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Abstract
The isovariant Borsuk-Ulam theorem provides nonexistenceresults on isovariant

maps between representations. In this paper we shall deal with the existence problem
of isovariant maps as a converse to the isovariant Borsuk-Ulam theorem, and show
that the converse holds for representations of an abelianp-group or a cyclic groups
of order pnqm or pqr, where p; q; r are distinct primes.

0. Introduction

A map f : X ! Y betweenG-spaces is calledG-isovariant if it is G-equivariant
and preserves the isotropy groups, i.e.,G f (x) = Gx for all x 2 X. Throughout this
paper all maps are understood to be continuous. Isovariant maps often play important
roles in equivariant topology, see, for example, [2], [5], [8]. The existence problem
of isovariant maps is, therefore, fundamental and important, as well as that of equi-
variant maps.

We shall study isovariant maps between representations, especially the existence
problem of isovariant maps between representations of someabelian groups. A starting
point of this study is the isovariant Borsuk-Ulam theorem [10], which provides non-
existence results on isovariant maps between representations.

Theorem 0.1 (Isovariant Borsuk-Ulam theorem).Let G be a finite solvable
group. If there exists a G-isovariant map f: V ! W between representations, then
the following inequality holds:

dim V � dim VG � dimW � dimWG:
We say thatG has theIB-property (isovariant Borsuk-Ulam property) if it holds that
dim V � dim VG � dimW � dimWG for every pair (V;W) of G-representations such
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that there is aG-isovariant map fromV to W. As a result, every finite solvable group
has the IB-property.

REMARK . It is known [10] that some kind of nonsolvable groups have the IB-
property, and [6] that a weaker version of the isovariant Borsuk-Ulam theorem holds
for an arbitrary compact Lie group; the author, however, does not know whether an
arbitrary compact Lie group has the IB-property.

Let G be a finite solvable group, and letV and W be G-representations. Suppose that
there exists aG-isovariant mapf : V ! W. For any pair of subgroupsH ⊳ K (H is
normal in K ), the restriction of f to the H -fixed point sets yields aK=H -isovariant
map f H : V H ! WH . Since K=H is also solvable, it follows from Theorem 0.1 that

(CV;W): dim V H � dim V K � dimWH � dimWK for any pair H ⊳ K .

Moreover the pair (V;W) obviously satisfies

(IV;W): IsoV � IsoW,

where IsoV denotes the set of isotropy subgroups ofV . For the converse of these
facts, we shall give the following definition and question.

DEFINITION. We say that a finite solvable groupG has thecomplete IB-property
if for every pair (V;W) of G-representations satisfying conditions (CV;W) and (IV;W),
there exists aG-isovariant map fromV to W.

QUESTION. Which finite solvable groups have the complete IB-property?

REMARK . As seen in§1, if G is nilpotent, (CV;W) implies (IV;W). In the case,
(IV;W) can be removed from the above definition.

Concerning this question, we shall show in this paper that certain abelian groups have
the complete IB-property; precisely,

Theorem A. Let p;q; r be distinct primes. The following groups have the com-
plete IB-property:
(1) abelian p-groups,
(2) Cpmqn , the cyclic group of order pmqn (m� 1, n � 1),
(3) Cpqr , the cyclic group of order pqr.

REMARK . S. Kôno announces thatCpmqn has an analogous property for complex
representations.
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Since conditions (CV;W) and (CV�U;V�U ) are equivalent, as a consequence, one can
see the following.

Corollary B. Let G be one of abelian groups listed inTheorem A.Then there
exists a G-isovariant map from V to W if and only if there exists a G-isovariant map
from V�U to W�U for some representation U.

This paper is organized as follows. In§1 we shall recollect basic properties of iso-
variant maps. In§2 we shall show that an arbitrary abelianp-group has the complete
IB-property after recalling some facts from representation theory.§§3 and 4 will be de-
voted to showing Theorem A (2); in§3 we shall introduce the notion of an elementary
isovariant map, and in§4, construct an isovariant map combining elementary isovariant
maps. In§5 we shall show Theorem A (3). To do that, in addition to elementary iso-
variant maps, we need another kind of isovariant map. We shall show the existence
of such a map using equivariant obstruction theory discussed in [7].

1. Basic properties of isovariant maps

We first recall basic notations and facts on isovariant maps,which are freely used
throughout this paper.

Let G be a finite group. We writeH � K when H is a subgroup ofK , and
H < K when H is a proper subgroup ofK . Let X;Y be G-spaces andf : X ! Y
a G-map. Let H be a subgroup ofG. Restricting the action, we obtain anH -map
ResH f : ResH X ! ResH Y, and restricting f to the H -fixed point setXH , we ob-
tain an NG(H )=H -map f H : XH ! YH , where NG(H ) denotes the normalizer ofH
in G. Suppose next thatH is normal. Let X;Y be G=H -spaces andf : X ! Y a
G=H -map. Via the projectionp : G ! G=H , X and Y are thought of asG-spaces,
denoted by InfGG=H X and InfGG=H Y respectively, andf is thought of as aG-map, de-
noted by InfGG=H f . These are called theinflation of a G=H -space or aG=H -map. We
often omit the symbols ResH and InfGG=H for simplicity if there is no misunderstanding
in context. We first note

Lemma 1.1. The following hold.
(1) If f is G-isovariant, then ResH f is H-isovariant for any H� G.
(2) Let H be a normal subgroup. If f is G-isovariant, then fH is G=H-isovariant.
(3) Let H be a normal subgroup. If f : X ! Y is G=H-isovariant, then InfG

G=H f is
G-isovariant.
(4) If f : X1! Y1 and g: X2! Y2 are G-isovariant, then so is f� g : X1 � X2!
Y1 � Y2.
(5) If f : X1 ! Y1 and g: X2 ! Y2 are G-isovariant, then so is f� g : X1 � X2 !
Y1 � Y2, where � means join, in particular, the cone of f, C f : C X1 ! CY1, is G-
isovariant.
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(6) If f : X! Y and g: Y! Z are G-isovariant, then so is gÆ f : X! Z.
(7) If f : X! Y is H-isovariant, then G�H f : G�H X! G�H Y is G-isovariant.

REMARK . This lemma still holds for topological group actions.

Proof. It is clear that all maps are equivariant. It suffices to show that the maps
preserve the isotropy groups.

(1): This follows from Hx = Gx \ H .
(2) and (3): These follow from (G=H )x = Gx=H .
(4): This follows from G(x;y) = Gx \ Gy.
(5): For anyz = t x � sy 2 X1 � X2, t + s = 1, t � 0, s � 0, one can see that

Gz = Gx \ Gy when t 6= 0 ands 6= 0, Gz = Gx when s = 0, andGz = Gy when t = 0.
This leads to theG-isovariance of f � g.

