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Abstract
Some quotient algebras arising from the quantum toroidmkahU, (sk(C,)) are
considered. They are related to integrable highest weigitesentations of the alge-
bra and are shown to be isomorphic to direct sums of tensoruptedf two alge-
bras of symmetric Laurent polynomials and Macdonald’s diifee operators.

1. Introduction

The quantum toroidal algebras were introduced in [1] andg®} deformations
of the universal enveloping algebras of toroidal Lie algsbf3]. Since then, the alge-
bras and representations of them have been studied in [RJ[1M. In particular the
connection of representations of the quantum toroidalbelyef typesl, (» > 3) with
the double affine Hecke algebra was found in [2] and this quantoroidal algebra
was shown to reduce to the universal enveloping algebra efutfiversal covering of
sl, coordinatized by quantum torus in the limjit— 1 in [4].

In this paper we are interested in the quantum toroidal agetf type sk
and quotient algebras arising from this. L€t be the ring of Laurent polynomi-
als in noncommutative variables,y  satisfying  2yx and setl = sh(C,) :=
[91,(C,), gl,(C,)]. Lie algebras of this kind and central extensions of theeravcon-
sidered in the study of extended affine Lie algebras in [12] mapresentations of these
algebras were studied in [13]-[19]. The quantum toroidgebfa which we consider
is a g deformation of the universal enveloping algebra of thies algebral. Let us
briefly explain what quotient algebras we consider and whystuely them. In [19] we
studied integrable highest weight representations of flkealgebral and obtained the
following result. For an integem leV £),, = {u € U(L) | [, u] = 2mu} whereh =
E11— Eg Setl =), oU(L)-nU(L)y, and letly be the ideal oV Q)¢ generated
by 1, Y, .y ULnU(L)-m andh — N for a nonngegative integd¥ . Any integrable
highest weight representatioi  admits a weight decompositi = @_; Viv_any 2
for some nonnegative intege¥  whelg,» is the eigenspace of corresponding to
the eigenvaluen . The weight spa® ,, becomes &/ 4)o/Iy module and the clas-
sification of irreducible integrable highest weight moduls reduced to that of irre-
ducible U (€)o/Iy modules. The quotient algebras which we study in this papega
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analogues of thé&/ Q)o/Iy. Our main result is that they are isomorphic to direct sums
of tensor products of two algebras of symmetric Laurent pofgials and Macdonald’s
difference operators [20]. (See Proposition 4.4, Theorema#d Corollary 4.3 for pre-
cise statements.) We expect that this result will be of usetife study of integrable
highest weight representations bj, £)(as in the casg = 1. The appearance of Mac-
donald’s difference operators is not so unexpected sineedimnection of the quantum
toroidal algebra with the double affine Hecke algebra isaglyeknown [2]. Finally we
remark that we are motivated to consider the quotient afgeby [21], [22] and [23],
which investigated integrable representations of affire dlgebras and quantum affine
algebras.

This paper is organized as follows. In Section 2, presematdf the universal en-
veloping algebra of and that of its central extensiof) in terms of generators and re-
lations are given and the results on quotients algebrag df), ¢f [19] are reviewed.

In Section 3U, (ﬁ) is defned and several properties of it are derived. In Sectiave
study quotients algebra df, Lo and in Section 5 we compare our results with those
of [2]. In Sections 6, 7 and 8, the proofs of some technicahittetare given.

2. The Lie algebra £ and quotient algebras ofU (L)

2.1. The Lie algebra£ and its central extensionf. Let y be a formal vari-
able and sep 7 2. Let C, andC,- be theC(y) algebras of Laurent polynomials in
noncommutative variables and satisfying yZyx andxy =y 2yx, respectively.

We consider theC(y) Lie algebral = si>(C,) := [gl(C, ), 9l,(C,)]. Set0 = (0, 0).
Fork = (k,I) € Z2, m=(m,n) € Z?\ {0} andi =1 2, define the following elements
of L:

e(K) = Eipx*y!,  f(K) = Eaix’y!, h=Eu—Ezn  €(m)= Ejx™y"

where theE;; are matrix units. Then these elements form a basfsand satisfy the
relations

pMer(k +m) — pey(k +m) if k+m #0,
pi"h if k+m=0,
[e(k), e(m)] = 0 = [f(k), f(m)],

[h, e(K)] = 2e(k), [h, f(K)]=—=2f(K), [h e(m)]=0,
[e1(k), e(m)] = p"e(k +m),  [ea(K), e(m)] = —p™*e(k +m),
[er(k), fF(M)] = —p™ f(k+m), [ex(k), f(M)] = p™ f(k +m),
[€i(K), €, (m)] = {&j (P = Ptk +m) i k+m 70,

[e(k), f(m)] = {

0 fk+m=0

wherek = (k,[) andm = (m, n).
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Let Q0 = Zas & Zag and set§ =a; + agp. By assigning ¢; + k8,1) to e(k, ),
(—a1+k8,1) to f(k,1), k8,1) toe; k,1) and (O 0) to: L is endowed with a structure
of Q ® Z graded Lie algebras. We denote the homogeneous subspaagreledy, ! )
by L(w, ).

Define the Lie algebraﬁ to be the vector spacé @ C(y)c1 @ C(y)c2 with multi-
plication rule

ky ol kol /
[a1x"y"™ + ric1 + s1c2, aox'2y" + rac1 + s2c2]

ko —kil1

= [arx™y", apx*2y'2] + tr(a1a2)8k, 44,081,415, 0(k1c1 + l1c2) p

wherea; anda, are 2x 2 matrices ang,s; € C(y) (i =1, 2). This central extension
was considered in [12] and was shown to be the universal tayaf £ if y is a
generic complex number in [13]. By assigning (0 O)ctoand ¢, the structure ofQ ®
Z graded Lie algebras of is extended to that of.

As is easily checked, there exist automorphisyns) and ) of £ determined by

yielk, 1) p~Me(l, —k), fk. D) pT UL —k), ek, 1) pTMe(l, —k),
h—h, c1+ —cp, Co2H> Cy,
Vielk,l) > —(=y)elk,1 =1),  fl. ) —(=y) " k1 +1)
ik, ) > (—=y) %€k, 1), h+>h—ca ¢+ c,
ek, ) > —(=y)elk—1.1), fk. 1) —(=y) flk+11).
ek, 1)~ (—y) ek, 1), h+>h—c1, ci+c

<

wheres; = 1 ande, = —1. These automorphisms satisfy = ).
Let L be theC(y) Lie algebra defined by generators

xE hir,c (=01 m,reZ)

i,m?

and relations

(2.1) [e.x5,]=0, [c.,hi,]=0

(2.2) [Airs his] = 2r845,0c,

(2.3) (i hais] = —r(y" +y7")dr4s.00,
(2.4) [hir, ,m] +2x7 4,

(2.5) (hirs X5 i) = FO Y7 s
(2.6) 5 37| = 81 i + B0,
(2.7) [ %i0] = 0.

(2:8) [t [ [ 2 1T =0
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By assigning fo;, m ) tox,._im , (Or ) tdy;, and (0 0O) to I, is endowed with a struc-
ture of Q @ Z graded Lie algebras. Let(«, n) denote the homogeneous subspace of
degree ¢, n ) of it.

Proposition 2.1. (1) There exists an isomorphism f® Z graded Lie algebras
L — L determined by
x]-:m = 6(0, m)’ x]:m = f(O, m)’ hl,r = 6]_(0, r) - E2(0, r),
Xom > ¥y " f@Qm), xg, > y"e(=1,m), ho, y"ex0,r) =y €0, r),
/’llﬁol—> h, hqol—> Cl—/’L, CH C2
wherer # 0.

(2) Let L be the quotient algebra df by the ideal generated by the elements and
h10%+ hoo- Then the isomorphism ifl) induces an isomorphisth — L.

The proof of this proposition will be given in Section 6.2. Wkall identify L andL
with £ and £ by the above correspondence, respectively.

2.2. Quotient algebras ofU(L)o. Set

N =@ cw)fk). N.=CHek),
kez? kez?
2

H= E@H,-, Ho=C(y)h, M= EBO C(y)e(m) (i=1,2).
i= m#

Then these are subalgebra®(;[#;] =0 (i # j) andL = N_ & H & N.. Further the
multiplication mapU H1) ® U(Ho) @ U(H2) — U(H) is an isomorphism of algebras
and

(2.9) UL)y~UWN-)®U(H)® U(WNs)

as vector spaces.
For a subalgebr& of and an integem , set

UK)y ={u € UK) | [h, u] = 2mu}.

Setl =Y, oUL)-nU(L). ThenI =, _oUWN-)_nUH)UWN:), and U C)o =
UMH)@ I. Sincel is an ideal o/ 4)o, we find that

UH) ~U(L)o/!

as algebras. We denote the projectionl)o(— U(H) with respect to the preceding
direct sum by| - | .
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Let ai(k) = ei(k) and ax(k) = —ptey(k) for k = (k,I) # 0. Fori = 1 2,
a nonnegative integer ¥ > 1 ark, = (k;,/;) € Z> (1 < j < M), define
Af y(Ke, ..., ky) € U(H;) by the recurrence relation

a;(k) if k #0,
if k=0,
A?.M(klv oo, kp) = A;"‘l(kM)A;,M—l(kl’ oo Kaoa)

(210) 47, =

(2.11) =
_ZPSIM,Ai,M—l(kli"'ski+kMa---skal) (MZZ)'
i=1

In the caseM =0 sefif,=1 fori =1 2 and a nonnegative integer . Note that

Al y(Ke, oo k) = Ay (Ka, oo Ky, A (K, - Ka) = pXikili Bt (Ky, ..., Ky)

in the notation of [19].

Fori = 1 2 and a nonnegative integer Bt be the ideal/oH;) (generated
by the elementsA i (K1, ..., Ky+1) (K; € Z2, Vj). Forr = (r1, rp) € Z2, let I; be the
ideal of U () generated by: — r{ +r2), I} and I2. -

The following theorem was proved in [19, Propositions 3 afhd 5

Theorem 2.1. (1) As algebrasU(H)/I; ~ U(H1)/I} QU (H2)/1% (a1az <> @1 ®
az) whereq; e U(H;) (i =1, 2).
(2) There exists an injective homomorphisgmy, : U(H,')/I,"‘_ — C?@? determined by

a;(0.k) > > y¢ and a;(k,0)—> ) x¥
j=1

J=1

wherey; =1%/-1® y ® 1"~/ and x; is defined similarly

The purpose of this paper is to obtainga analogue of this émeoiater we
need another description of the idefal Define A;, e U H;) (r € Z, i = 1, 2) by the
generating series

i (0,
; AiarZ = eXp<— g @z) .

These elements were intoduced in [21] in the study of intdgraepresentations of
affine Lie algebras and the analogues of them were considerdd3]. Forr =
(r1,12) € Zio let J, be the ideal ofU ) generated by: — r{ +r;) and the elements

ANign (n>ri, i=12), AjxAi—y, —Aij—r, O<k<r, i=12)
le(ke) -~ e(Kp) f(Mr) -+~ F(MD)Il (M > ri+1r2, Kjymj € Z2, V).
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Then the following proposition holds, the proof of which Mlile given in Section 8.
Proposition 2.2. I, = J;.

