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COHOMOLOGY OF VECTOR BUNDLES FROM
A DOUBLE COVER OF THE PROJECTIVE PLANE
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Abstract
The paper deals with locally free sheavesFp;q on P2 obtained from a morphism

P1 � P1 ! P2. Bases ofHi (P2;Fp;q) are explicitly given in terms of elements
of certain local cohomology modules, which built up canonically a complex for
computing cohomology modules of locally free sheaves onP2.

1. Introduction

Let Pn = Proj�[X0; X1; : : : ; Xn] be the projectiven-space over a field� andF be
a locally free sheaf of finite rank onPn. In [4], a new method is introduced to com-
pute cohomology modules ofF . The method involves a complex of�-vector spaces

0! F (0) d(0)�! F (1) d(1)�! F (2)! � � � ! F (n) ! 0;
in which F (i ) depends only on the rank ofF and d(i ) is determined by the transition
functions ofF . It is shown that thei th cohomology of the complexF (�) is isomorphic
to the i th cohomology ofF . With computations of kernels and quotients ofd(i ), the
problem of algebraic geometry on computing cohomology becomes a problem of lin-
ear algebra. In terms of elements ofF (i ), one may askwhat a basis of the�-vector
spaceHi (Pn;F ) looks like. For twisted differentials�p

Pn=� (m), this project is carried
out [4]. A basis of the�-vector space Hq

�
Pn; �p

Pn=� (m)
�

is exhibited, from which the
Bott formula

dim� Hq
�
Pn;�p

Pn=� (m)
�

=

8>>>>>>>><
>>>>>>>>:

�
m�1

p

��
m+ n� p

m

�; for q = 0; 0� p� n; p<m;

1; for m = 0; 0� p = q � n;��m�1

n� p

���m+ p�m

�; for q = n; 0� p� n; m< p�n;

0; otherwise

is recovered by counting the cardinality of the basis. Invoking elaborated computations,
our approach to the Bott formula interprets the combinatorial numbers in the formula.
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In this paper, we work on the project for some rank two locallyfree sheaves of
modules on the projective planeP2. Let Q be the quadric surface inP3 defined by the
equationX0X1� X2X3. Via the Segre embedding,Q is identifies withP1�P1, whose
invertible sheaves are classified asLp;q, p;q 2 Z. We consider a projection from a
point of P3 to a plane, whose restriction toQ is denoted by� . It is known that

dim� Hr
�
P2; ��Lp;q� = (�1)r (p + 1)(q + 1)

if r = 0 and p;q � 0; or if r = 1 and p � 0, q < 0 or p < 0, q � 0; or if r = 2 and
p;q < 0; and is zero otherwise [6, Proposition 12]. The module structure of injective
complexes defining sheaf cohomology is subtle. Our goal is toanalyze Hr (P2; ��Lp;q)
in terms of elements of (��Lp;q)(r ) to reveal its combinatorial nature.

Usually, the word “basis” stands for a minimal generating set of a free module.
However, a set may have different module structures. To avoid confusion, we reserve
the term only for a minimal generating set of a�-vector space in this paper.

This paper is organized as follows.
• Section 2 recalls the construction ofF (�) for a locally free sheafF on the projec-
tive plane.
• Section 3 describes locally free sheavesFp;q obtained from a double cover of the
projective plane.
• Section 4 applies the construction of Section 2 toFp;q.
• Section 5 analyzes the module structure ofF (2)

p;q.
• Section 6 gives bases of Hi (P2;Fp;q).

2. Complex for computing cohomology

Let F be a locally free sheaf of finite rank onPn. We recall the construction of
the complexF (�) for the casen = 2. Given p 2 P2 = Proj(�[T0; T1; T2]), the local
cohomology module

M(p) := Hhtp
mp

 
2̂ �

O
P2;p=�

!

supported at the maximal idealmp of OP2;p is an injective hull of the residue field�p of OP2;p. Elements ofM(p) can be written as generalized fractions, which we re-
ferred to [2, Chapter 2] or [5,§7]. We recall three special cases ofM(p) needed for
definingF (i ).

EXAMPLE 1.
• If p is the generic point ofP2, we write M(P2) for M(p). Elements ofM(P2) are
of the form

f

g
d

T0

T2
d

T1

T2
;
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where f 2 �[T0=T2; T1=T2] and g 2 �[T0=T2; T1=T2] n (0).
• If p is the generic point of the lineT2 = 0, we write M(P1) for M(p). Elements
of M(P1) are of the form

(1)

2
6664

f

g
d

T2

T1
d

T0

T1�
T2

T1

�i

3
7775 ;

where f 2 �[T2=T1; T0=T1] and g 2 �[T2=T1; T0=T1] n (T2=T1).
• If p is the closed pointT2 = T1 = 0, we write M(P0) for M(p). Elements ofM(P0)
are of the form

(2)

2
6664

f

g
d

T1

T0
d

T2

T0�
T1

T0

�i ;�T2

T0

� j

3
7775 ;

where f 2 �[T1=T0; T2=T0] and g 2 �[T1=T0; T2=T0] n (T1=T0; T2=T0).

M(p), being an injective hull of�p, is also a module over the completionOP̂2;p
of OP2;p. This can be seen from the following properties of generalized fractions.

Proposition 2 (Linearity Law).

2
6664
�

f1

g1
+

f2

g2

�
d

T2

T1
d

T0

T1�
T2

T1

�i

3
7775 =

2
6664

f1

g1
d

T2

T1
d

T0

T1�
T2

T1

�i

3
7775 +

2
6664

f2

g2
d

T2

T1
d

T0

T1�
T2

T1

�i

3
7775 ;

2
6664
�

f1

g1
+

f2

g2

�
d

T1

T0
d

T2

T0�
T1

T0

�i ;�T2

T0

� j

3
7775 =

2
6664

f1

g1
d

T1

T0
d

T2

T0�
T1

T0

�i ;�T2

T0

� j

3
7775 +

2
6664

f2

g2
d

T1

T0
d

T2

T0�
T1

T0

�i ;�T2

T0

� j

3
7775 :

Proposition 3 (Vanishing Law). If f 2 (T2=T1)i ,

2
6664

f

g
d

T2

T1
d

T0

T1�
T2

T1

�i

3
7775 = 0:
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If f is contained in the ideal generated by(T1=T0)i and (T2=T0) j , then

2
6664

f

g
d

T1

T0
d

T2

T0�
T1

T0

�i ;�T2

T0

� j

3
7775 = 0:

Denominators of generalized fractions ((T2=T1)i in (1) and (T1=T0)i ; (T2=T0) j

in (2)) can be any system of parameters ofOP2;p. The relations of generalized frac-
tions in different system of parameters are given by the transformation law, which we
refer to [2, Lemma 2.3.ii] or [5, Lemma 7.2.b]. Elements ofM(p) represented by gen-
eralized fractions are convenient to handle.

