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Abstract
Some quotient algebras arising from the quantum toroidal algebra (sl2(C )) are

considered. They are related to integrable highest weight representations of the alge-
bra and are shown to be isomorphic to direct sums of tensor products of two alge-
bras of symmetric Laurent polynomials and Macdonald’s difference operators.

1. Introduction

The quantum toroidal algebras were introduced in [1] and [2]as deformations
of the universal enveloping algebras of toroidal Lie algebras [3]. Since then, the alge-
bras and representations of them have been studied in [2], [4]–[11]. In particular the
connection of representations of the quantum toroidal algebra of typesl ( 3) with
the double affine Hecke algebra was found in [2] and this quantum toroidal algebra
was shown to reduce to the universal enveloping algebra of the universal covering of
sl coordinatized by quantum torus in the limit 1 in [4].

In this paper we are interested in the quantum toroidal algebra of type sl2
and quotient algebras arising from this. LetC be the ring of Laurent polynomi-
als in noncommutative variables satisfying =2 and setL = sl2(C ) :=
[gl2(C ) gl2(C )]. Lie algebras of this kind and central extensions of them were con-
sidered in the study of extended affine Lie algebras in [12] and representations of these
algebras were studied in [13]–[19]. The quantum toroidal algebra which we consider
is a deformation of the universal enveloping algebra of thisLie algebraL. Let us
briefly explain what quotient algebras we consider and why westudy them. In [19] we
studied integrable highest weight representations of the Lie algebraL and obtained the
following result. For an integer let (L) = (L) [ ] = 2 where =

11 22. Set = 0 (L) (L) and let be the ideal of (L)0 generated
by , (L) (L) and for a nonngegative integer . Any integrable
highest weight representation admits a weight decomposition = =0 ( 2 ) 2

for some nonnegative integer where 2 is the eigenspace of corresponding to
the eigenvalue . The weight space 2 becomes a (L)0 module and the clas-
sification of irreducible integrable highest weight modules is reduced to that of irre-
ducible (L)0 modules. The quotient algebras which we study in this paper are
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analogues of the (L)0 . Our main result is that they are isomorphic to direct sums
of tensor products of two algebras of symmetric Laurent polynomials and Macdonald’s
difference operators [20]. (See Proposition 4.4, Theorem 4.1 and Corollary 4.3 for pre-
cise statements.) We expect that this result will be of use for the study of integrable
highest weight representations of (L) as in the case = 1. The appearance of Mac-
donald’s difference operators is not so unexpected since the connection of the quantum
toroidal algebra with the double affine Hecke algebra is already known [2]. Finally we
remark that we are motivated to consider the quotient algebras by [21], [22] and [23],
which investigated integrable representations of affine Lie algebras and quantum affine
algebras.

This paper is organized as follows. In Section 2, presentations of the universal en-
veloping algebra ofL and that of its central extension̂L in terms of generators and re-
lations are given and the results on quotients algebras of (L)0 of [19] are reviewed.
In Section 3 L̂ is defned and several properties of it are derived. In Section 4 we
study quotients algebra of (L)0 and in Section 5 we compare our results with those
of [2]. In Sections 6, 7 and 8, the proofs of some technical details are given.

2. The Lie algebra L and quotient algebras ofU(L)0

2.1. The Lie algebraL and its central extensionL̂. Let be a formal vari-
able and set = 2. Let C andC 1 be theC( ) algebras of Laurent polynomials in
noncommutative variables and satisfying =2 and = 2 , respectively.

We consider theC( ) Lie algebraL = 2(C ) := [gl2(C ) gl2(C )]. Set 0 = (0 0).
For k = ( ) Z2, m = ( ) Z2 0 and = 1 2, define the following elements
of L:

(k) = 12 (k) = 21 = 11 22 (m) =

where the are matrix units. Then these elements form a basis of L and satisfy the
relations

[ (k) (m)] =
1(k + m) 2(k + m) if k + m = 0

if k + m = 0

[ (k) (m)] = 0 = [ (k) (m)]

[ (k)] = 2 (k) [ (k)] = 2 (k) [ (m)] = 0

[ 1(k) (m)] = (k + m) [ 2(k) (m)] = (k + m)

[ 1(k) (m)] = (k + m) [ 2(k) (m)] = (k + m)

[ (k) (m)] =
( ) (k + m) if k + m = 0

0 if k + m = 0

wherek = ( ) and m = ( ).
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Let = Z 1 Z 0 and set = 1 + 0. By assigning (1 + ) to ( ),
( 1+ ) to ( ), ( ) to ( ) and (0 0) to ,L is endowed with a structure
of Z graded Lie algebras. We denote the homogeneous subspace of degree ( )
by L( ).

Define the Lie algebraL̂ to be the vector spaceL C( ) 1 C( ) 2 with multi-
plication rule

1
1 1 + 1 1 + 1 2 2

2 2 + 2 1 + 2 2

= 1
1 1

2
2 2 + tr( 1 2) 1+ 2 0 1+ 2 0( 1 1 + 1 2) 1 1

where 1 and 2 are 2 2 matrices and C( ) ( = 1 2). This central extension
was considered in [12] and was shown to be the universal covering of L if is a
generic complex number in [13]. By assigning (0 0) to1 and 2, the structure of
Z graded Lie algebras ofL is extended to that of̂L.

As is easily checked, there exist automorphisms ,Y and Ỹ of L̂ determined by

: ( ) ( ) ( ) ( ) ( ) ( )

1 2 2 1

Y : ( ) ( ) ( 1) ( ) ( ) ( + 1)

( ) ( ) ( ) 2

Ỹ : ( ) ( ) ( 1 ) ( ) ( ) ( + 1 )

( ) ( ) ( ) 1

where 1 = 1 and 2 = 1. These automorphisms satisfỹY = Y.
Let ˆ be theC( ) Lie algebra defined by generators

( = 0 1 Z)

and relations

= 0 [ ] = 0(2.1)

[ ] = 2 + 0(2.2)

[ 1 ] = ( + ) + 0(2.3)

= 2 +(2.4)

1 = ( + ) 1 +(2.5)

+ = ( + + + 0 )(2.6)

= 0(2.7)

1 2 3 1 = 0(2.8)
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By assigning ( ) to , (0 ) to and (0 0) to ,̂ is endowed with a struc-
ture of Z graded Lie algebras. Let̂ ( ) denote the homogeneous subspace of
degree ( ) of it.

Proposition 2.1. (1) There exists an isomorphism of Z graded Lie algebras
ˆ L̂ determined by

+
1 (0 ) 1 (0 ) 1 1(0 ) 2(0 )
+
0 (1 ) 0 ( 1 ) 0 2(0 ) 1(0 )

1 0 0 0 1 2

where = 0.
(2) Let be the quotient algebra of̂ by the ideal generated by the elements and

1 0 + 0 0. Then the isomorphism in(1) induces an isomorphism L.

The proof of this proposition will be given in Section 6.2. Weshall identify and ˆ

with L and L̂ by the above correspondence, respectively.

2.2. Quotient algebras ofU(L)0. Set

N =
k Z2

C( ) (k) N+ =
k Z2

C( ) (k)

H =
2

=0

H H0 = C( ) H =
m= 0

C( ) (m) ( = 1 2)

Then these are subalgebras, [H H ] = 0 ( = ) andL = N H N+. Further the
multiplication map (H1) (H0) (H2) (H) is an isomorphism of algebras
and

(2.9) (L) (N ) (H) (N+)

as vector spaces.
For a subalgebra ofL and an integer , set

( ) = ( ) [ ] = 2

Set = 0 (L) (L) . Then = 0 (N ) (H) (N+) and (L)0 =
(H) . Since is an ideal of (L)0, we find that

(H) (L)0

as algebras. We denote the projection (L)0 (H) with respect to the preceding
direct sum by .
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Let 1(k) = 1(k) and 2(k) = 2(k) for k = ( ) = 0. For = 1 2,
a nonnegative integer , 1 andk = ( ) Z2 (1 ), define

(k1 k ) (H ) by the recurrence relation

1(k) =
(k) if k = 0

if k = 0
(2.10)

(k1 k ) = 1(k ) 1(k1 k 1)
1

=1
1(k1 k + k k 1) ( 2)

(2.11)

In the case = 0 set 0 = 1 for = 1 2 and a nonnegative integer . Note that

1 (k1 k ) = (k1 k ) 2 (k1 k ) = (k1 k )

in the notation of [19].
For = 1 2 and a nonnegative integer let be the ideal of (H ) generated

by the elements +1(k1 k +1) (k Z2, ). For r = ( 1 2) Z2
0 let r be the

ideal of (H) generated by (1 + 2), 1
1

and 2
2
.

The following theorem was proved in [19, Propositions 3 and 5].

Theorem 2.1. (1) As algebras, (H) r (H1) 1
1

(H2) 2
2

( 1 2 1

2) where (H ) ( = 1 2).
(2) There exists an injective homomorphism : (H ) C determined by

(0 )
=1

and ( 0)
=1

where = 1 1 1 and is defined similarly.

The purpose of this paper is to obtain a analogue of this theorem. Later we
need another description of the idealr . Define (H ) ( Z, = 1 2) by the
generating series

0

= exp
0

(0 )

These elements were intoduced in [21] in the study of integrable representations of
affine Lie algebras and the analogues of them were consideredin [23]. For r =
( 1 2) Z2

0 let r be the ideal of (H) generated by (1 + 2) and the elements

( = 1 2) (0 = 1 2)

(k1) (k ) (m ) (m1) ( 1 + 2 k m Z2 )
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Then the following proposition holds, the proof of which will be given in Section 8.

