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ON THE CAUCHY PROBLEM
FOR 2 x 2 WEAKLY HYPERBOLIC SYSTEMS
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Abstract
We prove results on existence and uniqueness of solutionkeoCauchy Prob-
lem for 2 x 2 weakly hyperbolic systems. The results follow from an extmgor
systems of the work by O. Oleinik done in the scalar case.

1. Introduction

We consider the non-characteristic Cauchy problem

(1.1) PU =10,U — A(x, 1)0,U + Ax(x, 1)U = f(x,1)
1.2) U(x,0) = (x),

onG ={0<r<T,x eR}.
Here A andA; are 2x 2 real valued matriceg, Fi( f2) and @ = 1, ¢,) are
vector-valued functions. Assume that

(1.3) (@11 + az2)® — 4detd )> Q

Under this hypothesis the system (1.1) is called weakly Hyge (see Kreiss-Lorenz
[5]).

For the data we suppose the following regularity conditidoet £ > 2, p > — 1
and assume that:
1) A e CYG, My(R)), the derivatives)'d/ of4 andi; are bounded oG fof g <
k—1and forp =0,/ <k +1.
2) The traces at = 0 of the derivative$d, daf add, with p < p+1 and
p+1 < p+k+3, are bounded.
3) For some O< 1o < T, the derivatives)!d/ ofdA andiy, with I <k+1,p < p +2,
are bounded for & ¢ < 1.
4) ¢; € H*P*¥G) has compact support, for =1 2.
5) Forj =1 2, f; has compact support in and regularity to be desdriater;
namely that the respective norms appearing at (2.4) are finith k replaced by + 1.

Supported by CAPES/BRAZIL.



832 M.R. EBERT

As done by Nishitani (see [9]), without loss of generality wan assume that
tr(A) = O (trace ofA ). In fact, we perform a local change of caoates in a neigh-
borhood oft =0 leaving the lines = const invariant, that is,

(p(xv t) = ((po(xv t)v t) = (y’ S),

wherego: G — R? € C! is the unique solution of the equation
(1.4) 20,00 — (a11 + az2)d: o = 0

with @o(x, 0) =x. The system (1.1) is transformed into

(1.5) 18,0 + A(y, )3,U + As(y, 5)U = f (v, 5)
where

A(y.s) = (3%#0 —andpo —a10:90 )
' —a210x00  0po— a20:¢ o

From (1.4) we have tf{) = 0. Hence
tr(A)? — 4 detA = —4detA = ((a11 + az0)® — 4 detA )P, po)> > 0,
by (1.3). Therefore (1.3) is valid for (1.5).

So, from now on, we may assume

(1.6) A@J):<““ mz) and a@,r)=— ded > 0
az1 —aia

Let B = (b;;) be given by

B= ( —0,a11 + a110xa11+ az10:a12 —a110,a 12— 0;a 17+ a120,a11

+AA;.
—0;a21+ a110xa21— a210xa 11 0,a 11+ a110xa11+ a120xaz1 )

Our first uniqueness result is:

Theorem 1.1. Assume that

at [b2,+b2,] < 0a +d,a,
1.7)
at [b3, +b3,)] < 6a+d,a.

Then the problenfl.1)—(1.2)has at most one solutiotl € H*(G, R?). Here 6 is some
constant a(t) = a1, T ®2X[i, 7], Wherer, a1 and «z are positive constantsy is a
characteristic function andr;/2 > (2p +6) 2.



WEEKLY HYPERBOLIC SYSTEMS 833

Remark 1.1. Theorem 1.1 also holds for semi-lineax2 2 systems df dirder
if kis replaced byk +1, since we may expand a nonlingar into & dirder Taylor
expansion atx, ¢, 0 0) and writ¢ x(z, U )& (x, )U.

Let

0,a11 + @110 a1+ a10:a12 —a19.a 12+ 0;a12 + a120,asy

B = ( ) + AA.
0ap1 + a110,a21 — a210xa 11 —0;a 11+ a110,a11+ a120,az;

We prove an existence theorem:

Theorem 1.2. Assume that

ot ((511)2 + (512)2) <0a+0a,
(1.8) ~ .
ot ((b22)2 + (b21)2) < 6a + 0,a,

Then there exists a solutioli € H*~1(G, R?) of the Cauchy problenil.1)—(1.2).Here
0 is a constanta(t) = a1, + ®2X[, 7], Whereto, o1 and o, are positive constants
x is a characteristic function and1/2 > (2p +6) L.