(6): This follows from GgÆ f (x) = G f (x) = Gx.
(7): This follows from G[g;x] = gHxg�1.

By definition, a real representation ofG is a homomorphism� : G ! GL(V),
where GL(V) is the general linear group of a (finite dimensional) real vector space
V . Via this homomorphism,V becomes aG-space with linear action, called aG-
representation space, or simplyG-representation. By representation theory, cf. [9], any
real representation is isomorphic to an orthogonal representation, i.e., a homomorphism
from G to O(V) the orthogonal group ofV with inner product. In particular anyG-
representation isG-diffeomorphic to some orthogonalG-representation; hence for our
purpose it is sufficient to treat only orthogonal representations, and aG-representation
hereafter means an orthogonalG-representation. Since the action ofG is orthogonal,
the unit sphereS(V) and the unit diskD(V) of V are G-invariant, called therepre-
sentation sphereand therepresentation diskof V , respectively. LetVG? denote the
subrepresentation defined by the orthogonal complementV � VG of VG in V . The
following lemma says that the existence of an isovariant mapbetween representations
is equivalent to that of an isovariant map between the representation spheres or disks.

Lemma 1.2. Let V;W be G-representations. The following statements are equiv-
alent.
(1) There exists a G-isovariant map f: V ! W.
(2) There exists a G-isovariant map f: VG? ! WG?.
(3) There exists a G-isovariant map f: S(V)! S(W).
(4) There exists a G-isovariant map f: S

�
VG?�! S

�
WG?�.

(5) There exists a G-isovariant map f: D(V)! D(W).
(6) There exists a G-isovariant map f: D

�
VG?�! D

�
WG?�.

REMARK . This lemma still holds for representations of a compact Liegroup.
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Proof. (1)) (2): The inclusioni : VG? ! V is clearly G-isovariant, and the
projection p : W = WG? �WG ! WG? is alsoG-isovariant, sinceG acts trivially on
WG. Hence the composite mapp Æ f Æ i : VG?! WG? is G-isovariant.

(2) ) (4): Since
�
VG?�G =

�
WG?�G = 0, we have f �1(0) = f0g, and hence a

G-isovariant mapg : S
�
VG?�! S

�
WG?� can be defined byg(x) = f (x)=k f (x)k.

(4) ) (3): SinceG act trivially on VG and WG, any mapg : S(VG)! S(WG)
is G-isovariant. Taking join, we obtain aG-isovariant map

f � g : S(V) �= S
�
VG?� � S

�
VG
�! S

�
WG?� � S

�
WG

� �= S(W):
(3) ) (1): Taking the open cone off : S(V)! S(W), we obtain aG-isovariant

map f̃ : V �= Int D(V)! W �= Int D(W). Thus (1)–(4) are equivalent.
(4)) (6): Taking the cone off : S

�
VG?�! S

�
WG?�, we obtain aG-isovariant

map f̃ : D
�
VG?�! D

�
WG?�.

(6) ) (5): Since any mapg : D(VG)! D(WG) is G-isovariant, taking product,
we obtain aG-isovariant map

f � g : D(V) �= D
�
VG?�� D

�
VG
�! D(W) �= D

�
WG?�� D

�
WG

�:
(5)) (1): Let f : D(V)! D(W) be aG-isovariant map. We defineg : D(V)!

D(W) by g(x) = f (x)=2, theng is G-isovariant and mapsD(V) to the interior IntD(W)
of D(W). Hence we obtain aG-isovariant mapgjInt D(V) : V �= Int D(V ) ! W �=
Int D(W).

Thus the proof is complete.

In the rest of this section, we shall give some remarks related to condition (CV;W).
Consider the following condition

(C0
V;W): dim V H � dimWK � dimWH � dimWK for any pair H ⊳ K with K=H of

prime order.

As the first Remark,

Proposition 1.3. Let G be a solvable group. Conditions(CV;W) and (C0
V;W) are

equivalent. Moreover if G is nilpotent, then these conditions are equivalent to the fol-
lowing condition

(C00
V;W): dim V H � dimWK � dimWH � dimWK for any pair H< K of subgroups.

Proof. It is trivial that (CV;W) implies (C0
V;W). For any pairH ⊳ K of subgroups,

since K=H is solvable, one can take subgroupsHi , i = 0; : : : ; r , such that

H = H0 ⊳ H1 ⊳ � � � ⊳ Hr = K ;
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and Hi =Hi�1 is of prime order for eachi . By (C0
V;W) we have

dimV H � dim V K =
rX

i =1

�
dimV Hi�1 � dim V Hi

�

� rX
i =1

�
dimWHi�1 � dimWHi

�
= dimWH � dimWK :

Thus (C0
V;W) implies (CV;W).

If G is nilpotent, then every subgroup is also nilpotent. One mayassume thatK =
G by restricting the action. It is known from group theory thatthe normalizerNG(H )
of every proper subgroupH is strictly larger thanH , i.e., H < NG(H ). Using this
fact repeatedly, we have a sequence of subgroups:

H = H0 ⊳ H1 ⊳ � � � ⊳ Hr = G:
From the same argument as above, (CV;W) implies that

dimV H � dim VG � dimWH � dimWG:
The following proposition shows that, ifG is nilpotent, condition (IV;W) can be

removed from the definition of the IB-property.

Proposition 1.4. Let G be a nilpotent group. Then (CV;W) implies (IV;W).

Proof. Note that, for any representationU; H 2 IsoU if and only if dimU H >
dimU K for every K with H < K . By Proposition 1.3, we have

dim V H � dimV K � dimWH � dimWK ; H < K :
If H 2 IsoV , then dimV H � dim V K > 0, and hence dimWH � dimWK > 0. Thus it
follows that H 2 IsoW.

Finally we list some properties of (CV;W), which are easily verified.

Proposition 1.5. (1) (CV;W) implies (CResH V;ResH W) for any subgroup H.
(2) (CV;W) implies (CV H ;WH ) for any normal subgroup H.
(3) (CV;W) for G=H-representations, H ⊳ G, implies (CInfG

G=H V;InfG
G=H W).

(4) (CV;W) and (CV 0;W0) imply (CV�V 0;W�W0).
(5) (CV;U ) and (CU;W) imply (CV;W).
(6) (CV�U;W�U ) implies (CV;W).
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2. The case of abelianp-groups

In this sectionG is a finite abelian group. We shall recall several facts from rep-
resentation theory and transformation group theory. LetV be a G-representation and
V = V1 � V2 � � � � � Vr the irreducible decomposition. SinceG is abelian, eachVi is
(real) 1- or 2-dimensional. For any subgroupH of G, we setV(H ) =

L
i : Ker Vi =H Vi ,

where KerVi denotes the kernel of the representation homomorphism�Vi : G! O(k),
k = 1 or 2; if there are no irreducible representations with kernel H , we setV(H ) = 0.
Thus V is decomposed into

L
H V(H ).