Proposition 2.2. r = r .

3. The quantum toroidal algebra Uq L̂

3.1. Uq L̂ . Let and be formal vairables and set =C( ). Let

( )0 1 be the Cartan matrix for (1)
1 . For Z set [ ] = ( ) ( 1).

Let L̂ be the algebra over defined by generators

1 1 ( = 0 1 Z Z 0 )

and relations

1 1 = 1 1 = 1(3.1)
1 central [ ] = [ ] = 0(3.2)

[ ] = + 0
[2 ]

1
(3.3)

[ 1 ] = + 0
[ ]( + )

1
(3.4)

1 =(3.5)

=
[2 ] ( ) 2

+(3.6)

1 =
[ ]( + ) ( ) 2

1 +(3.7)

+ =
1

(+)
+

( )
+(3.8)

+1 2 + +1 2 = 0(3.9)

Sym
1 2 3 1 2 3 1 2 2

= 0(3.10)

where Sym
1 2 3

means symmetrization in 1 2 and 3, [ ] = ,
( ) = 0 ( 0) and ( ) ( 0) is expressed in terms of 1 and the by

0

( ) = 1 exp ( 1)
0

Note that our 2 corresponds to in the standard notation. Note also that re-
lations (3.1)–(3.9) and

(3.11) 0 0 0 1 0 2 2
= 0
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give relation (3.10) as in [10].

REMARK 1. (1) If = 1, then this algebra is the same as that in [6].
(2) A vertex operator representation of this algebra in terms of two bosons is easily
constructed as in [6].

3.2. Uq sl2 . Let 2 [24] be the algebra overC( ) defined by generators

1 1 ( Z Z 0 )

and relations

1 1 = 1 1 = 1
1 central [ ] = 0

[ ] = + 0
[2 ]

1

1 = 2

=
[2 ] ( ) 2

+

+ =
1

1
(+)

+
( )

+

+1 2 + +1 2 = 0

where ( ) = 0 ( 0) and ( ) ( 0) is expressed in terms of 1 and the
similarly to ( ). In [25] it was shown that this algebra is isomorphic to the algebra
[26], [27] defined by generators 1 ( = 0 1) and relations

1 1 = 1 =
1 = 1 =

[ ] =
1

1

[ 1 ] 2 2 = 0

[ 1 ] 2 2 = 0

We take the following correspondence of the generators:

1 = +
0 1 = 0 1 =

0 = 1
1 0 = +

1
1

0 = 1
(3.12)
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Define an automorphism1 [28] of 2 by

1 : 1 1 1 1
1

1 1 1
1

1 0 0
2
1

0
1

[2]
[ 1 [ 1 0] 2] 0

1

[2]
[[ 0 1] 2 1]

Let be the antiautomorphism of (2) determined by

: 1

3.3. Automorphisms of Uq L̂ . The purpose of this subsection is to define
analogues of the automorphisms Y and Ỹ of L̂, which we denote by the same let-
ters.

Let X ( = 0 1) andS be the automorphisms of L̂ determined by

X : ( 1)

S : ( 1) 1 ( 1) 1 1

and let be the antiautomorphism of L̂ determined by

: 1

Let further and be the homomorphisms 2 L̂ determined by

: +
0 0

: 1 1 1

Let B be the group defined by generators and relations

1 1 = 1 1 = 1 2 = 1

Let ˜ denote the automorphism ofB determined by

˜ = ˜ = ˜ = 1

We can prove the following propositions.

Proposition 3.1. (1) There exist automorphismsT1 and T0 of L̂ determined
by

T1 = 1 T1 = 1 T0 = ST1S
1

The inverseT 1 is given by T .
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(2) The automorphismsT , X ( = 0 1) and S satisfy

X0X1 = X1X0

T X1 = X1 T

T 1X T 1 = X 2
1 X 1

ST S 1 = T1 SX S 1 = X1

(3) The homomorphismB Aut( L̂ ) determined by T1 X1X
1

0

S defines aB action on L̂ .

Proposition 3.2. (1) There exists an automorphism of L̂ determined by

= =

The inverse 1 is given by .
(2) The automorphism and theB action in the preceding proposition satisfy

( ) = ˜ ( ) for B and L̂

Set Y = X1X
1

0 and Ỹ = ST1. These automorphisms correspond to the actions of
and ˜ , respectively. Note thatY maps as

Y : 0 0 1 1 1 1

Note also thatY Ỹ and satisfy

(3.13) Y = Ỹ

by part (2) of Proposition 3.2. By the above and Lemma 3.2 below, we can see that
Y Ỹ and reduce to those in Section 2 in the case = 1.

The above two propositions are proven as in [10] where the case = 1 was
studied. Here we only note that to prove them we need the following lemma, which is
also proven as in [10].

Lemma 3.1. The algebra L̂ admits a presentation in terms of generators

0 1 1
1, = 0 1, 1 and relations

1 1 = 1 1 = 1

central =
1 =

+ =
1

1
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+
1 0 = +

0 1

0 1 2 = 1 0 2 = 0

+
1

+
2 2 = 2 1 2 = 0

+
1 = 0

(0 1) 0 = 0 ( 1 0) 1 0 = 0 (0 0) 0 = 0
+( 2 0) 1 0 = 0 (0 2) +

0 = 0

(0 0) = 1 (0 0) ( 1 1) = 1 ( 1 1)

0 0 0 1 0 2 2
= 0

where

+
2 =

[2] 0
+

1
+

1 2 2 = 1 1
+

0 2

1

[2]

( ) = [2] +1 1 1 2 + ( + 1) 1 2

and +
2 and 2 in ( 1 1), +( 2 0) and (0 2) should be replaced by +

2

and 2, respectively.

3.4. Miscellaneous results. We will often need the following two lemmas in
the next section.

Lemma 3.2. Setx = ( ), h = ( ) and k = ( ). Then the following
hold:

x1 0 = 1 0 k1 = 1 x+
1 1 = 0 0 0 x1 1 = 1

0
+
0 0

x+
0 0 = 1 1 1 x0 0 = 1 1

1
+
1 1 k0 = 1 1

1

x+
0 1 = +

0 1 x0 1 = 0 1

h1 1 = [ +
0 0

+
1 0] 2 h0 1 = [ +

1 1
+
0 1] 2

h1 1 = [ 1 0 0 0] 2 h0 1 = [ 0 1 1 1] 2

Proof. Follows from (3.12) and Proposition 3.2.

Lemma 3.3. The following relations hold in L̂ .
(1) [2] 1 1 2 + ( + 1) 1 1 2 = 0.

(2) 1 1 1 2 + 1 2 2 = 0.

(3) [2] 1 +1 0 1 2 + ( + 1) 0 1 2 = [2] 0 +1 1 1 2 + ( +
1) 1 0 2.
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Proof. We shall show the claims for the+ , the proof of those for the being
similar. For this it is sufficient to prove the equalities with = 0 since the equalities
with = 0 follow from these by applyingX 1.

By calculating

+
0

+
0

+
0

+
1 2

2 1 = 0

we obtain part (1) and

[2] +
1

+
0

+
1 2 = ( + 1) +

0
+

0
+
1 1 2

Apply X 1 to the above equality. Then part (2) follows from the result and (1). Cal-
culating the commutator of (1) with 1, we obtain (3).

4. Quotient algebras ofUq(L)0

4.1. The quotient algebra A. For an algebra and a family of elements
( ) of let denote the ideal of generated by the elements
( ). We assume that any subalgebra of an algebra contains the identity element
of except in Proposition 4.4 below.

Hereafter we study (L) := L̂ 1 1 0 1 . We denote this algebra by
U . Let U+ andU be the subalgebras ofU generated by the+ and the , respec-
tively, and U0 the subalgebra generated by1

1
1 and the . The automorphisms

of L̂ in Section 3.3 induce automorphisms ofU , which we denote by the same
letters.

For Z 0 and = 1 2, set

= 1 + 0 and a = ( )

so that

1 + 2 = 1 and 1 + 2 = 0

Note that = (0 ) anda = ( 0) in the case = 1 in the notation of Sec-
tion 2.2.

For a subalgebra ofU and an integer let

= 1
1

1 = 2

Set I = 0 U U . Then I is an ideal ofU0. Set A = U0 I. Clearly the auto-
morphismsX Y Ỹ and of U induce automorphisms ofA, which we denote by
the same symbols.
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REMARK 2. If U admits a analogue of the triangular decomposition (2.9),U

(N ) (H) (N +), thenA (H). See also part (2) of Remark 3 below.

To study the algebraA, we first prepare several lemmas.

Lemma 4.1. In A the following equalities hold.
(1) +

1
+
0 +2 ( + 1) +

1 +1
+
0 +1 + 2 +

1 +2
+
0 = 0.

(2) 0 1 +2
1( + 1) 0 +1 1 +1+ 2

0 +2 1 = 0.

Proof. Follows from part (3) of Lemma 3.3.

For = 1 2 and Z 0 set

=
( ( ) 1)2(( ) ( ) )

( )( 1)

[ ]

Define U ( = 1 2, Z) by the generating series

0

= exp 1

0

( )

and set = ( ).

Lemma 4.2. In A the following equalities hold for = 1 2 and 0.
(1) [[ [ 1 a 1]] a 1] = ( +1).
(2) [[a [a 1 1]] 1] = ( +1).

