COHOMOLOGY OF VECTOR BUNDLES FROM A DOUBLE COVER OF THE PROJECTIVE PLANE

I-Chiau HUANG

(Received August 3, 2005)

Abstract

The paper deals with locally free sheaves $\mathcal{F}_{p, q}$ on \mathbb{P}^{2} obtained from a morphism $\mathbb{P}^{1} \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{2}$. Bases of $\mathrm{H}^{i}\left(\mathbb{P}^{2}, \mathcal{F}_{p, q}\right)$ are explicitly given in terms of elements of certain local cohomology modules, which built up canonically a complex for computing cohomology modules of locally free sheaves on \mathbb{P}^{2}.

1. Introduction

Let $\mathbb{P}^{n}=\operatorname{Proj} \kappa\left[X_{0}, X_{1}, \ldots, X_{n}\right]$ be the projective n-space over a field κ and \mathcal{F} be a locally free sheaf of finite rank on \mathbb{P}^{n}. In [4], a new method is introduced to compute cohomology modules of \mathcal{F}. The method involves a complex of κ-vector spaces

$$
0 \rightarrow \mathcal{F}^{(0)} \xrightarrow{d^{(0)}} \mathcal{F}^{(1)} \xrightarrow{d^{(1)}} \mathcal{F}^{(2)} \rightarrow \cdots \rightarrow \mathcal{F}^{(n)} \rightarrow 0,
$$

in which $\mathcal{F}^{(i)}$ depends only on the rank of \mathcal{F} and $d^{(i)}$ is determined by the transition functions of \mathcal{F}. It is shown that the i th cohomology of the complex $\mathcal{F}^{(\bullet)}$ is isomorphic to the i th cohomology of \mathcal{F}. With computations of kernels and quotients of $d^{(i)}$, the problem of algebraic geometry on computing cohomology becomes a problem of linear algebra. In terms of elements of $\mathcal{F}^{(i)}$, one may ask what a basis of the κ-vector space $\mathrm{H}^{i}\left(\mathbb{P}^{n}, \mathcal{F}\right)$ looks like. For twisted differentials $\Omega_{\mathbb{P}^{n} / \kappa}^{p}(m)$, this project is carried out [4]. A basis of the κ-vector space $\mathrm{H}^{q}\left(\mathbb{P}^{n}, \Omega_{\mathbb{P}^{n} / \kappa}^{p}(m)\right)$ is exhibited, from which the Bott formula
$\operatorname{dim}_{\kappa} \mathrm{H}^{q}\left(\mathbb{P}^{n}, \Omega_{\mathbb{P}^{n} / \kappa}^{p}(m)\right)= \begin{cases}\binom{m-1}{p}\binom{m+n-p}{m}, & \text { for } q=0,0 \leq p \leq n, \quad p<m ; \\ 1, & \text { for } m=0,0 \leq p=q \leq n ; \\ \binom{-m-1}{n-p}\binom{-m+p}{-m}, & \text { for } q=n, 0 \leq p \leq n, m<p-n ; \\ 0, & \text { otherwise }\end{cases}$
is recovered by counting the cardinality of the basis. Invoking elaborated computations, our approach to the Bott formula interprets the combinatorial numbers in the formula.

[^0]In this paper, we work on the project for some rank two locally free sheaves of modules on the projective plane \mathbb{P}^{2}. Let Q be the quadric surface in \mathbb{P}^{3} defined by the equation $X_{0} X_{1}-X_{2} X_{3}$. Via the Segre embedding, Q is identifies with $\mathbb{P}^{1} \times \mathbb{P}^{1}$, whose invertible sheaves are classified as $\mathcal{L}_{p, q}, p, q \in \mathbb{Z}$. We consider a projection from a point of \mathbb{P}^{3} to a plane, whose restriction to Q is denoted by π. It is known that

$$
\operatorname{dim}_{\kappa} \mathrm{H}^{r}\left(\mathbb{P}^{2}, \pi_{*} \mathcal{L}_{p, q}\right)=(-1)^{r}(p+1)(q+1)
$$

if $r=0$ and $p, q \geq 0$; or if $r=1$ and $p \geq 0, q<0$ or $p<0, q \geq 0$; or if $r=2$ and $p, q<0$; and is zero otherwise [6, Proposition 12]. The module structure of injective complexes defining sheaf cohomology is subtle. Our goal is to analyze $\mathrm{H}^{r}\left(\mathbb{P}^{2}, \pi_{*} \mathcal{L}_{p, q}\right)$ in terms of elements of $\left(\pi_{*} \mathcal{L}_{p, q}\right)^{(r)}$ to reveal its combinatorial nature.

Usually, the word "basis" stands for a minimal generating set of a free module. However, a set may have different module structures. To avoid confusion, we reserve the term only for a minimal generating set of a κ-vector space in this paper.

This paper is organized as follows.

- Section 2 recalls the construction of $\mathcal{F}^{(\bullet)}$ for a locally free sheaf \mathcal{F} on the projective plane.
- Section 3 describes locally free sheaves $\mathcal{F}_{p, q}$ obtained from a double cover of the projective plane.
- Section 4 applies the construction of Section 2 to $\mathcal{F}_{p, q}$.
- Section 5 analyzes the module structure of $\mathcal{F}_{p, q}^{(2)}$.
- Section 6 gives bases of $\mathrm{H}^{i}\left(\mathbb{P}^{2}, \mathcal{F}_{p, q}\right)$.

2. Complex for computing cohomology

Let \mathcal{F} be a locally free sheaf of finite rank on \mathbb{P}^{n}. We recall the construction of the complex $\mathcal{F}^{(\bullet)}$ for the case $n=2$. Given $\mathfrak{p} \in \mathbb{P}^{2}=\operatorname{Proj}\left(\kappa\left[T_{0}, T_{1}, T_{2}\right]\right)$, the local cohomology module

$$
M(\mathfrak{p}):=\mathrm{H}_{\mathfrak{m}_{\mathfrak{p}}}^{\mathrm{htp}}\left(\bigwedge^{2} \Omega_{\mathcal{O}_{\mathbb{P}^{2}, \mathfrak{p}} / \kappa}\right)
$$

supported at the maximal ideal $\mathfrak{m}_{\mathfrak{p}}$ of $\mathcal{O}_{\mathbb{P}^{2}, \mathfrak{p}}$ is an injective hull of the residue field $\kappa_{\mathfrak{p}}$ of $\mathcal{O}_{\mathbb{P}^{2}, \mathfrak{p}}$. Elements of $M(\mathfrak{p})$ can be written as generalized fractions, which we referred to [2, Chapter 2] or [5, §7]. We recall three special cases of $M(\mathfrak{p})$ needed for defining $\mathcal{F}^{(i)}$.

Example 1.

- If \mathfrak{p} is the generic point of \mathbb{P}^{2}, we write $M\left(\mathbb{P}^{2}\right)$ for $M(\mathfrak{p})$. Elements of $M\left(\mathbb{P}^{2}\right)$ are of the form

$$
\frac{f}{g} d \frac{T_{0}}{T_{2}} d \frac{T_{1}}{T_{2}}
$$

where $f \in \kappa\left[T_{0} / T_{2}, T_{1} / T_{2}\right]$ and $g \in \kappa\left[T_{0} / T_{2}, T_{1} / T_{2}\right] \backslash(0)$.

- If \mathfrak{p} is the generic point of the line $T_{2}=0$, we write $M\left(\mathbb{P}^{1}\right)$ for $M(\mathfrak{p})$. Elements of $M\left(\mathbb{P}^{1}\right)$ are of the form
(1)

$$
\left[\begin{array}{c}
\frac{f}{g} d \frac{T_{2}}{T_{1}} d \frac{T_{0}}{T_{1}} \\
\left(\frac{T_{2}}{T_{1}}\right)^{i}
\end{array}\right],
$$

where $f \in \kappa\left[T_{2} / T_{1}, T_{0} / T_{1}\right]$ and $g \in \kappa\left[T_{2} / T_{1}, T_{0} / T_{1}\right] \backslash\left(T_{2} / T_{1}\right)$.

- If \mathfrak{p} is the closed point $T_{2}=T_{1}=0$, we write $M\left(\mathbb{P}^{0}\right)$ for $M(\mathfrak{p})$. Elements of $M\left(\mathbb{P}^{0}\right)$ are of the form

$$
\left[\begin{array}{c}
\frac{f}{g} d \frac{T_{1}}{T_{0}} d \frac{T_{2}}{T_{0}} \tag{2}\\
\left(\frac{T_{1}}{T_{0}}\right)^{i},\left(\frac{T_{2}}{T_{0}}\right)^{j}
\end{array}\right]
$$

where $f \in \kappa\left[T_{1} / T_{0}, T_{2} / T_{0}\right]$ and $g \in \kappa\left[T_{1} / T_{0}, T_{2} / T_{0}\right] \backslash\left(T_{1} / T_{0}, T_{2} / T_{0}\right)$.
$M(\mathfrak{p})$, being an injective hull of $\kappa_{\mathfrak{p}}$, is also a module over the completion $\mathcal{O}_{\mathbb{P}^{2}, \mathfrak{p}}^{\wedge}$ of $\mathcal{O}_{\mathbb{P}^{2}, \mathfrak{p}}$. This can be seen from the following properties of generalized fractions.

Proposition 2 (Linearity Law).

$$
\begin{aligned}
& {\left[\begin{array}{c}
\left(\frac{f_{1}}{g_{1}}+\frac{f_{2}}{g_{2}}\right) d \frac{T_{2}}{T_{1}} d \frac{T_{0}}{T_{1}} \\
\left(\frac{T_{2}}{T_{1}}\right)^{i}
\end{array}\right]=\left[\begin{array}{c}
\frac{f_{1}}{g_{1}} d \frac{T_{2}}{T_{1}} d \frac{T_{0}}{T_{1}} \\
\left(\frac{T_{2}}{T_{1}}\right)^{i}
\end{array}\right]+\left[\begin{array}{c}
\frac{f_{2}}{g_{2}} d \frac{T_{2}}{T_{1}} d \frac{T_{0}}{T_{1}} \\
\left(\frac{T_{2}}{T_{1}}\right)^{i}
\end{array}\right],} \\
& {\left[\begin{array}{c}
\left(\frac{f_{1}}{g_{1}}+\frac{f_{2}}{g_{2}}\right) d \frac{T_{1}}{T_{0}} d \frac{T_{2}}{T_{0}} \\
\left(\frac{T_{1}}{T_{0}}\right)^{i},\left(\frac{T_{2}}{T_{0}}\right)^{j}
\end{array}\right]=\left[\begin{array}{c}
\frac{f_{1}}{g_{1}} d \frac{T_{1}}{T_{0}} d \frac{T_{2}}{T_{0}} \\
\left(\frac{T_{1}}{T_{0}}\right)^{i},\left(\frac{T_{2}}{T_{0}}\right)^{j}
\end{array}\right]+\left[\begin{array}{c}
\frac{f_{2}}{g_{2}} d \frac{T_{1}}{T_{0}} d \frac{T_{2}}{T_{0}} \\
\left(\frac{T_{1}}{T_{0}}\right)^{i},\left(\frac{T_{2}}{T_{0}}\right)^{j}
\end{array}\right] .}
\end{aligned}
$$

Proposition 3 (Vanishing Law). If $f \in\left(T_{2} / T_{1}\right)^{i}$,

$$
\left[\begin{array}{c}
\frac{f}{g} d \frac{T_{2}}{T_{1}} d \frac{T_{0}}{T_{1}} \\
\left(\frac{T_{2}}{T_{1}}\right)^{i}
\end{array}\right]=0
$$

If f is contained in the ideal generated by $\left(T_{1} / T_{0}\right)^{i}$ and $\left(T_{2} / T_{0}\right)^{j}$, then

$$
\left[\begin{array}{c}
\frac{f}{g} d \frac{T_{1}}{T_{0}} d \frac{T_{2}}{T_{0}} \\
\left(\frac{T_{1}}{T_{0}}\right)^{i},\left(\frac{T_{2}}{T_{0}}\right)^{j}
\end{array}\right]=0
$$

Denominators of generalized fractions $\left(\left(T_{2} / T_{1}\right)^{i}\right.$ in (1) and $\left(T_{1} / T_{0}\right)^{i},\left(T_{2} / T_{0}\right)^{j}$ in (2)) can be any system of parameters of $\mathcal{O}_{\mathbb{P}^{2}, \mathfrak{p}}$. The relations of generalized fractions in different system of parameters are given by the transformation law, which we refer to [2, Lemma 2.3.ii] or [5, Lemma 7.2.b]. Elements of $M(\mathfrak{p})$ represented by generalized fractions are convenient to handle.