EXAMPLE 4. Elements ofM(P0) can be written as

2
6664

h d
T1

T0
d

T2

T0�
T1

T0

�i ;�T2

T0

� j

3
7775 ;

whereh 2 �[T1=T0; T2=T0].

Proof. Write f =g in (2) as f0=(1 � g0), where f0 2 �[T1=T0; T2=T0] and g0 2
(T1=T0; T2=T0).

1

1� g0
� �1 + g0 + g2

0 + � � � + gi + j�2
0

�
is contained in the ideal generated by (T1=T0)i and (T2=T0) j . Let

h = f0
�
1 + g0 + g2

0 + � � � + gi + j�2
0

�:
By the linearity law and the vanishing law,2

6664
f

g
d

T1

T0
d

T2

T0�
T1

T0

�i ;�T2

T0

� j

3
7775 =

2
6664

h d
T1

T0
d

T2

T0�
T1

T0

�i ;�T2

T0

� j

3
7775 +

2
6664
�

f0

1� g0
� h

�
d

T1

T0
d

T2

T0�
T1

T0

�i ;�T2

T0

� j

3
7775

=

2
6664

h d
T1

T0
d

T2

T0�
T1

T0

�i ;�T2

T0

� j

3
7775 :
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Let J(p) be the quasi-coherentOP2-module which is the constant sheafM(p) onfpg�, and zero elsewhere. We writeJ(P2) (resp. J(C)) for J(p) if p is the generic
point of P2 (resp. a curveC). In [3, 4], a residual complex

(3) J(P2)!M
curves

J(C)! M
closed points

J(m)! 0

on P2 is described. (3) is an injective resolution ofOP2(�3). Tensoring withF and
OP2(3), we get an injective resolution

F 
 J(P2)(3)! F 
 �M J(C)
�

(3)! F 
 �M J(m)
�

(3)! 0

of F . By definition, the cohomology of the complex

0�P2;F 
 J
�
P2
�
(3)
�! 0 �P2;F 
 �M J(C)

�
(3)
�

! 0 �P2;F 
 �M J(m)
�

(3)
�! 0

(4)

is the cohomology ofF . It was observed in [4] that a subcomplexF (�) of (4) is quasi-
isomorphic to (4).

DEFINITION 5. Let fui g (resp. fvi g and fwi g) be a minimal generating set for
the free moduleF (D+(T2)) (resp. F (D+(T1)) and F (D+(T0))) over OP2(D+(T2))
(resp.OP2(D+(T1)) and OP2(D+(T0))). We defineF (0) to be the submodule of0(P2;
F 
 J(P2)(3)) = 0(D+(T2);F 
 J(P2)(3)) generated by

ui 
 d
T0

T2
d

T1

T2

 T3

2 :
We defineF (1) to be the submodule of0(P2;F
 J(P1)(3)) = 0(D+(T1);F 
 J(P1)(3))
generated by

(5) vi 

2
6664

d
T2

T1
d

T0

T1�
T2

T1

� j

3
7775
 T3

1 ( j 2 N):

We defineF (2) to be the submodule of0(P2;F
 J(P0)(3)) = 0(D+(T0);F 
 J(P0)(3))
generated by

wi 

2
6664

d
T1

T0
d

T2

T0�
T1

T0

� j ;�T2

T0

�k

3
7775
 T3

0 ( j; k 2 N):
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Assume thatF has rankn. Then F (i ) is isomorphic ton copies ofO(i )
P2 . As �-

vector spaces,F (0) has a basis

(6)

(
ui 


�
T0

T2

� j �T1

T2

�k

d
T0

T2
d

T1

T2

 T3

2

����� 1� i � n and 0� j; k
)
;

andF (1) has a basis

(7)

8>>><
>>>:
vi 


2
6664
�

T0

T1

� j

d
T2

T1
d

T0

T1�
T2

T1

�k

3
7775
 T3

1

���������
1� i � n; 0� j and 0< k

9>>>=
>>>;
;

andF (2) has a basis

(8)

8>>><
>>>:
wi 


2
6664

d
T1

T0
d

T2

T0�
T1

T0

� j ;�T2

T0

�k

3
7775
 T3

0

���������
1� i � n and 0< j; k

9>>>=
>>>;
:

The coboundary maps of the residual complex (3) are decomposed into

Æp;q : J(p)! J(q)

for p; q 2 P2. We recall two special cases ofÆp;q needed for defining the coboundary
maps ofF (�).

EXAMPLE 6.
• Let p be the generic point ofP2 and q be the generic point of the lineT2 = 0.ÆP2;P1 := Æp;q is determined by the mapM(P2)! M(P1) satisfying

(9)
f

g
d

T1

T0
d

T2

T0
7!
2
4 f d

T1

T0
d

T2

T0
g

3
5 ;

where f 2 �[T1=T0; T2=T0] and g 2 �[T1=T0; T2=T0] n (0).
• Let p be the generic point of the lineT2 = 0 andq be the closed pointT2 = T1 = 0.ÆP1;P0 := Æp;q is determined by the mapM(P1)! M(P0) satisfying

(10)

2
6664

f

g
d

T1

T0
d

T2

T0�
T2

T0

�i

3
7775 7!