Proof. (1) Using Lemma 3.2 and Lemma 4.1, we find that

[ [ 1 a 1]] =
[ ]

2

( ( ) 1)(( ) ( ) )

( +
1 +1

+
0 0

1 +
1

+
0 1)

in A. Utilizing this equality and the relations

(+)
1

+
0 = 2 +

0
(+)
1

+ (1 2)
=1

+1 ( +1) 2( 1 ( 1))
+2( 1)

+
0 +

(+)
1

in U for 0, we obtain the claim for the upper sign after a little calculation. The
proof of the equality for the lower sign is similar.

(2) The equality (a 1) = 2
1 in A can be easily checked, using
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Lemma 3.2 and Lemma 4.1. Now the claim is obtained by applyingto part (1).

Lemma 4.3. U0 = U0U0 U+
0 + I.

Proof. Let us denote the right hand side of the claim by . SinceU =
U0U U+ U0 = Z U0U U+ . For 0 and Z set

U ( ) = Span
1 1

= 0 1 Z 1

and U ( ) = U ( ) U . ThenU0U U+ = 0 U
0U ( ) U+( ) . Therefore to

prove the claim it is sufficient to show thatU0U ( ) U+( ) for any 0 if
0. This can be easily checked by induction on + , using the relation

U ( ) U+( )
0

U0U ( ) U+( ) + if 0

This relation is proved by calculating [ ] ( U ( ) , U+( ) ), using
(3.5)–(3.8).

Lemma 4.4. Let : U0 U0 I be the quotient map. The subalgebraU0U0 of
A is generated by the elements1

1
1 and a ( = 1 2, = 0, 0).

This lemma will be proven in Section 7.
Now we can prove several properties ofA.

Proposition 4.1. A is generated by the elements1
1

1 a ( = 1 2, =
0).

Proof. By Lemma 4.3U0 I = U0U0 U0U+
0 . Therefore Lemma 4.4 shows thatA

is generated by the elements1
1

1 and a ( = 1 2, = 0).

For = 1 2 let A be the subalgebra ofA generated by the elements a
( = 0). ThenA is a analogue of (H ) and the following proposition holds.

Proposition 4.2. (1) A is generated by the elements anda ( = 1).
(2) A1 and A2 commute with each other.

Proof. (1) Follows from Lemma 4.2.
(2) By Lemma 3.2 and Lemma 4.1, [ a ] = 0 ( = , = 1). So the

claim follows from part (1).
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Proposition 4.3. In A the following hold.
(1) Y( ) = , Y(a ) = ( ) a .
(2) Ỹ( ) = ( ) , Ỹ(a ) = a .
(3) (a ) = 2 .
(4) 2( ) = 2 , 2(a ) = 2 a .

Proof. The first equality of part (1) is immediate from the definition of Y. The
second equality of part (2) follows from this by applying thanks to (3.13).

We shall show the second equality of part (1) and part (3) by induction on .
The rest of the claims follow from these. The case = 1 is easilychecked, using
Lemma 3.2 and Lemma 4.1. Combining this case with Lemma 4.2 proves the case

1.

4.2. The quotient algebrasAN and Ar . Define U ( Z, = 1 2)
by the generating series

0

= exp
0

1

[ ]
=: ( )(4.1)

0

= exp
0

[ ]
=: ( )(4.2)

Set = ( ) and = ( ). Set further ( ) = Ỹ ( ) and ( ) = Y ( ) for
Z. (We can show that ( ) = ( ) in A.)
For a nonnegative integer letI be the ideal of U0 generated byI,

U U and 1 . SetA = U0 I . Note that we can regard this as a quo-
tient algebra ofA. By Proposition 4.1 this algebra is generated by the elements
and a ( = 1 2, = 0). The automorphismsY, Ỹ and ofU induce automorphisms
of A , which we denote by the same symbols.

First we prepare several lemmas.

Lemma 4.5. In A the following hold.
(1) ( )a = ( ) 2 a ( ).
(2) ( ) = ( )2 ( ).

To prove this lemma we need the following lemma, which is an immediate conse-
quence of [29, Lemma 5.1] and [23, Proposition 4.3].
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Lemma 4.6. For Z 0 set [ ]! = [1][2] [ ] and
( )

= [ ]!.
(1)

( +
1 0)

( + )( 1 1)
( ) ( ( 1) [ ]!)

=0 1 0
1+ + =

+
1 1

+
1 ( 1)

mod
0

U U +

for 0. In particular

+
1 0

( +1)
1 1

( ) ( 2)

=0

+
1 ( 1) mod

0

U U +1(4.3)

+
1 0

( )
1 1

( ) ( 1) ( 1) mod
0

U U(4.4)

(2) In A the following hold.
(i) ( ) = 0 ( ).

(ii) ( ) ( ) = ( ) (0 ). In particular ( ) = ( ) 1
.

Proof of Lemma 4.5. We shall show part (1) with = 0. The rest of the
claims follow from this by applyingỸ and Y and using Proposition 4.3. Using
the equalities

+
1 =

=0

[ + 1] +
1 +

+
0 = +

0 ( 1) + 1
1

+
0 +1 + ( 2) 2

+
0 +2

for 0 ( ( ) is a step function) and Lemma 4.1, we obtain

(4.5) +
1 0

+
0 0 = +

1 0
+
0 0 +

1

=0

1 [2] +
1 +1

+
0 0 + 1 +

1
+
0 1

in A. By the equality +
1 0

( +1)
1 1

( ) +
0 0 = 0 in A and (4.3),

0 = +
1 0

+
0 0 +

1

=0

( +1)
1

+
1 +1

+
0 0

in A . Apply Y2 1 to the above equality. By summing the result and (4.5), we find
that

(a1 1 + a2 1) = (( )2a1 1 + ( 1)2a2 1)
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in A . Applying Y ( Z) to the above and using Proposition 4.3, we obtain
part (1) with = 1. By Proposition 4.3 2( 1 ) = 2

1 . This and part (2)-(ii)
of Lemma 4.6 imply that 2( ) = 2 1. Therefore part (1) with = 1 fol-
lows from the case = 1 by applying 2. The case 1 can be proven by using
Lemma 4.2 (2).

Lemma 4.7. For integers set

= 1 2 and =

Then the following hold inA .
(1) (i) = 0, = 0 ( + , 0).

(ii) = 0 (0 = ).
(2) (i) (A ) (0 ).

(ii) =0 = 1.
(iii) = (0 ).

Proof. Since ( ) = 1 ( ) 2 ( ), Proposition 4.3 gives the equality

(4.6) ( ) = ( )
=0

2
( )

in A for 0 and any integer . So part (2)-(i) of Lemma 4.6 gives (1)-(i). By
part (2)-(ii) of Lemma 4.6 ( ) ( ) = ( ) ( ) 1

. Lemma 4.5 and Proposition 4.1

show that this element commutes with all the generators ofA . Therefore ( ) ( )

(A ) for any . This and (4.6) imply that := (A )
for 0 . So commutes with , while = 4( ) by
Lemma 4.5. These prove (1)-(ii) and (2)-(i) since is invertible by Lemma 4.6 (2)
and the use of the automorphism . Part (2)-(ii) follows from (4.6) and ( ) ( ) = 1,
and the last claim follows from (1)-(ii) and (2)-(ii).

Now we can derive the properties ofA which we need. Forr Z 2
0 set Pr =

( r ). For a nonnegative integer let be the set of pairs of nonnegative inte-
gers r = ( 1 2) such that 1 + 2 = . For r set Ar = A r Pr . Note that the
automorphismsY and Ỹ preserve eachAr by Proposition 4.3.

Proposition 4.4. (1) A = r Ar is a direct sum of nonzero subalgebras
with 1Ar = r Pr .
(2) Ar A 1 r ( r Pr )̄.
(3) In Ar the following hold:

(i) = 0, = 0 ( , = 1 2).
(ii) = , = (0 , = 1 2).
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(iii) a = ( ) 2 a , = ( )2 .
Here for A the element inAr stands for r Pr Ar or the image of in
A 1 r Ar .

Proof. Forr = ( 1 2) and r = ( 1 2) set

Ar r = A 1 r 1 Pr

First we shall show that part (3) for the holds inAr r . Part (3) for the with
the replaced by the is similarly proved. The elements andr are invert-
ible in Ar r . Noting this, we can see that (3)-(i) holds by part (1) of Lemma 4.7.
By (3)-(i) and (4.6),

(4.7) ( ) = ( ) ( 2 1)
1 1 2 2

Noting this and substituting (4.6) into part (2)-(ii) of Lemma 4.6, we obtain

=0

2
1 1 1 2 2 2 ( ) =

1

= 2

2
1 1 2 ( )

for 0 and any integer . This proves (3)-(ii). Part (3)-(iii) follows from (4.7),
Lemma 4.5 and part (2) of Proposition 4.2.

By Lemma 4.7 and a similar result for thePr , the sum 1 = r r r Pr is a
decomposition of 1 into a sum of orthogonal central idempotents if we allow some of
the r Pr to be 0. SoA = r r A r Pr is a direct sum of subalgebras. More-
over 1 r 1 Pr = A (1 r ) + A (1 Pr ) = (s s)= (r r ) A sPs . Therefore
Ar r A r Pr . By part (3)-(iii) for Ar r we obtain

= ( ) 2 (by the first equality)

= ( ) 2 (by the second equality)

in Ar r . This imlplies that 1 = 0 inAr r if r = r . ThereforeAr r = 0 and r Pr = 0
in A if r = r . By this 1 r 1 Pr = 1 r . The fact that r Pr = 0 follows
from the result that there exists a nontrivialAr module (See Proposition 4.5 below).
This completes the proof.