Example 4. Elements of $M\left(\mathbb{P}^{0}\right)$ can be written as

$$
\left[\begin{array}{c}
h d \frac{T_{1}}{T_{0}} d \frac{T_{2}}{T_{0}} \\
\left(\frac{T_{1}}{T_{0}}\right)^{i},\left(\frac{T_{2}}{T_{0}}\right)^{j}
\end{array}\right]
$$

where $h \in \kappa\left[T_{1} / T_{0}, T_{2} / T_{0}\right]$.

Proof. Write f / g in (2) as $f_{0} /\left(1-g_{0}\right)$, where $f_{0} \in \kappa\left[T_{1} / T_{0}, T_{2} / T_{0}\right]$ and $g_{0} \in$ $\left(T_{1} / T_{0}, T_{2} / T_{0}\right)$.

$$
\frac{1}{1-g_{0}}-\left(1+g_{0}+g_{0}^{2}+\cdots+g_{0}^{i+j-2}\right)
$$

is contained in the ideal generated by $\left(T_{1} / T_{0}\right)^{i}$ and $\left(T_{2} / T_{0}\right)^{j}$. Let

$$
h=f_{0}\left(1+g_{0}+g_{0}^{2}+\cdots+g_{0}^{i+j-2}\right)
$$

By the linearity law and the vanishing law,

$$
\begin{aligned}
{\left[\begin{array}{c}
\frac{f}{g} d \frac{T_{1}}{T_{0}} d \frac{T_{2}}{T_{0}} \\
\left(\frac{T_{1}}{T_{0}}\right)^{i},\left(\frac{T_{2}}{T_{0}}\right)^{j}
\end{array}\right] } & =\left[\begin{array}{c}
h d \frac{T_{1}}{T_{0}} d \frac{T_{2}}{T_{0}} \\
\left(\frac{T_{1}}{T_{0}}\right)^{i},\left(\frac{T_{2}}{T_{0}}\right)^{j}
\end{array}\right]+\left[\begin{array}{c}
\left(\frac{f_{0}}{1-g_{0}}-h\right) d \frac{T_{1}}{T_{0}} d \frac{T_{2}}{T_{0}} \\
\left(\frac{T_{1}}{T_{0}}\right)^{i},\left(\frac{T_{2}}{T_{0}}\right)^{j}
\end{array}\right] \\
& =\left[\begin{array}{c}
h d \frac{T_{1}}{T_{0}} d \frac{T_{2}}{T_{0}} \\
\left(\frac{T_{1}}{T_{0}}\right)^{i},\left(\frac{T_{2}}{T_{0}}\right)^{j}
\end{array}\right]
\end{aligned}
$$

Let $J(\mathfrak{p})$ be the quasi-coherent $\mathcal{O}_{\mathbb{P}^{2}}$-module which is the constant sheaf $M(\mathfrak{p})$ on $\{\mathfrak{p}\}^{-}$, and zero elsewhere. We write $J\left(\mathbb{P}^{2}\right)($ resp. $J(C))$ for $J(\mathfrak{p})$ if \mathfrak{p} is the generic point of \mathbb{P}^{2} (resp. a curve C). In [3, 4], a residual complex

$$
\begin{equation*}
J\left(\mathbb{P}^{2}\right) \rightarrow \bigoplus_{\text {curves }} J(C) \rightarrow \bigoplus_{\text {closed points }} J(\mathfrak{m}) \rightarrow 0 \tag{3}
\end{equation*}
$$

on \mathbb{P}^{2} is described. (3) is an injective resolution of $\mathcal{O}_{\mathbb{P}^{2}}(-3)$. Tensoring with \mathcal{F} and $\mathcal{O}_{\mathbb{P}^{2}}(3)$, we get an injective resolution

$$
\mathcal{F} \otimes J\left(\mathbb{P}^{2}\right)(3) \rightarrow \mathcal{F} \otimes(\bigoplus J(C))(3) \rightarrow \mathcal{F} \otimes(\bigoplus J(\mathfrak{m}))(3) \rightarrow 0
$$

of \mathcal{F}. By definition, the cohomology of the complex

$$
\begin{align*}
& \Gamma\left(\mathbb{P}^{2}, \mathcal{F} \otimes J\left(\mathbb{P}^{2}\right)(3)\right) \rightarrow \Gamma\left(\mathbb{P}^{2}, \mathcal{F} \otimes(\bigoplus J(C))(3)\right) \tag{4}\\
& \rightarrow \Gamma\left(\mathbb{P}^{2}, \mathcal{F} \otimes(\bigoplus J(\mathfrak{m}))(3)\right) \rightarrow 0
\end{align*}
$$

is the cohomology of \mathcal{F}. It was observed in [4] that a subcomplex $\mathcal{F}^{(\bullet)}$ of (4) is quasiisomorphic to (4).

Definition 5. Let $\left\{u_{i}\right\}$ (resp. $\left\{v_{i}\right\}$ and $\left\{w_{i}\right\}$) be a minimal generating set for the free module $\mathcal{F}\left(D_{+}\left(T_{2}\right)\right)$ (resp. $\mathcal{F}\left(D_{+}\left(T_{1}\right)\right)$ and $\mathcal{F}\left(D_{+}\left(T_{0}\right)\right)$) over $\mathcal{O}_{\mathbb{P}^{2}}\left(D_{+}\left(T_{2}\right)\right)$ (resp. $\mathcal{O}_{\mathbb{P}^{2}}\left(D_{+}\left(T_{1}\right)\right)$ and $\left.\mathcal{O}_{\mathbb{P}^{2}}\left(D_{+}\left(T_{0}\right)\right)\right)$. We define $\mathcal{F}^{(0)}$ to be the submodule of $\Gamma\left(\mathbb{P}^{2}\right.$, $\left.\mathcal{F} \otimes J\left(\mathbb{P}^{2}\right)(3)\right)=\Gamma\left(D_{+}\left(T_{2}\right), \mathcal{F} \otimes J\left(\mathbb{P}^{2}\right)(3)\right)$ generated by

$$
u_{i} \otimes d \frac{T_{0}}{T_{2}} d \frac{T_{1}}{T_{2}} \otimes T_{2}^{3}
$$

We define $\mathcal{F}^{(1)}$ to be the submodule of $\Gamma\left(\mathbb{P}^{2}, \mathcal{F} \otimes J\left(\mathbb{P}^{1}\right)(3)\right)=\Gamma\left(D_{+}\left(T_{1}\right), \mathcal{F} \otimes J\left(\mathbb{P}^{1}\right)(3)\right)$ generated by

$$
v_{i} \otimes\left[\begin{array}{l}
d \frac{T_{2}}{T_{1}} d \frac{T_{0}}{T_{1}} \tag{5}\\
\left(\frac{T_{2}}{T_{1}}\right)^{j}
\end{array}\right] \otimes T_{1}^{3} \quad(j \in \mathbb{N})
$$

We define $\mathcal{F}^{(2)}$ to be the submodule of $\Gamma\left(\mathbb{P}^{2}, \mathcal{F} \otimes J\left(\mathbb{P}^{0}\right)(3)\right)=\Gamma\left(D_{+}\left(T_{0}\right), \mathcal{F} \otimes J\left(\mathbb{P}^{0}\right)(3)\right)$ generated by

$$
w_{i} \otimes\left[\begin{array}{c}
d \frac{T_{1}}{T_{0}} d \frac{T_{2}}{T_{0}} \\
\left(\frac{T_{1}}{T_{0}}\right)^{j},\left(\frac{T_{2}}{T_{0}}\right)^{k}
\end{array}\right] \otimes T_{0}^{3} \quad(j, k \in \mathbb{N})
$$

Assume that \mathcal{F} has rank n. Then $\mathcal{F}^{(i)}$ is isomorphic to n copies of $\mathcal{O}_{\mathbb{P}^{2}}^{(i)}$. As κ vector spaces, $\mathcal{F}^{(0)}$ has a basis

$$
\begin{equation*}
\left\{\left.u_{i} \otimes\left(\frac{T_{0}}{T_{2}}\right)^{j}\left(\frac{T_{1}}{T_{2}}\right)^{k} d \frac{T_{0}}{T_{2}} d \frac{T_{1}}{T_{2}} \otimes T_{2}^{3} \right\rvert\, 1 \leq i \leq n \text { and } 0 \leq j, k\right\} \tag{6}
\end{equation*}
$$

and $\mathcal{F}^{(1)}$ has a basis
(7) $\left\{\left.v_{i} \otimes\left[\begin{array}{c}\left(\frac{T_{0}}{T_{1}}\right)^{j} d \frac{T_{2}}{T_{1}} d \frac{T_{0}}{T_{1}} \\ \left(\frac{T_{2}}{T_{1}}\right)^{k}\end{array}\right] \otimes T_{1}^{3} \right\rvert\, 1 \leq i \leq n, 0 \leq j\right.$ and $\left.0<k\right\}$,
and $\mathcal{F}^{(2)}$ has a basis
(8) $\left\{\left.w_{i} \otimes\left[\begin{array}{c}d \frac{T_{1}}{T_{0}} d \frac{T_{2}}{T_{0}} \\ \left(\frac{T_{1}}{T_{0}}\right)^{j},\left(\frac{T_{2}}{T_{0}}\right)^{k}\end{array}\right] \otimes T_{0}^{3} \right\rvert\, 1 \leq i \leq n\right.$ and $\left.0<j, k\right\}$.

The coboundary maps of the residual complex (3) are decomposed into

$$
\delta_{\mathfrak{p}, \mathfrak{q}}: J(\mathfrak{p}) \rightarrow J(\mathfrak{q})
$$

for $\mathfrak{p}, \mathfrak{q} \in \mathbb{P}^{2}$. We recall two special cases of $\delta_{\mathfrak{p}, \mathfrak{q}}$ needed for defining the coboundary maps of $\mathcal{F}^{(\bullet)}$.

EXAMPLE 6.

- Let \mathfrak{p} be the generic point of \mathbb{P}^{2} and \mathfrak{q} be the generic point of the line $T_{2}=0$. $\delta_{\mathbb{P}^{2}, \mathbb{P}^{1}}:=\delta_{\mathfrak{p}, \mathfrak{q}}$ is determined by the map $M\left(\mathbb{P}^{2}\right) \rightarrow M\left(\mathbb{P}^{1}\right)$ satisfying

$$
\frac{f}{g} d \frac{T_{1}}{T_{0}} d \frac{T_{2}}{T_{0}} \mapsto\left[\begin{array}{c}
f d \frac{T_{1}}{T_{0}} d \frac{T_{2}}{T_{0}} \tag{9}\\
g
\end{array}\right]
$$

where $f \in \kappa\left[T_{1} / T_{0}, T_{2} / T_{0}\right]$ and $g \in \kappa\left[T_{1} / T_{0}, T_{2} / T_{0}\right] \backslash(0)$.

- Let \mathfrak{p} be the generic point of the line $T_{2}=0$ and \mathfrak{q} be the closed point $T_{2}=T_{1}=0$.
$\delta_{\mathbb{P}^{1}, \mathbb{P}^{0}}:=\delta_{\mathfrak{p}, \mathfrak{q}}$ is determined by the map $M\left(\mathbb{P}^{1}\right) \rightarrow M\left(\mathbb{P}^{0}\right)$ satisfying

$$
\left[\begin{array}{c}
\frac{f}{g} d \frac{T_{1}}{T_{0}} d \frac{T_{2}}{T_{0}} \tag{10}\\
\left(\frac{T_{2}}{T_{0}}\right)^{i}
\end{array}\right] \mapsto\left[\begin{array}{c}
f d \frac{T_{1}}{T_{0}} d \frac{T_{2}}{T_{0}} \\
g,\left(\frac{T_{2}}{T_{0}}\right)^{i}
\end{array}\right]
$$

where $f \in \kappa\left[T_{1} / T_{0}, T_{2} / T_{0}\right]$ and $g \in \kappa\left[T_{1} / T_{0}, T_{2} / T_{0}\right] \backslash\left(T_{2} / T_{0}\right)$.