3. The quantum toroidal algebra Uq(£L)

3.1. Uq(ﬁ). Let ¢ and y be formal vairables and sdt E(g,y). Let
(ai,j)o<i,j<1 be the Cartan matrix foxA(ll). ForneZsetpl=@¢"—q™")q—-q".
Let U, (L) be the algebra ovef  defined by generators

X i kL CH (20,1, meZ, reZ\({0})

and relations
3.2) c**central ki, k;j1=Fi. hj,]=0

2r|C" - C"
(3.3) [Air, his] = 3r+s.ou71,

s 1, L —
r r + —r Cr _ C*I‘
(3.4) iy ] = 8ol F ¥ N2 C 7
r q9—dq
(3.5) kix?, kit =g X,
2

(3.6) [hz X m] [ rr] CUFIrh/2, :ir+m7

A +v™) s
(37) [his” xJ.i—i.,m] - fc( Tz 1i ir+m>

8ij
(3.8) I:x;m’ xjiil = 711 (C_”d>t(+n)1+n - C_m(bl( m)+n) )

' ’ q9—q9
(3.9 [xinﬂ, xf”]qiz + [xfnﬂ, xl.j_ytm]qi2 =0,
(310) Syrnnl,mz,mg I:xi%ml’ I:xi:,bmz’ [xi%my x]j.:—i,n]qu:l:lqz = 0
where Sy means symmetrization inny, m, and mgs, [a,b], = ab — rba,
ml ma,ms3

®%) =0 ( < 0) and® . (- > 0) is expressed in terms @f** and theh;; by

Z q)l(ii)r klil exp (:l: @ - qil) Z hi,irzr> -

r>0 r>0

Note that ourC~"/2h;, corresponds td;, in the standard notation. Note also that re-
lations (3.1)—(3.9) and

(3.12) 5o [0 [ xE, o],,fz]]qz =0
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give relation (3.10) as in [10].

Remark 1. (1) If ¢ = y*1, then this algebra is the same as that in [6].
(2) A vertex operator representation of this algebra in gewhtwo bosons is easily
constructed as in [6].

3.2. Uqg(sly). Let U,(s2) [24] be the algebra oveE(g) defined by generators
xE h kL CEY (mez, rez\{0)
and relations

kﬁ:lk:Fl - Cilcqil - 1’
Cc*! central k,h,]=0Q
[2r] " —C
+2_ +

+7-1 _
k'xmk =q Xy

[, xE] = i@C(”F"')/zxrﬁm,
r

rs Xy

[ 5] = P (CTo, —CTeR),

q9—q9
+ + + + —
[)Cm+1, X ]qﬂ + ['xn+l’ 'xm]qi2 =0
where ) = 0 (- < 0) and®) (» > 0) is expressed in terms dff! and ther,

similarly to d)ff) In [25] it was shown that this algebra is isomorphic to thgeara
[26], [27] defined by generators, f;, ! (i =0, 1) and relations

+1 . F1 _ _
=1, Gty =t
1_

_ . 1 _  —a:
tiejt; - =q%e;, tifit7=q [,
5 .
lei, fi1= L (=171,
q—q7* '

[ei, [ei, [ei, 61—;]42]](2 =0,
[ff’ [fl’ [fl’ fl—i]qz] g2 =0.

We take the following correspondence of the generators:

—_ + —_ — _
e1=xy, f1=xy, =k,

3.12
(3.12) eo=CkYx7, fo=x"kCY to=Ck '
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Define an automorphisrit, [28] of U, (sl2) by
Tyl ev > —fit1,  fi—> —tl_lel, t1 1‘1_1, fo > l‘ol‘lz,

1 1
eg — —[61, [61, eo]qu], fO = _[[foa fl]qzv fl]

(2] (2]
Let o be the antiautomorphism @f, s/l\é) determined by
ole e, fir fi, l;r—)tfl.

3.3.  Automorphisms oqu(ﬁ). The~ purpose of this subsection is to defipe
analogues of the automorphismis )y and Y of £, which we denote by the same let-
ters.

Let X; (j =0, 1) andS be the automorphisms df, (£) determined by

X xt e (1Y% hiy v+ hi,, ki C%k, Cr C,

J o Miom z.m:F(S,-j’

Stxt, = (1'%, hir> (-hi, k—ky C—C
and letn be the antiautomorphism b‘t[(ﬁ) determined by
n: xfm = xf_,n, hipr—> —C'hi_p, kir> ki_l, Cr C.

Let further p, andp, be the homomorphismg (E'l}) — Uq(ﬁ) determined by

. + —
Pn' € > X0, fi — X lLit> ki,

Ov: xjf — xfm, hy— hi,, k—ki, C— C.
Let B be the group defined by generatdrsy, S and relations
Tyt t=yvt, syst=vl s?=1
Let ~ denote the automorphism & determined by
T=1, Y=ST, S=Yy'T.

We can prove the following propositions.

Proposition 3.1. (1) There exist automorphisnig and 7o of U, (ﬁ) determined
by

Tlopu:PuOTL TlopthhOTl, 76:8718_1-

The inverseZ, ! is given bynZ.
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(2) The automorphism§;, &; (i =0, 1) and S satisfy

Aoy = X1 4,

TiX1 = X147,

T NT T =AY A

STS =T, SxS*t=x_;.

(3) The homomorphisn8 — Aut(U,(£)) determined byl > 71, Y > X1Xy", S
S defines aB action onU,(L).

Proposition 3.2. (1) There exists an automorphisth Ut,(ﬁ) determined by

Vopy=pn, Yopp=nop,o0.

The inversey ~! is given bynyr.
(2) The automorphismyy and thB action in the preceding proposition satisfy

Y(xu)=%yu) forxeB and ue U, (L).

Set)y = Xngl andy = S7;. These automorphisms correspond to the actions of
Y andY, respectively. Note thay) maps as

y: x(:)%m = x(:)%mil’ x:]%m = _x:fm:]:l’ his" = hi."’
Note also thaty, Y andy satisfy
(313) I//Oy:jow

by part (2) of Proposition 3.2. By the above and Lemma 3.2Vigelwe can see that
Y,y andy reduce to those in Section 2 in the case = 1.

The above two propositions are proven as in [10] where the gas ¢*! was
studied. Here we only note that to prove them we need thewoip lemma, which is
also proven as in [10].

Lemma 3.1. The aIgebraUq(ﬁ) admits a presentation in terms of generators
X0 Xip Xi_ g ki, i =0, 1, C*! and relations

k= c*eT =11,
C central  kik; = kjk;,

+ ;-1 _  +4a; *
kixj,mki =4 jxj.m’
—mp—1
. B _ C"k; — C mki
i i) = —
q9—4
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E2e 10] = C [x(0, X 1a]
[x:iO ] = [ til’ i:f:O]in = 0,
[x'+ 1 ] = [XiTZ’ xijl]qu =0,
[‘xl+m’ 'xl i n] - O’
I7(0,1). xy] = 0, Ii(—L 0)xi.,]=0, [I*(0 0)x7]=0,
1-i,0, i i,0
[I (—2,0), x_ ,o] [Ii_ 0, 2) x:o] =0,
Iii(o’ 0) _I]:_‘ii(oﬁ O), Ii:t (:F:L + 1) :Ifii(:':la :F]-)a

£ [+ .+ + -
[xi,O’ [xi,O’ [0 1, o]qu]]qz =0

where

ki o _ _ _ kit
Xi o= A [[x70: 577 4] ’x:—l]qu’ Xip= =[x [ ,o]]q 2

+ -1 + +
I; (m,n) =[2] [ Xim+1 1—1 n— 1] w2t v+r) [xl—l'.”’ x",m]cﬁ2

andx}_, andx;, in IF(F1, F1), I/(—2, 0) and I, (0, 2) should be replaced by _,
and X7 ,, respectively.

3.4. Miscellaneous results. We will often need the following two lemmas in
the next section.

Lemma 3.2. Setx;, =v(x;,,), hi, =¥ (h;,) andk; = ¥ (k). Then the following
hold:

Xito = xliO’ Ki=ki, X]_;=xgoko, Xiq= ko_lxg,Ov
Xg0= X1 1k1C. Xgo=C 'k 'xiy ko= C Y%k ™,
Xo1 = X1 Xg_17 Xo,15

hl,l = —[xo,ov xio]quv hO,l = —[xil, xa’,l]qu,

h1._1:—[x£0,xao]qz, hoﬁ—lz_[x()i.l’xz—l]qz‘
Proof. Follows from (3.12) and Proposition 3.2. O

Lemma 3.3. The following relations hold irU, (£).
(1) [2][ Xim> [ Xim+10 xl—z n] *2] + (V + y_l)[ Xiymo [xli—: ntl :im]qu] =0.
) [ Xi,m+1 [xzj,:mil’ f—,,n]q—Z] + [xzj.tm’ [x].i—z,ni2’ ,j,tm]q—Z] =0.
@) @i G-ty + O+ v G 5] = RlGar ti e + 0+

14 _1) [x]:fm ’ x(:)%n]qq:z .
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Proof. We shall show the claims for th€, the proof of those for the;;, being
similar. For this it is sufficient to prove the equalities itz = 0 since the equalities
with m 7 0 follow from these by applyingt**.

By calculating

|:[x:0, I:X;:o, [‘x:O’ .X'I_,'.”]q:;z:l:lqﬂ B xi,il] = O,
we obtain part (1) and
[2] [X:_l, [X:o, XI_i‘n]qu] = (y + yil) I:x:Ov [XZO’ xI—[,ll—l]q—Z] .

Apply Xfl to the above equality. Then part (2) follows from the resut 41). Cal-
culating the commutator of (1) with;, _;, we obtain (3). ]

4. Quotient algebras ofUqy(L)o

4.1. The quotient algebra . A. For an algebraA and a family of elements
(a;)jes Of A let (a; | j € J) denote the ideal oA generated by the elements
(j € J). We assume that any subalgebra of an algebra  containgléimity element
of A except in Proposition 4.4 below.

Hereafter we study, 4) := U,(£)/{C — 1, kiko — 1). We denote this algebra by
U. LetU* andU~ be the subalgebras of generated by the/, and thex;, , respec-
tively, and 4° the subalgebra generated by, k;* and theh;, . The automorphisms
of U,,([Z) in Section 3.3 induce automorphisms ©@f which we denote by the same
letters.

Forr e Z\ {0} andi =1 2, set

Y hir +q " ho,
ajr = W and &, =¥ (a,),

so that

air+az, =hy, and yay, +y"az, = —q "ho,.

Note thata;, =a; (Or ) andy;, = a;(r, 0) in the caseg = 1 in the notation of Sec-
tion 2.2.
For a subalgebrad  dff and an integem let

Ay = {u €A | klukl_l = qz’"u}.

SetZ =), oU_nlhn. ThenZ is an ideal oftfy. Set. A = Uy/Z. Clearly the auto-
morphismsX;,Y,Y and ¢ ofl{ induce automorphisms aofl, which we denote by
the same symbols.
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Remark 2. If U4 admits ag analogue of the triangular decomposition (20}
U,N7)® Uy,(H) ® Uy(N*™), then A ~ U, (H). See also part (2) of Remark 3 below.

To study the algebrad, we first prepare several lemmas.
Lemma 4.1. In A the following equalities hold
(1) x1+,mx3,n+2 - q(JI + J/71)";214.—./11+1x(+)—.n+1 + qzx;.—./2n+2xa—.n =0.
(2) XO,mxiLn+2_ q ()/ tyo )xO,m+lxln +l+ q xO,m+2xln =0.
Proof. Follows from part (3) of Lemma 3.3. ]

Fori =1 2 andr € Z.¢ set

(qv* — (qv*) H2(ave) — (qy*)” N
(vé —y—ei)g—q1) r

di,r =

Definew;, e (i =1, 2, r € Z) by the generating series

Z v 4,7 = eXp( 61 q- Z(J/S’ - V_sir)ai.:trzr>

r>0 r>0

and set¥;, = ¥;, ).

Lemma 4.2. In A the following equalities hold fof =1, 2 and r > 0.
(1) [ai+r, [ai+1, & 41]], & 51] = di Vi (42
@) [ay+r, [, 41, ai 5], @i 1] = di Wi 1+1).