Corollary 4.1. Ar is generated by the elements 1 and 1 (0
, = 1 2).

Proof. By the definition of the and the , the elements anda are
expressed in terms of them. Therefore the claim follows frompart (3) of the proposi-
tion and Proposition 4.1.
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The following corollary is immediate.

Corollary 4.2. For an A module andr set r = r Pr . Then =

r r is a direct sum ofA modules and theA module structure on induces
an Ar module structure on r .

4.3. The homomorphism r : Ar Cr1
1 Cr2

2 . In this subsection, we first ob-
tain a representation ofU which induces a representation ofAr when restricted to the
highest weight space. Then, using this, we prove the existence of a homomorphism
from Ar to some algebra 1

1
2

2 .
Set 1 2 = for = 1 2. For a sequencea = ( 1 ) of integers 1 and 2,

define the algebra a to be the vector space (1 ) 1
1

1
1

with multiplication rule

= +

where ( 1 ) = 1
1 1 . For simplicity we shall write for

a. For 1 we identify ( 1 ) ( +1 ) with a subalgebra
of a via the correspondence

=1 =1

( 1 ) ( +1 )
=1 =1

+

Let a = a ( 2) . We shall write for a. We shall also write
for a End(( 2) ) and regard this as an element of End(a) by letting act
on a by left multiplication. We denote the canonical basis of2 by 1 and 2. Let

( ) signify the matrix unit acting on the -th factor of the tensorproduct ( 2)

and set = ( )
11

( )
22.

Proposition 4.5. Let a = ( 1 ) be a sequence of integers1 and 2.
(1) The following assignment defines aU module structure on a:

+
1

=1

( )
12

1
=1

( )
21

+
0

=1

1 2 1 2

1 2 2
2 ( )

21
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0
=1

1 2 1 2

1 2 2
2 1 ( )

12

1
[ ]

=1

( )
11

( )
22

0
[ ]

=1

2 ( )
22

2 ( )
11

1 =1

(2) For = 1 2 let be the number of among1 and setr = ( 1 2). Let
= 1 1 1 ( 2) . Then the aboveU module structure induces anAr

module strucutre on a := a .

Proof. (1) The relations except (3.10) are easily checked. Since relations (3.10)
follow from (3.11) and those already proved, it suffices to check (3.11). This can be
done by the often used technique as follows. Let0 and 1 be the images of 0

and 1 under the map in the proposition. For = 0 1 the formulas

= +
0

1 +
0 = 0 0

1 = 1 1

for End( a) define a ( 2) module strucure on End(a). (The above formulas
are the same as those in adjoint representations. See, for example, [30, Section 4.18].)
Since +

1 0 = 0, +
1 0 = 2 +

1 0 and is nilpotent, we obtain3 +
1 0 = 0,

which is equivalent to (3.11) for the+
0. The relations for the 0 can be checked

similarly.
(2) ClearlyU0 preserves a and I annihilates it. Since

(4.8) ( ) = ( )
1 1

1= = =

1
1

1

for 0 and a = 1 on a. Therefore the claim follows from part (2)
of Proposition 4.4.

REMARK 3. (1) The coproduct

( + ) =
0

+ (+) + 1 + ( ) = 1 +
0

( )
+

( ) = 1 + 1 ( ) =

by Drinfel’d defines aU module structure on tensor products of(1) and (2). This
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action contains infinite sums, but we can sum them up to obtainthe expression in the
proposition.
(2) Let be the subalgebra ofU0 generated by 1, 1

1 , andh ( = 0 1, = 0).
By Proposition 4.2 anda1 commute inA, while they generally do not com-
mute on representations in the above proposition. Therefore the surjective homomor-
phism A ( h h 1 1) is not an isomorphism.

For a = ( ) ( = 1 or 2) set = a and define elements and ( 0)
of by

(4.9) =
1 2

=

and =
1 2

=

1

Proposition 4.6. For r = ( 1 2) Z2
0 there exists a homomorphismr : Ar

1
1

2
2 determined by

1 1 2 1 1 1 2 1 ( 0)

To prove this proposition, we need the following lemma.

Lemma 4.8. Let a and be the ones inProposition 4.5.For 1 1 2

let 1 2 denote with the 1’s in the 1 th factors replaced
by the 2’s. For 1 = set = ( 1 ) ( ). Then for a

the following hold.

(1) +
0

( )
( ) =

1 1 2 =1
= ( )

1 1 2 1 2

1 2 1 2

=1

2
1 2

(2) +
1

( )
1 2 =

=1
= ( )

.

Proof. (1) The claim can be proven by induction on , using the equality

=1 =1
=

= [ ]
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(2) A little calculation gives

+
1 1 2

=
=1 ( )

( )

( )
= ( ) (1 )

( ) ( )

=
=1

= ( )
1 1

( ) ( )

(In the first equality, the -th +
1 from the right flips 2 in the ( )-th factor of

1 2 to 1.) Therefore the claim follows from the equality

1
( ) ( )

1
( ) ( )

= [ ]!

This can be easily proven by induction on , using the well known equality

[ ]! = 2 ( ) ( 1) 2

where ( ) is the length function.

Proof of Proposition 4.6. Leta and be the ones in Proposition 4.5. Define
End( a) by

( 1 )
=1

( 1 )
1

=

1

=0
1

=1

where the product
1

=0 should be understood as 1 if = and as
1 1

= if (the stand for the fractions in the above equation). Then
1( ( )) = and

(4.10) 1( ( )) =

= =

1

for any a.
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By Lemma 4.6 and Lemma 3.2,

( 1) x+
1 0

( )
x1 1

( )
k 1

1 mod I

= 2 +
1 0

( ) +
0 0

( )
(4.11)

for 0. Apply Y to the above and let the result act on ( a). Then,
thanks to the equality = 0 1 2 and Proposition 4.3, we obtain

( 2) ( )
=0

2
1 2 ( ) = ( +

1 )( )( +
0 )( )( )

Lemma 4.8 implies that the r.h.s. of the above equality is equal to

1 1 =1

2

=1
= ( )

=

=1 =1
= ( )

=

This and (4.10) give

( 2) ( )
=0

2 1( 1 2 ( ))

=
1 2

=

2

=

for any integer and 0 .

Now let a = (

1

1 1

2

2 2). Set = 1 2 for = 1 2 and let =

1+ and = 1+ 1+ for 1 2. Then the r.h.s. of the above equality is equal
to

( )
=0

2

1 1 1 =
2 2 2 =

1
1 1

1 2
2 2

2

By this and (4.8) we find that there exists anAr module structure on 1
1

2
2

( a a) such that the elements1 2 1 and 2 ( 0) act by left multi-
plications of ( ) 1 ( ) 1 ( 2) 1 and ( 2) 1 , respectively.
This and Corollary 4.1 prove the claim.

4.4. Main results. Now we can prove a analogue of Theorem 2.1. For =
1 2 let Ar be the subalgebra ofAr generated by the elements anda ( = 0).



QUOTIENT ALGEBRAS FROM (sl2(C )) 907

Theorem 4.1. (1) Ar A1
r A2

r ( 1 2 1 2) as algebras.
(2) For = 1 2 the homomorphismAr determined by

(0 )

is injective. ThereforeAr depends only on out of1 and 2.

For = 1 2 define ( ) (1 ) to be the element of End( (1 )) such

that ( ) ( 1 ) = ( 1 ).

Corollary 4.3. For = 1 2 Ar is isomorphic to the subalgebra of
End( ( 1 )) generated by D

( ) (0 ), 1 and D 1. Here the are

the ones in(4.9) (with = ) regarded as multiplication operators and theD( ) de-
note the with the replaced by the( ).

To prove Theorem 4.1 and its corollary, we need the followingtwo lemmas. The
proof of the first lemma will be given in Section 7.

Lemma 4.9. Let Ar be the subalgebra ofAr generated by the elements and
h1 ( = 1 2, 0). Then r Ar

is injective.

Lemma 4.10. Set m = =1 2 and m = =1 2 Ar for m =
( 1 2) Z2. Then for any element ofAr there exist an element ofAr and
m1, m2 m3 Z2 such that = m1 m2 m3.

Proof. Fixing r , for = 1 2 let A be the subalgebra ofAr generated by the
elements anda ( 0). By Proposition 4.4 (3) and Corollary 4.1 for any element

of Ar there existm n Z2 such that m n A1A2. Therefore it is sufficient to
show that for A ( = 1 2) there existm n Z2 such that 1

mAr and

2 Ar
n. We shall show the claim for 2, the proof of that for 1 being similar.

Define an automorphism ofAr by ( ) = 1 1
1

1 1
( Ar ) and let =

( ) 2. Any element A2 is written as a linear combination of monomials in2
and a2 ( 0). Let ˆ denote with thea2 replaced by theh1 . (ˆ depends on the
expression of .) Then, sinceh1 = a1 + a2 , ˆ is expanded aŝ = =0 where

0 = and satisfies ( ) = . So is a scalar multiple of =1( )( ˆ ).
Since ˆ and 1 1 are inAr , this proves the claim.