In Example 1, elements of $M\left(\mathbb{P}^{2}\right)\left(\right.$ resp. $M\left(\mathbb{P}^{1}\right)$) are represented in terms of T_{0} / T_{2} and T_{1} / T_{2} (resp. T_{2} / T_{1} and T_{0} / T_{1}). We may use the formula

$$
\begin{gather*}
T_{2}^{3} d \frac{T_{0}}{T_{2}} d \frac{T_{1}}{T_{2}}=T_{0}^{3} d \frac{T_{1}}{T_{0}} d \frac{T_{2}}{T_{0}}, \\
{\left[\begin{array}{c}
d \frac{T_{2}}{T_{1}} d \frac{T_{0}}{T_{1}} \\
\left(\frac{T_{2}}{T_{1}}\right)^{3}
\end{array}\right]=\left[\begin{array}{c}
d \frac{T_{1}}{T_{0}} d \frac{T_{2}}{T_{0}} \\
\left(\frac{T_{2}}{T_{0}}\right)^{3}
\end{array}\right]} \tag{11}
\end{gather*}
$$

to rewrite elements of $M\left(\mathbb{P}^{2}\right)$ and $M\left(\mathbb{P}^{1}\right)$ before applying (9) and (10).
For $i=0,1$, the image of $\mathcal{F}^{(1-i)}$ under the map

$$
\left(\mathrm{id}_{\mathcal{F}} \otimes \delta_{\mathbb{P}^{i+1}, \mathbb{P}^{i}} \otimes \operatorname{id}_{\mathcal{O}_{\mathbb{P}^{2}(3)}}\right)\left(\mathbb{P}^{2}\right): \Gamma\left(\mathbb{P}^{2}, \mathcal{F} \otimes J\left(\mathbb{P}^{i+1}\right)(3)\right) \rightarrow \Gamma\left(\mathbb{P}^{2}, \mathcal{F} \otimes J\left(\mathbb{P}^{i}\right)(3)\right)
$$

is contained in $\mathcal{F}^{(2-i)}$.
Definition 7. For $i=0,1$, let $d^{(1-i)}: \mathcal{F}^{(1-i)} \rightarrow \mathcal{F}^{(2-i)}$ be the restriction of $\left(\mathrm{id}_{\mathcal{F}} \otimes \delta_{\mathbb{P}^{i+1}, \mathbb{P}^{i}} \otimes \operatorname{id}_{\mathcal{O}_{\mathbb{P}^{2}(3)}}\right)\left(\mathbb{P}^{2}\right)$ on $\mathcal{F}^{(1-i)}$.

To make $d^{(1-i)}$ explicit, we consider $\mathrm{id}_{\mathcal{F}} \otimes \delta_{\mathbb{P}^{i+1}, \mathbb{P}^{i}} \otimes \operatorname{id}_{\mathcal{O}_{\mathbb{P}^{2}(3)}}$ on $D_{+}\left(T_{0}\right)$. Restricted to $D_{+}\left(T_{2}\right) \cap D_{+}\left(T_{0}\right)$,

$$
u_{i}=\sum_{j} \frac{f_{i j}}{\left(T_{2} / T_{0}\right)^{n_{i j}}} w_{i}
$$

for some $f_{i j} \in \kappa\left[T_{1} / T_{0}, T_{2} / T_{0}\right]$ and $n_{i j} \geq 0$. In terms of these transition functions,

$$
\begin{aligned}
d^{0}\left(u_{i} \otimes d \frac{T_{0}}{T_{2}} d \frac{T_{1}}{T_{2}} \otimes T_{2}^{3}\right) & =d^{0}\left(\sum_{j} w_{i} \otimes \frac{f_{i j}}{\left(T_{2} / T_{0}\right)^{n_{i j}}} d \frac{T_{1}}{T_{0}} d \frac{T_{2}}{T_{0}} \otimes T_{0}^{3}\right) \\
& =\sum_{j} w_{i} \otimes\left[\begin{array}{c}
f_{i j} d \frac{T_{1}}{T_{0}} d \frac{T_{2}}{T_{0}} \\
\left(\frac{T_{2}}{T_{0}}\right)^{n_{i j}}
\end{array}\right] \otimes T_{0}^{3} .
\end{aligned}
$$

We may use (11) to write the image of $d^{(0)}$ in terms of the generators (5) of $\mathcal{F}^{(1)}$. Restricted to $D_{+}\left(T_{1}\right) \cap D_{+}\left(T_{0}\right)$,

$$
v_{i}=\sum_{j} \frac{h_{i j}}{\left(T_{1} / T_{0}\right)^{n_{i j}}} w_{i}
$$

for some $n_{i j} \geq 0$ and $h_{i j} \in \kappa\left[T_{1} / T_{0}, T_{2} / T_{0}\right]$. In terms of these transition functions,

$$
\begin{aligned}
& d^{(1)}\left(\begin{array}{c}
v_{i} \otimes\left[\begin{array}{c}
d \frac{T_{2}}{T_{1}} d \frac{T_{0}}{T_{1}} \\
\left(\frac{T_{2}}{T_{1}}\right)^{l}
\end{array}\right] \otimes T_{1}^{3}
\end{array}\right) \\
& =d^{(1)}\left(\sum_{j} w_{i} \otimes\left[\begin{array}{c}
h_{i j}\left(\frac{T_{1}}{T_{0}}\right)^{l-n_{i j}} d \frac{T_{1}}{T_{0}} d \frac{T_{2}}{T_{0}} \\
\left(\frac{T_{2}}{T_{0}}\right)^{l}
\end{array}\right] \otimes T_{0}^{3}\right. \\
& =\sum_{j} w_{i} \otimes\left[\begin{array}{c}
h_{i j} d \frac{T_{1}}{T_{0}} d \frac{T_{2}}{T_{0}} \\
\left(\frac{T_{1}}{T_{0}}\right)^{n_{i j}-l},\left(\frac{T_{2}}{T_{0}}\right)^{l}
\end{array}\right] \otimes T_{0}^{3}
\end{aligned}
$$

The following is our main tool.
Theorem 8 ([4, Theorem 3.2]). The i-th cohomology of $\mathcal{F}^{(\bullet)}$ is isomorphic to $\mathrm{H}^{i}\left(\mathbb{P}^{2}, \mathcal{F}\right)$.

3. Vector bundles $\mathcal{F}_{p, q}$

Let S be the graded ring $\kappa\left[X_{0}, X_{1}, X_{2}, X_{3}\right] /\left(X_{0} X_{1}-X_{2} X_{3}\right)$ over a field κ. Denote by x_{i} the image of X_{i} under the canonical map $\kappa\left[X_{0}, X_{1}, X_{2}, X_{3}\right] \rightarrow S$. So, as a κ-algebra, S is generated by $x_{0}, x_{1}, x_{2}, x_{3}$ with a relation $x_{0} x_{1}=x_{2} x_{3}$. $\operatorname{Proj}(S)$ is a hypersurface of \mathbb{P}^{3} covered by three affine open sets:

$$
\operatorname{Proj}(S)=D_{+}\left(x_{3}\right) \cup D_{+}\left(x_{2}\right) \cup D_{+}\left(x_{1}-x_{0}\right)
$$

On $D_{+}\left(x_{3}\right)$ and $D_{+}\left(x_{2}\right)$, the regular functions of $\operatorname{Proj}(S)$ form polynomial rings $\kappa\left[x_{0} / x_{3}\right.$, $\left.x_{1} / x_{3}\right]$ and $\kappa\left[x_{0} / x_{2}, x_{1} / x_{2}\right]$, respectively. On $D_{+}\left(x_{1}-x_{0}\right)$, its regular functions are

$$
\kappa\left[\frac{x_{1}}{x_{1}-x_{0}}, \frac{x_{2}}{x_{1}-x_{0}}, \frac{x_{3}}{x_{1}-x_{0}}\right] /\left(\left(\frac{x_{1}}{x_{1}-x_{0}}\right)^{2}-\frac{x_{1}}{x_{1}-x_{0}}-\frac{x_{2}}{x_{1}-x_{0}} \frac{x_{3}}{x_{1}-x_{0}}\right)
$$

We identify $\operatorname{Proj}(S)$ with the fiber product of two projective lines, which can be described using a Cartesian product (that is, the scheme $\operatorname{Proj}\left(\kappa\left[Y_{0}, Y_{1}\right] \times_{\kappa} \kappa\left[Z_{0}, Z_{1}\right]\right)$). The identification is given by the homomorphism of κ-algebras

$$
\begin{aligned}
\kappa\left[x_{0}, x_{1}, x_{2}, x_{3}\right] & \rightarrow \kappa\left[Y_{0}, Y_{1}\right] \times_{\kappa} \kappa\left[Z_{0}, Z_{1}\right], \\
x_{0} & \mapsto Y_{0} Z_{0}, \\
x_{1} & \mapsto Y_{1} Z_{1},
\end{aligned}
$$

$$
\begin{aligned}
& x_{2} \mapsto Y_{1} Z_{0}, \\
& x_{3} \mapsto Y_{0} Z_{1} .
\end{aligned}
$$

Let π_{1} and π_{2} be the two projections from $\operatorname{Proj}(S)$ to \mathbb{P}^{1}. For $p, q \in \mathbb{Z}$,

$$
\mathcal{L}_{p, q}:=\pi_{1}^{*} \mathcal{O}(p) \otimes \pi_{2}^{*} \mathcal{O}(q)
$$

is an invertible sheaf on $\operatorname{Proj}(S)$, which is the sheaf associated to the graded module

$$
\kappa\left[Y_{0}, Y_{1}\right](p) \times_{\kappa} \kappa\left[Z_{0}, Z_{1}\right](q) .
$$

On $D_{+}\left(x_{3}\right), \mathcal{L}_{p, q}$ is generated by $Y_{0}^{p} Z_{1}^{q}$. On $D_{+}\left(x_{2}\right)$, it is generated by $Y_{1}^{p} Z_{0}^{q}$.
Proposition 9. Let $\epsilon \geq \max \{0,-p,-q\}$. $\mathcal{L}_{p, q}\left(D_{+}\left(x_{1}-x_{0}\right)\right)$ is generated by $Y_{0}^{\epsilon+p} Z_{0}^{\epsilon+q} /\left(x_{1}-x_{0}\right)^{\epsilon}$ and $Y_{1}^{\epsilon+p} Z_{1}^{\epsilon+q} /\left(x_{1}-x_{0}\right)^{\epsilon}$.

Proof. $\mathcal{L}_{p, q}\left(D_{+}\left(x_{1}-x_{0}\right)\right)$ is generated by $Y_{0}^{i} Y_{1}^{j} Z_{0}^{k} Z_{1}^{l} /\left(x_{1}-x_{0}\right)^{n}$, where the indices $i, j, k, l, n \geq 0$ satisfy $i+j=n+p$ and $k+l=n+q$. Restricting to $D_{+}\left(x_{1}\right) \cap D_{+}\left(x_{1}-x_{0}\right)$,

$$
\frac{Y_{0}^{i} Y_{1}^{j} Z_{0}^{k} Z_{1}^{l}}{\left(x_{1}-x_{0}\right)^{n}}=\left(\frac{x_{1}}{x_{1}-x_{0}}\right)^{n-i-k-\epsilon}\left(\frac{x_{2}}{x_{1}-x_{0}}\right)^{k}\left(\frac{x_{3}}{x_{1}-x_{0}}\right)^{i} \frac{Y_{1}^{\epsilon+p} Z_{1}^{\epsilon+q}}{\left(x_{1}-x_{0}\right)^{\epsilon}}
$$

Restricting to $D_{+}\left(x_{0}\right) \cap D_{+}\left(x_{1}-x_{0}\right)$,

$$
\frac{Y_{0}^{i} Y_{1}^{j} Z_{0}^{k} Z_{1}^{l}}{\left(x_{1}-x_{0}\right)^{n}}=\left(\frac{x_{0}}{x_{1}-x_{0}}\right)^{n-j-l-\epsilon}\left(\frac{x_{2}}{x_{1}-x_{0}}\right)^{j}\left(\frac{x_{3}}{x_{1}-x_{0}}\right)^{l} \frac{Y_{0}^{\epsilon+p} Z_{0}^{\epsilon+q}}{\left(x_{1}-x_{0}\right)^{\epsilon}}
$$

Since $D_{+}\left(x_{1}-x_{0}\right)$ is covered by the subsets $D_{+}\left(x_{1}\right) \cap D_{+}\left(x_{1}-x_{0}\right)$ and $D_{+}\left(x_{0}\right) \cap D_{+}\left(x_{1}-\right.$ $\left.x_{0}\right), \mathcal{L}_{p, q}\left(D_{+}\left(x_{1}-x_{0}\right)\right)$ is generated by $Y_{0}^{\epsilon+p} Z_{0}^{\epsilon+q} /\left(x_{1}-x_{0}\right)^{\epsilon}$ and $Y_{1}^{\epsilon+p} Z_{1}^{\epsilon+q} /\left(x_{1}-x_{0}\right)^{\epsilon}$.

