However
by existence and nonexistence of the solution of (1), we have

�
d(9�, 0,U�) = 0 for �� 1,
d(9�, 0,U�) = 1 for 0< �� 1,

which is a contradiction.

3. Ball case

In this section, we assume that� = B, where B = fx 2 Rn j jxj < 1g.
Proof of Theorem 2. According to [6], any solution of (1) is radially symmetric.

Hence we have 8<
:

(r n�1v0)0 + �r n�1 ev�R� ev dx
�p = 0 for r > 0,

v(1) = 0, v0(0) = 0,
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where

v = v(r ) for r = jxj.
We begin with the parametrization of the solution setC, following [7], [13], [14] and
[15]. In fact, any solution is obtained as a solution of the initial value problem

(6)

�
(r n�1v0)0 + � r n�1ev = 0 for r > 0,v(0) = A, v0(0) = 0,

with a certain positive constantA. Through the Emden transformation

(7) v(r ) = w(t)� 2t + A, r =

�
2(n� 2)�eA

�1=2
et ,

(6) is reduced to the autonomous ordinary differential equation

(8)

(ẅ + (n� 2)ẇ + 2(n� 2)(ew � 1) = 0
lim

t!�1(w(t)� 2t) = lim
t!�1 e�t (ẇ(t)� 2) = 0.

Then there exists a unique global solutionw = w(t) of (8) by [14]. The orbitO =f(w(t), z(t)) = (w(t), ẇ(t)) j t 2 Rg starts att = �1 along and below the linez = 2
with w = �1, and approaches the origin (0, 0) ast ! +1. If 3 � n � 9, it proceeds
clockwise in f(w, z) j z< 2g, crosses infinitely many timesz- and w-axes alternately,
while it keeps to stay inf(w, z) j w < 0, 0< z < 2g in the case ofn � 10. Through
the Emden transformation (8), the boundary condition in (1)is converted to

w(� )� 2� + A = 0

with �
2(n� 2)�eA

�1=2
e� = 1.

Therefore for any� 2 R, (�� , v� ) defined by

(9) v� (r ) = w(t)� 2t � fw(� )� 2� g = w(log r + � )� w(� )� 2 logr

with r = et�� and

(10) A� = 2� � w(� ), �� = 2(n� 2)e2��A = 2(n� 2)ew(� )

satisfies (1). Conversely every solution of (1) can be expressed in the form of (9)
and (10). According to [7], [13], [14] and [19], the total setS of the solution (� , v)
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of (2) is homeomorphic toO through the relation (7) with the constantsA, � deter-
mined by (10). This means thatC is homeomorphic toO. Each point ofO is given
as (w(� ), z(� )) and henceC is parametrized by� 2 R. Then we have

(11) �(� ) = !p
n 21�p(n� 2)1�p(2� z(� ))pe(1�p)w(� ).

In fact, putting K =
R

B evdx we have

�1=p�1 = K 1�p� 1=p�1

because ofK p = �=� . By (10), we have

�1=p = �K 1�p� 1=p�1 = �K 1�p(2(n� 2)ew(� ))1=p�1.

Integrating (1) overB, we have

��K 1�p = !nv0(1) = !n(z(� )� 2)

by (7). Finally combining two equations, we have the desiredone. Hence the
behaviour of � = +1 follows at once. On the other hand lim�!�1 v� = 0 and
lim�!�1 �� = 0 imply that lim�!�1 �� = 0. The rest follows.

In the use of (11), we have

�̇(� ) = !p
n 21�p(n� 2)1�p(2� z(� ))p�1e(1�p)w(� )f(1� p)z(� )(2� z(� ))� pż(� )g.

If n � 10 and p � 1, �̇(� ) > 0 for all � 2 R which proves the statement. Next
we concentrate on the case of 3� n � 9 and 2=n � p � 1. To do so, we put
g(� ) = (1� p)z(� )(2� z(� ))� pż(� ). Then we have

(12) ġ(� ) = 2(1� p)(2� z(� ))ż(� ) + (pn� 2)ż(� ) + 2p(n� 2)ew(� )z(� ).