From Theorems 1.1 and 1.2 we have the following consequences

Corollary 1.1. If A = A(¢), A; = 0 and (1.7) holds then there exists a unique
solution U € H* (G, R?) of the Cauchy problenfl.1)—(1.2).

This follows since in this case the conditions (1.7) and)(td@ncide.
The next corollary can be thought of as a generalization & thsult of
Colombini and Spagnolo (see [1]).

Corollary 1.2. If the data of problem(1.1)—(1.2)are sufficiently regular and
(1.9) a¥)(0) #0 for somej < 2,

wherg in (1.6),a =a (), then there exists a unique solutidh e H*(G, R?) of the
Cauchy problem(1.1)—(1.2)in a neighborhood at = 0.

This follows because the hypothesis (1.9) implies both)(&ad (1.8) in a neighbor-
hood atr = 0.
If we assume

(1.20) aip(x,t) Z0 and ax(x,r) #0 V(x,1),

we have
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Theorem 1.3. Assume

9,411 — @19, 21+ aor tr(AA7) T2
wt [azl ja11— a 1100 21+ a tr( 1)} <0a+a.
(1.11) ) (;21 AT
_ _ + tr
at[ aipdiaiy— a19,a 12+ agatr( 1)] <0a+0a,
ai

Then there exists a unique solutiéghe H*1(G, R?) of (1.1)—(1.2).Here 6 is a con-
stant a(r) = a1x[0.) + @2X[n, 7], With fo, 21 and «z positive constanisy is a charac-
teristic function anduwy/2 > (2p + 6)°L.

That is, (1.7) and (1.8) are replaced by (1.11).

Remark 1.2. Condition (1.7) is not, in general, necessary for thecteion of
Theorem 1.1. In fact, ifA is symmetric then uniqueness fadoindependently of
lower order terms (see Cossi-dos Santos Filho [2]). For @antake ¢ given by
g(t)y=eY" fort >0 andg ¢) =0 forr < 0, the symmetric system

A(t) = (g _°g>

is weakly hyperbolic. ForA; = 0 we obtain

_(—-¢@® O
B(t)_< 0 g’(l))

Thus for any choice o and
at [b%l + bfz] =at(g')? > 0(g)* + 2g¢’ =0a +a,
for t > 0 small enough. Then (1.7) never holds near =0.

Remark 1.3. From the example given by C. Min-You, see [6], in order &weh
existence of solution in the Cauchy problem for weakly hipéc operators, in spaces
of functions with finite degree of regularity, some condiomust be imposed on the
lower order terms. This justifies that, in general, condgidike (1.7), (1.8) and (1.11)
cannot be removed if we are to have well posedness for the hgapiwblem. More
precisely, consider

Uy — U =bu,, t>0 0<x<1
with the initial condition

uli=0 = p(x), wsl=0=0,
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whereb =4 +1n > 0 is an integer. The unique solution has the form

v Jat? 1
uee )= T DT 12" (x ¥ 5’2) ‘

1=0

Now for the first order system in the form (1.1) associatedhie second order scalar
differential equation, we have ¢ () £, b1y = 0 = byo, boy = 2¢, andby = 4n + 1. In
Theorem 1.2 condition (1.8) takes the fomn[(1321)2 + (1322)2] < 6a +a,, which holds
for o < 2/(4n +1f. Soa > (2 +6)!, hencep =p £ ) tends to infinity with ; herg
measures the degree of regularity of the initial value.

This paper is organized in the following way:

In Section 2 the notation is established and we also statexsmston, namely
Theorem 2.1, of O. Oleinik's theorem (see Theorem 1 of [1b)) 2 x 2 systems
of second order partial differential equations uncoupledts principal part. Then we
prove results on uniqueness and non-uniqueness, analdgahe ones in the scalar
case presented by Colombini and Spagnolo (see [1]). Theunmueness result fol-
lows from Nakane (see [7] and [8]). Again, as in [11], we cdesia regularization
of the data and perturb the original system so that it becostrégly hyperbolic. The
basic lemma (Lemma 2.1) for the proof of Theorem 2.1 is thatedt

In Sections 3 to 5 inequalities to be used in the proof of Leniiiaare derived.

In Section 6, the proof of Lemma 2.1 is then established. Alsoprove Theo-
rem 2.1.

In Section 7 theorems 1.1, 1.2 and 1.3 are obtained from Ehed.1.

Finally, in Section 8 a result similar to Theorem 5.2 of Niahi and Spagnolo
(see [10Q]), is proved.

This work is part of the requirements for the Phd degree in Batitics from the
Departamento de Matéatica of the Universidade Federal dadsCarlos (UFSCar).