Let \mathcal{O} be the point of $\mathbb{P}^{3} \backslash \operatorname{Proj}(S)$ with homogeneous coordinate [1, 1, 0,0]. Let

$$
\pi: \operatorname{Proj}(S) \rightarrow \mathbb{P}^{2}
$$

be the double cover of \mathbb{P}^{2} defined by the immersion $\operatorname{Proj}(S) \rightarrow \mathbb{P}^{3} \backslash\{\mathcal{O}\}$ followed by the projection from \mathcal{O} to the plane $X_{0}=0$, which is identified with $\mathbb{P}^{2}=\operatorname{Proj}\left(\kappa\left[T_{0}, T_{1}\right.\right.$, $\left.T_{2}\right]$). The morphism π is determined by the graded homomorphism

$$
\kappa\left[T_{0}, T_{1}, T_{2}\right] \rightarrow \kappa\left[x_{0}, x_{1}, x_{2}, x_{3}\right]
$$

given by

$$
T_{0} \mapsto x_{1}-x_{0}
$$

$$
\begin{aligned}
T_{1} & \mapsto x_{2} \\
T_{2} & \mapsto x_{3}
\end{aligned}
$$

We consider the locally free sheaf of modules

$$
\mathcal{F}_{p, q}:=\pi_{*} \mathcal{L}_{p, q}
$$

on \mathbb{P}^{2}, which has rank 2. On $D_{+}\left(T_{2}\right), \mathcal{F}_{p, q}$ is generated by $\left(x_{0} / x_{3}\right) Y_{0}^{p} Z_{1}^{q}$ and $Y_{0}^{p} Z_{1}^{q}$. On $D_{+}\left(T_{1}\right)$, it is generated by $\left(x_{0} / x_{2}\right) Y_{1}^{p} Z_{0}^{q}$ and $Y_{1}^{p} Z_{0}^{q}$.

Proposition 10. Let $\epsilon=\max \{0,-p,-q\} . \mathcal{F}_{p, q}\left(D_{+}\left(T_{0}\right)\right)$ is generated by $Y_{0} Z_{0} / T_{0}^{\epsilon+1}$ and $Y_{1} Z_{1} / T_{0}^{\epsilon+1}$ if $p=q \leq 0$, otherwise by $Y_{0}^{\epsilon+p} Z_{0}^{\epsilon+q} / T_{0}^{\epsilon}$ and $Y_{1}^{\epsilon+p} Z_{1}^{\epsilon+q} / T_{0}^{\epsilon}$.

Proof. $\quad \mathcal{F}_{p, q}\left(D_{+}\left(T_{0}\right)\right)$ is generated by $Y_{0}^{i} Y_{1}^{j} Z_{0}^{k} Z_{1}^{l} / T_{0}^{n}$, where $i, j, k, l, n \geq 0$ satisfy $i+j=n+p$ and $k+l=n+q$. Note that, if j and k are both positive, then

$$
\begin{equation*}
\frac{Y_{0}^{i} Y_{1}^{j} Z_{0}^{k} Z_{1}^{l}}{T_{0}^{n}}=\frac{T_{1}}{T_{0}} \frac{Y_{0}^{i} Y_{1}^{j} Z_{0}^{k-1} Z_{1}^{l+1}}{T_{0}^{n}}-\frac{T_{1}}{T_{0}} \frac{Y_{0}^{i+1} Y_{1}^{j-1} Z_{0}^{k} Z_{1}^{l}}{T_{0}^{n}} \tag{12}
\end{equation*}
$$

if i and l are both positive, then

$$
\begin{equation*}
\frac{Y_{0}^{i} Y_{1}^{j} Z_{0}^{k} Z_{1}^{l}}{T_{0}^{n}}=\frac{T_{2}}{T_{0}} \frac{Y_{0}^{i-1} Y_{1}^{j+1} Z_{0}^{k} Z_{1}^{l}}{T_{0}^{n}}-\frac{T_{2}}{T_{0}} \frac{Y_{0}^{i} Y_{1}^{j} Z_{0}^{k+1} Z_{1}^{l-1}}{T_{0}^{n}} \tag{13}
\end{equation*}
$$

Assume that $n>\epsilon$. Then $n, n+p, n+q>0$ and

$$
\begin{align*}
& \frac{Y_{0}^{i} Y_{1}^{j} Z_{0}^{k} Z_{1}^{l}}{T_{0}^{n}}= \begin{cases}\frac{T_{1}}{T_{0}} \frac{Y_{0}^{i} Y_{1}^{j-1} Z_{0}^{k-1} Z_{1}^{l}}{T_{0}^{n-1},} \text { if } j, k>0 \\
\frac{T_{2}}{T_{0}} \frac{Y_{0}^{i-1} Y_{1}^{j} Z_{0}^{k} Z_{1}^{l-1}}{T_{0}^{n-1},} \text { if } i, l>0\end{cases} \tag{14}\\
& \frac{Y_{0}^{n+p} Z_{0}^{n+q}}{T_{0}^{n}}=\frac{Y_{0}^{n+p-1} Y_{1} Z_{0}^{n+q-1} Z_{1}}{T_{0}^{n}}-\frac{Y_{0}^{n+p-1} Z_{0}^{n+q-1}}{T_{0}^{n-1}} \tag{15}\\
& \frac{Y_{1}^{n+p} Z_{1}^{n+q}}{T_{0}^{n}}=\frac{Y_{0} Y_{1}^{n+p-1} Z_{0} Z_{1}^{n+q-1}}{T_{0}^{n}}+\frac{Y_{1}^{n+p-1} Z_{1}^{n+q-1}}{T_{0}^{n-1}} \tag{16}
\end{align*}
$$

We consider first the case $p \neq q$ or $p=q>0$, in which either $n+p-1>0$ or $n+q-1>0$. Using (14), (15) and (16), induction on n shows that $\mathcal{F}_{p, q}\left(D_{+}\left(T_{0}\right)\right)$ is generated by $Y_{0}^{i} Y_{1}^{j} Z_{0}^{k} Z_{1}^{l} / T_{0}^{\epsilon}$, where $i, j, k, l \geq 0$ satisfy $i+j=\epsilon+p$ and $k+l=$ $\epsilon+q$. Applying (12) and (13) with $n=\epsilon$, we see that $\mathcal{F}_{p, q}\left(D_{+}\left(T_{0}\right)\right)$ is generated by $Y_{0}^{\epsilon+p} Z_{0}^{\epsilon+q} / T_{0}^{\epsilon}$ and $Y_{1}^{\epsilon+p} Z_{1}^{\epsilon+q} / T_{0}^{\epsilon}$.

Now we consider the case $p=q \leq 0$. Assume that $n>\epsilon+1$. In this case, $n+p-$ $1=n+q-1>0$. Using (14), (15) and (16), induction on n shows that $\mathcal{F}_{p, q}\left(D_{+}\left(T_{0}\right)\right)$
is generated by $1 / T_{0}^{\epsilon}$ and $Y_{0}^{i} Y_{1}^{j} Z_{0}^{k} Z_{1}^{l} / T_{0}^{\epsilon+1}$, where $i, j, k, l \geq 0$ satisfy $i+j=\epsilon+p+1$ and $k+l=\epsilon+q+1$. Applying (12) and (13) with $n=\epsilon+1$, we see that $\mathcal{F}_{p, q}\left(D_{+}\left(T_{0}\right)\right)$ is generated by $Y_{0} Z_{0} / T_{0}^{\epsilon+1}, Y_{1} Z_{1} / T_{0}^{\epsilon+1}$ and $1 / T_{0}^{\epsilon}$. The proposition follows from the identity

$$
\frac{Y_{1} Z_{1}}{T_{0}^{\epsilon+1}}-\frac{Y_{0} Z_{0}}{T_{0}^{\epsilon+1}}=\frac{1}{T_{0}^{\epsilon}}
$$

4. Complexes $\mathcal{F}_{p, q}^{(\boldsymbol{\bullet}}$

From now on, we always assume that $\epsilon=\max \{0,-p,-q\}$. First we would like to write down bases of the κ-vector spaces $\mathcal{F}_{p, q}^{(i)}$ explicitly.

Definition 11. For $i, j \geq 0$, we define

$$
\mathbf{u}^{i j}:=\left(\frac{x_{0}}{x_{3}}\right)^{i}\left(\frac{x_{1}}{x_{3}}\right)^{j} Y_{0}^{p} Z_{1}^{q} \otimes d \frac{T_{0}}{T_{2}} d \frac{T_{1}}{T_{2}} \otimes T_{2}^{3} \in \Gamma\left(\mathbb{P}^{2}, \mathcal{F}_{p, q} \otimes J\left(\mathbb{P}^{2}\right)(3)\right) .
$$

For $i, j, m, n \in \mathbb{Z}$, we choose $\delta \geq \max \{-i,-j\}$ and define

$$
\mathbf{v}_{n}^{i j}:=\left(\frac{x_{0}}{x_{2}}\right)^{\delta+i}\left(\frac{x_{1}}{x_{2}}\right)^{\delta+j} Y_{1}^{p} Z_{0}^{q} \otimes\left[\begin{array}{c}
d \frac{T_{2}}{T_{1}} d \frac{T_{0}}{T_{1}} \\
\left(\frac{T_{2}}{T_{1}}\right)^{\delta+n}
\end{array}\right] \otimes T_{1}^{3}
$$

in $\Gamma\left(\mathbb{P}^{2}, \mathcal{F}_{p, q} \otimes J\left(\mathbb{P}^{1}\right)(3)\right)$ and

$$
\mathbf{w}_{m n}^{i j}:=\left(\frac{x_{0}}{x_{1}-x_{0}}\right)^{\delta+i}\left(\frac{x_{1}}{x_{1}-x_{0}}\right)^{\delta+j} \frac{Y_{0}^{\epsilon+p} Z_{1}^{\epsilon+q}}{\left(x_{1}-x_{0}\right)^{\epsilon}} \otimes\left[\begin{array}{c}
d \frac{T_{1}}{T_{0}} d \frac{T_{2}}{T_{0}} \\
\left(\frac{T_{1}}{T_{0}}\right)^{\delta+m},\left(\frac{T_{2}}{T_{0}}\right)^{\delta+n}
\end{array}\right] \otimes T_{0}^{3}
$$

in $\Gamma\left(\mathbb{P}^{2}, \mathcal{F}_{p, q} \otimes J\left(\mathbb{P}^{0}\right)(3)\right)$.
The definitions of $\mathbf{v}_{n}^{i j}$ and $\mathbf{w}_{m n}^{i j}$ are independent of the choice of δ. By Proposition $3, \mathbf{v}_{0}^{i j}=0$ if $i, j \geq 0$ and $\mathbf{w}_{m(n+\epsilon+q)}^{(\epsilon+q) 0}=\mathbf{w}_{m(n+\epsilon+p)}^{0(\epsilon+p)}=0$ if $m \leq 0$ or $n \leq 0$. Sometimes, $\mathbf{w}_{m n}^{i j}$ are treated differently according to the values of p and q. The following notations are handy.

$$
\begin{aligned}
& \mathbf{w}_{m n}^{\geq}:= \begin{cases}\mathbf{w}_{m(n+\epsilon) q)}^{10} & \text { if } \quad p=q \leq 0 ; \\
\mathbf{w}_{m(n+\epsilon+\epsilon)}^{(\epsilon+q)} & \text { otherwise. }\end{cases} \\
& \mathbf{w}_{m n}^{\leq}:= \begin{cases}\mathbf{w}_{m(n+\epsilon+p)}^{01} & \text { if } \quad p=q \leq 0 ; \\
\mathbf{w}_{m(n+\epsilon+p)}^{0(\epsilon+p)} & \text { otherwise. }\end{cases}
\end{aligned}
$$

Proposition 12.