Proof of Theorem 4.1. Since r ( ) and r ( ) ( = 1 2) are invertible,
Lemma 4.9 and Lemma 4.10 show thatr is injective. If we identify with a sub-
algebra of 1

1
2

2 naturally, then r (Ar ) . This and the injectivity of r prove
part (2).
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By Propositions 4.1 and 4.2,A1
r and A2

r commute andAr = A1
rA

2
r . So :A1

r

A2
r Ar ( 1 2 1 2) is a surjective homomorphism. Part (2) proves that the

composite map r : A1
r A2

r
1

1
2

2 is injective. This shows the injectivity
of .

Proof of Corollary 4.3. The homomorphismC End( ( 1 )) (
, D

( )) is injective andAr is generated by the elements 1 and
1 (0 ). Therefore the claim follows from part (2) of Theorem 4.1.

5. A comparison with Reference [2]

In this section we compare our result with the work [2] of M. Varagnolo and
E. Vasserot. Since their results are restricted to the quantum toroidal algebra of type

( 3), we extend part of them to our case in the first two subsections. We fix
1 2 and set = .

5.1. A relation between representations ofUq(sl3 tor) and those of Uq L̂ .
Let ( )0 2 be the Cartan matrix for 3. For 0 2 set = 1 if
( ) = (2 0) (0 2) and 20 = 1

02 = 2 . (sl3 tor) [1] [2] is defined to be the
algebra defined by generators 1 and 1 (0 2 Z Z 0 )
and relations

1 1 = 1 1 = 1(5.1)
1 central = = 0(5.2)

= + 0 1
(5.3)

1 =(5.4)

= ( ) 2
+(5.5)

+ =
1

(+)
+

( )
+(5.6)

+1 2 + +1 2 = 0(5.7)

+1 1
+ +1 1

= 0 ( = )(5.8)

1 2
[2]

1 2
+

1 2
+ ( 1 2) = 0 ( = )(5.9)

where ( ) = 0 ( 0) and ( ) ( 0) is expressed in terms of 1 and the
as in the case L̂ . Set =Z 1 Z 2 and let 0 = 1 2. By assigning to

and 0 to 1, and 1, (sl3 tor) is endowed with a structure of graded
algebras. We denote the homogeneous subspace of degree of itby (sl3 tor) .
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Set = Z (sl3 tor) 1 and

=
Z

Z 0

(sl3 tor) 1 2 (sl3 tor) 1+ 2

Then is a subalgebra of (sl3 tor) and is an ideal of .

Proposition 5.1. There exists a homomorphism L̂ determined by

1 1 1 1 1 1 0 0 2

+
0

+
2 0

+
0 0 0 2 0 0 0 + 2

Proof. By (5.8)

+
2

+
0 = 2 +

2 0
+
0 + and 0 2 = 2

0 + 2 0

in . Noting this, the relations of L̂ except (3.11) with ( ) = (0 1) can be

easily checked. Set =+
2 0

+
0 0 and = +

2 0
+
1 0

+
0 0. Then 2 = +

2 0
2 +

0 0
2

[2]

and 3 = +
2 0

3 +
0 0

3
[3]! in . Using these, we find that

2 +
1 0 = [2][ ] [2] 3 +

1 0 = [3] 2

in . The remaining relation for the+
0 follows from the above equalities.

Corollary 5.1. Suppose that is a (sl3 tor) module. If is an submodule
of satisfying = 0, then can be regarded as a L̂ module via the homo-
morphism in the proposition.

5.2. The double affine Hecke algebraḦr and representations ofU . For an
integer 2 define to be the algebra with generators1 (1 1) and
relations

1 1 = 1 ( )( + 1) = 0(5.10)

+1 = +1 +1 = ( 1)(5.11)

Let ¨ be the algebra [31] defined by generators1, 1 and 1 (1 1,
1 ) and relations (5.10), (5.11) and

1 1 = 1 1 1 = 1

= =

= +1
1 1 = +1
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= = ( = + 1)

( 1 ) 1 = 1( 1 )

2
1

1
1

2 1 = 2
1

where is the one in Section 4.3. We shall regard¨ modules as modules via
the homomorphism ¨ ( ).

Let 1 be the canonical basis of and define End( ) by

( ) =

if =

if

+ ( 1) if

Then, as is well known, the tensor product ( ) is endowed with astructure of
modules by = 1 1 1 1.

In the case set = +1 +1 (1 1) and 0 = 11 End( ).
Define the following elements of End(( ) ):

=
=1

1 1
+1 =

=1

1 1
+1 1

( )
0 = 1 1

1 0
( )
0 = 1

0
1

1 1

where 1 1 and 1 .
The following proposition is a special case of [2].

Proposition 5.2. For a right ¨ module there exists a (sl3 tor) module
structure on ( 3) determined by

( ) = ( = 0 1 2) ( ) =
+

0( ) = 0( ) = ( = 1 2)

+
0 0( ) = ( )

0 0 0( ) = 1 ( )
0

+
0 ( ) = 1 ( )

0 0 ( ) = ( )
0

where +
0 = ( 1 2) 1

1 1 2 0 and 0 = +
2 0

+
1 1 1 1 2.

By applying Corollary 5.1 to the submodule
1 =1 2 ( 1 ) of

the (sl3 tor) module in Proposition 5.2, we obtain the following proposition.
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Proposition 5.3. For a right ¨ module there exists aU module structure on
( 2) determined by

1( ) = 1
+
1 0( ) = 1 1 0( ) = 1

+
0 0( ) = ( )

0 0 0( ) = 1 ( )
0

+
0 ( ) = 1 ( )

0 0 ( ) = ( )
0

where +
0 = 1

1 1 1 and 0 = +
1 1 1.

5.3. A comparison with Reference [2]. Let C( )[ 1
1

1] be the ring of
Laurent polynomials in 1 . Define 1 1 End(C( )[ 1

1
1])

by

=
1

+1

+1
( + 1) ( 1) +1

+1

( 1 ) = ( 1 1)

It is well known [31] that there exists a righẗ module structure onC( )[ 1
1

1] such that

= = 1 = 1 1
1 1 1

We denote this right¨ module by .

Proposition 5.4. Set r = ( 0) if = 1 and r = (0 ) if = 2. Letting =

1 1, set = C( ) .
(1) TheU module strucutre on ( 2) induces anAr module structure on .
(2) is isomorphic toC( )[ 1

1
1] as vector spaces.

(3) If we identify withC( )[ 1
1

1] , then and ( 0) act on
as ( 2) and ( 2) D( ), respectively.

Proof. (1) Clearly U0 preserves andI annihilates it. So theU module
structure induces anA module structure on . Suppose that we have shown that
( ) = 0 on for 0 and = . Then s = 0 on if s and s = r .
Hence we obtain the claim by Corollary 4.2.

By (4.4)

2 +
1 0

( ) +
0

( )
mod I
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Using this and (4.11), we can easily obtain

( ) = ( 2)
1 1

1
1

1(5.12)

( ) = ( 2)
1 1

1

for 0. The first equality gives

1 ( ) =
2 [ ]

=1

for 0. Since ( 1 ) = ( 1 ) in ¨ for any , we find that 1 =

1 for 0 on . This and Lemma 4.5 prove ( ).
(2) Set

= ( )

where = 1 for a reduced expression =1 ( = ( + 1)). Then
= = for any and

= Im Ker Ker = Im( )

by Propositions 1.1–1.2 of [32]. Therefore

C( ) Im( ) Im = C 1
1

1

(3) The action of 1 1 1 on is equal toD( ) when restricted
to C[ 1

1
1] [31]. By ( ) and a similar result for thea , = and =

on for 0. Therefore we obtain the claim from (5.12).

6. Proof of Proposition 2.1

6.1. The subalgebraK of L. Let be theC( ) Lie algebra generated by+

and ( = 0 1, Z 0, Z 0) with defining relations

[ ] = 0(6.1)
+ = 2 +

+(6.2)
+
1 = ( + ) +

1 +(6.3)
+ + = 0(6.4)
+

1

+
2

+
3

+
1 = 0(6.5)
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+
+2

+
1 ( + 1) +

+1
+
1 +1 + + +

1 +2 = 0(6.6)

2 +
0

+
1

+
1 ( + 1) +

0
+

0
+
1 +1 = 0(6.7)

+
1

+
1

+
1

+
0

+
0

+
1 +2 = 0(6.8)

This Lie algebra is endowed with a structure of Z graded Lie algebras by assign-
ing ( ) to + and (0 ) to as before.

Define a graded subalgebraK of the Z graded Lie algebraL by

(6.9) K =
0 0

C( ) ( )
0

C( ) ( )

where

(6.10) =
0

C( )( 1( 0) 2( 0))
0 0
=1 2

C( ) ( )

Proposition 6.1. There is an isomorphism of Z graded Lie algebras K

determined by

+
1 (0 ) 1 1(0 ) 2(0 )
+
0 (1 ) 0 2(0 ) 1(0 )

This proposition will be proved in the next subsection. We shall identify with K by
the above correspondence.

6.2. Proofs of Proposition 2.1 and Proposition 6.1. Let t be the Lie alge-
bra over C( ) defined by generators and ( = 0 1, Z 0) and rela-
tions (2.2)–(2.8) involving only the generators, i.e.,

[ ] = 0(6.11)

= 2 +(6.12)

1 = ( + ) 1 +(6.13)

+ = +(6.14)

= 0(6.15)

1 2 3 1 = 0(6.16)

Lemma 6.1. Let t+ be the subalgebra oft generated by the elements+ . Then
t+ is defined by generators+ ( = 0 1, 0) and relations(6.4)–(6.8).