2
6664

f d
T1

T0
d

T2

T0

g;�T2

T0

�i

3
7775

where f 2 �[T1=T0; T2=T0] and g 2 �[T1=T0; T2=T0] n (T2=T0).
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In Example 1, elements ofM(P2) (resp.M(P1)) are represented in terms ofT0=T2

and T1=T2 (resp.T2=T1 and T0=T1). We may use the formula

(11)

T3
2 d

T0

T2
d

T1

T2
= T3

0 d
T1

T0
d

T2

T0
;2

6664
d

T2

T1
d

T0

T1�
T2

T1

�3

3
7775 =

2
6664

d
T1

T0
d

T2

T0�
T2

T0

�3

3
7775

to rewrite elements ofM(P2) and M(P1) before applying (9) and (10).
For i = 0;1, the image ofF (1�i ) under the map

�
idF 
ÆPi +1;Pi 
 idO

P2 (3)
� �

P2
�

: 0 �P2;F 
 J
�
Pi +1

�
(3)
�! 0 �P2;F 
 J

�
Pi
�

(3)
�

is contained inF (2�i ).

DEFINITION 7. For i = 0;1, let d(1�i ) : F (1�i ) ! F (2�i ) be the restriction of�
idF 
ÆPi +1;Pi 
 idO

P2 (3)
�
(P2) on F (1�i ).

To maked(1�i ) explicit, we consider idF 
ÆPi +1;Pi 
 idO
P2 (3) on D+(T0). Restricted

to D+(T2) \ D+(T0),

ui =
X

j

fi j
(T2=T0)ni j

wi

for some fi j 2 �[T1=T0; T2=T0] and ni j � 0. In terms of these transition functions,

d0

�
ui 
 d

T0

T2
d

T1

T2

 T3

2

�
= d0

0
�X

j

wi 
 fi j
(T2=T0)ni j

d
T1

T0
d

T2

T0

 T3

0

1
A

=
X

j

wi 

2
6664

fi j d
T1

T0
d

T2

T0�
T2

T0

�ni j

3
7775
 T3

0 :

We may use (11) to write the image ofd(0) in terms of the generators (5) ofF (1).
Restricted toD+(T1) \ D+(T0),

vi =
X

j

hi j

(T1=T0)ni j
wi
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for someni j � 0 andhi j 2 �[T1=T0; T2=T0]. In terms of these transition functions,

d(1)

0
BBB�vi 


2
6664

d
T2

T1
d

T0

T1�
T2

T1

�l

3
7775
 T3

1

1
CCCA

= d(1)

0
BBB�
X

j

wi 

2
6664

hi j

�
T1

T0

�l�ni j

d
T1

T0
d

T2

T0�
T2

T0

�l

3
7775
 T3

0

1
CCCA

=
X

j

wi 

2
6664

hi j d
T1

T0
d

T2

T0�
T1

T0

�ni j �l ;�T2

T0

�l

3
7775
 T3

0 :

The following is our main tool.

Theorem 8 ([4, Theorem 3.2]). The i-th cohomology ofF (�) is isomorphic to
Hi (P2;F ).

3. Vector bundlesFp;q
Let S be the graded ring�[X0; X1; X2; X3]=(X0X1 � X2X3) over a field�. De-

note by xi the image ofXi under the canonical map�[X0; X1; X2; X3] ! S. So, as
a �-algebra,S is generated byx0; x1; x2; x3 with a relationx0x1 = x2x3. Proj(S) is a
hypersurface ofP3 covered by three affine open sets:

Proj(S) = D+(x3) [ D+(x2) [ D+(x1 � x0):
On D+(x3) and D+(x2), the regular functions of Proj(S) form polynomial rings�[x0=x3;
x1=x3] and �[x0=x2; x1=x2], respectively. OnD+(x1� x0), its regular functions are

� � x1

x1 � x0
; x2

x1 � x0
; x3

x1 � x0

�, �
x1

x1 � x0

�2� x1

x1 � x0
� x2

x1 � x0

x3

x1 � x0

!
:

We identify Proj(S) with the fiber product of two projective lines, which can be de-
scribed using a Cartesian product (that is, the scheme Proj(�[Y0;Y1] �� �[Z0; Z1])).
The identification is given by the homomorphism of�-algebras

�[x0; x1; x2; x3] ! �[Y0;Y1] �� �[Z0; Z1];
x0 7! Y0Z0;
x1 7! Y1Z1;
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x2 7! Y1Z0;
x3 7! Y0Z1:

Let �1 and�2 be the two projections from Proj(S) to P1. For p;q 2 Z,

Lp;q := ��1O(p)
 ��2O(q)

is an invertible sheaf on Proj(S), which is the sheaf associated to the graded module

�[Y0;Y1]( p)�� �[Z0; Z1](q):
On D+(x3), Lp;q is generated byYp

0 Zq
1 . On D+(x2), it is generated byYp

1 Zq
0 .

Proposition 9. Let � � maxf0;�p;�qg. Lp;q(D+(x1 � x0)) is generated by
Y�+p

0 Z�+q
0 =(x1 � x0)� and Y�+p

1 Z�+q
1 =(x1 � x0)� .

Proof. Lp;q(D+(x1� x0)) is generated byYi
0Y j

1 Zk
0 Zl

1=(x1� x0)n, where the indices
i; j; k; l ;n � 0 satisfy i + j = n+ p and k+ l = n+q. Restricting toD+(x1)\D+(x1�x0),

Yi
0Y j

1 Zk
0 Zl

1

(x1� x0)n
=

�
x1

x1 � x0

�n�i�k�� � x2

x1 � x0

�k � x3

x1� x0

�i Y�+p
1 Z�+q

1

(x1 � x0)� :
Restricting toD+(x0) \ D+(x1 � x0),

Yi
0Y j

1 Zk
0 Zl

1

(x1� x0)n
=

�
x0

x1 � x0

�n� j�l�� � x2

x1 � x0

� j � x3

x1 � x0

�l Y�+p
0 Z�+q

0

(x1 � x0)� :
Since D+(x1�x0) is covered by the subsetsD+(x1)\D+(x1�x0) and D+(x0)\D+(x1�
x0), Lp;q(D+(x1�x0)) is generated byY�+p

