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Abstract
Every locally trivial action of the additive group of comglenumbers on a
factorial affine variety has finitely generated ring of ingats. A criterion is
given for such an action on complex four space to be conjugate translation.
Restrictions on the nature of the singularities of the vgrigefined by the ring of
invariants of triangular actions are noted.

1. Introduction

Let G, denote the additive group of complex numbers, &hd complex affine va-
riety. By an action ofG, on X we will mean an algebraic action. It is well known that
every such action can be realized as the exponential of socadlyl nilpotent derivation
D of the coordinate ringC[ X] and that every locally nilpotent derivation gives rise to
an action. The rindCy of G, invariants inC[X] is equal to the ring of constants of the
generating derivation. While it is known th&; need not be finitely generated, even
for actions onC®, the question of finite generation is interesting for spekiads of
actions. Indeed, while we have finite generation for all@axi on normal varieties of
dimension < 3, the known actions of" with nonfinitely generated invariants all are
(quasi)homogeneous and therefore have fixed points. Itksawn for n > 3 whether
every fixed point free action o€" has finitely generated invariants, but the ring of
G, invariants is finitely generated for all actions @t whose generating derivation is
triangulable (triangulable actions) [2].

An action is said to be equivariantly trivial if there is a iy Y for which X is
G4 equivariantly isomorphic t& x G,, the action onY x G, being given bygx*(y,h) =
(y,g+h). Equivariant triviality of an action orX is equivalent with the existence of a
regular functions € C[X] for which Ds = 1. Such a function is called a slice and, if
one exists,C[X] = Cp[s]. In this caseY is a geometric quotient an@p = C[Y]. The
action is locally trivial if there are affine varietie§ and a cover ofX by G, stable
affine open subsetX; on which the action is equivariantly trivial.

There are locally trivial actions on normal affine varietiggh nonfinitely gener-
ated invariants [3]. Throughout this paper, the term “faeloaffine variety” means an
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affine variety with trivial divisor class group, i.e. one wlkoordinate ring is a unique
factorization domain. The authors asserted in [4, Propa2® Cor. 2.10] the existence
of locally trivial actions on factorial affine varieties. &hargument was incorrect and
it is shown in Section 2 that in fact the ring of invariants frlocally trivial action
on a factorial affine variety is finitely generated.

It was shown in [9] that a locally trivial triangular actiomdC* is equivariantly
trivial with quotient isomorphic taC3. In Section 4 a topological criterion for equi-
variant triviality of a locally trivial action is given.

Given an actiono: Gy x X — X, let o: G x X — X x X denote the graph
morphism ands? C[X] — C[X,1] (resp.c: C[X x X] — C[X,t]) denote the induced
maps on coordinate rings. The action is said to be proper i a proper morphism
(i.e. if C[X,t] is integral over the image af)” A proper action onX = C" is known to
be locally trivial if C[X] is a flat ring extension o€y or if Cy defines a smooth variety
[6, Theorem 2.8]. While a finitely generatégh need not define a smooth variety in
general, for triangular actions ofi* isolated singularities of this variety can be only of
a restricted type, namely canonical singularities. An gxanis given of a fixed point
free but nonproper triangular action @f with nonisolated singularities. The authors
know of no example of a proper triangular action 6A with nonregularCo, i.e. all
known proper actions are equivariantly trivial.

2. Finite generation for locally trivial actions

From [8] we know that the quotient of a locally trivial actiam an affine factorial
variety X exists as a quasiaffine varie’ ¢ SpecR®, where R is the subring ofCq
constructed as follows: Let(a), ..., d8(a,) € Co generate the unit ideal i€[X], and
setR = C[X, 1/8(a)]%. Note thatC[X,1/8(a)] = R[a/8(a)] so thatR; is a finitely
generatedC algebra, sayR = C[biy, ..., bim, 1/6(&)], with b € Co. It is easy to
check thatR; = Co[1/8(g)]. The ring

R°=C[by,8(a)[1<i<n 1<j<m

is the required subring o€, and, withY; = SpecR;, we haveY? = Ui Yi. Note that
R is a unique factorization domain, so thgt and thereforeY® are normal.