Proof. Let t̃ be the Lie algebra overC( ) defined by generators and
( = 0 1, 0) and relations (6.11)–(6.14). Lett̃+ and t̃ be the subalgebras of
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t̃ generated by the + and , respectively, and̃t0 the subalgebra generated by the
. Then t̃ = t̃ t̃0 t̃+, and t̃+ and t̃ are the free Lie algebras on the+ and the
. Let + and be the ideals of̃t generated by the elements on the left hand side

of (6.15)–(6.16) with the upper sign and the lower sign, respectively. We shall show
that ( ) + is the ideal oft̃+ generated by the elements

( ) = + +

( 1 2 3; ) = Sym
1 2 3

+
1

+
2

+
3

+
1

1 ( ) = 2 +
0

+
1

+
1 ( + 1) +

0
+

0
+
1 +1

2 ( ) = +
1

+
1

+
1

+
0

+
0

+
1 +2

3 ( ) = +
+2

+
1 ( + 1) +

+1
+
1 +1 + + +

1 +2

with = 0 1 and 1 2 3 0. A similar result for also holds. If these are
proven, we obtain t =̃t ( + +) = t t0 t+ with t t̃ .

Let be the ideal of̃t generated by the elements ( ) ( = 0 1, 0). For
= 0 1 let be the linear span of the elements (1 2 3; ) ( 1 2 3 0)

and the ideal of̃t generated by . Let be the ideal oft̃+ generated by the ele-
ments ( 1 2 3; ) 1 ( ) 2 ( ) and 3 ( ) ( 1 2 3 0). As is eas-
ily shown, is the ideal of̃t+ generated by the elements ( ). So ( ) is equivalent
to 0+ 1+ = 0+ 1+ . Since ad t̃0 = , is equal to ad t̃+ ad t̃ .
Therefore, to prove the lemma, it is sufficient to show that ad̃t+ ad t̃
mod ( = 0 1).

A little calculation shows that

ad t̃ + 1 + 2 mod

where

1 =
0

ad and 2 =
0

ad 1

Letting = ( ) ( 1) for Z, set

( ) = 2 + + +
1 ( + ) +

0
+

0
+
1 + +

( ) = + +
1

+
1

+
1 + 1 + 1 +

0
+
1 +

for = 0 1 and integers . Then we can prove the following:

1 Span ( ) 0 mod
2 Span ( ) 0 + 1 mod
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Since

36 ( )

3 ( 0 0; ) 2 (0 0 0; ) + + ( + ) (0 0 0; + )

the inclusion (modulo ) of the first equality holds. As for thesecond equality, the
inclusion follows from the equalities

( + 1 ) 2
( + 1)

2
=

(1 ) 0

4
and (0 ) = 0

The reverse inclusions are proved by direct calculations.
Now we can conclude that

1 Span 1 ( ) 2 ( ) 0 mod + ad t̃+ 2

2 Span 3 ( ) 0 mod

since

( ) ( 1 + 1 ) 1 ( + + 1)

+ 2 2 ( + + 2) mod + ad t̃+ 2

1 ( ) = (0 1 ) 2 ( ) =
(1 1 )

2

3 ( ) = ( + 2 ) ( + 1) ( + 1 + 1) + ( + 2)

(0 ) = (1 ) = 0

This proves ad t̃+ ad t̃ mod .

The following lemma is proven in the same way as Lemma 6.1.

Lemma 6.2. Let + be the subalgebra of generated by the elements+ .
Then + is defined by generators+ ( = 0 1, 0) and relations (6.4)–(6.8).
Therefore + t+.

Let g be the Lie algebra overC defined by generators+ ( = 0 1, 0) and
relations (6.4)–(6.8) with = 1. This Lie algebra is endowed with a Z graded Lie
algebras similarly to .
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Lemma 6.3. The dimension of the homogeneous subspace of degree( ) of g
is given by

dim g( ) =

1 if is a positive real root of 2 and 0

2 0 if = ( 0) and 0

0 otherwise

Proof. Let t =1 be the Lie algebra overC defined by generators ( = 0 1,
Z 0) and relations (6.11)–(6.16) with = 1. This Lie algebra is endowed with

a structure of Z graded Lie algebras similarly to . Let t+
=1 be the subalgebra of

t =1 generated by the + .
Set =C[ 1] and = . LetG be the Lie algebra 2(C)

with the multiplication rule

[ 1 1 + 1 2 2 + 2] = [ 1 2] 1 2 + tr( 1 2)( 1) 2 ( 1 2 )

where : is the quotient map. Then as in [3] we can easily show
(1) G is the universal covering of 2(C) and t =1 is isomorphic toG via the cor-
respondence

+
1 12 1 21

+
0 21 0

1
12

(2) dim t =1( ) =
1 if is a real root of 2 and 0

0 if = 0 is not a root of 2

(3) t =1( ) = C ( 11 22)

C 1 if = 0 and 1

C 1 if = 0 and 0

0 otherwise

under the

identification t =1 = G.
(4) t+=1 = t =1( ) where and are summed over positive roots of2 and non-
negative integers, respectively.
These imply that dim t+

=1( ) satisfies the equality for dim g( ) in the lemma.
Since t+=1 g by Lemma 6.1 (for the case = 1), this completes the proof.

Now we are in a position to prove Proposition 6.1 and Proposition 2.1.

Proof of Proposition 6.1. Clearly the assignment in the proposition defines a
surjective homomorphism : K and ( ( )) =K( ). Therefore it is suffi-
cient to show that ( ) dim ( ) dimK( ) for any and .

Let 0 and + be the subalgebras of generated by the and the+ , re-
spectively. Then = 0 +, 0 = 0 (0 ) with (0 ) = =0 1 C( )
and + = = 0 ( ). By Lemma 6.2 g is defined by the same generators and re-
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lations as those of + with = 1. Therefore

dimC( ) ( ) = dimC( )
+( ) dimC g( )

for = 0 by specialization 1. By Lemma 6.3 and (6.9) dimC g( ) =
dimC( ) K( ) for = 0 and by (6.10)

dimC( ) K(0 ) =
2 if 0

0 if 0

So we obtain ( ).

Corollary 6.1 (of the proof). dimC( )
+( ) = 2 for 0.

Proof of Proposition 2.1. (1) There exists a surjective homomorphism of Z
graded Lie algebraŝ L̂ determined by the assignment in the proposition. There-
fore it is sufficient to show that dim̂( ) dim L̂( ) ( ) for any and .

Let ˆ + and ˆ be the subalgebras of̂ generated by the+ and the , respec-
tively, and ˆ 0 the subalgebra generated by the and . As in [3] we can easily
show that ˆ = ˆ ˆ 0 ˆ + and that

dim ˆ ( ) =
1 if is a real root of 2

0 if = 0 is not a root of 2

Since ˆ (0 ) = =0 1 C( ) + C( ) 0, dim ˆ (0 ) 2 + 0. On the other hand
dim L̂( ) satisfies the above equality for dim̂( ) and

L̂( ) = =1 2

C( ) ( ) if ( ) = (0 0)

C( )
=1 2

C( ) if ( ) = (0 0)

By these we can see that ( ) holds unless = ( = 0). We shall show ( )for
= ( 0) in the next paragraph. The proof of the case 0 is similar.

Fix 0. Note that ˆ ( ) ˆ +. For an integer let̂ + be the subalgebra of
ˆ generated by the elements+ ( = 0 1, ) and setˆ = ˆ ( ) ˆ +. Then

(6.17) ˆ ˆ 1 and ˆ ( ) = ˆ

Let be the automorphism of̂ determined by 1, 0 and
. Then ˆ = ( ˆ +2 0). Clearly there exists a homomorphism t ˆ such

that and . So by Lemma 6.2 we can see that the assignment
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+ + defines a homomorphism + ˆ . This homomorphism and Corollary 6.1
imply that dimˆ 0 dim +( ) = 2 for 0. The last two results prove that
dim ˆ 2 if + 2 0. From this and (6.17) we can conclude thatˆ ( ) =
ˆ if 0 and that dimˆ ( ) 2 = dimL̂( ).

7. Proofs of Lemma 4.4 and Lemma 4.9

7.1. Proofs of Lemma 4.4 and Lemma 4.9.
7.1.1. First we prepare two lemmas for the algebrasU andA.

Lemma 7.1. For = 0 1 let U [ ] be the subalgebra ofU generated by

0 and 1 . Then for = 0 1 the elementsh are in U+[1 ] if 0 and
in U [1 ] if 0.

Proof. Sinceh1 = ( ), the case = 1 follows from [25]. (See also (7.1)
below.) From the equality 0 = ( 1) SY 1

1 we obtainh0 = ( 1) Y 1Sh1 by
Proposition 3.2 (2). Therefore the equalitiesY 1S 1 0 = 0 1 and Y 1S 0 0 = 1 1

and the case = 1 prove the case = 0.

Lemma 7.2. Let Ã be the subalgebra ofA generated by 1
1

1 and a
( = 1 2, = 0, 0).ThenX 1(Ã) Ã for = 0 1.