A representation with trivial kernel is calledfaithful. Let V be an irreducibleG-
representation with kernelK ; thenV K (= V) is a faithful irreducibleG=K -representation.
Conversely ifU is a faithful irreducibleG=K -representation, then InfG

G=K U is an ir-

reducibleG-representation with kernelK . Since
�
InfG

G=K U
�K

= U and InfGG=K (V K ) =
V , the irreducibleG-representations with kernelK stand in one-to-one correspondence
with the faithful irreducibleG=K -representations.

Lemma 2.1. If K is the kernel of an irreducible G-representation V, then G=K
is cyclic.

Proof. The representation homomorphism�V : G ! O(k), k = 1;2, induces the
injective homomorphism ¯�V : G=K ! O(k), which is the representation homomorphism
of the irreducibleG=K -representationV K (= V). HenceG=K is cyclic, or isomorphic
to C2 � C2, but it does not happen thatG=K is isomorphic toC2 � C2. In fact every
irreducible real representation ofC2�C2 is 1-dimensional, and henceG=K (�= C2�C2)
must be a subgroup ofO(1) = C2; this is a contradiction.

Let D denote the set of subgroupsH such thatG=H is cyclic. Note thatD is
a closed family in the sense of [3], i.e., ifH � K and H 2 D, then K 2 D. For
a G-representationV , we setD(V) = fH j V(H ) 6= 0g, and thenV is expressed as
V =

L
H2D(V) V(H ). By Lemma 2.1,V(H ) = 0 for H =2 D, and henceD(V) � D.

Thus the representations of an abelian group are essentially reduced to those of cyclic
groups. We here recall the irreducible representations of the cyclic groupCn of or-
der n. Let g be a generator ofCn. The unitaryCn-representationti with underlying
spaceC is defined by settinggz = � i

nz, where z 2 C and �n = exp(2�p�1=n).
Representation theory shows thatti , 0 � i � n � 1, represent all irreducible unitary
Cn-representations. Over the real number field,ti turns to an orthogonal representation
(not necessarily irreducible), denoted byTi . Then Ti for 1 � i � [(n � 1)=2] repre-
sent all 2-dimensional irreducible representations, where [m] denotes the greatest inte-
ger not larger thanm, and Ti

�= Tn�i as orthogonal representations. The 1-dimensional
irreducible Cn-representations areR, the trivial 1-dimensional representation, andR�,
the nontrivial 1-dimensional representation (i.e.,g acts onR� by gx = �x), wheren
must be even in the latter case. Note thatT0; Tn=2;n is even in the latter case, are not
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irreducible and isomorphic to twice as many as a 1-dimensional irreducible represen-
tation; T0

�= 2R := R� R, Tn=2 �= 2R� := R� � R�. Note also that KerTi
�= C(i ;n), and

in particular Ti is faithful if and only if i is prime to n, which is equivalent to that
Cn acts freely onS(Ti ).

We next show the following.

Proposition 2.2. Let V be a representation of an abelian group G.
(1) For any nonempty subsetF � D(V),

T
H2F H 2 IsoV . Conversely, for any v 2

V , there is a subsetF � D(V) such that Gv =
T

H2F H .
(2) V is faithful if and only if 1 2 IsoV .

Proof. (1): For anyH 2 D(V), sinceG=H acts freely onV(H )n f0g, it follows
that Iso(V(H ) n f0g) = fHg, i.e., for any nonzerovH 2 V(H ), GvH = H . Take v =
(vH ) 2 V =

L
H2D(V) V(H ) such thatvH 6= 0 for H 2 F andvH = 0 for H 2 D(V)nF .

Then Gv =
T

H2D(V) GvH =
T

H2F H 2 IsoV . Conversely, for anyv = (vH ) 2 V =L
H2D(V) V(H ), setF = fH j vH 6= 0g. Then Gv =

T
H2F H .

(2): Since KerV =
Tv2V Gv, by (1) KerV is expressed as an intersection of

some elements ofD(V); this shows that ifV is faithful, then 12 IsoV . Conversely,
if 1 2 IsoV , then 1 is expressed as an intersection of some elements ofD(V); this
shows that KerV = 1.

In order to prove Theorem A (1), we shall prepare the following.

Lemma 2.3. Let G be an abelian group. If V and W are irreducible G-
representations with the same kernel, then there exists a G-isovariant map f: V ! W.

Proof. If V;U are trivial, this is obvious. Suppose thatV;W are nontrivial. By
Lemmas 1.1 (3) and 2.1, it suffices to show this in the case where V and W are faith-
ful Cn-representations. One may setV = Ti , W = Tj (i; j are prime ton) when n 6= 2,
and V = W = R� when n = 2. In the first case aCn-isovariant map is constructed as
follows: Choose a positive integerk with ik � 1 modn, and define f : Ti ! Tj by
setting f (z) = zk j . Then f is equivariant, in fact, for a generatorg of Cn,

f (gz) =
�� i

nz
�k j

= � ik j
n zk j = � j

n zk j = g f (z):
Moreover f �1(0) = f0g, and Cn acts freely onTi n f0g and Tj n f0g; hence f pre-
serves the isotropy groups. In the second case the identity map can be taken as an
isovariant map.

As a consequence of Lemma 2.3, one can see
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Proposition 2.4. Let V and W be representations of an abelian group G. If
dim V(H ) � dimW(H ) for every H2 D n fGg, then there exists a G-isovariant map
f : V ! W.

Proof. It suffices to show that there is aG-isovariant map betweenV(H ) and
W(H ) for every H 2 D n fGg. Let V(H ) =

Lr
i =1 Vi and W(H ) =

Ls
i =1 Wi , where

Vi and Wi are irreducible representations with kernelH . Sincer � s, by Lemma 2.3
there is an isovariant map fromVi to Wi for every 1� i � r , and hence an isovariant
map f : V(H )!Lr

i =1 Wi � W(H ).

We now show Theorem A (1).

Theorem 2.5. An arbitrary abelian p-group G has the complete IB-property;
namely, for any pair (V;W) of representations satisfying condition(CV;W), there exists
a G-isovariant map f: V ! W.

Proof. By Proposition 2.4 it suffices to show that dimV(H ) � dimW(H ) for any
H 2 D n fGg. SinceG is an abelianp-group, for anyH 2 D n fGg, there is a unique
minimal subgroupK in D strictly containingH . In fact, suppose thatK1; K2 2 D are
minimal subgroups strictly containingH . Since K i =H , i = 1;2, are subgroups of a
cyclic p-group G=H , it follows that K1 � K2 or K1 � K2, and the minimality shows
K1 = K2.