Denote byR the integral closure oR°, which is a finitely generated®® module.
Factorial closedness d€y in C[X] implies that R is a subring ofCy, in fact Cy is
the factorial closure ofR and therefore the morphisi{ — SpecRC factors through
SpecR. We can therefore replacR® by R and Y° by the imageY of X in SpecR.
Thus X — Y is a geometric quotient and — SpecR an open morphism. Moreover,
Cy is the ring of global sections of the structure sheafyofand isomorphic tdl, (R),
the ideal transform oR with respect to the radical ideal defining the (Zariski ctjse
complement ofY in SpecR.
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REMARK 1. If R is regular then SpeR — V(J) is affine variety for any height
one idealJ e.g. [12]. WhenR is regular it follows thatCy is affine and regular, and
Y is smooth as well. Since is the total space of a principa, bundle over the
smooth quasiaffing’, X is smooth.

More generally, we have the

Theorem 2.1. Let G, act locally trivially on the factorial affine variety XThen
the ring of G, invariants in C[X] is finitely generated

Proof. With R,Y, | as above, note that if the height bfis at least 2, i.e. prime
ideals minimal overl all have height> 2 so that

codimgpecr(SpecR —Y) > 1

then Co = R. Assume then thaht(l) = 1 and writel = J N K where J is the
intersection of the height one prime ideals minimal oveand K the intersection of
the minimal prime ideals of of height greater than one. Th&y = T,(R) = T;(R)
since R is integrally closed [13, p.41 Corollary]. We claim that feach maximal ideal
m of R, Con, is flat over Ry, and therefore tha€Cy is flat over R. The assertion then
follows from [15, Corollary 3.5].

Denote byZ the subscheme of Spé& defined byJ and by W its complement.
In the terminology of [1],

Naf(Z) = {x € SpecR: W N SpecRy is not affing

is a closed subset af, since R is noetherian, and empty if and only W is affine.
We claim thatNaf(Z) = @. Let m be the maximal ideal oR defining a closed point
z of Z, and setS = R—m c Cy. Since Z is a component of the complement of
the image of f: X — SpecR, mC[X] = C[X]. We claim thatqf(R) c S 'C[X].
Indeed, if 0#r € R is a nonunit inS1C[X], let M be a maximal ideal o5 1C[X]
containngr S~*C[X]. ThenC = C[X]/M NC[X] is a field which is finitely generated
as a ring overR/M N R. Thus R/M N R is a field, andM N R =m, contradicting the
assumption thag ¢ im(f).

Sinceqf(R) = qf(Cp), we obtainS™*C[X] = qf(Co)[s] where s is transcendental
over qf(Cp) and j(s) € Co — {0}. SinceS c Cy,

(STCIX])® = qf(Co)
=S'Co
=S'T(R)
= TR, (Rm)
= JRnTiR,(Rm).
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The last equality shows that/ N SpecR,, is affine for every maximal ideal oR, from
which it follows thatNaf(Z) = ¢, i.e. thatW is affine.

From affineness oW we conclude thaf;(R) is flat over R and therefore finitely
generated oveR and overC [15, Corollary 3]. U

3. A slice criterion

Following Miyanishi [11], a morphismf : Z — W of complex algebraic schemes
is said to begeometrically irreducible in codimension o@&ICO) if for any irreducible
subvariety T of Z of codimension one the field extensit@(T)/(C(ﬁ) is regular.
Here f(T) denotes the closure of (T) in W. An action of G, on a complex affine
variety X is said to be GICO ifC[X]® = C, is affine and the induced morphism
SpecC[X]® — SpecC, is GICO. It was shown in [6] that proper actions ¢h= C"
with finitely generated invariants are GICO and that the Gl@@dition is equivalent
with the intersection of the kernel and image of the genegatierivation not lying in
any height one ideal of[X] (equivalently of Cp). A GICO action onC" with Cy
finitely generated and regular is locally trivial [5].