Let Ok (k � 2) denote the successive pointsw-axis andz = �2(ew � 1) crossed by the
orbit O in w � z plane in order. Moreover we setO1 = (�1, 2). Then�̇(� ) > 0 and�̇(� ) < 0 on the arcO4k�3O4k�2 and O4k�1O4k, respectively fork � 1. On the other
hand ġ(� ) < 0 and ġ(� ) > 0 on the arcO4k�2O4k�1 and O4kO4k+1, respectively for
k � 1. Hence there exists a unique pointÕ = (w(� ),z(� )) on the every arcO4k�2O4k�1

andO4kO4k+1 respectively fork � 1 such that�̇(� ) = 0. The proof is complete.

We proceed the proof of Theorem 3 in the same argument and computation as
in [15].

Proof of Theorem 3. As far as we consider negative eigenvalues in (4), the corre-
sponing eigenfunctions are radially symmmetric ([12], [13]). Hencei (�,v) = i R(�,v) for
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(�,v) 2 C. We denote by�l� the l -th eigenvalue of (4) in (�(� ),v(� )) 2 C coresponding
to radially symmetric eigenfunctions. Any of them is simple. If (�(� ), v(� )) 2 C is the
turning point of C, then there existsl � 1 such that�l� = 0 by the implicit function
theorem. On the contrary,�l� = 0 for somel � 1 at (�(� ), v(� )) 2 C implies that it
is a turning point by the bifurcation theorem from the critical point of odd multiplic-
ity ([17], [18]). Since�1�� > 0 for sufficiently large� > 0, we havei (�, v) = 0 for
(�(� ), v(� )) 2 C for n � 10 and p � 1.

For 3� n � 9 and 2=n � p � 1, let Tk = (�(�k), v(�k)) for �1 < �2 < � � � denote
the turning point ofC. Then we have�l�k

= 0 for somel � 1 and we have only to

show that�̇l�=�k
< 0 for all k � 1.

Differentiating (1) with respect to� , we have

(13)

8><
>:
1v̇ + �̇ ev�R

B ev dx
�p + � ev v̇�R

B ev dx
�p � �p

R
B ev v̇ dx�R

B ev dx
�p+1ev = 0 x 2 B,

v̇ = 0 x 2 �B,

and hence 8><
>:
1v̇k + �k

evk v̇k�R
B evk dx

�p � �k p

R
B evk v̇k dx�R
B evk dx

�p+1evk = 0 x 2 B,

v̇k = 0 x 2 �B,

for vk = v( � , �k). Then we have

v̇(r , � ) = ẇ(log r + � )� ẇ(� ) 6� 0,

and therefore, ˙vk is an eigenfunction of (4) corresponding to� = �l�k
= 0. Then, the

standard perturbation theory ([8]) guarantees the existence of � = �( � ,� ) and� = �(� )
satisfying (4),�( � , �k) = v̇k, and�(�k) = �k�k

= 0. Differentiating (4) and (13) with
respect to� , subtracting each other with� = �k, multiplying by v̇ and integrating it
over B, we have

(14) �̈
R

B ev v̇ dx�R
B ev dx

�p = �̇ Z
B
v̇2 dx,

where �̇ = �̇(�k), �̈ = �̈(�k), v = v( � , �k) and v̇ = v̇( � , �k). As is stated in the proof
of Theorem 2,

(15) �̇(� ) = !p
n 21�p(2� z(� ))p�1e(1�p)w(� )g(� ) = !p

n� (� )1�p(2� z(� ))p�1g(� ),

where g(� ) = (1� p)z(� )(2� z(� ))� pż(� ). Differentiating (15), we have

�̈(� ) = !p
n� (� )1�p(2� z(� ))p�2

� f(1� p)(�z(� )2 + 2z(� ) + ż(� ))g(� ) + (2� z(� ))ġ(� )g.
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Since �̇(� ) = 0 at � = �k, it holds thatg(�k) = 0, namely,