Let (V;W) be a pair of representations satisfying condition (CV;W). We may set
V =

L
L2D V(L) and W =

L
L2D W(L). Let H 2 D n fGg and K 2 D a unique

minimal subgroup strictly containingH . Then V H =
L

H�L2D V(L), and

V K =
M

K�L2D V(L) =
M

H<L2D V(L)

by the minimality of K . Consequently we obtain that

dim V H � dimV K = dimV(H );
and similarly

dimWH � dimWK = dimW(H ):
Thus we have dimV(H ) � dimW(H ) by (CV;W).

3. Elementary isovariant maps

Throughout this sectionG is an abelian group not of prime power order. We shall
introduce a special kind of isovariant map, called an elementary isovariant map, be-
tween certainG-representations.
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DEFINITION. Let p;q be distinct prime divisors ofjGj. A sequence of subgroups
of G: fH1; : : : ; Hr ; K1; : : : ; Kr +1g, r � 1, is called aW-sequenceof type (p;q) (with
length r ) if the following conditions are satisfied:
(1) Hi ; K j 2 D n fGg for any i; j ,
(2) Hi < K i and Hi < K i +1 for any 1� i � r ,
(3) K i =Hi is of p-power order andK i +1=Hi is of q-power order for any 1� i � r .

For H 2 D n fGg, let TH denote theG-representation inflated from theG=H -
representationT1 of the cyclic groupG=H , i.e., TH = InfG

G=H T1. Note that KerTH =
H . If G=H 6�= C2, then TH is irreducible as an orthogonalG-representation, and if
G=H �= C2, then TH is twice as many as the nontrivial 1-dimensional representation
R�

H = InfG
G=H R�; TH

�= R�
H � R�

H .

DEFINITION. Let fH1; : : : ; Hr ; K1; : : : ; Kr +1g be a W-sequence. AG-isovariant
map fromTH1�� � ��THr to TK1�� � ��TKr +1 is called anelementary G-isovariant map
(with respect to theW-sequence).

Proposition 3.1. For any W-sequencefH1; : : : ; Hr ; K1; : : : ; Kr +1g of type(p;q),
there exists an elementary G-isovariant map

f : TH1 � � � � � THr ! TK1 � � � � � TKr +1:
In order to prove this proposition, we shall first show basic properties of aW-

sequence.

Lemma 3.2. Let fH1; : : : ; Hr ; K1; : : : ; Kr +1g be a W-sequence of type(p;q).
(1) Hi 6� H j and Hi 6� H j for i 6= j , and similarly Ki 6� K j and Ki 6� K j for i 6= j .
(2) For any Hi1; : : : ; Hik (1 � i1 < � � � < ik � r ),

Tk
s=1 His = Hi1 \ Hik . Similarly for

any Ki1; : : : ; K ik (1� i1 < � � � < ik � r + 1),
Tk

s=1 K is = K i1 \ K ik .
(3) Hi \ H j 2 D (i 6= j ); namely, G=(Hi \ H j ) is cyclic.
(4) K i \ K j = Hi \ H j�1 (i < j ), in particular, K i \ K i +1 = Hi .

Proof. For eachH , decomposeH into the form of Hp � Hq � H 0, where Hl

denotes a Sylowl -group of H , l = p;q, and H 0 =
Q

l 6= p;q Hl .
(1): Let Hi = Hi ;p � Hi ;q � H 0

i and K i = K i ;p � K i ;q � K 0
i . Since K i =Hi is of

p-power order andK i +1=Hi is of q-power order, we obtain

(a) Hi ;p < K i ;p; (b) Hi ;q = K i ;q; (c) Hi ;p = K i +1;p;
(d) Hi ;q < K i +1;q; (e) K 0

i = H 0
i = K 0

i +1

for every i . It follows from (e) thatH 0
1 = � � � = H 0

r = K 0
1 = � � � = K 0

r +1. We denote byL
this common subgroup. Moreover we obtain

(f) Hi ;p > Hi +1;p; (g) Hi ;q < Hi +1;q; (h) K i ;p > K i +1;p; (i) K i ;q < K i +1;q:
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In fact (f) follows from (c) and (a), and (g) follows from (b) and (d); the others are
similar. The inclusions (f)–(i) show (1).

(2): The inclusions (f)–(i) imply that

\
s

His =
\

s

His;p � His;q � L

= Hik;p � Hi1;q � L

= Hik \ Hi1;
and similarly

T
s K is = K i1 \ K ik .

(3): Supposei < j . The above inclusions show thatHi \ H j = H j ;p � Hi ;q � L.
Since G=Hi

�= Gp=Hi ;p � Gq=Hi ;q � G0=L and G=H j
�= Gp=H j ;p � Gq=H j ;q � G0=L

are cyclic, Gp=H j ;p;Gq=Hi ;q and G0=L are also cyclic, and their orders are pairwise
coprime. HenceG=(Hi \ H j ) �= Gp=H j ;p � Gq=Hi :q � G0=L is cyclic.

(4): Similarly we obtain thatK i \K j = K j ;p�K i ;q�L and Hi \H j�1 = H j�1;p�
Hi ;q � L. By (c) and (b), K j ;p = H j�1;p and K i ;q = Hi ;q. Hence K i \ K j = Hi \
H j�1.

Lemma 3.3. Let U = TL1 � � � � � TLr , L i 2 D n fGg. Then for any nonzero z=
(z1; : : : ; zr ) 2 U , the isotropy group Gz is equal to

T
i : zi 6= 0 L i .

Proof. This follows from Proposition 2.2 (1).

We now prove Proposition 3.1.

Proof of Proposition 3.1. SetV = TH1�� � �� THr and W = TK1�� � �� TKr +1, and
set ai = jK i =Hi j and bi = jK i +1=Hi j. We define a mapf : V ! W by setting

f (z1; : : : ; zr ) =
�
za1

1 ; zb1
1 + za2

2 ; : : : ; zbr�1

r�1 + zar
r ; zbr

r

�:
We claim that this map isG-isovariant. Sincehk : TH ! TK ; hk(z) = zk, k = jK=H j, is
G-equivariant for any pairH < K in D n fGg, it follows that f is G-equivariant. Let
z = (z1; : : : ; zr ) be any nonzero vector ofV . Let s = minfi j zi 6= 0g and t = maxfi j
zi 6= 0g. Then f (z) is expressed as

f (z) =
�
0; : : : ;0; zas

s ; zbs
s + zas+1

s+1 ; : : : ; zbt�1

t�1 + zat
t ; zbt

t ;0; : : : ;0�:
By Lemmas 3.2 (2) and 3.3, it follows thatGz = Hs\Ht and G f (z) = Ks\K t+1; hence
Gz = G f (z) by Lemma 3.2 (4). Ifz = 0, then f (z) = 0, and soGz = G = G f (z). Thus
f is G-isovariant.
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4. The case of the cyclic group of orderpnqm

The aim of this section is to give a proof of the following result.