Proof. Part (2) of Lemma 4.2 implies thata ( 0) is in the subalgebra ofA
generated by 1 1 and a 1. So Ã is generated by 1

1
1 and h 1 ( = 0 1,

= 0). Therefore the claim follows fromX 1( 1) = 1, X 1( ) = and

( 1) 1X 1(h 1) = [2] 1 + ( + 1) 1 1 h 1 ([2]2 ( + 1)2)

7.1.2. Next we introduce several notations. Set = ( ) ( )
C( )[ ] (1) = 0 . Let ( ) (resp. ( )) be the algebra (resp. alge-
bra) defined by generators+ and ( = 0 1, Z 0, Z 0) and relations

[ ] = 0

+ =
[2 ] +

+

+
1 =

[ ]( + ) +
1 +

+
+1

+
2 + +

+1
+

2 = 0

Sym
1 2 3

+
1

+
2

+
3

+
1 2 2

= 0
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[2] +
+2

+
1 2 + ( + 1) +

1 +1
+

+1 2

= [2] +
1 +2

+
2 + ( + 1) +

+1
+
1 +1 2

[2] +
0

+
1

+
1 2 + ( + 1) +

0
+
1 +1

+
0 2 = 0

+
1

+
1

+
1 2 + +

0
+
1 +2

+
0 2 = 0

Assigning ( ) to + and (0 ) to , these algebras are endowed with structures
of Z graded algebras. We denote the homogeneous subspace of degree ( ) of

( ) by ( )( ) and set

( ) =
Z

( )( 1 + )

for any integer . Define ( )( ) and ( ) similarly.
Set = 0 ( ) ( ) and define similarly. Let =1 =

0 ( ) ( ) . Then ( )0 =1 ( ). Noting this, we shall often de-
note ( )0 and ( )0 by ( ) and ( ), respectively, by abuse of no-
tation. Since is a graded ideal of theZ Z graded algebra ( )0, ( ) =

Z 0
( )( ). A similar formula holds also for ( ).

Define polynomials in (commutative) variables ( Z 0) with coefficients in
, ( 1 1) ( 0), by the generating series

exp 1

0

1 ( 1) =
0

( + ( 1) ( 1 1))

Using these polynomials, we defineH1 ( )0 ( 0) by

H1 1 = +
0 0

+
1 0 2

H1 +1 =
[2 ]

H1
+
0 0

+
1 0 2 ( 1) +1(H1 1 H1 ) ( 0)

(7.1)

where theH1 are ordered in +1(H1 1 H1 ) so thatH1 is to the left ofH1 if
. Note that the elementsh1 of U defined in Section 3 satisfy the above equa-

tions with +
0 replaced by +

0 ( = 0 1). Further we define ( )0 ( = 1 2,
0) by (4.2) with the replaced by the . We also defineH1 ( )0

( 0, = 1 2) in the same way.
In this section we denote the elements+ , and of ( ) by ˙+ , ˙

and ˙ . Further we seṫh1 = 1( 0) 2( 0) ( ) for 0. We signify the
automorphismỸ of ( ) by Ỹ =1.
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7.1.3. The purpose of this subsubsection is to prove Lemma 7.3 and Lemma 7.5
below.

Assigning ( ) to , (0 ) to and (0 0) to 1
1 , U is endowed with a

structure of Z graded algebras. The quotient algebrasA andAr of U0 are Z Z
graded for the same reason as ( ) = ( )0 . Let A be the subalgebra ofA
generated by the elements h1 ( = 0 1, 0) andAr as before. Then these alge-
bras are graded subalgebras ofA andAr , respectively. We denote their homogeneous
subspaces of degree ( ) byA ( ) andAr ( ).

For r = ( 1 2) Z2
0 let r ( ) be theỸ 1

=1 invariant ideal of ( ) generated by
the elements˙ ( , = 1 2) and

=0

˙

1 0
1+ + =

˙+
1 1

˙+
1 ˙+

0 0 ( 0 + 1 + 2)

Lemma 7.3. For Z 0 the following hold.
(1) dim Ar ( ) dim r (Ar ( )) dimC( )( ( ) r ( ))( ).
(2) dim A ( ) dimC( ) ( )( ).

To prove this lemma, we need the following lemma, which will be proven in Sec-
tion 7.2.

Lemma 7.4. (1) r ( ) = ( ) r .
(2) r ( ) = + min( 1 2) r ( ) ( )( ).

Proof of Lemma 7.3. (1) Since ( )r ( ) is generated by the elements˙

and ḣ1 ( = 0 1, 0), there exists a family of polynomials in noncommuta-
tive variables with coefficients inC( ) such that the vectors := (˙1 1 ˙0 1

ḣ1 1 ) are a basis of theC( ) vector space ( ( ) r ( ))( ) for each and .
Replacing the elementṡ and ḣ1 by and h1 in Ar , the define the vectors
˜ Ar ( ). Part (1) of Lemma 7.4 implies that the map ( )r ( ) (H) r

(¯ )̄ is injective. Therefore the vectors (1 1 2 2)( ) C 1 C 2
1 are lin-

early independent overC( ) by Theorem 2.1. This implies that the vectorsr (˜ ) are
linearly independent over sincer (˜ ) =1 = ( 1 1 2 2)( ).

(2) By part (1) dim A ( ) dimC( )( ( ) r ( ))( ) for any r . By
part (2) of Lemma 7.4 we obtain the claim from this by letting1 and 2 sufficiently
large.

Define to be the subalgebra ofU generated by + and ( = 0 1,
0, 0). This algebra inherits a structure of Z graded algebras fromU . Let

: U0 U0 I (= A) be the quotient map as before. Let further denote the ideal of
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( ) consisiting of all the torsion elements of the module ( ).

Lemma 7.5. (1) 0 = A ( ). In particular 0 Ã.
(2) ( ) is isomorphic to the subalgebra ofA generated by the elements
and h1 ( = 0 1, 0).

Proof. (1) We regardC( ) as an module by letting ( ) act as (1). Clearly
there exists aC( ) algebra homomorphism ( ) ( ) C( ) determined by
˙+ + 1 and ˙ 1. This map induces a surjective homomorphism

( ) ( )0 =1 ( )0 C( ) ( ˙ 1 ḣ1 H1 1)

Since

(7.2) ( )0 ( )0 = ( )

and each ( )0 ( ) is finitely generated over , we obtain

dimC( ) ( )( ) dim ( )( )

by specialization argument.
By part (1) of Lemma 7.1A is a graded subalgebra of theZ Z graded algebra

0. By Lemma 3.3 there exists a homomorphism ( ) (+ + ,
), which induces a surjective homomorphism ( ) 0. Therefore

dim ( )( ) dim 0( ) dim A ( )

By the above two inequalities and part (2) of Lemma 7.3, we canconculde that
A = 0 ( ).

(2) Set = ( ) . Then = ( ) since is graded, and each
( ) is a free module of finite rank. Let be the subalgebra of generated

by the elements andH1 ( = 0 1, 0). Since is a principal ideal domain,
there exist an basis1 of ( ), a nonnegative integer and

1( ) ( ) such that 1( ) 1 ( ) is an basis of ( )

for each and . Let be theC( ) linear map C( )
1

C( ) where

is the inclusion map. Let be the composite map ( ) ( ) C( )
¯ 1

C( ) where the first map is the one in part (1) and¯ is the quotient map. Since
is surjective and ( ) is generated by the elements˙ and ḣ1 ( = 0 1, 0),
is surjective. This implies that = and (1) = 0 (1 ). Hence = .

The module is free and is the fraction field of . Therefore the map

( 1) is injective and the map ( )
¯ 1

is bijective.
These and (7.2) imply that ( ) ( ,H1 H1 ) is an injective
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homomorphism of algebras. So can be identified with the subalgebra of ( )
generated by the elements andH1 ( = 0 1, 0). Therefore part (1) proves
the claim.

7.1.4. Now we can give the proofs of Lemma 4.4 and Lemma 4.9.

Proof of Lemma 4.4. We shall show the claim forU0U+
0 , the proof for the case

U0U0 being similar. For any U+
0 there exists 0 such that (X0X1) ( ) 0.

So U+
0 Ã by Lemma 7.2 and Lemma 7.5. SinceU0 Ã, we obtain the inclusion

U0U+
0 Ã. The reverse inclusion follows from Lemma 7.1.

Proof of Lemma 4.9. Set̃ = ( ) . By Proposition 4.3Ỹ(h1 ) = h1 and
Ỹ( ) = ( ) in A. So Lemma 7.5 implies that the automorphism̃Y
of A defines automorphisms of ( ) and̃ , which we denote by the same letter.

Let r ( ) (resp. r ( )) be theỸ 1 invariant ideal of ( ) (resp.̃ ( )) gen-
erated by ( , = 1 2) and the images of the following elements in ()
(resp. ˜ ( )):

(7.3)
=0 1 0

1+ + =

+
1 1

+
1

+
0 0

where 0 and + 1 + 2. Let be the composite map ( ) ˜ ( )

C( )
¯ 1 ˜ ( ) r ( ) C( ) where is the map in the proof of Lemma 7.5 (2).

The automorphismỸ of ˜ ( ) defines an automorphism of̃ ( ) r ( ) C( )

naturally, which we denote by the same symbol. This satisfiesỸ 1 = Ỹ 1
=1.

So Ker is invariant under̃Y 1
=1. Further annihilates the generators ofr ( ). There-

fore r ( ) Ker and induces a surjective homomorphism ( )r ( )
˜ ( ) r ( ) C( ).

By Lemma 7.5 ˜ ( ) can be identified with an subalgebra of ( ) and
˜ ( ) ( ) ( ). Since r ( ) = r ( ), we find that
˜ ( ) r ( ) ( ) r ( ).