(1� p)z(�k)(2� z(�k))� pż(�k) = 0

from (15). We have� = !p
n (2� z)p� 1�p from (10) and (11),

�̇ = !p
n (2� z)p�1� 1�pf(2� z)��1�̇ (1� p)� pzg

by differentiating, and

� ż =
(2� z)(1� p)

p
�̇

at � = �k. Hence we have

�̈(� ) = !p
n� (� )�p(2� z(� ))p�1

� �2(p� 1)2(2� z(� ))2

p
+

(pn� 2)(1� p)(2� z(� ))

p
+ p� (� )

��̇ (� )
(16)

at � = �k. Since� = �Æ�RB ev dx
�p

, it holds that

(17) �̇ =
�̇�R

B ev dx
�p � �p

R
B ev v̇ dx�R

B ev dx
�p+1 .

Hence we have

�̇ Z
B
v̇2 dx = ��p

�R
B ev v̇ dx

�2�R
B ev dx

�2p+1!p
n� (� )�p(2� z(� ))p�1

� �2(p� 1)2(2� z(� ))2

p
+

(pn� 2)(1� p)(2� z(� ))

p
+ p� (� )

�

at � = �k from (14) and (16). Let
R

B ev v̇ dx = 0. Then (17) means thaṫ� = 0 and�̇ = 0 vanish at� = �k simultaneously. However it is impossible from (10) and (11).
Finally we have ˙� < 0 at � = �k.

4. Annulus domain

In this section, we assume that� = Aa = fx 2 Rn j a < jxj < 1g with a 2 (0, 1)
and consider radially symmetric solutions of (1).

We cite known results in [14] for the case of 3� n � 9. Radial solutions of (2)
satisfy

(18)

�
(r n�1v0)0 + � r n�1ev = 0 for a < r < 1,v(a) = v(0) = 0.
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We can continue the solution of (18) up tor = +0 satisfying

lim
r#0

�v0(r )� L

r n�1

�
= 0

and

lim
r#0

�v(r ) +
L

(n� 2)r n�2

�
= M

for someL, M > 0. Through the modified Emden transformation

v(r ) = w(t)� 2t + M, r = Bet

with

B =

�
2(n� 2)�eM

�1=2
,

(18) is reduced to the autonomous ordinary differential equation

(19)

8>><
>>:
ẅ + (n� 2)ẇ + 2(n� 2)(ew � 1) = 0,

lim
t!�1�w(t)� 2t + �e�(n�2)t� = 0,

lim
t!�1 e�t

�ẇ(t)� 2� �(n� 2)e�(n�2)t� = 0,

where� = L B�(n�2)=(n� 2).
Then there exists a unique global solutionw = w�(t) of (19) for every� > 0. The

orbit O� = f(w(t), z(t)) = (w�(t), ẇ�(t)) j t 2 Rg starts att = �1 above the linez = 2
with w = �1, and approachs the origin (0, 0) ast ! +1. Then the family of orbitsfO�g��0 forms a foliation, that is,O� \O� = ; if � 6= �. Every orbitO� with � > 0
crosses the linez = 2 just once. Moreover if� > � > 0, O� lies in the left side of
O� as t increases. For every point (�0, �0) 2 6 � f(w, z) j w > 0, z > 2g, there is a
unique nonnegative� such that (�0, �0) 2 O�.

Let w� = w�(t) be the solution of (19). Then every point (w, z) on O� determines
the time t so that the boundary condition

v(a) = v(1) = 0

is converted into

(20) w(t�)� 2t� + M = 0 and w(t+)� 2t+ + M = 0

for

(21) t� = log
a

B
and t+ = log

1

B
.



170 T. M IYASITA

Henceforward we omit the subscripts� and so on unless there is any confusion.
Furtherw� and z� denotew�(t�) and z�(t�), respectively. From (20) and (21), it
holds that

(22) w+ � w� = �2 loga and t+ � t� = � log a.