Theorem 4.1. The cyclic group of order pnqm has the complete IB-property,
where p;q are distinct primes.

In general, condition (CV;W) does not imply that dimV(H ) � dimW(H ), and the
argument in§3 does not work. For example, considerCpq-representationsV = T1 and
W = Tp � Tq, where p;q are distinct primes. Then the pair (V;W) satisfies (CV;W).
On the other hand, dimV(1) = dimT1 = 2> dimW(1) = 0.

Let G be an abelian group not of prime power order. Suppose that a pair (V;W)
of G-representations satisfies condition (CV;W). In order to show the existence of an
isovariant map fromV to W, one may assume thatVG = WG = 0 by Lemma 1.2. Set�W;V (H ) = dimW(H ) � dim V(H ) for H < G. If �W;V (H ) � 0, from Proposition 2.4
there is an isovariant map fromV(H ) to some subrepresentationW0 of W(H ) with
dimV(H ) = dimW0. Similarly, if �W;V (H ) � 0, then there is an isovariant map from
some subrepresentationV 0 of V(H ) with dimV 0 = dimW(H ) to W(H ).

Lemma 4.2. With the notation above, a pair of V := V � V(H ), W := W �W0
satisfies(CV;W) when�W;V (H ) � 0. Similarly a pair of V := V�V 0, W := W�W(H )
satisfies(CV;W) when�W;V (H ) � 0.

Proof. Note first that for anyG-representationU and for any subgroupsL ;M, it
holds thatU (L)M = U (L) if M � L and thatU (L)M = 0 if M 6� L. When�W;V (H ) �
0, we obtain that

dim V
S

=

(
dimV S if S 6� H

dimV S� dim V(H ) if S� H;
and

dimW
S

=

(
dimWS if S 6� H

dimWS� dimW0 if S� H:
Since dimV(H ) = dimW0,

dimV
S� dimW

S
= dimV S� dimWS

for any subgroupS. Noting that (CV;W) is equivalent to the following condition

dimV S� dimWS � dim VT � dimWT for every pair S� T;
one can see that (CV;W) implies (CV;W). The other case is similar.
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By this lemma and Lemma 1.1 (4), the existence problem of an isovariant map
is reduced to a simpler case; namely, it suffices to consider the problem for any pair
(V;W) of representations satisfying the following condition

(DV;W): (1) For eachH 2 D n fGg, (a) V(H ) = 0, W(H ) 6= 0, (b) V(H ) 6= 0,
W(H ) = 0, or (c) V(H ) = 0, W(H ) = 0,
(2) V(G) = W(G) = 0.

Set

E+(V;W) = fH j �W;V (H ) > 0; H 6= Gg;
E�(V;W) = fH j �W;V (H ) < 0; H 6= Gg:

For simplicity we denoteE+(V;W) by E+ and E�(V;W) by E�. If (V;W) satisfies
condition (DV;W), thenE+ [resp.E�] coincides with the set of subgroups satisfying (a)
[resp. (b)] of (DV;W). Note also thatE+; E� � D n fGg.

REMARK . Condition (DV;W) is equivalent to thatV =
L

H2E� V(H ) and W =L
H2E+

W(H ).

Lemma 4.3. If (V;W) satisfies conditions(CV;W) and (DV;W), then G=H 6�= C2

for any H 2 E�, in particular, dimV(H ) is even for any H2 E�.

Proof. If G=H �= C2, then (CV;W) for the pair (H;G) implies �W;V (H ) � 0.

One can further reduce the problem as follows.

Lemma 4.4. If (V;W) satisfies conditions(CV;W) and (DV;W), then the existence
problem is reduced to the case(1): V(H ) is isomorphic to a direct sum of copies
of TH for every H2 E�. In addition, if G is cyclic, it is also reduced to the case(2):
W(H ) is a direct sum of copies of TH for every H2 E+.

Proof. (1): From Lemma 4.3 there is no 1-dimensional irreducible subrepresen-
tation of V(H ). Using Lemma 2.3, one may assume thatV(H ) is a direct sum of
copies ofTH .

(2): When G=H 6�= C2, in the same way, one may assume thatW(H ) is a direct
sum of copies ofTH . SupposeG=H �= C2. ThenW(H ) �= bR�

H , b = dimW(H ). If b is
even, thenW(H ) �= (b=2)TH sinceTH

�= 2R�
H . Whenb is odd, we setW0 = W�R�

H �
W. Then the pair (V;W0) satisfies (CV;W0), in fact, for any pair ofL < K , we have

dimV L � dimV K � dimWL � dimWK

using (CV;W). If K � H or L 6� H , then it can be seen that

dimWL � dimWK = dimW0L � dimW0K :
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Hence it follows that

dimV L � dim V K � dimW0L � dimW0K :
If K 6� H and L � H , then dimW(H )L � dimW(H )K = b is odd, and dimW(S)L �
dimW(S)K is even for everyS 6= H , since G is cyclic. Consequently we obtain that
dimWL � dimWK is odd. Moreover we have

dimWL � dimWK = dimW0L � dimW0K + 1:
Since dimV L � dim V K is even by Lemma 4.3, it turns out that

dim V L � dim V K < dimWL � dimWK ;
and hence

dimV L � dim V K � dimW0L � dimW0K :
Thus (CV;W0) is satisfied. Since dimW0(H ) is even andW0(H ) �= ((b � 1)=2)TH , the
problem is reduced to the case whereW(H ) is a direct sum of copies ofTH .

We shall give the following definition.

DEFINITION. A pair (V;W) of representations is calledreducedif
(1) (V;W) satisfies condition (DV;W),
(2) V(H ) = aH TH for H 2 E� and W(H ) = bH TH for H 2 E+, where aH ;bH are
some positive integers.

From the argument above we conclude the following.

Proposition 4.5. Let G be a cyclic group. If there exists a G-isovariant map from
V to W for every reduced pair(V;W) satisfying condition(CV;W), then G has the
complete IB-property.

We hereafter focus on the case of the cyclic groupG = Cpnqm of order pnqm

(p;q: distinct primes andm;n � 1).