0 Z�+q
0 =(x1�x0)� andY�+p

1 Z�+q
1 =(x1�x0)� .

Let O be the point ofP3 n Proj(S) with homogeneous coordinate [1;1;0;0]. Let

� : Proj(S)! P2

be the double cover ofP2 defined by the immersion Proj(S)! P3 n fOg followed by
the projection fromO to the planeX0 = 0, which is identified withP2 = Proj(�[T0; T1;
T2]). The morphism� is determined by the graded homomorphism

�[T0; T1; T2] ! �[x0; x1; x2; x3]

given by

T0 7! x1 � x0;
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T1 7! x2;
T2 7! x3:

We consider the locally free sheaf of modules

Fp;q := ��Lp;q
on P2, which has rank 2. OnD+(T2), Fp;q is generated by (x0=x3)Yp

0 Zq
1 and Yp

0 Zq
1 .

On D+(T1), it is generated by (x0=x2)Yp
1 Zq

0 and Yp
1 Zq

0 .

Proposition 10. Let � = maxf0;�p;�qg. Fp;q(D+(T0)) is generated by Y0Z0=T �+1
0

and Y1Z1=T �+1
0 if p = q � 0, otherwise by Y�+p

0 Z�+q
0 =T �

0 and Y�+p
1 Z�+q

1 =T �
0 .

Proof. Fp;q(D+(T0)) is generated byYi
0Y j

1 Zk
0 Zl

1=Tn
0 , where i; j; k; l ;n � 0 satisfy

i + j = n + p and k + l = n + q. Note that, if j and k are both positive, then

Yi
0Y j

1 Zk
0 Zl

1

Tn
0

=
T1

T0

Yi
0Y j

1 Zk�1
0 Zl+1

1

Tn
0

� T1

T0

Yi +1
0 Y j�1

1 Zk
0 Zl

1

Tn
0

;(12)

if i and l are both positive, then

Yi
0Y j

1 Zk
0 Zl

1

Tn
0

=
T2

T0

Yi�1
0 Y j +1

1 Zk
0 Zl

1

Tn
0

� T2

T0

Yi
0Y j

1 Zk+1
0 Zl�1

1

Tn
0

:(13)

Assume thatn > �. Then n;n + p;n + q > 0 and

Yi
0Y j

1 Zk
0 Zl

1

Tn
0

=

8>>>><
>>>>:

T1

T0

Yi
0Y j�1

1 Zk�1
0 Zl

1

Tn�1
0

; if j; k > 0;

T2

T0

Yi�1
0 Y j

1 Zk
0 Zl�1

1

Tn�1
0

; if i; l > 0;
(14)

Yn+p
0 Zn+q

0

Tn
0

=
Yn+p�1

0 Y1Zn+q�1
0 Z1

Tn
0

� Yn+p�1
0 Zn+q�1

0

Tn�1
0

;(15)

Yn+p
1 Zn+q

1

Tn
0

=
Y0Yn+p�1

1 Z0Zn+q�1
1

Tn
0

+
Yn+p�1

1 Zn+q�1
1

Tn�1
0

:(16)

We consider first the casep 6= q or p = q > 0, in which eithern + p � 1 > 0
or n + q � 1 > 0. Using (14), (15) and (16), induction onn shows thatFp;q(D+(T0))
is generated byYi

0Y j
1 Zk

0 Zl
1=T �

0 , where i; j; k; l � 0 satisfy i + j = � + p and k + l =� + q. Applying (12) and (13) withn = �, we see thatFp;q(D+(T0)) is generated by
Y�+p

0 Z�+q
0 =T �

0 and Y�+p
1 Z�+q

1 =T �
0 .

Now we consider the casep = q � 0. Assume thatn > � + 1. In this case,n+ p�
1 = n + q � 1 > 0. Using (14), (15) and (16), induction onn shows thatFp;q(D+(T0))
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is generated by 1=T �
0 and Yi

0Y j
1 Zk

0 Zl
1=T �+1

0 , where i; j; k; l � 0 satisfy i + j = � + p + 1
and k + l = � + q + 1. Applying (12) and (13) withn = � + 1, we see thatFp;q(D+(T0))
is generated byY0Z0=T �+1

0 , Y1Z1=T �+1
0 and 1=T �

0 . The proposition follows from the
identity

Y1Z1

T �+1
0

� Y0Z0

T �+1
0

=
1

T �
0

:
4. ComplexesF (�)

p;q
From now on, we always assume that� = maxf0;�p;�qg. First we would like to

write down bases of the�-vector spacesF (i )
p;q explicitly.

DEFINITION 11. For i; j � 0, we define

ui j :=

�
x0

x3

�i �x1

x3

� j

Yp
0 Zq

1 
 d
T0

T2
d

T1

T2

 T3

2 2 0�P2;Fp;q 
 J
�
P2
�
(3)
�:

For i; j;m;n 2 Z, we chooseÆ � maxf�i;� j g and define

vi j
n :=

�
x0

x2

�Æ+i �x1

x2

�Æ+ j

Yp
1 Zq

0 

2
6664

d
T2

T1
d

T0

T1�
T2

T1

�Æ+n

3
7775
 T3

1

in 0(P2;Fp;q 
 J(P1)(3)) and

wi j
mn :=

�
x0

x1 � x0

�Æ+i � x1

x1 � x0

�Æ+ j Y�+p
0 Z�+q

1

(x1 � x0)� 

2
6664

d
T1

T0
d

T2

T0�
T1

T0

�Æ+m ;�T2

T0

�Æ+n

3
7775
 T3

0

in 0(P2;Fp;q 
 J(P0)(3)).

The definitions ofvi j
n and wi j

mn are independent of the choice ofÆ. By Proposi-
tion 3, vi j

0 = 0 if i; j � 0 andw(�+q)0
m(n+�+q) = w0(�+p)

m(n+�+p) = 0 if m� 0 or n � 0. Sometimes,

wi j
mn are treated differently according to the values ofp andq. The following notations

are handy.

w�
mn :=

8<
:

w10
m(n+�+q) if p = q � 0;

w(�+q)0
m(n+�+q) otherwise.

w�
mn :=

8<
:

w01
m(n+�+p) if p = q � 0;

w0(�+p)
m(n+�+p) otherwise.
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Proposition 12.
• The elementsui j , where i; j � 0, form a basis ofF (0)

p;q.