- The elements $\mathbf{u}^{i j}$, where $i, j \geq 0$, form a basis of $\mathcal{F}_{p, q}^{(0)}$.
- The elements $\mathbf{v}_{0}^{i j}$, where $i<0$ or $j<0$, form a basis of $\mathcal{F}_{p, q}^{(1)}$.
- The elements $\mathbf{w}_{m n}^{\geq}$and $\mathbf{w}_{m n}^{\leq}$, where $m, n>0$, form a basis of $\mathcal{F}_{p, q}^{(2)}$.

Proof. As an $\mathcal{O}_{\mathbb{P}^{2}}\left(D_{+}\left(T_{2}\right)\right)$-module, $\mathcal{F}_{p, q}\left(D_{+}\left(T_{2}\right)\right)$ has a minimal generating set $\left\{Y_{0}^{p} Z_{1}^{q},\left(x_{0} / x_{3}\right) Y_{0}^{p} Z_{1}^{q}\right\}$. Indicated in (6), as a κ-vector space, $\mathcal{F}_{p, q}^{(0)}$ has a basis consisting of
$Y_{0}^{p} Z_{1}^{q} \otimes\left(\frac{T_{0}}{T_{2}}\right)^{i}\left(\frac{T_{1}}{T_{2}}\right)^{j} d \frac{T_{0}}{T_{2}} d \frac{T_{1}}{T_{2}} \otimes T_{2}^{3} \quad$ and $\quad \frac{x_{0}}{x_{3}} Y_{0}^{p} Z_{1}^{q} \otimes\left(\frac{T_{0}}{T_{2}}\right)^{i}\left(\frac{T_{1}}{T_{2}}\right)^{j} d \frac{T_{0}}{T_{2}} d \frac{T_{1}}{T_{2}} \otimes T_{2}^{3}$,
where $i, j \geq 0$. Since $\kappa\left[x_{0} / x_{3}, x_{1} / x_{3}\right]$ is freely generated by 1 and x_{0} / x_{3} as a $\kappa\left[T_{0} / T_{2}, T_{1} / T_{2}\right]$-module, these elements are exactly $u_{i j}$, where $i, j \geq 0$.

For the second statement of the proposition, we use the fact that

$$
\mathbf{v}_{n+1}^{(i+1)(j+1)}=\mathbf{v}_{n}^{i j}
$$

for any i, j and n. Since $\mathcal{F}_{p, q}^{(1)}$ is generated by all $\mathbf{v}_{n}^{i j}$, it is also generated by those $\mathbf{v}_{n}^{00}, \mathbf{v}_{n}^{i 0}$ and $\mathbf{v}_{n}^{0 j}$ with $i, j>0$ and $n \in \mathbb{Z}$. Note that $\mathbf{v}_{n}^{00}=\mathbf{v}_{n}^{i 0}=\mathbf{v}_{n}^{0 j}=0$ if $i, j>0$ and $n \leq 0$ by Proposition 3. The generating set $\left\{\mathbf{v}_{n}^{00}, \mathbf{v}_{n}^{i 0}, \mathbf{v}_{n}^{0 j} \mid i, j, n>0\right\}$ for $\mathcal{F}_{p, q}^{(1)}$ is exactly $\left\{\mathbf{v}_{0}^{i j} \mid i<0\right.$ or $\left.j<0\right\}$. To prove that they are linearly independent, we recall (7) that

$$
\left\{\left(\frac{T_{0}}{T_{1}}\right)^{j} \mathbf{v}_{n}^{00}, \left.\left(\frac{T_{0}}{T_{1}}\right)^{j} \mathbf{v}_{n}^{10} \right\rvert\, n>0, \quad j \geq 0\right\}
$$

is a basis of $\mathcal{F}_{p, q}^{(1)}$. For $i, j, n>0$,

$$
\mathbf{v}_{n}^{0 j}-\left(\frac{T_{0}}{T_{1}}\right)^{j} \mathbf{v}_{n}^{00}-\left(\frac{T_{0}}{T_{1}}\right)^{j-1} \mathbf{v}_{n}^{10} \quad \text { and } \quad \mathbf{v}_{n}^{i 0}-(-1)^{i-1}\left(\frac{T_{0}}{T_{1}}\right)^{i-1} \mathbf{v}_{n}^{10}
$$

are contained in the subspace generated by those $\mathbf{v}_{m}^{i j}$ with $m<n$ and $i, j \geq 0$. This implies that $\mathbf{v}_{n}^{00}, \mathbf{v}_{n}^{i 0}$ and $\mathbf{v}_{n}^{0 j}$ are linearly independent.

For the last statement of the proposition, there are two cases. If $p=q \leq 0$, the elements

$$
\frac{Y_{0} Z_{0}}{T_{0}^{\epsilon+1}} \otimes\left[\begin{array}{c}
d \frac{T_{1}}{T_{0}} d \frac{T_{2}}{T_{0}} \\
\left(\frac{T_{1}}{T_{0}}\right)^{m},\left(\frac{T_{2}}{T_{0}}\right)^{n}
\end{array}\right] \otimes T_{0}^{3} \quad \text { and } \quad \frac{Y_{1} Z_{1}}{T_{0}^{\epsilon+1}} \otimes\left[\begin{array}{c}
d \frac{T_{1}}{T_{0}} d \frac{T_{2}}{T_{0}} \\
\left(\frac{T_{1}}{T_{0}}\right)^{m},\left(\frac{T_{2}}{T_{0}}\right)^{n}
\end{array}\right] \otimes T_{0}^{3}
$$

where $m, n>0$, form a basis of $\mathcal{F}_{p, q}^{(2)}$. These elements are exactly $\mathbf{w}_{m(n+\epsilon+q)}^{10}$ and $\mathbf{w}_{m(n+\epsilon+p)}^{01}$. If $p \neq q$ or $p=q>0$, the elements

$$
\frac{Y_{0}^{\epsilon+p} Z_{0}^{\epsilon+q}}{\left(x_{1}-x_{0}\right)^{\epsilon}} \otimes\left[\begin{array}{c}
d \frac{T_{1}}{T_{0}} d \frac{T_{2}}{T_{0}} \\
\left(\frac{T_{1}}{T_{0}}\right)^{m},\left(\frac{T_{2}}{T_{0}}\right)^{n}
\end{array}\right] \otimes T_{0}^{3}
$$

and

$$
\frac{Y_{1}^{\epsilon+p} Z_{1}^{\epsilon+q}}{\left(x_{1}-x_{0}\right)^{\epsilon}} \otimes\left[\begin{array}{c}
d \frac{T_{1}}{T_{0}} d \frac{T_{2}}{T_{0}} \\
\left(\frac{T_{1}}{T_{0}}\right)^{m},\left(\frac{T_{2}}{T_{0}}\right)^{n}
\end{array}\right] \otimes T_{0}^{3}
$$

where $m, n>0$, form a basis of $\mathcal{F}_{p, q}^{(2)}$. These elements are exactly $\mathbf{w}_{m(n+\epsilon+q)}^{(\epsilon+q) 0}$ and $\mathbf{w}_{m(n+\epsilon+p)}^{0(\epsilon+p)}$ as seen from the computation:

$$
\begin{aligned}
& \frac{Y_{0}^{\epsilon+p} Z_{0}^{\epsilon+q}}{\left(x_{1}-x_{0}\right)^{\epsilon}} \otimes\left[\begin{array}{c}
d \frac{T_{1}}{T_{0}} d \frac{T_{2}}{T_{0}} \\
\left(\frac{T_{1}}{T_{0}}\right)^{m},\left(\frac{T_{2}}{T_{0}}\right)^{n}
\end{array}\right] \otimes T_{0}^{3} \\
& =\left(\frac{x_{0}}{x_{1}-x_{0}}\right)^{\epsilon \epsilon q} \frac{Y_{0}^{\epsilon+p} Z_{1}^{\epsilon+q}}{\left(x_{1}-x_{0}\right)^{\epsilon}} \otimes\left[\begin{array}{c}
d \frac{T_{1}}{T_{0}} d \frac{T_{2}}{T_{0}} \\
\left(\frac{T_{1}}{T_{0}}\right)^{m},\left(\frac{T_{2}}{T_{0}}\right)^{n+\epsilon+q}
\end{array}\right] \otimes T_{0}^{3}=\mathbf{w}_{m(n+\epsilon+q)}^{(\epsilon+q) 0}
\end{aligned}
$$

and

$$
\begin{aligned}
& \frac{Y_{1}^{\epsilon+p} Z_{1}^{\epsilon+q}}{\left(x_{1}-x_{0}\right)^{\epsilon}} \otimes\left[\begin{array}{c}
d \frac{T_{1}}{T_{0}} d \frac{T_{2}}{T_{0}} \\
\left(\frac{T_{1}}{T_{0}}\right)^{m},\left(\frac{T_{2}}{T_{0}}\right)^{n}
\end{array}\right] \otimes T_{0}^{3} \\
& =\left(\frac{x_{1}}{x_{1}-x_{0}}\right)^{\epsilon+p} \frac{Y_{0}^{\epsilon+p} Z_{1}^{\epsilon+q}}{\left(x_{1}-x_{0}\right)^{\epsilon}} \otimes\left[\begin{array}{c}
d \frac{T_{1}}{T_{0}} d \frac{T_{2}}{T_{0}} \\
\left(\frac{T_{1}}{T_{0}}\right)^{m},\left(\frac{T_{2}}{T_{0}}\right)^{n+\epsilon+p}
\end{array}\right] \otimes T_{0}^{3}=\mathbf{w}_{m(n+\epsilon+p)}^{0(\epsilon+p)}
\end{aligned}
$$

The coboundary maps of $\mathcal{F}_{p, q}^{(\bullet)}$ have easy descriptions.