Proof. (1) Using Lemma 3.2 and Lemma 4.1, we find that

yerlr] (av® — (qv*) Daye) — (qy*)™)
q°r ye =y

+ + 1, &
X (xl.r+lx0,0_q Vo Xq, rx0.1)

[ai,r, [Cl,"l, a,l]] = _

in A. Utilizing this equality and the relations

+ +
CI)g_ ngm - q xO mcD( )

+1 L, — (1) _ n—1_ ., —(@m—1)
2 Z Yyt =y g4y y ") )
+ (1 —q ) qn+2(y _ J/_l) xg,mﬂzq)l.r—n

in Y for r > 0, we obtain the claim for the upper sign after a littleccdédtion. The
proof of the equality for the lower sign is similar.
(2) The equalityy & +1) = ¢T2a;+1 in A can be easily checked, using
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Lemma 3.2 and Lemma 4.1. Now the claim is obtained by applyingo part (1).
(Il

Lemma 4.3. Uy =UUs UG +T.

Proof. Let us denote the right hand side of the claim by . Sibte=
UU U U=, UU U, FOrn > 0 andm € Z set

m —m*

Ur(n) =Span{x®, ---x*, |i;=0,1 l;€Z, 1<) <n}

i1, insln

and U*(n),, = U*(n) NU,. ThenU U, u*, =3, o UU (r)uld*(s)—n. Therefore to
prove the claim it is sufficient to show that%/~(r),.U*(s)_,, C J for anyr,s > 0 if
m > 0. This can be easily checked by induction ons + , using theiogla

U (P )nld*(8)m € Y UU™(r = Duld* (s = 1)y +J i m >0.

I,n>0

This relation is proved by calculatingc[y (€ U (r)m, y € U (s)_n), using
(3.5)—(3.8). U]

Lemma 4.4. Let —: Uy — Uy/Z be the quotient mapThe subalgebreuOZ/{Oi of
A is generated by the elemenis, k;l, a,anda (1=1,2,r £0,4s5 > 0).

This lemma will be proven in Section 7.
Now we can prove several properties 4f

Proposition 4.1. A is generated by the elements, k;l, air i, (=125 F
0).

Proof. By Lemma 4.34y/7 = U%U, UUg. Therefore Lemma 4.4 shows thalt
is generated by the elemenis, k{l, ai,anda, (i=12,r £0). ]

Fori = 1 2 let A" be the subalgebra aft generated by the elemenis,, a; ,
(r #0). ThenA' is ag analogue ol/ ;) and the following proposition holds.

Proposition 4.2. (1) A’ is generated by the elements, aagd (r = £1).
(2) A and 4?2 commute with each other

Proof. (1) Follows from Lemma 4.2.
(2) By Lemma 3.2 and Lemma 4.1¢;[,a;,] =0 (i # j, r,s = £1). So the
claim follows from part (1). [l
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Proposition 4.3. In A the following hold
1) V(i) = air Y(@ir) = (—qy™) @,
(2) Yai,)=(—qy*) " ai,, V(&)= a.
(3) V@) =g %ai-.
(4) 1/fz(ai.r) = q72ra1_’_r, wZ(a”) = qura’_’_r_

Proof. The first equality of part (1) is immediate from the diion of ). The
second equality of part (2) follows from this by applying nka to (3.13).
We shall show the second equality of part (1) and part (3) Wudtion on|r| .

The rest of the claims follow from these. The cdsé = 1 is eadilgcked, using
Lemma 3.2 and Lemma 4.1. Combining this case with Lemma 4o®egr the case
lr| > 1. L]

4.2. The quotient algebras Ay and A;. DefineA,,A;, el (reZ,i=12)
by the generating series

(4.2) Z Ay, 7 = eXp(— Z h[lr]ir Zr> = A% (),

r>0 r>0
(4.2) > Aiarz = exp (— > a["’;]ir z’) = AF(2).
r>0 r>0

SetA, =y (A, ) andA;, = 4, ). Set furtheA™ = Jm(A,) and A™ = Y (A,) for
m € Z. (We can show that™ =y (AL"™) in A.)

For a nonnegative integeN leTy be the ideal ofify generated byZ,
Y omen Unld—y and ky — g". Set Ay =Uo/Ixn. Note that we can regard this as a quo-
tient algebra ofA. By Proposition 4.1 this algebra is generated by the elesnent
anda;, (i =1, 2, #0). The automorphisns, Y andy ofi/ induce automorphisms
of Ay, which we denote by the same symbols.

First we prepare several lemmas.

Lemma 4.5. In Ay the following hold
(1) AEN;a, = (qy&f)-”a,-.rﬁ").
) AN air = (qve) ai, Ay

To prove this lemma we need the following lemma, which is ameédiate conse-
qguence of [29, Lemma 5.1] and [23, Proposition 4.3].
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Lemma 4.6. For n e Z.o set[a]! = [1][2] -- {4 and (xit,)" = (x%,)"/[n]!.

i,m i,m

(1)
n
(20" = @O ) [ e A [ D0 Ay, || (R
j=0 1.0 >0
i+t =]

mod Z U U

n>[>0

for m,n > 0. In particular

(4.3) (xio)(nﬂ)(xl_,l)(n)Eq_"(n_z) Zq_jAn—ijtj (—ky)" mod ZU—MM,

j=0 n>1>0
@.4) (510" (x1)" =g DA (k) mod > U
n>[>0
(2) In Ay the following hold
i A™=0 ¢>nN).
oA ) A (m) _ A (m) - m) _ (Am) *
(i) AY'AL =AY, (0<r <N).In particular A™; = (A} .

Proof of Lemma 4.5. We shall show part (1) with = 0. The rest lof t
claims follow from this by applyingy” and Y™+ and using Proposition 4.3. Using
the equalities

r
+ — 2 : +
xl,mA" - [l + 1]Ar—lx1,m+l’
=0

xamA, = A,xam -0 >1) (y + y_l) Ar—lxam+1+ 0@ > 2)A,_2xam+2
for r >0 (0(-) is a step function) and Lemma 4.1, we obtain

N-1

(4.5)  x{o¥g0AN = ANxT X0+ Z q ' An-1s ([21%7 jarxg0 — (v + v ™) x1,%01)
1=0

in A. By the equality(xiO)(N+l)(xlfl)(N)xao =0in Ay and (4.3),

N-1

- + _+ —(+1 + +
0=Anxy %0+ Z g )ANflflx1.1+1xo,o
=0

in Ay. Apply Y? —1 to the above equality. By summing the result and (4.5), we fin
that

(au1+a)Ayr = Av((gy)ars + gy~ ) %az).
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in Ay. Applying Y! (I € Z) to the above and using Proposition 4.3, we obtain
part (1) with » = 1. By Proposition 4.3%(hy,) = ¢ %hy_,. This and part (2)-(ii)

of Lemma 4.6 imply thaty?(Ay) = ¢~2VA\'. Therefore part (1) withr = 1 fol-
lows from the caser = 1 by applyingt?>. The caselr| > 1 can be proven by using
Lemma 4.2 (2). ]

Lemma 4.7. For integersr,s set
Hr,s = Al,rAZs and Pr,x = Hr,snfr.fs-

Then the following hold indy.

1) () m,,=0,MM_,_,=0¢ +s > N,r,s > 0).
(i) Moy M55-n=0(0=<r #s <N).

(2) () Piy—r€Z(Ay) O=r =N).
i) YNoPv_, =1
(”I) P n—r Py n—s= 8r,sPr,N—r (0 <rs= N)

Proof. SinceA® £ ) =A7(z)A;(z), Proposition 4.3 gives the equality

.
(4.6) AL = (—q/y)T™ Y YT )
=0

in A for r > 0 and any integem . So part (2)-() of Lemma 4.6 gives {L)By
part (2)-(ii) of Lemma 4.6A§(,")A(_”3\, = Ag’v”)(A(N”))_l. Lemma 4.5 and Proposition 4.1
show that this element commutes with all the generators pf ThereforeAg\',")A(f?v €
Z(Ay) for any m,n. This and (4.6) imply thatr,, =1, y_[I_;s—n € Z Ay)
for 0 < r,s < N. Som,, commutes wWithAy , whilAym,, 3% )z, Ay by
Lemma 4.5. These prove (1)-(ii) and (2)-(i) sindegy, is inidgiby Lemma 4.6 (2)
and the use of the automorphisgn . Part (2)-(ii) follows frofn6] andAS{,’T)A(j"A), =1,
and the last claim follows from (1)-(ii) and (2)-(ii). ]

Now we can derive the properties ofy which we need. For ¢ Zio seth, =
¥(P;). For a nonnegative intege¥  ledy  be the set of pairs of n_orti\egeinte-
gersr = (ry,rp) such thatr; +r, = N. Forr € Zy set A, = Ay P;P;. Note that the
automorphismsy and Y preserve eactd; by Proposition 4.3.

Proposition 4.4. (1) Ay = ., Ar is a direct sum of nonzero subalgebras
with 14, = PP;.
(2) A= Ay/(1— P) (aP/Pr < a).
(3) In A, the following hold

() Aixs=0,A;34,=0(@>r,i =12).

() AipAi—s= ANy AifAis=Aiy s O<s=<r,i=12).
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(i)) Ainajs =(qye) 2% Ay, Aipajs =@ye)%iaj Ay,
Here for x € Ay the elementt inA, stands forx PP, € A; or the image ofx in
An/(1—= Pr) = A

Proof. Forr = (r1,rp) andr’ = (ry,r5) € Zy set
Arpr = An/{(1—= P, 1—Pp).

First we shall show that part (3) for th&;;  holds iy ,.. Part (3) for theA;, with
the r; replaced by the; is similarly proved. The elemeats.,, Bng are invert-
ible in A;,.. Noting this, we can see that (3)-(i) holds by part (1) of Lemnd7.
By (3)-(i) and (4.6),

4.7) A = (—g) Ny LA,

Noting this and substituting (4.6) into part (2)-(ii) of Lema 4.6, we obtain

r r
ZyzmsAl,r1Al,—SAZ,rgAZ,—(r—s) = Z yzmsAl,rl—xArz—(r—s)

s=0 S=r—ry

for 0 <r < N and any integem . This proves (3)-(ii). Part (3)-(iigllbws from (4.7),
Lemma 4.5 and part (2) of Proposition 4.2.

By Lemma 4.7 and a similar result for tHe, the sum 1 =Z”,EzN PP, is a
decomposition of 1 into a sum of orthogonal central idemipistéf we allow some of
the PP, to be 0. SoAy = @”,EzN An PPy is a direct sum of subalgebras. More-
over (1— P, 1—Pp) = Ay(1 — P)+ Ay(1 — Py) = @(&S);t(r.r’) Ay PsPy. Therefore
A pr >~ Ay PPy, By part (3)-(iii) for A, we obtain

AirAiy = (qv") 7 Ay Ay, (by the first equality)
=(gy") ? AiyAi,, (by the second equality)

in A;r. This imlplies that 1 = 0 inA4,, if r # r’. ThereforeA,,, =0 and PP, =0
in Ay if r Zr’. By this (1— P,,1— P;) = (1— P;). The fact thatP,P, # 0 follows
from the result that there exists a nontrividi module (See Proposition 4.5 below).
This completes the proof. [l

Corollary 4.1. A, is generated by the elements;;, A7}, A;; and A;} (0 <
s<r,i=12).

Proof. By the definition of theA;; and tha;; , the elemeats and are
expressed in terms of them. Therefore the claim follows fymemt (3) of the proposi-
tion and Proposition 4.1. ]
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The following corollary is immediate.

Corollary 4.2. For an Ay moduleV andr € Zy setV, = PP, V. ThenV =
EBrEzN V; is a direct sum of4y modules and thedy module structure or¥/ induces
an A, module structure orV;.