• The elementsvi j
0 , where i< 0 or j < 0, form a basis ofF (1)

p;q.
• The elementsw�

mn and w�
mn, where m;n > 0, form a basis ofF (2)

p;q.

Proof. As anOP2(D+(T2))-module, Fp;q(D+(T2)) has a minimal generating set�
Yp

0 Zq
1; (x0=x3)Yp

0 Zq
1

	
. Indicated in (6), as a�-vector space,F (0)

p;q has a basis consist-
ing of

Yp
0 Zq

1 

�

T0

T2

�i �T1

T2

� j

d
T0

T2
d

T1

T2

 T3

2 and
x0

x3
Yp

0 Zq
1 


�
T0

T2

�i �T1

T2

� j

d
T0

T2
d

T1

T2

 T3

2 ;
where i; j � 0. Since �[x0=x3; x1=x3] is freely generated by 1 andx0=x3 as a�[T0=T2; T1=T2]-module, these elements are exactlyui j , where i; j � 0.

For the second statement of the proposition, we use the fact that

v(i +1)( j +1)
n+1 = vi j

n

for any i , j and n. SinceF (1)
p;q is generated by allvi j

n , it is also generated by those

v00
n , vi 0

n and v0 j
n with i; j > 0 and n 2 Z. Note thatv00

n = vi 0
n = v0 j

n = 0 if i; j > 0
and n � 0 by Proposition 3. The generating set

�
v00

n ; vi 0
n ; v0 j

n

�� i; j;n > 0
	

for F (1)
p;q

is exactly
�
vi j

0

�� i < 0 or j < 0
	
. To prove that they are linearly independent, we

recall (7) that (�
T0

T1

� j

v00
n ;

�
T0

T1

� j

v10
n

����� n > 0; j � 0

)

is a basis ofF (1)
p;q. For i; j;n > 0,

v0 j
n �

�
T0

T1

� j

v00
n �

�
T0

T1

� j�1

v10
n and vi 0

n � (�1)i�1

�
T0

T1

�i�1

v10
n

are contained in the subspace generated by thosevi j
m with m < n and i; j � 0. This

implies thatv00
n , vi 0

n and v0 j
n are linearly independent.

For the last statement of the proposition, there are two cases. If p = q � 0, the
elements

Y0Z0

T �+1
0



2
6664

d
T1

T0
d

T2

T0�
T1

T0

�m ;�T2

T0

�n

3
7775
 T3

0 and
Y1Z1

T �+1
0



2
6664

d
T1

T0
d

T2

T0�
T1

T0

�m ;�T2

T0

�n

3
7775
 T3

0 ;
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where m;n > 0, form a basis ofF (2)
p;q. These elements are exactlyw10

m(n+�+q) and
w01

m(n+�+p). If p 6= q or p = q > 0, the elements

Y�+p
0 Z�+q

0

(x1� x0)� 

2
6664

d
T1

T0
d

T2

T0�
T1

T0

�m ;�T2

T0

�n

3
7775
 T3

0

and

Y�+p
1 Z�+q

1

(x1 � x0)� 

2
6664

d
T1

T0
d

T2

T0�
T1

T0

�m ;�T2

T0

�n

3
7775
 T3

0 ;

where m;n > 0, form a basis ofF (2)
p;q. These elements are exactlyw(�+q)0

m(n+�+q) and

w0(�+p)
m(n+�+p) as seen from the computation:

Y�+p
0 Z�+q

0

(x1 � x0)� 

2
6664

d
T1

T0
d

T2

T0�
T1

T0

�m ;�T2

T0

�n

3
7775
 T3

0

=

�
x0

x1 � x0

��+q Y�+p
0 Z�+q

1

(x1 � x0)� 

2
6664

d
T1

T0
d

T2

T0�
T1

T0

�m ;�T2

T0

�n+�+q

3
7775
 T3

0 = w(�+q)0
m(n+�+q)

and

Y�+p
1 Z�+q

1

(x1 � x0)� 

2
6664

d
T1

T0
d

T2

T0�
T1

T0

�m ;�T2

T0

�n

3
7775
 T3

0

=

�
x1

x1 � x0

��+p Y�+p
0 Z�+q

1

(x1 � x0)� 

2
6664

d
T1

T0
d

T2

T0�
T1

T0

�m ;�T2

T0

�n+�+p

3
7775
 T3

0 = w0(�+p)
m(n+�+p):

The coboundary maps ofF (�)
p;q have easy descriptions.
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Proposition 13.

d(0)ui j = v(p+i )(q+ j )
i + j ;

d(1)vi j
n = w(i +q)( j +p)

(i + j�n)(n+�+p+q):
Proof. The proposition follows from direct computations:

ui j =

�
x0

x1� x0

�i � x1

x1 � x0

� j Y�+p
0 Z�+q

1

(x1 � x0)� 

�

T2

T0

��i� j��
d

T1

T0
d

T2

T0

 T3

0

7! �
x0

x1 � x0

�i � x1

x1� x0

� j Y�+p
0 Z�+q

1

(x1 � x0)� 

2
6664

d
T1

T0
d

T2

T0�
T2

T0

�i + j +�
3
7775
 T3

0

=

�
x0

x2

�i +�+p�x1

x2

� j +�+q

Yp
1 Zq

0 

2
6664

d
T2

T1
d

T0

T1�
T2

T1

�i + j +�
3
7775
 T3

1

= v(p+i )(q+ j )
i + j ;

vi j
n =

�
x0

x1� x0

�Æ+i � x1

x1� x0

�Æ+ j Y�+p
1 Z�+q

0

(x1� x0)� 

2
6664
�

T1

T0

�n�Æ�i� j��
d

T1

T0
d

T2

T0�
T2

T0

�Æ+n

3
7775
 T3

0

7! �
x0

x1� x0

�Æ+i � x1

x1� x0

�Æ+ j Y�+p
1 Z�+q

0

(x1� x0)� 

2
6664

�
T1

T0

�n

d
T1

T0
d

T2

T0�
T1

T0

�Æ+i + j +� ;�T2

T0

�Æ+n

3
7775
 T3

0

=

�
x0

x1� x0

�Æ+i +�+q � x1

x1� x0

�Æ+ j +�+p Y�+p
0 Z�+q

1

(x1� x0)�



2
6664

�
T1

T0

�n

d
T1

T0
d

T2

T0�
T1

T0

�Æ+i + j +� ;�T2

T0

�Æ+n+2�+p+q

3
7775
 T3

0

= w(i +q)( j +p)
(i + j�n)(n+�+p+q):
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5. Module structure of F
(2)
p;q