Lemma 4.6. Let G = Cpnqm. Suppose that a pair(V;W) of G-representations
satisfies condition(CV;W) and (DV;W). For any H 2 E�, there exist subgroups K; K 0
in E+ containing H such that K\ K 0 = H . In the case, K=H is a cyclic l-group and
K 0=H a cyclic l0-group, where l is one of p and q, and l0 the other one.
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Proof. SinceW =
L

K2E+
W(K ) [resp. V =

L
K2E� V(K )], every isotropy group

Gx of W [resp.V ] is described as an intersection of some subgroupsK 2 E+ [resp.E�],
and vice versa, cf. Proposition 2.2. SinceH 2 IsoV , it follows from Proposition 1.4
that H is in IsoW, and thatH is described as an intersection of some subgroupsK 2
E+, say, H =

Tr
i =1 K i , K i 2 E+. Since H =2 E+, each K i is strictly larger thanH .

Let H = Hp � Hq and K i = K i ;p � K i ;q be the decompositions into product of Sylow
subgroups. Since eachK i ;l , l = p;q, is a cyclic l -group, there are the minimaK i0;p
and K i1;q of fK i ;pg and fK i ;qg, respectively. Therefore

H =
\

i

K i ;p �\
i

K i ;p = K i0;p � K i1;q = K i0 \ K i1:
In the case, sinceK=H \ K 0=H = 1, jK=H j and jK 0=H j are coprime; hence

K=H; K 0=H are of prime power order.

Now we prove Theorem 4.1.

Proof of Theorem 4.1. We show the theorem by induction on dimV . If V = 0,
then the theorem is trivial. Suppose dimV > 0. By Proposition 4.5, we may assume
that (V;W) is a reduced pair satisfying (CV;W). Take a subgroupH 2 E�. By Lem-
ma 4.6, there existK ; K 0 2 E+ such thatK=H is a cyclic p-group andK 0=H is a
cyclic q-group. ThenS1 = fH ; K ; K 0g is a W-sequence of type (p;q). Take a maximal
W-sequenceS = fH1; : : : ; Hr ; K1; : : : ; Kr +1g of type (p;q) in the following sense:
(1) fH1; : : : ; Hr g � E� and fK1; : : : ; Kr +1g � E+,
(2) there is noW-sequence strictly containingS with property (1).
Set V 0 :=

L
i THi and W0 :=

L
i TK i . By Proposition 3.1 there is an isovariant map

f 0 : V 0 ! W0. Set V = V � V 0 and W = W �W0. Then the next lemma says that the
pair

�
V;W �

satisfies (CV;W), and hence there is an isovariant mapf : V ! W by the
inductive assumption. Thus we obtain an isovariant mapf := f � f 0 : V ! W.

The remainder of proof is to show the following:

Lemma 4.7. The pair
�
V;W �

satisfies(CV;W).

Proof. It suffices to check (C0
V;W) by Proposition 1.3. LetH < K with K=H �=

Cl , l = p;q. One may supposel = p without loss of generality. We set

Sq(H ) = fL j H � L � G and L=H is of q-power orderg:
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Let H = fH1; : : : ; Hr g andK = fK1; : : : ; Kr +1g. Note first that

dim V H � dim V K =
X

L2Sq(H )\E� dim V(L);
dimWH � dimWK =

X
L2Sq(H )\E+

dimV(L);
dim V 0H � dimV 0K =

X
L2Sq(H )\H dimTL ;

dimW0H � dimW0K =
X

L2Sq(H )\K dimTL :
From condition (CV;W), it holds that

dim V H � dimV K � dimWH � dimWK :
Looking at the diagram of the subgroup lattice ofCpnqm, one can see from Lem-
ma 3.2 (1) that there are the following three possibilities:
(1) Sq(H ) \H = fHi g, Sq(H ) \K = fK i +1g for somei ,
(2) Sq(H ) \H = ;, Sq(H ) \K = fK1g,
(3) Sq(H ) \H = Sq(H ) \K = ;.

In case (1), it follows that

dimV 0H � dim V 0K = dimW0H � dimW0K (= 2);
and hence

dim V
H � dimV

K � dimW
H � dimW

K :
In case (2), one can see thatSq(H )\E� is empty, in fact if there isH0 2 Sq(H )\

E�, then there isK0 2 E+ such thatK0=H0 is a cyclic p-group by Lemma 4.6. ThenfH0;H1; : : : ;Hr ; K0;K1; : : : ;Kr +1g is a largerW-sequence containingS = fH1; : : : ;Hr ;
K1; : : : ;Kr +1g; this contradicts the maximality ofS. Thus we see that dimV H �
dimV K = 0. On the other hand dimWH � dimWK � 2, since K1 2 Sq(H ) \ E+.
Moreover, since dimV 0H � dimV 0K = 0 and dimW0H � dimW0K = 2, it follows that

0 = dimV
H � dim V

K � dimW
H � dimW

K :
In case (3), obviously

dimV 0H � dim V 0K = 0; dimW0H � dimW0K = 0;
and hence

dim V
H � dimV

K � dimW
H � dimW

K :
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Thus the proof is complete.

REMARK . From the proof of Theorem 4.1, we see that for any reduced pair (V;W)
satisfying (CV;W), an isovariant map fromV to W is constructed as a direct sum of
elementary isovariant maps.

5. The case of the cyclic group of orderpqr

Let G = Cpqr . Generally an isovariant map betweenG-representations is not con-
structed by using only elementary isovariant maps as described in §3 For example, a
pair of G-representationsV = Tp�Tq�Tr and W = T1�Tpq�Tqr�Trp satisfies condi-
tion (CV;W), but an isovariant map fromV to W cannot be constructed by using only
elementary isovariant maps. We shall show the existence of an isovariant map using
equivariant obstruction theory.

Proposition 5.1. Let G = Cpqr , where p;q; r are distinct primes. Then there ex-
ists a G-isovariant map from V= Tp � Tq � Tr to W = T1� Tpq � Tqr � Trp.