An example of a locally trivialG, action onC® with finitely generated regular
invariants but no slice was given in [18]. The next resultgasgis that such an example
might not occur for actions oft*.

Theorem 3.1. Consider a GICO(e.g. proper) G, action on X=C* and assume
that G is finitely generated and regulaSet W= SpecCy, 7: X — W the morphism
induced by the ring inclusion £c C[X], and V = W — im(). If V is smooth
and distinct irreducible components of V are disjoint thée tction is equivariantly
trivial.

Proof. It is shown in [6] that a proper action is GICO and a Gl@Qion with
regular invariants is locally trivial. Thubl = im(x) is open inW andz: X — U is
a geometric quotient. If the action doesn’t admit a slicenttill, Theorem 2] yields
that V is of pure codimension 2 iW (the flathess ofr, missing from the hypothe-
sis of that theorem, holds in the present context [4]). I, fadth V = Uikzl\/i the
decomposition into irreducible components, we show that\thare all isomorphic to
the line CL. In the following, we use singular homology with integralefficients.

From the Lefschetz theorem on the homology of complex affaréeties we obtain
Hj(Vi) = 0 = Hj(V) for j > 2, andH;(W) = 0 for j > 5. The Thom isomorphism
yields H;(W,U) = H;_4(V) so thatH;(W,U) =0 for j < 4 andj > 5. Also, the
local triviality realizesX as a principalG, bundle overU, and thereforeH;(U) = 0
for j > 0.

The long exact sequence for the paw,(U) shows thatHo(W) = Hp(U) = Z,
Hj(W) =0 for j =1, 2,3 andHs(W,U) = 0. ThusH;(V) =0, from which we deduce
that all V; = CI.
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For eachi, let T C W be a tubular neighborhood &f and sefT = Uiklei- From
the Mayer-Vietoris sequence foJ(T) it follows that H;(U N T) = O for all j > O.
But eachU N T; is homotopic toR* — {pt.}, which in turn is homotopy equivalent to
S®. Since H3(S%) # 0 we obtain a contradiction unleds = ¢. O

It should be noted that an example of a proper but not locaiyat action on a
smooth factorial fourfold (not isomorphic t64) with finitely generated but nonregular
invariants was given in [8].

4. Singularities

Recall the following result from [9]:

Theorem 4.1. Let X be a smooth factorial quasiaffine varie§uppose that &
acts algebraically on X and that LCis finitely generated ove€. If dim X < 5 then
Co is Gorenstein

This applies in particular to triangula®, actions onC* for which the ring of
invariants is known to be finitely generated. Since the rifigneariants is identical
with the kernel of the generating derivation, the followilggnma is easily verified:

Lemma 2. Let G, act onC" via a nonzero triangular derivation

: 3
5= Z Pi(Xy, .- -y Xic1) —
i=2

9% ’

Then

(1) 6 commutes withh/9xy.

(2) 9/0x, restricts to a locally nilpotent derivation on the kernel &f
(38) The associated Gaction onker(d) is trivial if and only if § = 9/0X,.

Flenner and Zaidenberg [10, Corollary 1.13] have shown #maisolated Cohen-
Macaulay singularity of a complex affine variety admitting entrivial G, action is a
rational singularity. As a consequence we obtain the

Corollary 4.2. Let G, act onC* via a triangular derivations and let Y denote
the affine variety defined by,CIf y € Y is an isolated singularity then y is a rational
singularity.

REMARK 3. (1) The proper but not locally trivial action o in [5] has finitely
generated ring of invariants defining a variety singular adimension exactly 3.
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(2) Fixed point free triangular actions o6 for which Y has isolated compound
du Val singularities have been given in [18] and [7]. A typiexample is the fol-
lowing:

EXAMPLE 1. Let G, act onC? via the triangular derivation

0 0 d
§ = [(X2 = 2X1%3) — 1]— + Xp— + X1 —.
[(x3 1X3) ]8x4 25% Mo

Settingc; = Xg, € = x§ — 2X1X3 — 1, C3 = X1X4 — X2Cp,
Co =C[cy, €, C3,¢4]  with the relation cicq — ¢35 — c5(co + 1) = 0.