4.3. The homomorphism¢,: A, — CI*® C}?. In this subsection, we first ob-
tain a representation @f which induces a representation gf when restricted to the
highest weight space. Then, using this, we prove the existeri a homomorphism
from A, to some algebra&}' ® C3.

Setpl/2 qy® for o =1, 2. For a sequenca= (ay, ..., o,) of integers 1 and 2,
define theF algebr&, to be the vector spacg yy ..., yu)®F[x1, 7t X, x,
with multiplication rule

(f®l_[lel> (8@“}@"’) = fg’®l_[xil,-+n,-

whereg’ ¢1. ..., yn) = (P V1. - - . Pl ym). For simplicity we shall writef [], xf" for

............

of C, via the correspondence

m—i m—i

f]_[x ®g]_[x i f(yl,---,yi)g(y,-u,---,ym)]_[x [1x%-

j=1 j=1

Let Vo= Ca® (F?)®". We shall writeav fora ® v € Vo. We shall also writen f
for a® f € C,®ENnd((F?)®™) and regard this as an element of EWg(by lettinga act
on C, by left multiplication. We denote the canonical basis fof by vy and v,. Let
E,(j) signify the matrix unitE;; acting on thé -th factor of the tengwoduct 2)®"

and setH, :Eﬂ - Eg%

Proposition 4.5. Leta= (v, ...,ay) be a sequence of integetsand 2.
(1) The following assignment define&amodule structure orV;:

j —
st DI

i=1li<j i = Yi
qyi—q My
s L
i=1 j<i Yi Yi
H:
_H 1/2 —1/2\"
q jpﬂt[ Yi — (qpﬂtj ) y .
2 0]
om ZH 12 —H;)2 pg:,/ V' Eps
i=1 i<j Pai Vi = Paj = Y
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a1 pa, Py — (qp; 1/2) v
- Z l—[ ' / 2, m,—1p00)
X0.m — Y —7 pa’m/ ym El’2’
i=1 j<i Pai Vi = Doy = Yj

e B (- ).

N
oy > z (a7 piPED — ' p ).
=1
kl — qu:I i
(2) Fori =1, 2letr; be the number of among,...,ay and setr = (r1, rp). Let

W=11QU1® - Qvi e (F?)®. Then the abové/ module structure induces ad,
module strucutre oW, := Ca ® w.

Proof. (1) The relations except (3.10) are easily checkéuteSrelations (3.10)
follow from (3.11) and those already proved, it suffices teath (3.11). This can be
done by the often used technique as follows. Kt and K;** be the images of;,
and kl.i1 under the map in the proposition. For =0 1 the formulas
e.g= XZOg — KigKi_lXZO, fg= (X,.fog — gX,.TO) K;, t*lg= Kl.ﬂgKfl

for ¢ € End(V,) define alU, () module strucure on En#lg). (The above formulas
are the same as those in adjoint representations. See, dorpé, [30, Section 4.18].)
Since f.X7_,, = 0, .X] ;o = ¢"2X]_,, and e is nilpotent, we obtaie® X7 ;, = 0,
which is equivalent to (3.11) for thej’o The relations for ther; , can be checked
similarly.

(2) ClearlyUy preservesW, andZy annihilates it. Since

(4.8) Ay u®w)=(q) Z yﬁl...yﬁlu@)w
I<ji<--<jisN
==, =

for I > 0 andu € Ca, A, Ay, =1 on W,. Therefore the claim follows from part (2)
of Proposition 4.4. ]

Remark 3. (1) The coproduct
A(xz-‘—m) = Z'xi*,—mfl ® q)l(;) + 1® x:m’ A(xl m) l m—I ® 1 +Z QD( 1 m+l’
=0 =0

Ahiy)=hi, ®1+1Qh;,, Ali)=k ®k;

by Drinfel'd defines al/ module structure on tensor products %) and Viz). This
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action contains infinite sums, but we can sum them up to olikenexpression in the
proposition.

(2) Let A be the subalgebra &fy generated by, kl‘l, hi, andh;, (i =0, 1,r #0).
By Proposition 4.24;, andy_;, commute in.4, while they generally do not com-
mute on representations in the above proposition. Thexetloe surjective homomor-
phismA — A (h;, — hi,,h;, — h;,, ki — k1) is not an isomorphism.

m

Fora=(o,...,a) (¢ =1 or 2) setC? =C, and define elementg amd, [ ¥ 0)
of CI' by
qyi —q~ y
(4.9) e = Z ny, and D, = Z 1_[ — jl_[x,
Ic{1,2,...,m} iel c{l,2,...,m} iel Vi iel
|11=l |7|=l Jj¢l

Proposition 4.6. For r = (r1,rp) € Zgo there exists a homomorphisf : A, —
C' ® C3 determined by

Al,l = € 024 1, A2’[ (axd 1® e, Al-,l (axd Dl 29 1, AZ,[ = 1® D[ (l > O)
To prove this proposition, we need the following lemma.

Lemma 4.8. Let a and w be the ones ifProposition 4.5For 1 < i; < iy <
- <i, <N let w;, , ; denotew with thevi's in theis, ..., i, th factors replaced
by thevy's. For 1 <i #j < N setc;; = (gyi —q~1y;)/(vi — y;). Then foru € C,
the following hold
" . a9 Lpal’yi — apa” %
(1) (x;)r,m)( ) (u ® w) = Z l_[ l_[ 1/2L 71/é

1<ij<ip<-<in<N k=1  ix<j Paiy Yix — Pa;” Yj
J#i (k<l<n)

m/2..m
X nl’ Vi, Xiglt & Wiy i,....i -

(2) (xim)(") (t ® Wi i) = Vir l_[ Cir.j | U O wW.
k=1 ik<j
J#i (k<l<n)

Proof. (1) The claim can be proven by induction @n , using theadity

chi.j = [n].

i=1 j=1
J#i
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(2) A little calculation gives

(x]tm)” (u ® wil,iz,m,i”)

= E 1_[ yzk 1_[ Ciowy.J 1_[ (Cilsia(k)/cia(k),il) uw,

o€eSs, k=1 iy <J o(k)<l
[#o(m)(1<m<k)

n

-— m

_l_[ Vi 1_[ Cir,j l_[ Cip.ix E l_[ Cig.ir/Cirig. | U @ W.
k=1

ir<j 1<k<l<n tel, 1<k<l<n
j#i(k<l<n) t(k)>t(l)

(In the first equality, thek tthm from the right flips vy in the i;y)-th factor of

Wi, i,...i, 10 v1.) Therefore the claim follows from the equality

Z 1—[ Ck.l H i =[]t

€8, 1<k<I<n 1<k<l<n

T(k)>7(l) r(k)<z(l)

This can be easily proven by induction @n , using the well kmaguality

[I’l]' — Z q2[(a)7n(n71)/2

oESs,

where!l (- ) is the length function. Ul

Proof of Proposition 4.6. Leta and w be the ones in Proposition 4.5. Define
G € End(W,) by

N nj—n;—

. p(){ yj
g oow [ [ @we gbn o) ] ]_[ e ]_[)C"’®w
i=1 1<i<j<N k=0 qpa/y, gty i=1
o=

nj—n;—1

where the product[ [/, zx should be understood as 1 if; R; and as
1y ]_[k:nj_m 7 ifn; <n (the zx stand for the fractions in the above equation). Then

G (yGu®w))=yu®w and

(4.10) G M xGuw)= 1_[ cij | Xi l_[ CJ_Il uQw
=) e

for any u € C,.
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By Lemma 4.6 and Lemma 3.2,

A =" 069" (x12)" (kgY)" modZ,
(=47)" (19" (x50)"

for n > 0. Apply Y™ to the above and let the result act an® w u € Cj). Then,
thanks to the equality, {05,5,1 Ay1;A,,—; and Proposition 4.3, we obtain

(4.11)

(=" (q/y)™ > y*" MA@ w) = (x7 )" (xg,) " U @ w).
=0

Lemma 4.8 implies that the r.h.s. of the above equality isabtm

n n n n
m/2
> 1w {I1T T1 e (ITx (IT T cii|uow
k=1 k=1 k=1

1<ij<--<ipy<N k=1 ir<j ir<j

J# i (k<I<n) J# i (k<l=<n)
o=, o=,

This and (4.10) give

(=¥ (q/y)™ > y* G ALiA2,1Gu @ w))

=0
= > [IwrIlei[luuew
Ic{1,2..,N} iel iel iel
11=n JEl
ai=a;

for any integerm and & n < N

/_":1\‘ r—'cz*—-\
Now leta=(1,...,12,...,2). SetJ; ={12...,r;} fori =12 and let] =
Xp4i ANA ¢ =cpy4ipej fOr 1< i, j <rp. Then the r.h.s. of the above equality is equal
to

(Q/V)mnzyzml Z l_[ Ci,jl_[xi H c,’-,jl_[xlfbt@w.

1=0 ILCJy,|11]=1 ielh iely i€l iel,
ICJo,|I5|=n—1 jeiA\I1 J€\IZ
By this and (4.8) we find that there exists afy module structure orCi* ® C3
(C Ca =~ W,) such that the element&y;, Ay, A1y and Ay, (I > 0) act by left multi-
plications of ¢ Y'e;® 1 (¢ ¥ We;, €92 'D,®1 and ¢?)'1® D;, respectively.
This and Corollary 4.1 prove the claim. O

4.4. Main results. Now we can prove @ analogue of Theorem 2.1. For =
1,2 let Al be the subalgebra ofl, generated by the elements, aad (s #Z0).
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Theorem 4.1. (1) A, ~ Al ® A? (a1az2 <> a1® ay) as algebras
(2) For i =1, 2the homomorphisrd! — C;" determined by

Aijr—e, Ay D (0<Il=<r)
is injective Therefore Al depends only om; out of and r,.

Fori =1 2 definedj(.i) (1< j <r) to be the element of Enfi(y{, ..., y,)) such
thatd? f(y. ... 30) = FOL oo P Y.

Corollary 4.3. For i = 1,2 A is isomorphic to the subalgebra of
ENd(F (1. .. .. y,)) generated by, DY (0 < 1 < ry), e;' and D;t. Here thee, are
the ones in(4.9) ith m = r;) regarded as multiplication operators and ttié,(’) de-
note theD; with ther; replaced by thfj(").

To prove Theorem 4.1 and its corollary, we need the followtwg lemmas. The
proof of the first lemma will be given in Section 7.

Lemma 4.9. Let A; be the subalgebra ofl, generated by the elemenis;  and
hi; (i =1 2,1 > 0).Thengr|y, is injective

Lemma 4.10. Set A™ = [[1,A7h and A™ = [[_,A7. € A form =

(m1,mz) € Z2 Then for any element aofi, there exist an element ofl, and
m1, My, M3 € Z2 such thatuy = AMAMyA™s,

Proof. Fixingr, for i = 1, 2 let A} be the subalgebra ofl, generated by the
elementsz;; andy; (I > 0). By Proposition 4.4 (3) and Corollary 4.1 for any element
u of A, there existm,n € Z? such thatA™A"u € A}A,. Therefore it is sufficient to
show that foru; € A; (i = 1, 2) there existm,n € Z2 such thatu; € A™A; and
uz € A;A". We shall show the claim fory, the proof of that foru; being similar.