Proposition 13.

$$
\begin{aligned}
d^{(0)} \mathbf{u}^{i j} & =\mathbf{v}_{i+j}^{(p+i)(q+j)} \\
d^{(1)} \mathbf{v}_{n}^{i j} & =\mathbf{W}_{(i+j-n)(n+\epsilon+p+q)}^{(i+q)(j+p)}
\end{aligned}
$$

Proof. The proposition follows from direct computations:

$$
\begin{aligned}
& \mathbf{u}^{i j}=\left(\frac{x_{0}}{x_{1}-x_{0}}\right)^{i}\left(\frac{x_{1}}{x_{1}-x_{0}}\right)^{j} \frac{Y_{0}^{\epsilon+p} Z_{1}^{\epsilon+q}}{\left(x_{1}-x_{0}\right)^{\epsilon}} \otimes\left(\frac{T_{2}}{T_{0}}\right)^{-i-j-\epsilon} d \frac{T_{1}}{T_{0}} d \frac{T_{2}}{T_{0}} \otimes T_{0}^{3} \\
& \mapsto\left(\frac{x_{0}}{x_{1}-x_{0}}\right)^{i}\left(\frac{x_{1}}{x_{1}-x_{0}}\right)^{j} \frac{Y_{0}^{\epsilon+p} Z_{1}^{\epsilon+q}}{\left(x_{1}-x_{0}\right)^{\epsilon}} \otimes\left[\begin{array}{c}
d \frac{T_{1}}{T_{0}} d \frac{T_{2}}{T_{0}} \\
\left(\frac{T_{2}}{T_{0}}\right)^{i+j+\epsilon}
\end{array}\right] \otimes T_{0}^{3} \\
& =\left(\frac{x_{0}}{x_{2}}\right)^{i+\epsilon+p}\left(\frac{x_{1}}{x_{2}}\right)^{j+\epsilon+q} Y_{1}^{p} Z_{0}^{q} \otimes\left[\begin{array}{c}
d \frac{T_{2}}{T_{1}} d \frac{T_{0}}{T_{1}} \\
\left(\frac{T_{2}}{T_{1}}\right)^{i+j+\epsilon}
\end{array}\right] \otimes T_{1}^{3} \\
& =\mathbf{v}_{i+j}^{(p+i)(q+j)}, \\
& \mathbf{v}_{n}^{i j}=\left(\frac{x_{0}}{x_{1}-x_{0}}\right)^{\delta+i}\left(\frac{x_{1}}{x_{1}-x_{0}}\right)^{\delta+j} \frac{Y_{1}^{\epsilon+p} Z_{0}^{\epsilon+q}}{\left(x_{1}-x_{0}\right)^{\epsilon}} \otimes\left[\begin{array}{c}
\left(\frac{T_{1}}{T_{0}}\right)^{n-\delta-i-j-\epsilon} \\
\left(\frac{T_{2}}{T_{0}}\right)^{\delta+n} \frac{T_{1}}{T_{0}} d \frac{T_{2}}{T_{0}}
\end{array}\right] \otimes T_{0}^{3} \\
& \mapsto\left(\frac{x_{0}}{x_{1}-x_{0}}\right)^{\delta+i}\left(\frac{x_{1}}{x_{1}-x_{0}}\right)^{\delta+j} \frac{Y_{1}^{\epsilon+p} Z_{0}^{\epsilon+q}}{\left(x_{1}-x_{0}\right)^{\epsilon}} \otimes\left[\begin{array}{c}
\left(\frac{T_{1}}{T_{0}}\right)^{n} d \frac{T_{1}}{T_{0}} d \frac{T_{2}}{T_{0}} \\
\left(\frac{T_{1}}{T_{0}}\right)^{\delta+i+j+\epsilon},\left(\frac{T_{2}}{T_{0}}\right)^{\delta+n}
\end{array}\right] \otimes T_{0}^{3} \\
& =\left(\frac{x_{0}}{x_{1}-x_{0}}\right)^{\delta+i+\epsilon+q}\left(\frac{x_{1}}{x_{1}-x_{0}}\right)^{\delta+j+\epsilon+p} \frac{Y_{0}^{\epsilon+p} Z_{1}^{\epsilon+q}}{\left(x_{1}-x_{0}\right)^{\epsilon}} \\
& \otimes\left[\begin{array}{c}
\left(\frac{T_{1}}{T_{0}}\right)^{n} d \frac{T_{1}}{T_{0}} d \frac{T_{2}}{T_{0}} \\
\left(\frac{T_{1}}{T_{0}}\right)^{\delta+i+j+\epsilon},\left(\frac{T_{2}}{T_{0}}\right)^{\delta+n+2 \epsilon+p+q}
\end{array}\right] \otimes T_{0}^{3} \\
& =\mathbf{w}_{(i+j-n)(n+\epsilon+p+q)}^{(i+q)(j+p)} .
\end{aligned}
$$

5. Module structure of $\mathcal{F}_{p, q}^{(2)}$

We need polynomials f_{i} and g_{i} with integer coefficients which are defined inductively:

$$
f_{1}=g_{1}=0
$$

and

$$
\begin{aligned}
& f_{n+1}=f_{n}+g_{n}, \\
& g_{n+1}=X+X f_{n}
\end{aligned}
$$

for $n \geq 1$. Induction on n, it is easy to see that

$$
\begin{equation*}
g_{n}\left(1+f_{n+1}\right)-g_{n+1}\left(1+f_{n}\right)=(-X)^{n} . \tag{17}
\end{equation*}
$$

If a and b are elements in a commutative ring satisfying $b^{2}=b+a$, then

$$
b^{n}=\left(1+f_{n}(a)\right) b+g_{n}(a) .
$$

f_{n} and g_{n} are divisible by X. With $f=f_{n} / X$ and $g=g_{n} / X$,

$$
b^{n}-b=a(f(a) b+g(a)) .
$$

This is a special case of the following lemma.
Lemma 14. Let a and b be elements in a commutative ring satisfying $b^{2}=b+a$. Then, for any $n_{0}, n_{1}, l>0$ and $n_{2} \geq 0$, there exist $f, g \in \mathbb{Z}[X]$ and $h \in \mathbb{Z}[X, Y]$ such that

$$
b^{n_{0}}=(1+a f(a)) b^{n_{1}}+a g(a)(1-b)^{n_{2}}+a^{l} h(a, b) .
$$

Proof. We consider first the case that $n_{2}>0$. Choose $h_{01}, h_{02}, h_{11}, h_{12} \in \mathbb{Z}[X]$ such that

$$
\begin{align*}
& b^{n_{0}}-b=a\left(h_{01}(a) b+h_{02}(a)\right), \tag{18}\\
& b^{n_{1}}-b=a\left(h_{11}(a) b+h_{12}(a)\right) .
\end{align*}
$$

With $h_{0}=h_{01}-h_{11}+h_{02}-h_{12}$ and $g=h_{02}-h_{12}$, we have

$$
b^{n_{0}}=b^{n_{1}}+a g(a)(1-b)+a h_{0}(a) b .
$$

Note that $1-b$ also satisfies the condition $(1-b)^{2}=(1-b)+a$. Choose $h_{21}, h_{22} \in \mathbb{Z}[X]$ such that

$$
\begin{equation*}
(1-b)^{n_{2}}-(1-b)=a\left(h_{21}(a)(1-b)+h_{22}(a)\right) . \tag{19}
\end{equation*}
$$

With $h_{1}=h_{0}-a g h_{22}$ and $h_{2}=-a g\left(h_{21}+h_{22}\right)$, we have

$$
b^{n_{0}}=b^{n_{1}}+a g(a)(1-b)^{n_{2}}+a b h_{1}(a)+a(1-b) h_{2}(a) .
$$

Fix n_{0}, n_{1}, n_{2}. Assume that for an $l>1$, there exist $f, g, h_{1}, h_{2} \in \mathbb{Z}[X]$ such that

$$
b^{n_{0}}=(1+a f(a)) b^{n_{1}}+a g(a)(1-b)^{n_{2}}+a^{l} b h_{1}(a)+a^{l}(1-b) h_{2}(a) .
$$

Choose $h_{11}, h_{12}, h_{21}, h_{22} \in \mathbb{Z}[X]$ such that (18) and (19) hold. Then

$$
\begin{aligned}
b^{n_{0}}= & \left(1+a f(a)+a^{l} h_{1}(a)\right) b^{n_{1}} \\
& +a\left(g(a)+a^{l-1} h_{2}(a)\right)(1-b)^{n_{2}} \\
& +a^{l+1} b\left(-h_{1}(a) h_{11}(a)-h_{1}(a) h_{12}(a)-h_{2}(a) h_{22}(a)\right) \\
& +a^{l+1}(1-b)\left(-h_{2}(a) h_{21}(a)-h_{2}(a) h_{22}(a)-h_{1}(a) h_{12}(a)\right) .
\end{aligned}
$$

This induction process on l proves the lemma for the case $n_{2}>0$.
Now we consider the case that $n_{2}=0$. Choose $f, g, h_{11}, h_{12} \in \mathbb{Z}[X]$ and $h \in$ $\mathbb{Z}[X, Y]$ such that (18) and

$$
b^{n_{0}}=(1+a f(a)) b^{n_{1}}+a g(a)(1-b)+a^{l} h(a, b)
$$

hold. Denote

$$
\frac{1}{1+a h_{11}(a)}:=1-a h_{11}(a)+\left(a h_{11}(a)\right)^{2}-\left(a h_{11}(a)\right)^{3}+\cdots+\left(-a h_{11}(a)\right)^{l-1}
$$

by abusing the notation. Then

$$
\begin{aligned}
b^{n_{0}}= & \left(1+a f(a)-\frac{a g(a)}{1+a h_{11}(a)}\right) b^{n_{1}} \\
& +a g(a)\left(1+\frac{a h_{12}(a)}{1+a h_{11}(a)}\right)+a^{l}\left(h(a, b)-a g(a)\left(-h_{11}(a)\right)^{l} b\right) .
\end{aligned}
$$

For the rest of this paper, we consider elements

$$
\begin{aligned}
a & :=\frac{x_{2} x_{3}}{\left(x_{1}-x_{0}\right)^{2}}, \\
b & :=\frac{x_{1}}{x_{1}-x_{0}}
\end{aligned}
$$

in the ring $\Gamma\left(D_{+}\left(x_{1}-x_{0}\right), \operatorname{Proj}(S)\right)$, which satisfy the condition $b^{2}=b+a$. The multiplications of elements in $\mathcal{F}_{p, q}^{(2)}$ by a and b are easy to describe:

$$
a \mathbf{w}_{m n}^{i j}=\mathbf{w}_{m n}^{(i+1)(j+1)},
$$

$$
b \mathbf{w}_{m n}^{i j}=\mathbf{w}_{m n}^{i(j+1)} .
$$

The condition $(1-b)^{2}=(1-b)+a$ also holds. The multiplication by $1-b$ gives rise to a negative sign:

$$
(1-b)^{l} \mathbf{w}_{m n}^{i j}=(-1)^{l} \mathbf{w}_{m n}^{(i+l) j}
$$

This is the reason that we include the condition "sum" in the following definition.
Definition 15. An element $\mathbf{w} \in \mathcal{F}_{p, q}^{(2)}$ is approximated by $\mathbf{w}_{\bar{m} n}^{\leq}$(resp. $\mathbf{w}_{\bar{m} n}^{\perp}$), denoted by $\mathbf{w} \approx \mathbf{w}_{m n}^{\leq}$(resp. $\mathbf{w} \approx \mathbf{w}_{\bar{m} n}^{\geq}$), if their difference or sum $\mathbf{w} \pm \mathbf{w}_{m n}^{\leq}$(resp. $\mathbf{w} \pm$ $\mathbf{w}_{m n}^{\geq}$) is contained in the κ-vector subspace generated by the elements $\mathbf{w}_{i j}^{\llcorner }$and $\mathbf{w}_{i j}^{\geq}$ with $i<m$.

Proposition 16. Let $i, m>0$ and $n \in \mathbb{Z}$. If $p=q \leq 0$,

$$
\begin{align*}
& \mathbf{w}_{m(n+\epsilon+p)}^{0 i} \approx \mathbf{w}_{m n}^{\leq}, \tag{20}\\
& \mathbf{w}_{m(n+\epsilon+q)}^{i 0} \approx \mathbf{w}_{m n}^{\geq} . \tag{21}
\end{align*}
$$

If $p \neq q$ or $p=q>0$, the approximation (20) holds for $\epsilon+p>0$ and the approximation (21) holds for $\epsilon+q>0$.

Proof. We prove only (20) and leave (21) to the reader. So we have the assumption $\epsilon+p>0$ if $p \neq q$ or $p=q>0$. We choose $f, g \in \mathbb{Z}[X]$ and $h \in \mathbb{Z}[X, Y]$ such that

$$
b^{i}-a^{m} h(a, b)= \begin{cases}(1+a f(a)) b+a g(a)(b-1), & \text { if } \quad p=q \leq 0 \\ (1+a f(a)) b^{\epsilon+p}+a g(a)(b-1)^{\epsilon+q}, & \text { otherwise }\end{cases}
$$

Then

$$
\mathbf{w}_{m(n+\epsilon+p)}^{0 i}-\mathbf{w}_{m n}^{\leq}=b^{i} \mathbf{w}_{m(n+\epsilon+p)}^{00}-\mathbf{w}_{m n}^{\leq}=a f(a) \mathbf{w}_{m(n+p-q)}^{\leq}+a g(a) \mathbf{w}_{m n}^{\geq}
$$

from which we get the required approximation (20).
If $\mathbf{w}_{m n}^{\prime}, \mathbf{w}_{m n}^{\prime \prime} \in \mathcal{F}_{p, q}^{(2)}$ satisfy $\mathbf{w}_{m n}^{\prime} \approx \mathbf{w}_{m n}^{\leq}$and $\mathbf{w}_{m n}^{\prime \prime} \approx \mathbf{w}_{\bar{m} n}^{>}$for all positive m and n, then $\left\{\mathbf{w}_{m n}^{\prime}, \mathbf{w}_{m n}^{\prime \prime}\right\}_{m, n>0}$ is a basis of $\mathcal{F}_{p, q}^{(2)}$. More generally, if $\mathbf{w}_{m n}^{\prime} \approx \mathbf{w}_{m n}^{\leq}$and $\mathbf{w}_{m n}^{\prime \prime}-$ $\mathbf{w}_{m n}^{\prime \prime \prime} \approx \mathbf{w}_{\bar{m} n}^{\geq}$for some $\mathbf{w}_{m n}^{\prime \prime \prime}$ contained in the subspace generated by $\mathbf{w}_{i j}^{\leq}$with $i<m+l$ for a fixed l independent of m and n, then $\left\{\mathbf{w}_{m n}^{\prime}, \mathbf{w}_{m n}^{\prime \prime}\right\}_{m, n>0}$ is still a basis of $\mathcal{F}_{p, q}^{(2)}$. This observation is useful accompanied with the following fact.