Proof. Note that eachG-representationTi is obtained by restricting anS1-
representation. We regardV , W as S1-representations. By Lemmas 1.1 (1) and 1.2, it
suffices to show that there exists anS1-isovariant map fromS(V) to S(W). The singu-
lar set S(V)>1 :=

S
H 6= 1 S(V)H of S(V) consists of disjoint three circlesS(Tp); S(Tq);

S(Tr ), which are exceptional orbits (in the sense of [1]) isomorphic to S1=Cp; S1=Cq

and S1=Cr , respectively. LetNi , i = p;q or r , be a closedS1-tubular neighborhood
of S(Ti ) in S(V) such thatNi are disjoint. The slice theorem (cf. [1], [4]) says thatNi

is equivariantly diffeomorphic toS1�Ci D(Tj�Tk), wherei; j; k 2 fp;q; r g are distinct.
Similarly take an orbit inS(W) isomorphic toS1=Ci and its closedS1-tubular neigh-
borhood Ai , equivariantly diffeomorphic toS1 �Ci D(Wi ) for someCi -representation
Wi , such thatAi are disjoint. There is anS1-isovariant map f̃i : Ni ! Ai such that
f̃i (�Ni ) � �Ai , in fact, sinceCi acts freely onS(Tj � Tk) and S(Wi ) n S(Wi )>1,
and since

dim S(Tj � Tk) = 3� dim S(Wi )� dim S(Wi )
>1 = 4;

it follows that the pair (Tj�Tk;Wi ) of Ci -representations satisfies (CTi�Tj ;Wi ), and from
Theorem 2.5 that there is aCi -isovariant map f̄i : S(Tj � Tk) ! S(Wi ). Taking cone,
we have aCi -isovariant mapC f̄i : D(Tj � Tk) ! D(Wi ), and hence anS1-isovariant
map f̃i = S1�Ci C f̄i : Ni ! Ai such that f̃i (�Ni ) � �Ai .

Next setY = S(W)nS(W)>1, X = S(V)nInt
�
Np
`

Nq
`

Nr
�
, and fi = f̃i j�Ni : �Ni !�Ai � Y. Since S1 acts freely onX and Y, it suffices to see that there is anS1-map

from X to Y extending f :=
`

i fi :
`

i �Ni ! `
i �Ai � Y. Note that dimX=S1 = 4

and Y is 2-connected by an argument of general position. Note alsothat �3(Y) �=
H3(Y) �= Z3. The obstruction to an extension off lies in H4

S1(X; �X;�3(Y)) �=
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H4(X=S1; �X=S1;�3(Y)) �= �3(Y), see [3, II §3]. One can detect this obstruction us-
ing notion of the multidegree [7]. Here we shall recall necessary facts from [7]. The
multidegree of anS1-map h : �Ni ! Y is defined by setting

m-Degh = h̄�([S(Tj � Tk)]) 2 H3(Y) �= Z3;
where h̄ = hjS(Tj�Tk) : S(Tj � Tk) ! Y, and [S(Tj � Tk)] is the fundamental class
of S(Tj � Tk). We identify H3(Y) with Z3 via the isomorphisms induced by the in-
clusions:

H3(Y) �!�=
M

i

H3(SWn S(Ti )) ��=
M

i

H3(S(Tj � Tk)) = Z3:
Let di (h) 2 Z = H3(S(Tj � Tk)) denote thei -component of m-Degh for i = p;q; r ;
namely, m-Degh = (dp(h);dq(h);dr (h)) 2 Z3. Note that there exists anS1-map F0 : X!
Y (not necessarily extendingf ), since the obstruction groupH�

S1(X; ���1(Y)) �=
H�(X=S1 ; ���1(Y)) vanishes. We fix such a mapF0 and set f0;i = F0j�Ni . The fol-
lowing facts are derived from [7,§3].
(1) di ( f j ) = 0 for i 6= j .
(2) m-Deg(fi )�m-Deg(f0;i ) 2 i Z3.
(3) For anya 2 i Z there exists anS1-isovariant map f̃ 0i : Ni ! Ai � SW such that
f̃ 0i (�Ni ) � �Ai and such thatdi ( f 0i ) = di ( fi ) + a and d j ( f 0i ) = 0 for j 6= i , where
f 0i = f̃ 0i j�Ni .
(4) Under identifying the obstruction groupH4

S1(X; �X ; �3(Y)) with Z3, the obstruc-
tion class
S1( f ) to an extension off is described as


S1( f ) =
X

i =p;q;r
m-Deg fi �m-Deg f0;i

i
:

Using the facts (3) and (4), one can take suitableS1-isovariant mapsf̃ 0i : Ni ! Ai �
S(W) such that
S1( f 0) = 0, where f 0 =

`
i f 0i , f 0i = f̃ 0j�Ni . Hence there exists anS1-

map F : X ! Y extending f 0. Attaching the boundaries, we obtain anS1-isovariant
map F [`i f̃ 0i : S(V)! S(W).

The main result of this section is the following:

Theorem 5.2. Cpqr has the complete IB-property, where p;q; r are distinct primes.

We first show the following.

Lemma 5.3. Let (V;W) be a reduced pair of Cpqr-representations. Let i; j; k de-
note distinct primes infp;q; r g. Then
(1) Ci j =2 E�.
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(2) If Ci 2 E�, then dim V(Ci ) � dimW(Ci j ), in particular, Ci j 2 E+.

Proof. (1): By (CV;W) for the pair (Ci j ;G),

dim V(Ci j ) = dimVCi j � dimWCi j = dimW(Ci j ):
This impliesCi j 62 E�.

(2): (CV;W) for the pair (Ci ;Cik) says that

dimVCi � dimVCik � dimWCi � dimWCik :
It is seen by (1) that dimVCi = dimV(Ci ) and dimVCik = 0. Noting thatCi =2 E+,
we have dimWCi = dimW(Ci j ) + dimW(Cik). Since WCik = W(Cik), it follows from
the above inequality that dimV(Ci ) � dimW(Ci j ). In particular dimW(Ci j ) > 0, and
henceCi j 2 E+.

Proof of Theorem 5.2. By Proposition 4.5, one may assume thata pair (V;W)
of representations satisfying (CV;W) is a reduced pair; namely,

V =
M
H2E� V(H ); V(H ) = aH TH ;

W =
M
H2E+

W(H ); W(H ) = bH TH ;
where aH ;bH are positive integers. The proof of Theorem 5.2 is divided into several
cases. From Lemma 5.3 and a symmetrical role ofp;q; r , it suffices to consider the
following seven cases: (1)E� = f1g, (2) E� = fCpg, (3) E� = f1;Cpg, (4) E� =fCp;Cqg, (5) E� = f1;Cp;Cqg, (6) E� = fCp;Cq;Cr g, (7) E� = f1;Cp;Cq;Cr g.