If we identify ( ) with A by Lemma 7.5, the element (7.3) is a scalar multi-
ple of ( +

1 0)
+ ( 1 1) ( +

0 0) by part (1) of Lemma 4.6. So it vanishes inAr (regarded
as a quotient algebra ofA ) if + 1 + 2. This and Proposition 4.4 (3) im-
ply that the composite map ( ) A Ar induces a surjective homomorphism

( ) r ( ) Ar .
From the above we obtain the inequality dimC( )( ( ) r ( ))( )

dim Ar ( ) by specialization 1. Combining this with part (1) of Lemma7.3,
we get dim r (Ar ( )) = dim Ar ( ).
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7.2. Proof of Lemma 7.4. To complete the proofs of Lemma 4.4 and Lem-
ma 4.9, we shall show Lemma 7.4.

Set = ( ) Z2 0 0 and = ( 0) Z 0 . Let = (1 0)
and 1 = (0 1). Fix a total order onZ2 such that

1 2 if 1 2 0 and k for Z 0 and k

Hereafter most of the time we consider the elements (k1 k ) for k1

k . We shall denote them simply by (k1 k ) since they are indepen-
dent of .

For 1 andk = ( ) ( = 1 ) set

(k1 k ) = (0) (k ) (k1) !

Lemma 7.6. Let r = ( 1 2) Z2
0. For = 1 2 the following hold in (H):

(1) (k1 k ) is symmetric in the variablesk1 k .

(2) (k1 k ) = 1(k1 k 1) 1(k ) 1
=1 1(k1

k + k k 1).
(3) (k1 k 1 0) = ( + 1 ) 1(k1 k 1).
(4) ! = ( 1) (1 1) for 0.
(5) For k = ( ) (1 )

(k1 k ) =
= 1

2
1 (k 1 k ) 2 (k 1 k )

where = 1 ( 1 ) and = 1 ( 1 ) in the
summand.
(6) The elements (k1 k ) ( 0, k1 k , k1 k Z2 0 )
form a basis of (H ).

Proof. The claims except parts (5) and (6) were proved in [19]. The equality
in (5) modulo (H)( ( 1 + 2)) was proved for any nonnegative integers1 and 2 in
the same reference. Since (k1 k ) is independent of fork ( ) and

0 (H)( ) = 0 , we obtain (5).
For 1 set

(H )[ ] =
0 k1 k Z2 0

C( ) (k1) (k )

Then by the definition of and part (3)

(k1 k ) (k1) (k ) mod (H )[ 1]

for 2 andk1 k Z2 0 . So we obtain (6) by the PBW theorem.
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For 1 2 0, 1 Z 0 and k1 k 1 m1 m 2 , set

1 2 1 ; k1 k 1; m1 m 2

=
= 1

1 + 1 1 k1 k 1 2 + 2 1 m1 m 2

with the notation in part (5) of Lemma 7.6.

Lemma 7.7.

( ) =
1 0

k1 k 1
m1 m 2

C( ) 1 2( 1 ; k1 k 1; m1 m 2)

where the first sum is taken over nonnegative integers1 2.

Proof. ( ) is the subalgebra of (H) generated by the elements1 1( 0) +

2 1( 0) ( 0) and 1(k) ( = 1 2, k ). By the definition of the (k1

k ),

1 1 k1 k 1 2 2 m1 m 2 ( )

for k1 k 1 m1 m 2 . Multiplying this by 1 1( 0) + 2 1( 0) ( 0)
repeatedly, we obtain the inclusion . The reverse inclusionfollows from the fact that
the r.h.s. contains 1 and is preserved by multiplication by the generators of ( ). The
directness of the sum on the r.h.s. follows from Lemma 7.6 (6).

Lemma 7.8. (k1 k ) r ( ) if and k1 k .

Proof. First we show that (11 1) r ( ) if and 0
( ) by induction on := # = 1 . The case = 0 follows from part (4) of
Lemma 7.6. Suppose that the claim is proved up to . Then by calculating 1((
1)1) ( 11 1 1 1) we find that

( ) ( 11 1 1 1 1) + +1( 11 1 ( 1)1 1 1) r ( )

for 1 by (2.11) and Lemma 7.6 (1). Using this, we can prove the case + 1 by
induction on .

Next for we show that (k1 k 1 1) r ( ) if k = ( )
(1 ) by induction on . The case = proves the claim. If = 0, or 0

and = 0 (1 ), then the claim has already been proved. Suppose that 0
and 0 for some 1 and that the claim is proved up to 1. Then
by (2.11) and Lemma 7.6

( + 1) 1 (k1 k 1 1)
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1 1 + 1 1 1 1 k1 k̂ k 1 1

0 mod r ( )

where ˆ denotes omission. This proves the case .

Lemma 7.9. If 1 1 or 2 2 or 1 + 2 + 1 + 2, then

1 2( 1 ; k1 k 1; m1 m 2) r ( )

for 1 Z 0 and k1 k 1 m1 m 2 .

Proof. First we prove the claim for 1 1 or 2 2. By Lemma 7.8 we can
see that the claim holds if = 0. By multiplying this by1 1( 0) + 2 1( 0) ( 0)
repeatedly, we obtain the case 0.

Next we consider the case 1 + 2 + 1 + 2. Set = 1 + 2. By
Lemma 4.6 (1) and Lemma 7.6 (5)

( 1)
!

!
=0 1 0

1+ + =

+
1 1

+
1 ( +

0 0)

=

+
1 0

+
1 1

+
0 0

( + )!
= + ( 1 1)

=
=0

r ( )

(7.4)

where = (1 1;1 1; 1 1). Since the ideal r ( ) is invariant
under the automorphisms̃Y 1, each is in r ( ). Therefore

1 2(1 1;1 1; 1 1) r ( )

Using this and calculating

1(( 1)1) 1 2(1 1; 11 1 1 1; 11 1 1 1) ( 1)

we can show that

1 2(1 1; 11 11; 11 21) r ( )

for 1 1 1 2 0 as in the first part of the proof of Lemma 7.8. Now
the calculations of commutators such as

1 1 1 +1 1 1 2 1 1;k1 k 1 k +1 k 1; m1 m 2
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with 0 prove that

1 2 1 1;k1 k 1; m1 m 2 r ( )

for k = ( ), m = ( ) ( ) by induction on 1+ 2. Finally the repeated
multiplication by 1 1( 0) + 2 1( 0) ( 0) proves the claim as in the first part of
the proof of Lemma 7.8.

Now we can give the

Proof of Lemma 7.4. (1) Recall that the multiplication map (H1) (H0)
(H2) (H) is an isomorphism of algebras. This proves thatr (H1) (H2) is

equal to (H1) 2
2

+ 1
1

(H2). Therefore, by (2.11) and Lemma 7.6,

r (H1) (H2) =
1 1 or 2 2

k1 k 1 m1 m 2 Z2 0

C( ) 1
1 1

(k1 k 1)
2

2 2
(m1 m 2)

Since ( ) (H1) (H2), the above equality, Lemma 7.7 and Lemma 7.6 (6) imply
that

(7.5) ( ) r = 1 2

1 0
k1 k 1
m1 m 2

C( ) ( 1 ; k1 k 1; m1 m 2)

wherek m for all and the first sum is taken over 1 2 such that 1

1 or 2 2 or 1 + 2 + 1 + 2. Therefore Lemma 7.9 proves the inclusion

r ( ) ( ) r .
By (2.11) Ỹ( (k1 k )) = ( ) (k1 k ). So ( ) r is

invariant underỸ 1. Equation (7.4) implies that the generators ofr ( ) are in ( )

r . Therefore Proposition 2.2 proves the reverse inclusion.
(2) The element (1 ; k1 k 1; m1 m 2) is in (H)( ) with

= + + and = + . Since 0 andk m ,
and 1 + 2. Therefore (7.5) proves the claim.

8. Proof of Proposition 2.2

Lemma 8.1. Let be theC( ) algebra of polynomials in variables (
Z 0 ). Define ( Z) by the generating series

0

= exp
0



QUOTIENT ALGEBRAS FROM (sl2(C )) 927

For a nonnegative integer let be the quotient of by the ideal generated by the
elements = 0 ( ) and (0 ). Then

C( ) 1
1

1 ( ( 1) )

where = =1 and = 1 1

1
1

1 for Z 0 and Z 0.

Proof. The claim easily follows from the fact that the algebra of symmetric poly-
nomials in variables is isomorphic to the algebra of polynomials in variables.

Proof of Proposition 2.2. The homomorphism in Theorem 2.1 maps
to ( 1) C( ) 1

1
1 C with the notation of Lemma 8.1. Since the

satisfy = 0 ( ) and = (0 ) and is injective, we
find that

= 0 ( ) and = (0 )

in (H) r for = 1 2. By Lemma 5 of [19] (k1) (k ) (m ) (m1) is
a linear combination of 1

1 1
(l1 l 1)

2
2 2

(l1 l
2
) with 1 + 2 = and

l l Z 2 mod (H)( ( 1 + 2)). This implies that

(k1) (k ) (m ) (m1) r if 1 + 2

since (k1 k ) r if by (2.11). Therefore all the generators ofr
vanish in (H) r .

If we set 0 = , then =0( 1) + = 0 in C 1
1

1 for Z.
So, if we set 0 = , then =0 + = 0 in for any integer by Lemma 8.1.
Therefore, considering the homomorphism (H) r ( (0 )), we find
that =0 1(0 + ) = 0 in (H) r for any . Noting this and the fact that
the are invertible in (H) r , we can prove that all the generators ofr vanish
in (H) r as in Section 5.2 of [19].
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