Proposition 17. Let $i, m>0$ and $n \in \mathbb{Z}$. Assume that $p \neq q$ or $p=q>0$.

$$
\mathbf{w}_{m(n+\epsilon+p)}^{0 i} \pm \mathbf{w}_{m(n+p-q)}^{\geq} \approx \mathbf{w}_{m n}^{\leq}, \quad \text { if } \epsilon+p=0
$$

$$
\mathbf{w}_{m(n+\epsilon+q)}^{i 0} \pm \mathbf{w}_{m(n+q-p)}^{\leq} \approx \mathbf{w}_{m n}^{\geq}, \quad \text { if } \epsilon+q=0
$$

Proof. We prove only the first approximation and leave the second to the reader. So we have the conditions $\epsilon+p=0$ and $\epsilon+q>0$. We choose $f, g \in \mathbb{Z}[X]$ and $h \in \mathbb{Z}[X, Y]$ such that

$$
\begin{aligned}
b^{i} & =(1+a f(a)) b+a g(a)(b-1)^{\epsilon+q}+a^{m} h(a, b) \\
& =(1+a f(a))+(1+a f(a))(b-1)+\operatorname{ag}(a)(b-1)^{\epsilon+q}+a^{m} h(a, b)
\end{aligned}
$$

Since $\epsilon+q>0$, we may also choose $f^{\prime}, g^{\prime} \in \mathbb{Z}[X]$ and $h^{\prime} \in \mathbb{Z}[X, Y]$ such that

$$
1-b=\left(1+a f^{\prime}(a)\right)(1-b)^{\epsilon+q}+a g^{\prime}(a)+a^{m} h^{\prime}(a, b)
$$

Then

$$
\begin{aligned}
& \mathbf{w}_{m(n+\epsilon+p)}^{0 i} \\
&=(1+a f(a)) \mathbf{w}_{m(n+\epsilon+p)}^{00}+(1+a f(a)) \mathbf{w}_{m(n+\epsilon+p)}^{10}+a g(a) \mathbf{w}_{m(n+\epsilon+p)}^{(\epsilon+q) 0} \\
&=(1+a f(a)) \mathbf{w}_{m(n+\epsilon+p)}^{00}-a g^{\prime}(a)(1+a f(a)) \mathbf{w}_{m(n+\epsilon+p)}^{00} \\
&-(-1)^{\epsilon+q}(1+a f(a))\left(1+a f^{\prime}(a)\right) \mathbf{w}_{m(n+\epsilon+p)}^{(\epsilon+q) 0}+a g(a) \mathbf{w}_{m(n+\epsilon+p)}^{(\epsilon+q) 0}
\end{aligned}
$$

From the equality

$$
\begin{aligned}
& \mathbf{w}_{m(n+\epsilon+p)}^{0 i}+(-1)^{\epsilon+q} \mathbf{w}_{m(n+p-q)}^{\geq}-\mathbf{w}_{m n}^{\leq} \\
& =a\left(f(a)-g^{\prime}(a)-a f(a) g^{\prime}(a)\right) \mathbf{w}_{m n}^{\leq} \\
& \quad-(-1)^{\epsilon+q} a\left(f(a)+f^{\prime}(a)+a f(a) f^{\prime}(a)\right) \mathbf{w}_{m(n+p-q)}^{\geq}+a g(a) \mathbf{w}_{m(n+p-q)}^{\geq}
\end{aligned}
$$

we get the required approximation.

Corollary 18. Let $\mathbf{w}_{m n}^{\prime}, \mathbf{w}_{m n}^{\prime \prime} \in \mathcal{F}_{p, q}^{(2)}$. Assume that, for each m and n,

$$
\begin{aligned}
\mathbf{w}_{m n}^{\prime} & =\mathbf{w}_{m(n+\epsilon+p)}^{0 i} \\
\mathbf{w}_{m n}^{\prime \prime} & =\mathbf{w}_{m(n+\epsilon+q)}^{j 0}
\end{aligned}
$$

for some positive i and j. Then $\left\{\mathbf{w}_{m n}^{\prime}, \mathbf{w}_{m n}^{\prime \prime}\right\}_{m, n>0}$ is a basis of $\mathcal{F}_{p, q}^{(2)}$.
Proof. If $\epsilon+p$ and $\epsilon+q$ are both zero, then $p=q \leq 0$. Proposition 16 proves the corollary. If $\epsilon+p>0$ or $\epsilon+q>0$, the corollary follows from Proposition 16 and Proposition 17.

In Section 6, we need also the following approximations.

Proposition 19. Let $i, m>0$ and $n \in \mathbb{Z}$. Assume that $p \neq q$ or $p=q>0$. There exist $g_{1}, g_{2} \in \mathbb{Z}[X]$ such that

$$
\begin{array}{ll}
\mathbf{w}_{m n}^{0(i-\epsilon-q)} \pm a g_{1}(a) \mathbf{w}_{(m+\epsilon+q) n}^{\geq} & \approx \mathbf{w}_{m n}^{\leq}, \\
\mathbf{w}_{m n}^{(i-\epsilon-p) 0} \pm a g_{2}(a) \mathbf{w}_{(m+\epsilon+p) n}^{\leq} \approx \mathbf{w}_{m n}^{\geq}, & \text {if } \epsilon+q=0
\end{array}
$$

Proof. We prove the second approximation and leave the first to the reader. So we have the conditions $\epsilon+p>0$ and $\epsilon+q=0$. Choose $f_{2}, g_{2} \in \mathbb{Z}[X]$ and $h_{2} \in \mathbb{Z}[X, Y]$ such that

$$
(1-b)^{i}=\left(1+a f_{2}(a)\right)(1-b)^{\epsilon+p}+a g_{2}(a)+a^{m+\epsilon+p} h_{2}(a, b)
$$

Then

$$
\begin{aligned}
\mathbf{w}_{m n}^{(i-\epsilon-p) 0} & =\mathbf{w}_{(m+\epsilon+p)(n+\epsilon+p)}^{i(\epsilon+p)} \\
& =(-1)^{i+\epsilon+p}\left(1+a f_{2}(a)\right) \mathbf{w}_{m n}^{00}+(-1)^{i} a g_{2}(a) \mathbf{w}_{(m+\epsilon+p)(n+\epsilon+p)}^{0(\epsilon+p)}
\end{aligned}
$$

from which we get the required approximation.

6. Cohomology of $\mathcal{F}_{p, q}$

Proposition 20. Let $p, q \geq 0 . \mathrm{H}^{1}\left(\mathbb{P}^{2}, \mathcal{F}_{p, q}\right)=\mathrm{H}^{2}\left(\mathbb{P}^{2}, \mathcal{F}_{p, q}\right)=0$. The elements $\mathbf{u}^{i j}$, where $0 \leq i \leq q$ and $0 \leq j \leq p$, form a basis of $\mathrm{H}^{0}\left(\mathbb{P}^{2}, \mathcal{F}_{p, q}\right)$.

Proof. In this proposition, $\epsilon=0 . d^{(0)} \mathbf{u}^{i j}=\mathbf{v}_{0}^{(p-j)(q-i)}=0$ if and only if $i \leq q$ and $j \leq p$. Those non-zero $d^{(0)} \mathbf{u}^{i j}$ are linearly independent. Therefore the elements $\mathbf{u}^{i j}$, where $0 \leq i \leq q$ and $0 \leq j \leq p$, form a basis of $\mathrm{H}^{0}\left(\mathbb{P}^{2}, \mathcal{F}_{p, q}\right)$.

Now we compute the images of $\mathbf{v}_{0}^{i j}$.

- For indices $i \leq p$ and $j \leq q, \mathbf{v}_{0}^{i j}$ is the image of $\mathbf{u}^{(q-j)(p-i)}$. Therefore $d^{(1)} \mathbf{v}_{0}^{i j}=0$.
- For indices $i<0$ and $j>q$,

$$
d^{(1)} \mathbf{v}_{0}^{i j}=\mathbf{w}_{(j-q)(p-i)}^{0(j-q+p-i)}
$$

where the index $j-q+p-i$ is positive.

- For indices $j<0$ and $i>p$,

$$
d^{(1)} \mathbf{v}_{0}^{i j}=\mathbf{w}_{(i-p)(q-j)}^{(i-p+q-j) 0}
$$

where the index $i-p+q-j$ is also positive.
As noted in Corollary 18, except those $\mathbf{v}_{0}^{i j}$ being images of $d^{(0)}$, images of other $\mathbf{v}_{0}^{i j}$ form a basis of $\mathcal{F}_{p, q}^{(2)}$. This implies $\mathrm{H}^{1}\left(\mathbb{P}^{2}, \mathcal{F}_{p, q}\right)=\mathrm{H}^{2}\left(\mathbb{P}^{2}, \mathcal{F}_{p, q}\right)=0$.

Proposition 21. Let $q<0 \leq p . \mathrm{H}^{0}\left(\mathbb{P}^{2}, \mathcal{F}_{p, q}\right)=\mathrm{H}^{2}\left(\mathbb{P}^{2}, \mathcal{F}_{p, q}\right)=0$. The elements $\mathbf{v}_{0}^{i j}$, where $0 \leq i \leq p$ and $q<j<0$, form a basis of $\mathrm{H}^{1}\left(\mathbb{P}^{2}, \mathcal{F}_{p, q}\right)$.

Proof. In this proposition $\epsilon=-q$. The condition $\epsilon+p>0$ holds. The images of $\mathbf{u}^{i j}$ are linearly independent. Therefore $\mathrm{H}^{0}\left(\mathbb{P}^{2}, \mathcal{F}_{p, q}\right)=0$. Other assertions of the proposition follows from the computations of the images of $\mathbf{v}_{0}^{i j}$:

- For indices $i \leq p$ and $j \leq q, \mathbf{v}_{0}^{i j}$ is the image of $\mathbf{u}^{(q-j)(p-i)}$. Therefore $d^{(1)} \mathbf{v}_{0}^{i j}=0$.
- For indices $i<0$ and $j>q$,

$$
d^{(1)} \mathbf{v}_{0}^{i j}=\mathbf{w}_{(j-q)(-i+p-q)}^{0(j-q+p-i)} \approx \mathbf{w}_{(j-q)(-i)}^{\leq}
$$

by Proposition 16. The latter elements are exactly those \mathbf{w}_{m}^{\leq}with positive indices m and n.

- For indices $j<0$ and $i>p$, by Proposition 19 , there exists $g_{2} \in \mathbb{Z}[X]$ such that

$$
d^{(1)} \mathbf{v}_{0}^{i j} \pm a g_{2}(a) \mathbf{w}_{(i-q)(-j)}^{\leq} \approx \mathbf{w}_{(i-p)(-j)}^{\geq}
$$

The latter elements are exactly those $\mathbf{w}_{m}^{\geq} n$ with positive indices m and n.