CASE (1): In this case,G acts freely onS(V). By (CV;W) of a pair (1; H ), we see

dim S(V) + 1� dim S(W)� dim S(W)H

for any subgroupH , and hence

dim S(V) + 1� dim S(W)� dim S(W)>1:
Set d = dim S(W)�dim S(W)>1 and Y = S(W)nS(W)>1. SinceY is (d�2)-connected
by an argument of general position, the obstruction to the existence of aG-map
f : S(V) ! S(W) lies in H�

G(S(V) ; ���1(Y)) �= H�(S(V)=G ; ���1(Y)), � � d. The
above inequality, however, shows that the cohomology groups vanish. Hence there is
a G-map f : S(V) ! Y, which is G-isovariant sinceG acts freely onS(V) and Y.
Composing f with the inclusionY � S(W), we obtain aG-isovariant map fromS(V)
to S(W), which induces aG-isovariant map fromV to W.
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CASE (2): Note that the kernel ofV is Cp. Since (CVCp ;WCp ) is satisfied and
G=Cp

�= Cqr , there is aG=Cp-isovariant map f : V = VCp ! WCp by Theorem 4.1.
Thus we obtain aG-isovariant map InfGG=Cp

f : V ! WCp � W.
CASE (3): By Lemma 5.3, we have dimV(Cp) � dimW(Cpj ), j = q; r . Take a

subrepresentationW0(Cpj ) � W(Cpj ) with dimW0(Cpj ) = dimV(Cp). Using Proposi-
tion 3.1, we obtain aG-isovariant map f1 : V(Cp) ! W0(Cpq) � W0(Cpr ). Set V =
V � V(Cp) and W = W �W0(Cpq) �W0(Cpr ). One can easily verify that (CV;W) are
satisfied. SinceV is of case (1), there exists aG-isovariant map f2 : V ! W, and
hence aG-isovariant mapf1� f2 : V ! W.

CASE (4): One may suppose that dimV(Cp) � dim V(Cq) =: m without loss
of generality. Since dimV(Ci ) � dimW(Ci j ) for i 6= j (i 2 fp;qg, j 2 fp;q; r g) by
Lemma 5.3, one can takem-dimensional subrepresentationsV 0(Cp) � V(Cp), W0(Ci j ) �
W(Ci j ). Using Proposition 3.1, we have aG-isovariant map

f1 : V 0(Cp)� V(Cq)! W0(Cpr )�W0(Cpq)�W0(Cqr ):
Set V = V � V 0(Cp)� V(Cq) and W = W�W0(Cpr )�W0(Cpq)�W0(Cqr ). Then one
can see that (CV;W) are satisfied. SinceV is of case (2), there exists aG-isovariant
map f2 : V ! W, and hence aG-isovariant mapf1� f2 : V ! W.

CASE (5): With the same notation and argument as in case (4), one can see that
there is aG-isovariant map

f1 : V 0(Cp)� V(Cq)! W0(Cpr )�W0(Cpq)�W0(Cqr ):
Since (CV;W) are satisfied andV is of case (3) or (1), there exists aG-isovariant map
f2 : V ! W, and hence aG-isovariant mapf1� f2 : V ! W.

CASE (6): One may suppose that dimV(Cp) � dim V(Cq) � dim V(Cr ) =: m
without loss of generality. By Lemma 5.3, dimV(Ci ) � dimW(Ci j ) for i 6= j (i; j 2fp;q; r g).

SUBCASE (i): dim W(1) � m. In this case, one can takem-dimensional sub-
representationsV 0(Cs) � V(Cs) (s = p;q), W0(Ci j ) � W(Ci j ), i 6= j (i; j 2 fp;q; r g),
and W0(1)� W(1). By Proposition 5.1, we have aG-isovariant map

f1 : V 0(Cp)� V 0(Cq)� V(Cr )! W0(1)�W0(Cpq)�W0(Cqr )�W0(Crp):
Set V = V � V 0(Cp)� V 0(Cq)� V(Cr ) and W = W �W0(Cpq)�W0(Cqr )�W0(Crp).
Then one can verify that (CV;W) is satisfied. SinceV is of case (4) or (2), there exists
a G-isovariant mapf2 : V ! W, and hence aG-isovariant mapf1� f2 : V ! W.

SUBCASE (ii): dim W(1) < m. Set n = dimW(1) and taken-dimensional sub-
representationsV 0(Cs) � V(Cs) (s = p;q;r ), W0(Ci j ) � W(Ci j ) (i 6= j; i , j 2 fp;q;r g).
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By Proposition 5.1, we have aG-isovariant map

f1 : V 0(Cp)� V 0(Cq)� V 0(Cr )! W(1)�W0(Cpq)�W0(Cqr )�W0(Crp):
Set

V = V � V 0(Cp)� V 0(Cq)� V 0(Cr );
W = W �W(1)�W0(Cpq)�W0(Cqr )�W0(Crp):

Then one can see that (CV;W) is satisfied, and thatE��V;W �
= fCp;Cq;Cr g and

E+
�
V;W �

= fCpq;Cqr ;Cpr g. By assumption,

dim V(Cp) � dim V(Cq) � dim V(Cr ):
Set m0 = dimV(Cr ). By Lemma 5.3, we have dimV(Ci ) � dimW(Ci j ) for i 6= j

(i; j 2 fp;q; r g). Take m0-dimensional subrepresentationsV
0
(Cs) � V(Cs), s = q; r ,

and W
0
(Ci j ) � W(Ci j ), i 6= j (i; j 2 fp;q; r g). By Proposition 3.1 there exists aG-

isovariant map

f̄1 : V
0
(Cq)� V(Cr )! W

0
(Cpq)�W

0
(Cqr )�W

0
(Cpr ):

Set V = V � V
0
(Cq) � V(Cr ) and W = W � W

0
(Cpq) � W

0
(Cqr ) � W

0
(Cpr ). Then

one can see that (CV;W) is satisfied, for example, (CV;W) for a pair (Cp;Cpr ), i.e.,
dim V(Cp) � dimW(Cpq), can be verified as follows (other cases are easier): (CV;W)
for the pair (1;Cr ) implies that

dim V(Cp) + dimV(Cq) � W(Cpq);
and hence

dim V(Cp) = dimV(Cp) � dimW(Cpq)� dim V(Cq)

� dimW(Cpq)� dim V(Cr )

= dimW(Cpq)� dimW
0
(Cpq)

= dimW(Cpq):
Since V is of case (4) or (2), there exists aG-isovariant map fromV to W. By the
same argument as before, one can see that there is aG-isovariant map fromV to W.

CASE (7): Suppose that dimV(Cp) � dim V(Cq) � dimV(Cr ) =: m. By
Lemma 5.3, dimV(Ci ) � dimW(Ci j ), i 6= j (i; j 2 fp;q; r g). Take m-dimensional
subrepresentationsV 0(Ci ) � V(Ci ) and W0(Ci j ) � W(Ci j ). Then there exists aG-
isovariant map

f1 : V 0(Cq)� V(Cr )! W0(Cpq)�W0(Cqr )�W0(Cpr ):
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Set V = V�V 0(Cq)�V(Cr ) and W = W�W0(Cpq)�W0(Cqr )�W0(Cpr ). By a similar
argument as Case (6), one can verify that (CV;W) is satisfied. SinceV is of Case (5)
or (3), there exists aG-isovariant map fromV to W, and hence fromV to W.

Thus the proof is complete.
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