Define an automorphism  a#l; by «(u) = Al,rlbtAIj:l (v € A;) and lets =
(gy)~2. Any elementu € A, is written as a linear combination of monomials dg;
anday; (I > 0). Leti denoteu with theay,; replaced by theh;,. (& depends on the
expression ofu .) Then, sindey;, = a;, + &, i is expanded ag = Zf,‘,l:oum where
ug = u andu, satisfies u(,, ) 3"u,, . Sa@ is a scalar multiple ]E{f,‘le(;c — s™)(r).
Sincei and Ay, are in A;, this proves the claim. O

Proof of Theorem 4.1.  Since,(A;,,) and ¢.(A;,,) (i = 1, 2) are invertible,
Lemma 4.9 and Lemma 4.10 show th@tis injective. If we identifyC;" with a sub-
algebra ofC{* ® C32 naturally, theng,(A!) C C;'. This and the injectivity ofp, prove
part (2).
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By Propositions 4.1 and 4.24! and A2 commute and4, = AL42. Som : Al ®
A? — A, (a1 ® az — azay) is a surjective homomorphism. Part (2) proves that the
composite mappr o m: Al ® A2 — C' ® C3? is injective. This shows the injectivity
of m. O

Proof of Corollary 4.3.  The homomorphisgj’ — End(¥ (y1, ...,y,,)) (vj —
Vi, Xj > D(’)) is injective and.A! is generated by the elements , A,, ,A;, and
”1 (0 < s < r;). Therefore the claim follows from part (2) of Theorem 4.1 [

5. A comparison with Reference [2]

In this section we compare our result with the work [2] of M. &@nolo and
E. Vasserot. Since their results are restricted to the guanbroidal algebra of type
sl, (n > 3), we extend part of them to our case in the first two submestiWe fix
o €{1, 2} and sety, % .

5.1. A relation between representatAions 0fUq(Sl3,10r) and those oqu(ﬁ).
Let (bij)o<i j<> be the Cartan matrix fosls. For 0 < i,j < 2 set§; = 1 if
@i, j) # (2 0), (O 2) and&yg = 50‘2 = y2/q. U,(shtor) [1] [2] is defined to be theF
algebra defined by generatat§, , h; .,k andC* 0 <i<2meZ,r €Z\{0})
and relations

(5.1) kKU Ft=cteti=1,
(5.2) C* central [k, k;] =[ki,h;,] =0

. [rbis] " —C
(53) S,‘j [hi,r, hj,s] = 3r45,0 1>
q9—49
1_ ib,j
(5.4) kix; mk, xj >
r + — [rbij] (r:|:|r|)/2 +
(55) Eij I:hl'y"’ xj,m:l - ﬂ:TC Xjrem>
_ 8," —n m
(56) I:'x:m’ xj,n:l = q— 16171 (C d:)1(";1)1+n -C CDI( W3+/z) ’
(5.7) [xl.imﬂ, xiz]qiz + [x,.:’tnﬂ, xfm]qiz =0,
(58) g'! [ lm+1’ x;‘.:n:l + I:x;‘.:lﬁl’ ‘xi:f:m:l 1 =0 (l 75 J)’
g7 q7
(5'9) 'xlimlxlimz j n [2]xl sma jil‘l'xlj:mz +xjin'xlim1 i,mp (ml < mz) 0 (l ? -])

where cI>( ) =0 <0 andcb( . (r = 0) is expressed in terms (kf.“ and then;
as in the casé] (ﬁ) SetQ’ -ZozleaZag and letag = —a1 —ap. By assigningta; to
x;,, and 0 tok,ﬂ, hi, and C*, U, (ko) is endowed with a structure @’  graded

algebras. We denote the homogeneous subspace of degree byol/jt(sls tor)e-
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SetA :Z Uq(SI3.tor)ma1 and

meZ

J= Z Uq (S |3, tor)/otl—notz Uq (SIS, tor)m<x1+na2 .

l,meZ
H€Z>0

Then A is a subalgebra df, sl§ ) and J is an ideal ofd .

Proposition 5.1. There exists a homomorphism,(ﬁ) — A/J determined by

+ +
Xim > Xms hi, = hi,, ki—>kiy, Cr—C, ko> kda

—m .+ — -m,— .- —r r
xOm = Va X2, 0x0 m> xO,m = Va xO.meO’ ho-," = Va ho-," + y(xhz-"

Proof. By (5.8)

+ + —2m _+ - - = ., —2m_— -
x2,mx0n yor X2 O'XO m+n and xO.anm - yoz xO.m+nx20

in A/J. Noting this, the relations ot]q(ﬁ) except (3.11) withi( j ) = (Q 1) can be
easily checked. SeX  =j x5, and H =x3 X7 oxg o Then X2 = (x3 ) (x5, 0) /2]
and X3 = (x5 )’ (x30)>/[3] in A/J. Using these, we find that

[X% x{o] =[21[X, H], [2] [X3 x{o] = [31[X? H]

in A/J. The remaining relation for the, follows from the above equalities.  []

Corollary 5.1. Suppose that is &/,(skr) module. If W is anA submodule
of V satisfying/W =0, then W can be regarded as &,(£) module via the homo-
morphism in the proposition.

5.2. The double affine Hecke algebraH, and representations ofi{. For an
integerr > 2 defined, to be th& algebra with generatqi*é (l<i<r-1)and
relations

417l _ —1y —
(5.10) THTF =1 ([, —q)(T +¢7 Y =0,
(5.11) T;TinaT; = TinaT; Tiv1, T,T; =T;T;  (li — jl > 1).

Let H, be theF algebra [31] defined by generatdf§', X:* andy;** (1<i <r—1,
1< j <r)and relations (5.10), (5.11) and

Xlile:F]': 1’ Yl:l:lyl:Fl: 1’
XiX;=X;Xi, YY;=Y;Y,
T,X:Ti = Xisr, T2 171 =Y,
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T,X;=X;T;, TY;=Y;T; (j#ii+1)
(X1 X,)Y1 = peY1(X1--- X,),
XV X,y = T2

where p, is the one in Section 4.3. We shall regafd modules asH, modules via
the homomorphisnH, — H, (T; — T;).
Let vy, ..., v, be the canonical basis df” and define BERE® F* ) by

qu; @ v; if i=],
t(vi ®v;) = {v; Qv if i <},
vj®v,-+(q—q_1)v,-®vj if i >j.

Then, as is well known, the tensor produ@*(®") is endowed wistracture of H,
modules by7, =%¥-1®:r® 1% -1

In the s/, case seK; gfi=Fmin (1<i<n—1)andKg=gf»"Fu ¢ End(F").
Define the following elements of End{{ ®) ):

r r

i i _ ®‘,1 _

Ei=) 1¥'QEmek’ ™, F=) (K ©FEuw.wel¥7,
Jj=1 Jj=1

®j—-1

E(()j) - l®j—l ® Enl ® K?r—j’ Féj) = (Kal) ® Eln ® l®r—j

where 1<i<n— land kK j<r .
The following proposition is a special case of [2].

Proposition 5.2. For a right H, module M there exists &/4(Sks.tor) module
structure onM ®, (F3)®" determined by

k;(m®u):m®(Ki®’)u (=012 Cmeu)=mQu,
Xom@u)=m® Eju, xio(m@u)=m® Fu (i =1 2)

Xo,olm ® u) = mel ® E§u, Xoolm ® u) = Zij*l ® Fu,
’ J

m@u) =Y m¥;r@EPu, yomeuw)=Y m¥; ® Fu
j J

where yj = (klkz)_l[xil, xio]q and y, = [xio, xifl]q,lklkz.

By applying Corollary 5.1 to thet  submodule, -1, M ® (v, ®-- - ®v;) of
the U, 6l o) module in Proposition 5.2, we obtain the following propiosi.
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Proposition 5.3. For a right ., moduleM there exists & module structure on
M ®p (F?)® determined by

an © 1) =m ® (KE')u
xio(m®u) =mQ E1u, xl_’o(m®u) =m® Fiu,
xom@u)=> mX; @ EPu, xgm@u)=y mX;'e Fyu,
J j
Yolm ®u) = ZmY;lg)E(()j)u’ Vo (m ® u) :ZmYJ- ® F(gj)u
J j

where yg = k; 'x7; and yg = x7 k.

5.3. A comparison with Reference [2]. Let C(y)[yi, ..., y*'] be the ring of
Laurent polynomials inys, ..., y,. Definery, ..., 7,1, 0 € EndC(y)lyit, ..., y*)

by

. _ g1y, .
q)yi q “Vi+1 (i, i+ 1) . (q . q_l) Yi+1l i
Yi — Vi+l Vi — i+l

& f (1 evs ¥r) = fF(PaYrs Y1s o v vy Yro1).

T =

It is well known [31] that there exists a righif, module structure orlC(y)[yit, ...,
y*1] such that

m.I; =tm, mY;= yj_lm, m.X; = Tj_l-~~‘l.'r__11a)t1~~-'[j_1m.
We denote this rightZ, module byM .

Proposition 5.4. Setr = (r,0) if « = 1 andr = (0,r) if « = 2. Letting w =
11 ®---Quy, SetV =M @y, C(y)w.
(1) Theu module strucutre oM ®y (F2)®" induces and, module structure orV.
(2) V is isomorphic toC(y)[y;i?, ..., y*]% as vector spaces
(3) If we identify vV withC(y)[yi, ..., y*1%, then A,, andA,, (I > 0) act onV
as (—g~2)'e, and (—g2)'D™, respectively

Proof. (1) Clearlyly preservesV and, annihilates it. So the{ module
structure induces amd, module structure orV . Suppose that we have shown that
(%) agy =0onV forl > 0andB /=« . ThenPs =0 onV ifse Z ands Zr.
Hence we obtain the claim by Corollary 4.2.

By (4.4)

AIZ

(—a79)" (79" (%) modZ.
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Using this and (4.11), we can easily obtain

(5.12) Amew)=(=¢? Y mytview,

1
1<ii<--<ij<r

A(m @ w) = (—q7?) Z mX;, - X, @w

1<ii<--<ij<r

for [ > 0. The first equality gives

i *2’[1] ( _,)
1m®@w) = Z Y7 )I®w

for I > 0. Since K1---X,)Y; = p,Y;(X1---X,) in H, for any j, we find thatA,hq; =
pLhi A, for I >0 on V. This and Lemma 4.5 prove ( ).
(2) Set

2= Y4,

o€ES,

where T, =T; ---T; for a reduced expressiom s, ---s;, (s; = (i,i +1)). Then
E for anyi and

[x
|
1
=
[l
1
BN

M=ImE@Kerg, Kerg=») Im{;—q)

by Propositions 1.1-1.2 of [32]. Therefore
— Sr
M®H’_C(y)w:M/Zlm(T,~—q):Imn:C[yfl,...,yrﬂ] .

(3) The action ofy_,_; _ ;. Xi,---X;, on M is equal toD when restricted
to C[yi, ..., y*1% [31]. By (») and a S|m|Iar result for they s, A; =A,,; andA; =
Ay onV forl > 0. Therefore we obtain the claim from (5.12). U

6. Proof of Proposition 2.1

6.1. The subalgebraK of L. Let K be theC(y) Lie algebra generated by
andh;, ¢ =Q 1,m € Zso, r € Z.) with defining relations

,m

(6.1) [hir, hjs]=

62 [hir ,m] = 26 -

(6.3) [hmxl iml = (J/r YT s

(6.4) [x). xH] =0,
[

im>
(65) X,+, ’[ zmz [x1+ s’x;.;i,n]]] = 0’

+
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+

_1 —
(66) m+2> xl i n] ()/ + Y ) [ i,m+1> xl i n+1] + [x:m’ x]-t;i,n+2:| - O’

[
(6.7) 2[ Xi,00 [ i1 xl—i,m]] —(r+y l)[ Xi,00 [ Xi,00 xI—i.m+l]] =0,
(68) [xl+1’ [ i,l’ ‘xi-l.';i,m]] - [‘x:O’ [‘xi-‘.—O’ ‘x]*.—fi,m+2]] =0.
This Lie algebra is endowed with a structure @f® Z graded Lie algebras by assign-

ing (o;, m) to x;' "» and (Qr ) toh;, as before.
Define a graded subalgebi@ of the Q @ Z graded Lie algebraC by

(6.9) K= @ co)fk.)oEe @ Clyek.1)
k>0,1>0 k,1=0
where
(6.10) E =P C)e(0)—e(r,0)& P CHels).
r>0 r>0,5>0
i= 1 2

Proposition 6.1. There is an isomorphism a@d&@Z graded Lie algebrak — K
determined by

X1 > e(0,m),  hy, > €(0, 1) — (0, 1),

xg,m = y7m f(l’ m)v hO,r = VI‘GZ(O’ I") - yfrel(o’ r)‘

This proposition will be proved in the next subsection. Walkldentify K with IC by
the above correspondence.