Conversely, if there exists a pair of pointsP�(w�, z�) on O� satisfying (22), we have
a radial solutionv = v(r ) for (18) with some positive constant� . In fact, we define
B, M, L, � and v(r ) as

B = ae�t� = e�t+
,

M = 2t� � w� = 2t+ � w+,

L = �(n� 2)an�2e�(n�2)t� = �(n� 2)e�(n�2)t+
,

� = 2(n� 2)ew+
= 2(n� 2)a�2ew� ,

v(r ) = w(t)� 2t + M.

Therefore the structure of the solution of (18) is reduced tothat of pairs of P�
on O�. We call fP�� g the boundary pair onO� associated with the annulusAa in Rn.

For everya 2 (0, 1), there exists a unique pair of pointsP�� = P�(w�� , z�� ) satis-
fying (22) on each orbitO� (� > 0). The pointsP+� and P�� lie below and above the
line z = 2 respectively, and further, these pointsP�� depend on� continuously. Con-
versely for each point (w�(t), z�(t)) on O� with z�(t) < 2 (z�(t) > 2), there exists a
uniquea� = a�(t) 2 (0, 1) (a� = a�(t) 2 (0, 1)) such that

w�(t)� w�(t + log a�) = �2 loga�.
(w�(t � log a�)� w�(t) = �2 loga�.)

Hence we have only to studyKa = fP�� (w�� , z�� ) j � > 0g to get the structure of
solution of (18). The setKa forms a continuous curve inR2, which is homeomorphic
to R. Now we have two lemmas.

Lemma 1 ([14], Lemmas 4.8 and 4.9).For any fixed a2 (0, 1), we have

8>>>>>>><
>>>>>>>:

lim�!0
w+� = lim�!0

w�� = �1,

lim�!0
z+� = lim�!0

z�� = 2,

lim�!0
kv�kC(�) = 0,

lim�!0 �� = 0,

where P�� (w�� , z�� ) are the pair of boundary points on O� associated with Aa.
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Lemma 2 ([14], Remark 6.1). For any fixed a2 (0, 1), we have

8>>>><
>>>>:

lim�!+1 w+� = lim�!+1 w�� = �1,

lim�!+1kv�kC(Aa) = +1,

lim�!+1 �� = 0,

where P�� (w�� , z�� ) are the pair of boundary points on O� associated with Aa.

Proof of Theorem 4. We concentrate on the case of 3� n � 9. The behaviour
of �� and v� as �! +0 follows from Lemma 1, that is,

lim�!0
�� = lim�!0

��
�Z

Aa

ev� dx

�p

= 0 and lim�!0
kv�kC(Aa) = 0.

Integrating (1) overAa, we have

(23) � = !p
n (2(n� 2)a�2ew�)1�p(an�2(z� � 2)� (z+ � 2))

in the same way as we deduce (11). Now it holds that

lim�!+1 z�� = +1.

In fact, we assume thatz�� < M for any � 2 R, where M is a positive constant owing
to z�� > 2. Since Ka is homeomorphic toR, there is a constantK > 0 such thatw�� < K for any � 2 R by Lemma 2. By settingQ = f(w, z) j w < K , 2< z < Mg,
it holds thatO� \ Q = ; for some� 2 R. Actually, for (w, z) = (K , M) there is� > 0 such that (K , M) 2 O� because of (K , M) 2 6 � S��0 O�. Since z- andw-coordinate are decreasing and increasing with respect tot respectively inf(w, z) jw > g(z), z > 0g, O� \ Q = (K , M). Hence if we put� = � + Æ for any Æ > 0, we
haveO� \ Q = ; becauseO� lies in the left side ofO� as t increases. The pointsf(w�� , z�� ) j � > 0g on O� don’t satisfyw�� < K , z�� < M simultaneously, which is a
contradiction. Therefore we have lim�!+1 z�� = +1. Finally from (23), z+� < 2 and
p � 1, we have lim�!+1 �� = +1. In the case ofn � 10, we chage6 and K byf(w, z) j w < 0, z> 2g and a negative constant, respectively.
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