- For indices $0 \leq i \leq p$ and $q<j<0$, we write $m=p-i$ and $n=j-q$. With the polynomials f_{i} and g_{i} defined in the beginning of Section 5,

$$
\begin{equation*}
d^{(1)} \mathbf{v}_{0}^{i j}=\mathbf{w}_{n(m-q)}^{0(m+n)}=\left(1+f_{m+n}(a)\right) \mathbf{w}_{n(m-q)}^{01}+g_{m+n}(a) \mathbf{w}_{n(m-q)}^{00} \tag{22}
\end{equation*}
$$

As $m-p=-i \leq 0$,

$$
\mathbf{w}_{n(m-q)}^{0(p-q)}=\mathbf{w}_{n(m-p)}^{\leq}=0
$$

Apply the relation

$$
\begin{aligned}
\mathbf{w}_{n(m-q)}^{01} & =\mathbf{w}_{n(m-q)}^{0(p-q)}-f_{p-q}(a) \mathbf{w}_{n(m-q)}^{01}-g_{p-q}(a) \mathbf{w}_{n(m-q)}^{00} \\
& =-f_{p-q}(a) \mathbf{w}_{n(m-q)}^{01}-g_{p-q}(a) \mathbf{w}_{n(m-q)}^{00}
\end{aligned}
$$

repeatedly l times to (22), we get

$$
\begin{aligned}
d^{(1)} \mathbf{v}_{0}^{i j}= & \left(1+f_{m+n}(a)\right)\left(-f_{p-q}(a)\right)^{l} \mathbf{w}_{n(m-q)}^{01} \\
& -\left(1+f_{m+n}(a)\right)\left(1-f_{p-q}(a)+\left(f_{p-q}(a)\right)^{2}-\cdots\right) g_{p-q}(a) \mathbf{w}_{n(m-q)}^{00} \\
& +g_{m+n}(a) \mathbf{w}_{n(m-q)}^{00}
\end{aligned}
$$

For $l \geq n$,

$$
\left(f_{p-q}(a)\right)^{l} \mathbf{w}_{n(m-q)}^{00}=0=\left(f_{p-q}(a)\right)^{l} \mathbf{w}_{n(m-q)}^{01}
$$

Without ambiguity, we may write

$$
d^{(1)} \mathbf{v}_{0}^{i j}=\left(1+f_{m+n}(a)\right)\left(\frac{g_{m+n}(a)}{1+f_{m+n}(a)}-\frac{g_{p-q}(a)}{1+f_{p-q}(a)}\right) \mathbf{w}_{n(m-q)}^{00}
$$

$$
=\left(1+f_{m+n}(a)\right) \sum_{i=m+n}^{p-q-1}\left(\frac{g_{i}(a)}{1+f_{i}(a)}-\frac{g_{i+1}(a)}{1+f_{i+1}(a)}\right) \mathbf{w}_{n(m-q)}^{00} .
$$

By (17),

$$
d^{(1)} \mathbf{v}_{0}^{i j}=\left(1+f_{m+n}(a)\right) \sum_{i=m+n}^{p-q-1} \frac{(-a)^{i}}{\left(1+f_{i}(a)\right)\left(1+f_{i+1}(a)\right)} \mathbf{w}_{n(m-q)}^{00}
$$

Since $a^{m+n} \mathbf{w}_{n(m-q)}^{00}=0, d^{(1)} \mathbf{v}_{0}^{i j}=0$ for $0 \leq i \leq p$ and $q<j<0$.
Similarly, we have the following proposition.

Proposition 22. Let $p<0 \leq q . \mathrm{H}^{0}\left(\mathbb{P}^{2}, \mathcal{F}_{p, q}\right)=\mathrm{H}^{2}\left(\mathbb{P}^{2}, \mathcal{F}_{p, q}\right)=0$. The elements $\mathbf{v}_{0}^{i j}$, where $0 \leq j \leq q$ and $p<i<0$, form a basis of $\mathrm{H}^{1}\left(\mathbb{P}^{2}, \mathcal{F}_{p, q}\right)$.

Proposition 23. Let $q \leq p<0 . \mathrm{H}^{0}\left(\mathbb{P}^{2}, \mathcal{F}_{p, q}\right)=\mathrm{H}^{1}\left(\mathbb{P}^{2}, \mathcal{F}_{p, q}\right)=0$. The elements $\mathbf{w}_{m n}^{\geq}$, where $0<m<-p$ and $0<n<-q-m$, together with the elements $\mathbf{w}_{m n}^{\leq}$, where $m>0, n>0$ and $m+n \leq-p$, form a basis of $\mathrm{H}^{2}\left(\mathbb{P}^{2}, \mathcal{F}_{p, q}\right)$.

Proof. In this proposition, $\epsilon=-q$. The images of $\mathbf{u}^{i j}$ are exactly those $\mathbf{v}_{0}^{i j}$ with indices $i \leq p$ and $j \leq q$. They are linearly independent. Therefore $\mathrm{H}^{0}\left(\mathbb{P}^{2}, \mathcal{F}_{p, q}\right)=0$.

Now we compute the images of $\mathbf{v}_{0}^{i j}$.

- For indices $i \leq p$ and $j \leq q, \mathbf{v}_{0}^{i j}$ is the image of $\mathbf{u}^{(q-j)(p-i)}$. Therefore $d^{(1)} \mathbf{v}_{0}^{i j}=0$.
- For indices $i<0$ and $j>q$ satisfying $p-i>q-j$,

$$
d^{(1)} \mathbf{v}_{0}^{i j}=\mathbf{w}_{(j-q)(-i-q+p)}^{0(j-q+p-i)} \approx \mathbf{w}_{(j-q)(-i)}^{\leq}
$$

by Proposition 16. The latter elements are exactly those \mathbf{w}_{m}^{\leq}with positive indices m and n satisfying $m+n+p>0$.

- For indices $j<0$ and $i>p$ satisfying $q-j>p-i$,

$$
\begin{aligned}
& d^{(1)} \mathbf{v}_{0}^{i j}=\mathbf{w}_{(i-p)(-j)}^{(i-p+q-j) 0} \approx \mathbf{w}_{(i-p)(-j)}^{\geq}, \quad \text { if } \quad p=q, \\
& d^{(1)} \mathbf{v}_{0}^{i j} \pm \mathbf{w}_{(i-p)(-j+q-p)}^{\leq} \approx \mathbf{w}_{(i-p)(-j)}^{\geq}, \quad \text { f } \quad p>q
\end{aligned}
$$

by Proposition 16 and Proposition 17. The latter elements are exactly those $\mathbf{w}_{m}^{\geq} n$ with positive indices m and n satisfying $m+n+q>0$.

- For indices $j<0$ and $i>p$ satisfying $q-j=p-i$,

$$
d^{(1)} \mathbf{v}_{0}^{i j}-\mathbf{w}_{(i-p)(-j)}^{01}=-\mathbf{w}_{(i-p)(-j)}^{10} .
$$

If $p=q$,

$$
\begin{equation*}
d^{(1)} \mathbf{v}_{0}^{i j}-\mathbf{w}_{(i-p)(-j)}^{\leq}=-\mathbf{w}_{(i-p)(-j)}^{\geq} \approx \mathbf{w}_{(i-p)(-j)}^{\geq} \tag{23}
\end{equation*}
$$

If $p>q$, by Proposition 16 and Proposition 17, there are approximations

$$
\begin{aligned}
\mathbf{w}_{(i-p)(-j)}^{01} & \approx \mathbf{w}_{(i-p)(-j+q-p)}^{\leq} \\
\mathbf{w}_{(i-p)(-j)}^{10} \pm \mathbf{w}_{(i-p)(-j+q-p)}^{\leq} & \approx \mathbf{w}_{(i-p)(-j)}^{\geq}
\end{aligned}
$$

that is, their differences or sums are contained in the subspace generated by the elements $\mathbf{w}_{\bar{m} n}^{\leq}$and $\mathbf{w}_{m n}^{\geq}$with $m<i-p$. For suitable negative signs and an integer l,

$$
\begin{aligned}
& d^{(1)} \mathbf{v}_{0}^{i j}+l \mathbf{w}_{(i-p)(-j+q-p)}^{\leq} \pm \mathbf{w}_{(i-p)(-j)}^{\geq} \\
& =\left(\mathbf{w}_{(i-p)(-j)}^{01} \pm \mathbf{w}_{(i-p)(-j+q-p)}^{\leq}\right) \\
& \quad-\left(\mathbf{w}_{(i-p)(-j)}^{10} \pm \mathbf{w}_{(i-p)(-j+q-p)}^{\leq} \pm \mathbf{w}_{(i-p)(-j)}^{\geq}\right) .
\end{aligned}
$$

Therefore

$$
\begin{equation*}
d^{(1)} \mathbf{v}_{0}^{i j}+l \mathbf{w}_{(i-p)(-j+q-p)}^{\leq} \approx \mathbf{w}_{(i-p)(-j)}^{\geq} . \tag{24}
\end{equation*}
$$

The latter elements of (23) or (24) are exactly those $\mathbf{w}_{m n}^{\geq}$with positive indices m and n satisfying $m+n+q=0$.

- In order to have indices $i \geq 0$ and $j<0$ satisfying $p-i>q-j$, the condition $p>q$ has to be satisfied. With this condition, by Proposition 19, there exist $g_{2} \in \mathbb{Z}[X]$ such that

$$
d^{(1)} \mathbf{v}_{0}^{i j} \pm a g_{2}(a) \mathbf{w}_{(i-q)(-j)}^{\leq} \approx \mathbf{w}_{(i-p)(-j)}^{\geq} .
$$

The latter elements are exactly those $\mathbf{w}_{\bar{m} n}^{\geq}$with indices $m \geq-p$ and $n>0$ satisfying $m+n+q<0$.
These computations show that the non-zero images of $\mathbf{v}_{0}^{i j}$ together with the elements $\mathbf{w}_{m n}^{\leq}$, where $m>0, n>0$ and $m+n \leq-p$, and the elements $\mathbf{w}_{\bar{m} n}^{\searrow}$, where $0<m<-p$ and $0<n<-q-m$, form a basis of $\mathcal{F}_{p, q}^{(2)}$. This concludes the proposition.

Similarly, we have the following proposition.
Proposition 24. Let $p<q<0 . \mathrm{H}^{0}\left(\mathbb{P}^{2}, \mathcal{F}_{p, q}\right)=\mathrm{H}^{1}\left(\mathbb{P}^{2}, \mathcal{F}_{p, q}\right)=0$. The elements $\mathbf{w}_{m n}^{\leq}$, where $0<m<-q$ and $0<n<-p-m$, together with the elements $\mathbf{w}_{\bar{m} n}^{\geq}$, where $m>0, n>0$ and $m+n \leq-q$, form a basis of $\mathrm{H}^{2}\left(\mathbb{P}^{2}, \mathcal{F}_{p, q}\right)$.

Counting the cardinality of the bases of $\mathrm{H}^{r}\left(\mathbb{P}^{2}, \mathcal{F}_{p, q}\right)$ given in previous propositions, we recover the following.

Corollary 25 ([6, Proposition 12]).

$$
\operatorname{dim}_{\kappa} \mathrm{H}^{r}\left(\mathbb{P}^{2}, \mathcal{F}_{p, q}\right)=(-1)^{r}(p+1)(q+1)
$$

if $r=0$ and $p, q \geq 0$; or if $r=1$ and $p \geq 0, q<0$ or $p<0, q \geq 0$; or if $r=2$ and $p, q<0$; and is zero otherwise.

References

[1] R. Hartshorne: Algebraic Geometry, Springer-Verlag, 1977.
[2] I-C. Huang: Pseudofunctors on modules with zero dimensional support, Mem. Amer. Math. Soc. 114 (1995).
[3] I-C. Huang: Theory of residues on the projective plane, Manuscripta Math. 92 (1997), 259-272.
[4] I-C. Huang: Cohomology of projective space seen by residual complex, Tran. Amer. Math. Soc. 353 (2001), 3097-3114.
[5] J. Lipman: Dualizing sheaves, differentials and residues on algebraic varieties, Astérisque 117, (1984).
[6] R.L.E. Schwarzenberger: Vector bundles on the projective plane, Proc. London Math. Soc. (3) 11 (1961), 623-640.

Institute of Mathematics
Academia Sinica, Nankang Taipei 11529, Taiwan, R.O.C.
e-mail: ichuang@math.sinica.edu.tw

[^0]: 2000 Mathematics Subject Classification. Primary 14F05, 14J60; Secondary 13D45.