6.2. Proofs of Proposition 2.1 and Proposition 6.1. Let t be the Lie alge-
bra overC(y) defined by generators, ., and, i ( 50, r e Zso) and rela-
tions (2.2)—(2.8) involving only the generators, i.e.,

(6.11) [hir, hjs]=0,

(6.12) [Ri.r. ,m] +£2x0s

(6.13) (hies X5 i) = FOT Y7 e
(6.14) X 70| = Biihimon

(6.15) [ %] = 0,

(6.16) [t [ [ 21T = 0.

Lemma 6.1. Lett" be the subalgebra df generated by the elementg, . Then
t* is defined by generator.s, . @=0,1,m> 0)and relations(6.4)—(6.8).

Proof. Lett be the Lie algebra ove€(y) defined by generators, o and,
(i =0,1, m,r > 0) and relations (6.11)—(6.14). L&t and T~ be the subalgebras of
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t generated by the’ andx” , respectively, ant the subalgebra generated by the

i,m im?

hi,. Theni=1 @1°@ 1", andt" andi  are the free Lie algebras on the,, and the

x,,- LetI* and I~ be the ideals df generated by the elements on the left hand side
of (6.15)—(6.16) with the upper sign and the lower sign, eetigely. We shall show
that () I* is the ideal oft* generated by the elements

rim, n) =[x, x7, ]

si(my, mg, mg;n) = Sym, ..., [x:ml’ [XZWZ’ [x:'"B’ XI*"’”]]] ’
11,1 0m) = 2[x0, [xn xiin]] = O+ v ™) [0 [0 Aiimeal ]
t2,1(m) = [x71, [0 21 )] = [0 [0 X1t el ]

— -1
t3.i(mv n) - [x:m+2’ xI—i.n] - (V + YV ) [x:,—m+l’ xI—i,n+l] + [x:m’ xI—[,z1+2]

with i =0, 1 andm, n, m1, mp, m3> 0. A similar result for/~ also holds. If these are
proven, we obtain t /(- +I") =t~ @ 0 @ t* with t+ ~ /1.

Let J be the ideal of generated by the elementsm,(n i) ( =0k, n > 0). For
i =0,1letS; be the linear span of the eleme®tsny,(m,, ms;n) (my, mo, m3, n > 0)
and I; the ideal oft generated bys; . Lef; be the ideal ©f generated by the ele-
mentss; (u1, mo, ms;n), t1,(m), t2;(m) andts;(m, n) (m1, mo, ms, m,n > 0). As is eas-
ily shown, J is the ideal of* generated by the elementsm.,(n ). So () is equivalent
to o+ I +J = To+T1+J. Since adU (%))S; = §;, I; is equal to afy (t*)) adU (T))S:.
Therefore, to prove the lemma, it is sufficient to show th&tad*)) ad(U (t))S; = T;
modJ ¢ =Q 1).

A little calculation shows that

ad(U (t)) S, =S + St +S? modJ
where

st=Yad(x;)s and s2= Y ad(x;) sk

>0 =0

Letting {(k} = G* —y %)/ (v —y1) for k € Z, set

wi(k, 1,n) = 2[x;y, [x5 x1 i, — G+ 6o (%00 ¥1 i gstan] ] 5

wi(k, 1) = [kaa xLi,/] — {k} [le’ xLi,kH—l] +{k—-1) [XZO’ xLi,kH]
for i =0, 1 and integer&,l,n . Then we can prove the following:

St = Sparu; k,l,n ) k,l,n> Q mod/,
S? = Sparfw; k1) k,[ > 0k > 1 mod.
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Since

36xu;k,l,n)
=3[s5i(k. 0,0 ) x;;] — 2[si (Q 0 On )y ] + (' + ™) [5:(0.Q O +1)x;, ],

the inclusion> (modula/ ) of the first equality holds. As for teecond equality, the
inclusion > follows from the equalities

wi(k, 1 +1) _ [wi(@ k1), x; 0]

witk+1,1)— {2 > 7

and w; (Q/)=0

The reverse inclusions are proved by direct calculations.
Now we can conclude that

S} = Sparity;(m), t2:(m) | m > 0} mod (J +adU (t")) $?),
§? = Sparitz;(m,n) | m,n >0} modJ

since
ui(k,l,n) = —({Hk — 1} +{k}{l — Bk +1+n—1)
+2{k}{l}t2,;(k +1+n—2) mod (J +adU (t*)) S?),
t1i(m) =u; (0, Lm), t2;(m)= u,-(l,f],m)’
t3i(m,n) =wim+2n)— (v +y Hwi(m+1Ln +1) +w; (n,n +2)
w,~(0,l) =w,-(ZLl) =Q
This proves adU (t")) ad(U (t")) S; = 7; mod J . O

The following lemma is proven in the same way as Lemma 6.1.

Lemma 6.2. Let K™ be the subalgebra ok  generated by the elemedjis.
Then K™ is defined by generators/, (i = 0,1, m > 0)and relations(6.4)—(6.8).
ThereforeK* ~ t*.

Let g be the Lie algebra ove€ defined by generator,s,.f, i=011> 0) and
relations (6.4)—(6.8) withy = 1. This Lie algebra is endoweithva Q & Z graded Lie
algebras similarly tok .
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Lemma 6.3. The dimension of the homogeneous subspace of dégreg of g
is given by

1 if « is a positive real root ofﬁ} andn >0
dimgl,n)={2—-6,0 ifa=ms (m>0)andn >0
0 otherwise

Proof. Let t-; be the Lie algebra oveC defined by generators,ﬁ, hiy, i (3501,
I,r € Z50) and relations (6.11)—(6.16) with = 1. This Lie algebra isl@med with
a structure ofQ & Z graded Lie algebras similarly th . Le;;:r1 be the subalgebra of
t,=1 generated by the;,.

SetB =C[s,t,t Y] and Qp =Bds ® Bdt. LetG be the Lie algebral;(C)® B ®
Qp/dB with the multiplication rule

[x1 ® b1+ c1, x2® bo+co] = [x1, x2] ® bibo + tr(x1x2)(db1)by  (c1,c2 € Qp/dB)

where™ :Qp — Qp/dB is the quotient map. Then as in [3] we can easily show
(1) G is the universal covering afl>(C) ® B and 1,1 is isomorphic toG via the cor-
respondence

< "t ® E1o.

+ n -
X1, <8 ®E12, X

n + n -
R < E>q, Xo, < S'1® Ez, Xxg

n

1 if a is a real root ofsl; andn > 0
@) dimte(e.n)=]_ 4" St2 TR =
0 if « #0 is not a root ofs/,.

Csm=1tmds if m70 andn > 1
(3) t=1(m8,n) =Cs"t" @(E11—E2)@®{Cs"t1dt if m=0andn > 0 under the
0 otherwise

identification -1 = G.
(4) t;:l = t,=1(x, n) wherea andn are summed over positive rootssiofand non-
negative integers, respectively.
These imply that dinf;gl(a,n) satisfies the equality for dimg(n ) in the lemma.
Since f_, >~ g by Lemma 6.1 (for the casg = 1), this completes the proof. []

Now we are in a position to prove Proposition 6.1 and Projuosi.1.

Proof of Proposition 6.1. Clearly the assignment in the psipn defines a
surjective homomorphisn¥ K — K and F K @, n)) =K(«, n). Therefore it is suffi-
cient to show that« ) dink o ,n ¥ dinfC(«,n) for any o« andn .

Let K° and K* be the subalgebras df  generated by the andxfhe re-
spectively. Thenk =K°@ K*, K° = @, o K(0.n) with K(0,n) =Y, 1 C(¥)him
and K* = EBa;oK(“a”)- By Lemma 6.2 g is defined by the same generators and re-
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lations as those oK™ with y = 1. Therefore
dime(,) K (@, n) = dimeg,) K * (@, n) < dime g(e, )

for « #0 by specializatony —- 1. By Lemma 6.3 and (6.9) diglx,n) =
dimc(,) K(er, n) for « # 0 and by (6.10)

2 ifn>0,

dimc(,) K(0, n) =
et 10.m) {o if n <0.

So we obtain £ ). ]
Corollary 6.1 (of the proof). ding(,y K*(mé8,n) =2 for m,n > 0.

Proof of Proposition 2.1. (1) There exists a surjective homophism ofQ@Z
graded Lie algebrag. — £ determined by the assignment in the proposition. There-
fore it is sufficient to show that dimh(«, n) < dim£(«, n) () for any « andn .

Let L* and L~ be the subalgebras df generated by the;, and thex;, , respec-
tively, and L° the subalgebra generated by the, and . As in [3] we can easily
show thatL = L~ & L°@® L* and that

1 if ais a real root ofﬁ}

dimL(e, n) = _ _ .
0 if « #0 is not a root ofs/,

Since i(O n) =Y 201 CW)hin + C(y)cén,0, dlmL(O n) < 2 +§,0. On the other hand
dim E(a n) satisfies the above equality for dMa n) and

B Cy)ei(m.n) if (m.n) 7(0,0),

~ _ Ji=12
£lm3, m) = C)h® P Cly)ei if (m,n)=(0,0).
i=1,2

By these we can see that ( ) holds unless m& m [ = 0). We shall showio( )
a=md (m > 0) in the next paragraph. The proof of the case< 0 is similar.

Fix m > 0. Note thatL(ms8,n) C L*. For an integei let.; be the subalgebra of
L generated by the element$, (i =0, 1,k >1) and set,; = L(m8,n) N L}. Then

(6.17) LyyC Ly and Lms,n)=|J L.
l

Let ¢ be the automorphlsm at determined byx,k — x, G hiy > hi, — ,oc and

Cc c Then L = (Ln+2k,n 0)- Clearly there exists a homomorphism-t L such

that x,..k — xfk andh,,, — h;, . SO by Lemma 6.2 we can see that the assignment
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x;, — x;, defines a homomorphisi* — L. This homomorphism and Corollary 6.1
imply that dimL, o < dimK*(ms,n) = 2 for n > 0. The last two results prove that
dimZ, _ <2 if n+2km > 0. From this and (6.17) we can conclude tigtn3, n) =
Ly if I <0 and that dimL(ms, n) < 2 = dimL(ms, n). O

7. Proofs of Lemma 4.4 and Lemma 4.9

7.1. Proofs of Lemma 4.4 and Lemma 4.9.
7.1.1. First we prepare two lemmas for the algebtasand A.

Lemma 7.1. For m = 0, 1 let Y*[m] be the subalgebra of/* generated by
Xoom and xi,, . Then fori = 0, 1 the elements;, are in ¢/*[1 —i] if » > 0 and

inU-[1—i]ifr<O.

Proof. Sincehy i, = p,(hs,), the case = 1 follows from [25]. (See also (7.1)
below.) From the equalityig, = (—1YSY~1h;, we obtainhg, = (—1yY~1Sh;, by
Proposition 3.2 (2). Therefore the equaliti@s'Sxy = x5, and Y ~1Sxg, = —xi'y,
and the casé =1 prove the case =0. ]

Lemma 7.2. Let A be the sybalg§bra 0fA generated byki, k;l, a;,» and a
(i=127r £0,5s > 0).Thenx7(A) c Afor j=0,1.