Observe that the origin is the unique singular point. Aftechange of variables,
the completion of the local ring of the singular point is &asieen to be isomorphic
to C[[c1, G2, C3, Cal] /(c + €5 + 5 + C3).

REMARK 4. We know of no proper triangular action @f for which the variety
defined by the ring of invariants is singular (and therefor@vk of no proper action
on C* which is not conjugate to a translation).

With the aid of Singular [16] Parag Mehta discovered the following example of a
fixed point free nonproper action with maximally singulavariants (i.e. the singular
locus has codimension 2, minimal for a factorial variety):

EXAMPLE 2. Let G, act onC? via the triangular derivation

0 0 0
8 = [Xg(X3 — 2X1X3) + 1]— + Xp— + Xg —.
[X3(x3 1X3) ]8x4 255 T %

Set
Ci1 = X1
— 2
Co = X5 — 2X1X3
C3 = X5 — BX1X3X3 + 6XZXpX3 + 3X9Xyg — 3X1X2
20 44 32
Ca = X5X3 — XXX + — x2x3x3 — X33
3 3 3
— 2X3%4 + 10Xy X3XaXs — 12X2XoX2X4 + 2X5
X5X4 1X5X3X4 1 X2X3%Xq X5 X3
— 12X X5X2 + 16x3X5 — 3X2XZ + 6X1XoX4 — 3X3.

Then Cy = Clcy, ¢, C3, C4] and the relation satisfied by the generators is

2 +6¢,C5 — ¢ + 3cicy = 0.
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With Y denoting as usual the affine variety with coordinate ridg the singu-
lar locus of Y is given byc; = ¢, = ¢ = 0. The singularities are again seen to be
compound du Val by applying the quasihomogeneity critefimndu Val surface sin-
gularities [14, p.275] to the surface defined by:

2 3 5
c; +6cic; —¢c; =0.

It is of interest to explore the kinds of isolated singuiastthat can arise as iso-
lated singularities ofY. A three dimensional rational Gorenstein singulagtys known
to be canonical. It follows that the singularity is eithemmgmound du Val or the gen-
eral hyperplane section throughis an elliptic surface singularity [14]. On the other
hand, the following proposition indicates that the classiafjularities that can arise is
even more restricted. The argument is a slight modificatibon@ given in [17].

Proposition 4.3. Let G, act via a triangular derivations on C*. If the variety
Y defined by the ring £of G, invariants has only isolated singularitiethen they are
not quotient singularities

Proof. Letmr: C* — Y denote the morphism induced by the ring inclusion. With
Z; and Z, denoting the zero loci 0€,Nim(8) in C* andY respectivelyr|cs 7,: C*—

Z1 — Y — Z, is a geometric quotient. In particular fibers are generically connected.
Note that for any pointy, 7*(y) has codimension at least 2. Indeed, as argued in
[17] a codimension 1 component would be the zero locus of mari@nt polynomial
and therefore not the fiber of a single point.

Suppose that an isolated singularityof Y is a quotient singularity. LeV be an
analytic neighborhood of analytically isomorphic toaC3/G for some nontrivial finite
subgroup ofGL3(C). Note that the fundamental group(V — {y}) = G. Let B be
an open ball int~1(V) and consider the morphismg = Tlg_r1(y): B— 7 Yy) —

V — {y}. Since codima 7~(y) > 2, B — x~(y) is simply connected and therefore
g factors through the simply connected universal coveriracep) of V — {y}. This
contradicts the generic connectednessrdfibers. Ul

We close with the following

Conjecture 1. A proper G, action onC#* has regular ring of invariants Thus a
proper action is locally trivia] and a proper triangular action is equivariantly trivial
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