We need polynomialsfi and gi with integer coefficients which are defined induc-
tively:

f1 = g1 = 0

and

fn+1 = fn + gn;
gn+1 = X + X fn

for n � 1. Induction onn, it is easy to see that

(17) gn(1 + fn+1)� gn+1(1 + fn) = (�X)n:
If a and b are elements in a commutative ring satisfyingb2 = b + a, then

bn = (1 + fn(a))b + gn(a):
fn and gn are divisible byX. With f = fn=X and g = gn=X,

bn � b = a( f (a)b + g(a)):
This is a special case of the following lemma.

Lemma 14. Let a and b be elements in a commutative ring satisfying b2 = b+a.
Then, for any n0;n1; l > 0 and n2 � 0, there exist f; g 2 Z[X] and h 2 Z[X;Y]
such that

bn0 = (1 +a f (a))bn1 + ag(a)(1� b)n2 + al h(a;b):
Proof. We consider first the case thatn2 > 0. Chooseh01; h02; h11; h12 2 Z[X]

such that

bn0 � b = a(h01(a)b + h02(a));
bn1 � b = a(h11(a)b + h12(a)):(18)

With h0 = h01� h11 + h02� h12 and g = h02� h12, we have

bn0 = bn1 + ag(a)(1� b) + ah0(a)b:
Note that 1�b also satisfies the condition (1�b)2 = (1�b)+a. Chooseh21; h22 2 Z[X]
such that

(19) (1� b)n2 � (1� b) = a(h21(a)(1� b) + h22(a)):
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With h1 = h0� agh22 and h2 = �ag(h21 + h22), we have

bn0 = bn1 + ag(a)(1� b)n2 + abh1(a) + a(1� b)h2(a):
Fix n0;n1;n2. Assume that for anl > 1, there exist f; g; h1; h2 2 Z[X] such that

bn0 = (1 +a f (a))bn1 + ag(a)(1� b)n2 + al bh1(a) + al (1� b)h2(a):
Chooseh11; h12; h21; h22 2 Z[X] such that (18) and (19) hold. Then

bn0 = (1 +a f (a) + al h1(a))bn1

+ a(g(a) + al�1h2(a))(1� b)n2

+ al+1b(�h1(a)h11(a)� h1(a)h12(a)� h2(a)h22(a))

+ al+1(1� b)(�h2(a)h21(a)� h2(a)h22(a)� h1(a)h12(a)):
This induction process onl proves the lemma for the casen2 > 0.

Now we consider the case thatn2 = 0. Choose f; g; h11; h12 2 Z[X] and h 2
Z[X;Y] such that (18) and

bn0 = (1 +a f (a))bn1 + ag(a)(1� b) + al h(a;b)

hold. Denote

1

1 + ah11(a)
:= 1� ah11(a) + (ah11(a))2 � (ah11(a))3 + � � � + (�ah11(a))l�1

by abusing the notation. Then

bn0 =

�
1 + a f (a)� ag(a)

1 + ah11(a)

�
bn1

+ ag(a)

�
1 +

ah12(a)

1 + ah11(a)

�
+ al

�
h(a;b)� ag(a)(�h11(a))l b

� :
For the rest of this paper, we consider elements

a :=
x2x3

(x1 � x0)2
;

b :=
x1

x1� x0

in the ring0(D+(x1 � x0);Proj(S)), which satisfy the conditionb2 = b + a. The multi-
plications of elements inF (2)

p;q by a and b are easy to describe:

awi j
mn = w(i +1)( j +1)

mn ;
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bwi j
mn = wi ( j +1)

mn :
The condition (1� b)2 = (1� b) + a also holds. The multiplication by 1� b gives rise
to a negative sign:

(1� b)l wi j
mn = (�1)l w(i +l ) j

mn :
This is the reason that we include the condition “sum” in the following definition.

DEFINITION 15. An elementw 2 F (2)
p;q is approximated byw�

mn (resp.w�
mn), de-

noted byw � w�
mn (resp.w � w�

mn), if their difference orsum w � w�
mn (resp.w �

w�
mn) is contained in the�-vector subspace generated by the elementsw�

i j and w�
i j

with i < m.

Proposition 16. Let i;m> 0 and n2 Z. If p = q � 0,

w0i
m(n+�+p) � w�

mn;(20)

wi 0
m(n+�+q) � w�

mn:(21)

If p 6= q or p = q > 0, the approximation(20) holds for � + p > 0 and the approxi-
mation (21) holds for � + q > 0.

Proof. We prove only (20) and leave (21) to the reader. So we have the assump-
tion � + p > 0 if p 6= q or p = q > 0. We choosef; g 2 Z[X] and h 2 Z[X;Y]
such that

bi � amh(a;b) =

(
(1 + a f (a))b + ag(a)(b� 1); if p = q � 0;

(1 + a f (a))b�+p + ag(a)(b� 1)�+q; otherwise.

Then

w0i
m(n+�+p) � w�

mn = bi w00
m(n+�+p) � w�

mn = a f (a)w�
m(n+p�q) + ag(a)w�

mn;
from which we get the required approximation (20).

If w0
mn;w00

mn 2 F (2)
p;q satisfy w0

mn � w�
mn and w00

mn � w�
mn for all positive m and

n, then fw0
mn;w00

mngm;n>0 is a basis ofF (2)
p;q. More generally, ifw0

mn � w�
mn and w00

mn�
w000

mn � w�
mn for somew000

mn contained in the subspace generated byw�
i j with i < m + l

for a fixed l independent ofm and n, then fw0
mn;w00

mngm;n>0 is still a basis ofF (2)
p;q.