Proof. Part (2) of Lemma 4.2 implies that, (s > 0) is in the subalgebra oft
generated by 1,a; 1 anda; ;. So A is generated by, kl_l, h;, andh;; ( =0, 1,
r #0). Therefore the claim follows from;* (k1) = k1, X3 (h;,) = h;,» and

(=12 X hig) = [R21hj s+ (0 +y Dhajzn hia] J@P - (r 779 O

7.1.2. Next we introduce several notations. SRt Eq/ey (1) frg €

C(y)lql. (1) # 0} C F. Let U, (K) (resp.U(f K )) be theF algebra (resB.  alge-
bra) defined by generators; andH;, ¢ =Q 1,m € Z-o, r € Z.o) and relations

i,m

[Hi,l" Hj,.Y] = 07
_[2],.
r

i,r+m>

[y v ™)

[H"’V’ X;rm]
[Hi,” Xzfi,m] = Xzfi.r+m’

[X] a1 X7

im+1 Xin

YNy | Xnss [ X [Xgs XL, 2], =0

[/2

]q2 + [XZII+1’ X[+m:|q2 = 0’
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[2][ i,m+2> Xl 11] +()/ +yil) [XI i,[+1> X?—m+l:| -2
[2] [Xl i[+2 Xl m] +()/ ty 1)[ i.m+1 Xl ,/+1] 2

[2] [Xi,o» [Xi,l’ Xl—i.n] ] +(y+y HX [ 0.0 [Xl i+l Xi,o]qu] =0,

[Xl 1> [Xl 1 Xl—l n] ] + I:X1+0’ [XI—i,IZ+2’ X:O]qu:I =0.

Assigning ¢;,m ) toX;, and (Qr ) toH;, , these algebras are endowed with structures
of QO & Z graded algebras. We denote the homogeneous subspace eé degr) of
Uy(K) by Uy (K)(, 1) and set

Uq(K)m = Z Uq(K)(mCYj_ + Vl(g, l)
n,leZ

for any integerm . Defind/* K ¥ ! ) and/} K(,) similarly.

Set Ir =3, 0Ui(K)-nUy(K), and define Iz similarly. Let I,=y =
Y o UK)-nU(K)y,. ThenU K »/1,-1 ~ U(E). Noting this, we shall often de-
note U, K p/Ir and UyX (K »/Ir by U,(E) andUF € ), respectively, by abuse of no-
tation. Sincelr is a graded ideal of the @ Z graded algebraU, K o) U,(E) =
B,..ncz., Ug(E)(mS, n). A similar formula holds also fol/ K ).

Define polynomials in (commutative) variablag m € Z.o) with coefficients in

R, g-(a1,...,a,_1) (r > 0), by the generating series
<eXp< )Y anz ) ) /(q —q M=) (e +(q—q Nelar ... a 1)
m=>0 r>0

Using these polynomials, we defit, , € UqR(K)o (r > 0) by

Hyi1=— [XSO, XIO] 2

(7.1) _
Hi,, Xgo0]. Xio]q,2 —(¢ -9 Ng+1(Hyi1 ..., H1,) (r>0)

Hl,r+1 [2 ] [[
where theH ; are ordered ing,+1(H1,1, ..., H1,) so thatHy is to the left ofH,, if
s < t. Note that the elements; , of ¢/ defined in Section 3 satisfy the above equa-
tions with X/, replaced byx, (i =0, 1). Further we defin&\;, € UF K o)(i = 1, 2,
r > 0) by (4.2) with theh; ; replaced by thH;, . We also deflde,, A;, € U,(K)o
(r >0,i =1 2) in the same way.

In this section we denote the elemeni§,, #;, and A;, of U K) byx/,, hi,
and A;,. Further we sehlr = €1(r, 0) — €2(r,0) € U(E) for r > 0. We signify the
automorphism) of U(E) by yq_l.
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7.1.3. The purpose of this subsubsection is to prove Lemma 7.3 anthrze 7.5
below.

Assigning ¢a;, m ) tox;, , (Or ) toh;, and (0 0) ta&;", U is endowed with a
structure ofQ @ Z graded algebras. The quotient algebrbsind A, of Uy areZ Z
graded for the same reason &3 E ( )Uz K {/I). Let A’ be the subalgebra afl
generated by the elements;, hy; (i =0, 1,/ > 0) andA;, as before. Then these alge-
bras are graded subalgebras.4fand A;, respectively. We denote their homogeneous
subspaces of degreei(n ) by (ms, n) and A, (m8, n).

Forr = (r;, rp) € Zio let I (E) be thefiqi:ll invariant ideal ofU € ) generated by
the elementA;, (n >r;, i =1, 2) and

n
Si | T bt sG] enzo mensnen
j=0 l1,...,1,=0

[1+---+l,,,:j

Lemma 7.3. For m,n € Z-q the following hold
(1) dimg A;(m8, n) > dimg ¢ (A; (mé, n)) > dimc (U (E)/ I (E))(m8, n).
(2) dimp A'(mé, n) > dimc(,) U(E)(m$, n).

To prove this lemma, we need the following lemma, which w#l proven in Sec-
tion 7.2.

Lemma 7.4. (1) L(E)=U(E)NI.
(2) I(E) = D, n=mingrry) Ir (E) N U(E)mS, n).

Proof of Lemma 7.3. (1) Sinc& E(/)(E) is generated by the elemen?zg,
and hl,, (i=0,1,1> 0), there exists a familyf;}ic; of polynomials in noncomruta
tive variables with coefficients i€(y) such that the vectors; % h{1,...,ho1....,
hl,l,...) are a basis of th€(y) vector spacel K )l (E))(mé, n) for eachm and: .
Replacing the elementl's,-,l and hl,, by h;; andhy; in A, the f; define the vectors
v; € Ar(mé, n). Part (1) of Lemma 7.4 implies that the map E (I,\E) — U(H)/I;
(u — u) is injective. Therefore the vectorsy(, ® ¢2,,)(vi) € C3"* ® Cfff are lin-
early independent ove€(y) by Theorem 2.1. This implies that the vectaigv;) are
linearly independent oveF  sinag (3;)|y=1 = (¢1., ® ¥2.,)(vi).

(2) By part (1) dimy A'(mé, n) > dimeg,)(U(E)/ I (E))(ms,n) for any r. By
part (2) of Lemma 7.4 we obtain the claim from this by lettingand r» sufficiently
large. O

Define B to be the subalgebra of generated by, andh;, ¢ =Q 1,m >
0, r > 0). This algebra inherits a structure ¢f ® Z graded algebras frort¥. Let
~: Uy — Uo/Z (= A) be the gquotient map as before. Let furttiér  denote the idieal o
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UJ(E) consisiting of all the torsion elements of tie  moduig E ().

Lemma 7.5. (1) Bo=A ~ U,(E). In particular By C A.
(2) UqR(E)/T is isomorphic to theR subalgebra of generated by the elements,
andhy, (1 =0,1,r > 0).

Proof. (1) We regardC(y) as anR module by letting g( ) act & (1). Clearly
there exists aC(y) al_gebra homomorphisr K( UqR K( 9r C(y) determined by
x5, X,.fm ® 1 andh;, — H;, ® 1. This map induces a surjective homomorphism

U(E) = U(K)o/I4=1 — UqR(K)O/IR Q& C(y) (hi,+ Hi,®1, hy, — Hi, ®1).
Since
(7.2) US (K b/ Ik ®r F = Uy(K)o/Ir = Uy(E)
and each(UX K o/Ir)(m3, n) is finitely generated oveR , we obtain

dimc,) U(E)(mé, n) > dimg U, (E)(@ms, n)

by specialization argument.
By part (1) of Lemma 7.14’ is a graded subalgebra of tiZe®Z graded algebra
Bo. By Lemma 3.3 there exists a homomorphigip K (—)B X/ ( — x/,, Hi,

hir), which induces a surjective homomorphidif) E () Bg. Therefore
dimg U, (E)(m$, n) > dimg Bo(m$, n) > dimg A'(m$, n).

By the above two inequalities and part (2) of Lemma 7.3, we canculde that
A’ = By ~ U, (E).

(2) SetC :UqR EYT . ThenC =p,,,C #s,n ) sincd is graded, and each
C(mé,n) is a freeR module of finite rank. Lef’ be the subalgebraCof oeed
by the elements4;, an#lly, (i =0, 1, r > 0). SinceR is a principal ideal domain,
there exist anR basis;, ..., vy of C(md,n), a nonnegative integeN < M and
ai(g), ...,an(g) € R such thatai(q)vi,...,an(g)vy is an R basis ofC’ N C 8, n )
for eachm andn . Lefu be th€(y) linear mapC’ ®z C(y) &L e ®r C(y) where
i is the inclusion map. Let be the composite mEpE ) UqR E ®rC(y) &L
C ®r C(y) where the first map is the one in part (1) ands the quotient map. Since
v is surjective andU £ ) is generated by the eleméntsandhy, (i = 0,1, r > 0),
w is surjective. This implies thav # ang () =0£i <N ). Hen€e C=

The R moduleC is free and& s the fraction field 8f . Therefore treprd —

C Qg F (c —~ ¢ ®1) is injective and the map]qR H Qr F ELe ®g F is bijective.
These and (7.2) imply that — U, K )H;, — H;, Ki, — Hi,) is an injective
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homomorphism ofR algebras. 306 can be identified with Rhe  selbah ofU, € )
generated by the elements, afRd, (/ = 0,1, r > 0). Therefore part (1) proves
the claim. O

7.1.4. Now we can give the proofs of Lemma 4.4 and Lemma 4.9.

Proof of Lemma 4.4. We shall show the claim @fl{;, the proof for the case
U%U, being similar. For anyx € LTg there existsn > 0 such thattfX1)™"(x) € Bo.
Soui c A by Lemma 7.2 and Lemma 7.5. Siné® c A, we obtain the inclusion
U%U; c A. The reverse inclusion follows from Lemma 7.1. O

Proof of Lemma 4.9. Selt/R = UJ(E)/T. By Proposition 4. 3(hs,) = hy, and
37(h, P) = 2jciihir (¢ € R) in A So Lemma 7.5 implies that the automorphigm
of A defines automorphisms @&f, E( ) artﬂqR which we denote by the same letter.

Let 1 (E) (resp.1R(E)) be theyi1 invariant ideal ofU, € ) (respUqR(E)) gen-
erated byA;, & > r; i =1 2) and the images of the foIIowing element@/jnE) (
(resp.UR(E)):

n
(7.3) Daira | DD Xi, X1, (XG0)"
=0

I1,... ;>0
[+, =

wherem n> 0andn + >ryi+rp Letg be the composite map E( - UX(E) ®x

Cly) = UR(E)/IR(E) ®z C(y) wherev is the map in the proof of Lemma 7.5 (2).
The automorphlsm)i of UR(E) defines an automorphism d!R(E)/IR(E) ®r C(y)
naturally, which we denote by the same symbol. This saUsJié%o g=go yq=

So Kerg is invariant undeDNi;ill. Furtherg annihilates the generators IpfE). There-
fore I;(E) c Kerg and g induces a surjective homomorphisthE AI{E) —
UR(E)/I}(E) ®r C(y).

By Lemma 75UR(E) can be identified with anR  subalgebra of, E ( ) and
UR(E) Qr F >~ U, (E) (u ® ¢ < uc). Since IF(E) = FIRE), we find that
UR(E)/IR(E) ®r F = Uy (E)/1] (E).