This observation is useful accompanied with the following fact.

Proposition 17. Let i;m> 0 and n2 Z. Assume that p6= q or p = q > 0.

w0i
m(n+�+p) � w�

m(n+p�q) � w�
mn; if � + p = 0:
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wi 0
m(n+�+q) � w�

m(n+q�p) � w�
mn; if � + q = 0:

Proof. We prove only the first approximation and leave the second to the reader.
So we have the conditions� + p = 0 and � + q > 0. We choosef; g 2 Z[X] and
h 2 Z[X;Y] such that

bi = (1 +a f (a))b + ag(a)(b� 1)�+q + amh(a;b)

= (1 +a f (a)) + (1 +a f (a))(b� 1) + ag(a)(b� 1)�+q + amh(a;b):
Since� + q > 0, we may also choosef 0; g0 2 Z[X] and h0 2 Z[X;Y] such that

1� b = (1 +a f 0(a))(1� b)�+q + ag0(a) + amh0(a;b):
Then

w0i
m(n+�+p)

= (1 +a f (a))w00
m(n+�+p) + (1 +a f (a))w10

m(n+�+p) + ag(a)w(�+q)0
m(n+�+p)

= (1 +a f (a))w00
m(n+�+p) � ag0(a)(1 + a f (a))w00

m(n+�+p)

� (�1)�+q(1 + a f (a))(1 + a f 0(a))w(�+q)0
m(n+�+p) + ag(a)w(�+q)0

m(n+�+p):
From the equality

w0i
m(n+�+p) + (�1)�+qw�

m(n+p�q) � w�
mn

= a( f (a)� g0(a)� a f (a)g0(a))w�
mn� (�1)�+qa( f (a) + f 0(a) + a f (a) f 0(a))w�

m(n+p�q) + ag(a)w�
m(n+p�q);

we get the required approximation.

Corollary 18. Let w0
mn;w00

mn 2 F (2)
p;q. Assume that, for each m and n,

w0
mn = w0i

m(n+�+p);
w00

mn = w j 0
m(n+�+q)

for some positive i and j. Then
�
w0

mn;w00
mn

	
m;n>0 is a basis ofF (2)

p;q.

Proof. If � + p and � + q are both zero, thenp = q � 0. Proposition 16 proves
the corollary. If � + p > 0 or � + q > 0, the corollary follows from Proposition 16 and
Proposition 17.

In Section 6, we need also the following approximations.
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Proposition 19. Let i;m> 0 and n2 Z. Assume that p6= q or p = q > 0. There
exist g1; g2 2 Z[X] such that

w0(i���q)
mn � ag1(a)w�

(m+�+q)n � w�
mn; if � + p = 0;

w(i���p)0
mn � ag2(a)w�

(m+�+p)n � w�
mn; if � + q = 0:

Proof. We prove the second approximation and leave the first to the reader. So
we have the conditions�+p > 0 and�+q = 0. Choosef2; g2 2 Z[X] and h2 2 Z[X;Y]
such that

(1� b)i = (1 +a f2(a))(1� b)�+p + ag2(a) + am+�+ph2(a;b):
Then

w(i���p)0
mn = wi (�+p)

(m+�+p)(n+�+p)

= (�1)i +�+p(1 + a f2(a))w00
mn + (�1)i ag2(a)w0(�+p)

(m+�+p)(n+�+p);
from which we get the required approximation.

6. Cohomology ofFp;q
Proposition 20. Let p;q � 0. H1(P2;Fp;q) = H2(P2;Fp;q) = 0. The elementsui j ,

where0� i � q and 0� j � p, form a basis ofH0(P2;Fp;q).

Proof. In this proposition,� = 0. d(0)ui j = v(p� j )(q�i )
0 = 0 if and only if i � q and

j � p. Those non-zerod(0)ui j are linearly independent. Therefore the elementsui j ,
where 0� i � q and 0� j � p, form a basis of H0(P2;Fp;q).

Now we compute the images ofvi j
0 .

• For indicesi � p and j � q, vi j
0 is the image ofu(q� j )(p�i ). Therefored(1)vi j

0 = 0.
• For indicesi < 0 and j > q,

d(1)vi j
0 = w0( j�q+p�i )

( j�q)(p�i ) ;
where the indexj � q + p� i is positive.
• For indices j < 0 and i > p,

d(1)vi j
0 = w(i�p+q� j )0

(i�p)(q� j ) ;
where the indexi � p + q � j is also positive.
As noted in Corollary 18, except thosevi j

0 being images ofd(0), images of othervi j
0

form a basis ofF (2)
p;q. This implies H1(P2;Fp;q) = H2(P2;Fp;q) = 0.

Proposition 21. Let q < 0 � p. H0(P2;Fp;q) = H2(P2;Fp;q) = 0. The elements
vi j

0 , where0� i � p and q< j < 0, form a basis ofH1(P2;Fp;q).
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Proof. In this proposition� = �q. The condition� + p > 0 holds. The images
of ui j are linearly independent. Therefore H0(P2;Fp;q) = 0. Other assertions of the
proposition follows from the computations of the images ofvi j

0 :

• For indicesi � p and j � q, vi j
0 is the image ofu(q� j )(p�i ). Therefored(1)vi j

0 = 0.
• For indicesi < 0 and j > q,

d(1)vi j
0 = w0( j�q+p�i )

( j�q)(�i +p�q) � w�
( j�q)(�i )

by Proposition 16. The latter elements are exactly thosew�
mn with positive indicesm

and n.
• For indices j < 0 and i > p, by Proposition 19, there existsg2 2 Z[X] such that

d(1)vi j
0 � ag2(a)w�

(i�q)(� j ) � w�
(i�p)(� j ):

The latter elements are exactly thosew�
mn with positive indicesm and n.

• For indices 0� i � p and q < j < 0, we write m = p� i and n = j � q. With
the polynomials fi and gi defined in the beginning of Section 5,

(22) d(1)vi j
0 = w0(m+n)

n(m�q) = (1 + fm+n(a))w01
n(m�q) + gm+n(a)w00

n(m�q):
As m� p = �i � 0,

w0(p�q)
n(m�q) = w�

n(m�p) = 0:
Apply the relation

w01
n(m�q) = w0(p�q)

n(m�q) � f p�q(a)w01
n(m�q) � gp�q(a)w00

n(m�q)

= � f p�q(a)w01
n(m�q) � gp�q(a)w00

n(m�q)

repeatedlyl times to (22), we get

d(1)vi j
0 = (1 + fm+n(a))(� fp�q(a))l w01

n(m�q)� (1 + fm+n(a))(1� f p�q(a) + ( f p�q(a))2 � � � � )gp�q(a)w00
n(m�q)

+ gm+n(a)w00
n(m�q):

For l � n,

( f p�q(a))l w00
n(m�q) = 0 = ( f p�q(a))l w01

n(m�q):
Without ambiguity, we may write

d(1)vi j
0 = (1 + fm+n(a))

�
gm+n(a)

1 + fm+n(a)
� gp�q(a)

1 + f p�q(a)

�
w00

n(m�q)
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= (1 + fm+n(a))
p�q�1X
i =m+n

�
gi (a)

1 + fi (a)
� gi +1(a)

1 + fi +1(a)

�
w00

n(m�q):
By (17),

d(1)vi j
0 = (1 + fm+n(a))

p�q�1X
i =m+n

(�a)i

(1 + fi (a))(1 + fi +1(a))
w00

n(m�q):
Sinceam+nw00

n(m�q) = 0, d(1)vi j
0 = 0 for 0� i � p and q < j < 0.

Similarly, we have the following proposition.

Proposition 22. Let p < 0 � q. H0(P2;Fp;q) = H2(P2;Fp;q) = 0. The elements
vi j

0 , where0� j � q and p< i < 0, form a basis ofH1(P2;Fp;q).

Proposition 23. Let q � p < 0. H0(P2;Fp;q) = H1(P2;Fp;q) = 0. The elements
w�

mn, where0< m< �p and 0< n < �q�m, together with the elementsw�
mn, where

m> 0, n > 0 and m+ n � �p, form a basis ofH2(P2;Fp;q).

Proof. In this proposition,� = �q. The images ofui j are exactly thosevi j
0 with

indices i � p and j � q. They are linearly independent. Therefore H0(P2;Fp;q) = 0.
Now we compute the images ofvi j

0 .
• For indicesi � p and j � q, vi j

0 is the image ofu(q� j )(p�i ). Therefored(1)vi j
0 = 0.

• For indicesi < 0 and j > q satisfying p� i > q � j ,

d(1)vi j
0 = w0( j�q+p�i )

( j�q)(�i�q+p) � w�
( j�q)(�i )

by Proposition 16. The latter elements are exactly thosew�
mn with positive indicesm

and n satisfyingm + n + p > 0.
• For indices j < 0 and i > p satisfyingq � j > p� i ,

d(1)vi j
0 = w(i�p+q� j )0

(i�p)(� j ) � w�
(i�p)(� j ); if p = q;

d(1)vi j
0 � w�

(i�p)(� j +q�p) � w�
(i�p)(� j ); f p > q

by Proposition 16 and Proposition 17. The latter elements are exactly thosew�
mn with

positive indicesm and n satisfyingm + n + q > 0.
• For indices j < 0 and i > p satisfyingq � j = p� i ,

d(1)vi j
0 � w01

(i�p)(� j ) = �w10
(i�p)(� j ):

If p = q,

(23) d(1)vi j
0 � w�

(i�p)(� j ) = �w�
(i�p)(� j ) � w�

(i�p)(� j ):
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If p > q, by Proposition 16 and Proposition 17, there are approximations

w01
(i�p)(� j ) � w�

(i�p)(� j +q�p);
w10

(i�p)(� j ) � w�
(i�p)(� j +q�p) � w�

(i�p)(� j );
that is, their differences or sums are contained in the subspace generated by the ele-
mentsw�

mn and w�
mn with m< i � p. For suitable negative signs and an integerl ,

d(1)vi j
0 + lw�

(i�p)(� j +q�p) � w�
(i�p)(� j )

=
�
w01

(i�p)(� j ) � w�
(i�p)(� j +q�p)

�
� �w10

(i�p)(� j ) � w�
(i�p)(� j +q�p) � w�

(i�p)(� j )

�:
Therefore

(24) d(1)vi j
0 + lw�

(i�p)(� j +q�p) � w�
(i�p)(� j ):

The latter elements of (23) or (24) are exactly thosew�
mn with positive indicesm and

n satisfyingm + n + q = 0.
• In order to have indicesi � 0 and j < 0 satisfying p� i > q � j , the condition
p > q has to be satisfied. With this condition, by Proposition 19, there existg2 2 Z[X]
such that

d(1)vi j
0 � ag2(a)w�

(i�q)(� j ) � w�
(i�p)(� j ):

The latter elements are exactly thosew�
mn with indices m � �p and n > 0 satisfying

m + n + q < 0.
These computations show that the non-zero images ofvi j

0 together with the elements
w�

mn, wherem> 0, n > 0 andm+n � �p, and the elementsw�
mn, where 0< m< �p

and 0< n < �q �m, form a basis ofF (2)
p;q. This concludes the proposition.

Similarly, we have the following proposition.

Proposition 24. Let p < q < 0. H0(P2;Fp;q) = H1(P2;Fp;q) = 0. The elements
w�

mn, where0< m< �q and 0< n < �p�m, together with the elementsw�
mn, where

m> 0, n > 0 and m+ n � �q, form a basis ofH2(P2;Fp;q).

Counting the cardinality of the bases of Hr (P2;Fp;q) given in previous proposi-
tions, we recover the following.

Corollary 25 ([6, Proposition 12]).

dim� Hr (P2;Fp;q) = (�1)r (p + 1)(q + 1)
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if r = 0 and p;q � 0; or if r = 1 and p� 0, q < 0 or p < 0, q � 0; or if r = 2 and
p;q < 0; and is zero otherwise.
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