If we identify U, (E) with A" by Lemma 7.5, the element (7.3) is a scalar multi-
ple of (x7 o)™ (x1 1)”(x3, o)™ by part (1) of Lemma 4.6. So it vanishes 4{ (regarded
as a quotient algebra oft’) if m+ n > ry +rp. This and Proposition 4.4 (3) im-
ply that the composite map, E( P A - A} induces a surjective homomorphism
U,(E)/IF(E) — A;.

From the above we obtain the inequality digy(U(E)/L(E))(ms,n) >
dimg A;(ms, n) by specializationy — 1. Combining this with part (1) of Lemria,
we get diny ¢ (A, (ms, n)) = dimg A;(mé, n). O
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7.2. Proof of Lemma 7.4. To complete the proofs of Lemma 4.4 and Lem-
ma 4.9, we shall show Lemma 7.4.

SetZ ={¢,1)eZ?|k>0, >0 andZ =, 0)ucZ.o}UZ". Let:=(1 0)
and1= (0, 1). Fix a total order= orZ? such that

urt > uot if wug>ur,>0 and ue>=k for ueZ.g and ke Z.

Hereafter most of the time we consider the elemamﬁ§4 K, .., Ky) for kq,...,
ky € Z. We shall denote them simply by; » Ko ..., Ky) since they are indepen-
dent ofr; .

ForM > 1 andk; = (k;, ;) e Z (i=1,..., M) set

vu(ke. - Kur) = e fkur) -+~ Fkn)| / M1,

Lemma 7.6. Letr =(r1,rp) € Zgo. For i = 1, 2 the following hold inU(H):
(1) A7y (K, ..., ky) is symmetric in the variableks, ..., ky.
() AlyKeo.oo k) = A7y i(Ke, o Kym) AT (Kag) — M petkn Al (Ka
ki +Kar, ... Kar—1).
() Ay ke, .. ky-1,0) = (r + 1= M)AT,, 1 (Ka, ..., K1)
@) n'A;, =(-1)yA;, @A, ..., for n > 0.
(5) Fork; =(k;,l;)e Z (1< j<M)

vuKe oo ka) = Y PRk Ay (ki k) Az (K oK)

wherel = {iy, ..., 0.} (i1 < - <ig)and J = {j1,...,jp} (j1 < --- < Jjp) in the
summand

(6) The eIementsAij(kl,...,kM) (M >0, ky > - > Ky, ke, ..., kyr € Z%2\ {0}))
form a basis ofU (H,).

Proof. The claims except parts (5) and (6) were proved in.[I%e equality
in (5) moduloU H)(h—(r,+r2)) was proved for any nonnegative integegsandr; in
the same reference. SinaéjM ki(...,Ku) is independent of; fok; € Z (V) and
>0 U(H)(h —r) = {0}, we obtain (5).

“Forn > 1 set

UMM = Y Y Cake)---ai(kn).

0<m=nky,....k,,€Z2\{0}
Then by the definition ofAij and part (3)
Ay (Ke, o k) = ai(Ka) - --ai(ky) mod U (H;)[M — 1]

for M > 2 andKy, ..., ky €Z?\ {0}. So we obtain (6) by the PBW theorem. []
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Fores, M1, My >0, ua,...,u; € Zog andky, ..., Ky, my, ..., my, € Z’, set
Coomms (U1, - s Ke, oo Kys My, oo, Myy,)

= Z A1’0+M1 (u,'lt, o UL, Kiy ..., le) AZ,b+M2 (ujlt, R 7 R 11 AN mMz)
T0J={1,...1}

with the notation in part (5) of Lemma 7.6.

Lemma 7.7.

U(E) = @ @ C(y)cl.Ml,Mz(uJ.’ ---vuf;kl’ cve le;mla ceey mMz)

uy>--->u;>0
Ki=->Kay
Mmy>->=My,

where the first sum is taken over nonnegative integetd;, M.

Proof. U (E) is the subalgebra af H( generated by the elements; 1(u, 0) +
Az1(u,0) @ > 0) andA;1(k) (i =1, 2, k € Z’). By the definition of theA; » Ki, ...,
kM)y

A]_Jy[1 (kl, Cey le) AQ’MZ (ml, e, mMz) € U(E)

for Ki, ..., Kay, M1, ..., My, € Z’'. Multiplying this by A1 1(u, 0) + A2 1(u, 0) (u > 0)
repeatedly, we obtain the inclusiam . The reverse inclusidiows from the fact that
the r.h.s. contains 1 and is preserved by multiplicationh®y generators o/ £ ). The
directness of the sum on the r.h.s. follows from Lemma 7.6 (6) L]

Lemma 7.8. Aim(Ki,....ky) € L(E)if M >r; and kq,...,ky € Z'.

Proof. First we show that; » I{1,...,Iy1) € L(E) if M > r,andl; > 0
(¥j) by induction onz :=#j | I; /= 1. The case = 0O follows from part (4) of
Lemma 7.6. Suppose that the claim is proved up to . Then byledileg A; 1((I —
DDA (12, ...,1,L 1..., D) we find that

(M—[)A,"M(l]_l,...,l,],ll 1..., :|)+A,'!M+]_(l]_1,...,l,],(l—1)1,:L..., ].)Elr(E)

for [ > 1 by (2.11) and Lemma 7.6 (1). Using this, we can prove thgec + 1 by
induction on/ .

Next for M > r; we show thatd; y Ki,..., k., 1,...,1) € L(E) if k; = (k;,1;) €
Z' (1< j <t) by induction ons . The case M  proves the claimz If =0,r0f 0
andk; =0 (1< j <t), then the claim has already been proved. Suppase th 0
andk; > O for somej € { 1..,t} and that the claim is proved uptte 1. Then
by (2.11) and Lemma 7.6

(M—t+1)(1— p*) Ay Keo ... K, 1,00 )
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= [Ai1(kj l; — 1) +8, 14101 (kj 1 — 1), Apr (K, oo Ky oo k1,0, )]
=0 modIl(E)
where ~ denotes omission. This proves the case . Ll
Lemma 7.9. If My >ry0r My >ry 0r M{+ My+1t > ry+r, then
Cromyom, (U, oo up Ke, oo Ky s My, oo, myy,) € L(E)

for ui,...,u, € Zog andka, ..., Ky, My, ..., my, € Z'.

Proof. First we prove the claim fa¥; > r; or M, > rp. By Lemma 7.8 we can
see that the claim holds ¥ = 0. By multiplying this by, 1(u, 0) + A2 1(#, 0) (u > 0)
repeatedly, we obtain the case- 0.

Next we consider the cas#f; + Mo +t > ry +r;. Set N = M; + M,. By
Lemma 4.6 (1) and Lemma 7.6 (5)

N
(1" 1! DIV B R G
s

l1,....1;>0
ll+ "+lt:j
7.4 [t (o) |
= CEn] =oye(, ..., 01, ..., 0
N
N
(e
m=0

wherew,, =Cimy-m ..., 11,...,11,..., 1. Since the ideall;(E) is invariant
under the automorphisns®!, eachw,, is inl,(E). Therefore

Comm,(L, ..., 51 ..., ..., 1) € I[(E).
Using this and calculating

[Aia(( = 1D, Compm @, Lk, L L, Tmd . n L L., D]

pe,-(l—l) ’
we can show that
C,qu’Mz(l, PN ) S P lMll; nil, ..., }’lel) € Ir(E)

for l1,...,Im,, n1,...,nm, > 0 as in the first part of the proof of Lemma 7.8. Now
the calculations of commutators such as

[Alql(kj -1, lj) s CrvtMy—1.M, (1, o Lk, kj,]_, kj+1, N le; mq, ..., mMz)]
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with k; > 0 prove that
Cl,Ml,Mz (1, cay 1;k1, ey le; mq, ..., mMZ) € Ir(E)

for k; = (k;,1;), m; = (m;,n;) € Z' (¥j) by induction onM;+M>. Finally the repeated
multiplication by A1 1(«, 0) + A2 1(u, 0) (v > O) proves the claim as in the first part of
the proof of Lemma 7.8. ]

Now we can give the

Proof of Lemma 7.4. (1) Recall that the multiplication mapH1}® U (Hp) ®
U(H,) — U(H) is an isomorphism of algebras. This proves that U(H1)U (H>) is
equal toU Hl)lrz2 + I'U(Hy). Therefore, by (2.11) and Lemma 7.6,

1

I NU(H)U (Hz) = > CONAL y Kas - Ka) ARy, (M, Mg,).
Mi>r1 Of Ma>r;
K.....Kagy M, ..My, €22\ (0}

SinceU E )C U H1)U(H2), the above equality, Lemma 7.7 and Lemma 7.6 (6) imply
that

(75) UENL=@umm, @ COIC(u ... uike, ... Kuyi My, ..., M)
uyr>-->u,;>0
Ki>=->Kayy
My 2> =My,

wherek;,m; € Z’ for all j and the first sum is taken over M1, M, such thatM; >
r1 Or My > rp of My + My +t > ry +r,. Therefore Lemma 7.9 proves the inclusion
I(E) D U(E)NI.

By (2.11) Y(A! yy(Ke, ... kn)) = (=) =15 A7 (K, ... k). SOU E)N I is
invariant under)’*1. Equation (7.4) implies that the generatorsIgfE) are inU (€ )N
Jr. Therefore Proposition 2.2 proves the reverse inclusion.

(2) The elemenC iy, ..., u;; Ke, ..o Kys M, ..o, Myy,) is in U (H)(m$, n) with
m=3u;+y kj+d m;andn =3 .1; +3 ,n; . Sincer; > 0 andt;,m; € Z/,
m >t andn > My + M,. Therefore (7.5) proves the claim. U

8. Proof of Proposition 2.2

Lemma 8.1. Let A be theC(y) algebra of polynomials in variables,, (m €
Z\ {0}). Definer,, € A (n € Z) by the generating series

m>0 r>0
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For a nonnegative integer lett, be the quotientof by the idealegated by the
elementshy, =0 (m > r) and ;;A_, — A, (0<k <r). Then

M
A, >~ C(y) [yfl, e yrﬂ] (a; < ¢, Ay < (1))
whereg =31yt and ewy =Yy ooy o Vit - yi for 1€ Z\ {0} and m € Z-o.
Proof. The claim easily follows from the fact that the algelbf symmetric poly-

nomials inn variables is isomorphic to the algebra of polyif@siin n variables.
]

Proof of Proposition 2.2.  The homomorphisp,, in Theorem 2.1sng; 4,
to (—1)"exm € C(¥)[yi ... yi'] C €34 with the notation of Lemma 8.1. Since the
ey satisfyey, =0 @ > r; ) andege_,, =4, (< k <r; ) an@;, is injective, we
find that

ANi+n=0 (>r) and AjxAi— =Aix—r, O<k=<r)

in UH)/I fori = 1,2. By Lemma 5 of [19]|le K1) ---e(Kay) f(My)--- F(my)] is

a linear combination om’lfMl(ll,...,IMl)AngZ(I’,...,IM) with My + M, = M and
1,1’ €22 mod U (H)(h — (r1 + r2)). This implies that

lle(ka) - --e(km) f(Mar) - fM)ll € Iy if M >r1+r

since AffM Ki,...,ky) € I if M > r; by (2.11). Therefore all the generators d&f
vanish inU #H)/I;.

If we setgo = r, then 3 o(=1)/ Givje,—; = 0 in C[yfl,...,y,ﬂ]s" for I e Z.
So, if we setag = r, then Z;:0a1+jk,.,j =0 in A, for any integerl by Lemma 8.1.
Therefore, considering the homomorphistn — U H)(J; (a, — a;(0, m)), we find
that 37 A;'1(0,1 + j)A;,—; = 0 in U (H)/Jr for any . Noting this and the fact that
the A;,, are invertible inU X{)/J;, we can prove that all the generators fvanish
in U(H)/J, as in Section 5.2 of [19]. U
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