2. Extension of Oleinik’s theorem: statement

We consider the non-characteristic Cauchy problem

(2.1) LU = Ia,zU — 0,(ald,U)+Bo,U +Co,U +DU =f
(2.2) Uli=o=®, Uli=0=VY,

onG. HereB ,t)=0b;j .1t )),C £,t)=¢; £,¢)) andD X, ¢ ) =d; (¢ )) are L 2
real valued matrices, witlu x(¢+ »> 0, antl x,¢ ) =uix, 1), ux(x,1)), f(x,1) =

(f1(x, 1), fox, 1)), @(x) = (P1(x), p2(x)) and W ¢ ) = /1(x), Y2(x)) are vector-valued
functions. Under these hypotheses the system (2.1) isdcaltakly hyperbolic.
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Now we introduce the notation:
G.={0<t<t,x€eR}, (P,¥)== /[¢11/f1+¢21/f2] dx,
R

[U, V]Gr=/[u1v1+u2v2]dtdx,
G

1/2
Wi =1 Y (@lofu.olofu) .t
pHl<k
T 1/2
”U”G,;k:{/ ||U||§;kdo} ,
0
1/2
Wleqe=94 > (300U, 0L0U) _ ¢ .
p=q.ptl<k

. 1/2
1UllG. gk = {/ 1O dU} .
0

By H*(G) we denote the class of functions obtained by closing gk of infinitely
differentiable functions inG =7 with compact supportin  withspect to the norm
1UlGyk-

Our first goal is to obtain sufficient conditions under whid¢te tCauchy problem
(2.1)—(2.2) is well posed. It is an extension for systemshef fiorm (2.1) of an earlier
work by Oleinik ([11], see Theorem 1) for the scalar case.

For the data we require some regularity conditions. ket p2r — nd as-
sume that:
1) The derivativesd!d ot d,a, B,C,9,C,D , with 4 < k— 2 and fop =0,
I <k, are bounded irG . Moreover the derivativé$;  af.a, B, C, D with< p
andp 4 < p + +2, are bounded at =0 and the derivativ/g’ of the sanutidug
are bounded for & ¢ <1, with p < p+1 andl <k.
2) f,® and¥ are compactly supported in

Under these hypotheses we will prove:

Theorem 2.1. Assume thatfor the coefficients of2.1), the inequalities

at ((b12)* + (b12)°) < 0a +d,a,

23) at ((b22)* + (b21)°) < Oa + dya,

hold in G. Then there exists a unique solutiéhe H*(G, R?) of the Cauchy problem
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(2.1)—(2.2)and the estimate

2 2 2 2 2
NUNZx = M1y 1 ®Nogspra* W Nogspea* 1FIG, 06 + 1742

(2.4)

2 2
F D W piz ¥ M NS s
p=p -

holds provided the norms off, ®, ¢ on the right ¢2.4) are finite Here 6 is con-
stant a(r) = a1 x[o,o] 2 X[, 7], Wherery, a1 and ap are positive constants withy /2 >
(2p +6)"! and M, is a constant depending on the coefficients of the systgrhiyand
on their derivatives indicated above

RemarRk 2.1. If k > (n/2) +r, by the Sobolev lem&* c C" . In the case =2,
if kK > 3, then the classical solution to the Cauchy problem ZA.P) exists.

As a consequence of Theorem 2.1 we obtain three corolldtiey; are generaliza-
tions of results of Colombini and Spagnolo (see [1]).

Corollary 2.1. If the data of problem(2.1)—(2.2) are sufficiently regulgr with
a = a(t) in (2.1) and (1.9) holds then there exists a unique solutidn € H*(G, R?)
of the Cauchy problenf2.1)—(2.2)in a neighborhood of = 0.

Proof. Assume that € C? in a neighborhood at = 0. We will prove only one
inequality of (2.3), since the other will follows in the same&y. Consider

f(x.1) =0a(t) +a'(t) — at (b]y + biy)
> Oa(t) +a'(t) — at | b2 +bE,| = h(r).

We haveh (0) =6a (0) ' (0)> O ifa (0)/= 0 oe’ (0)/= O, since > 0. Hence
f >h >0 in a neighborhood at =0.

If a(0) = 0 =4'(0) anda” (0) ~ O, hence” (0} O, sinee> 0. In this case,
h(0) = 0 andh’ (0) =a” (0)- « b3, +b2,|| . If b2, +b3,| =0, hencef > h > O
in a neighborhood at =0, sindgé (6) 0. |[b2, +b%[ > O, then we take O<
a < a"(0) / (|p2,+b%].. ) and i’ (0)> 0. Thereforef > h > 0 in a neighborhood
atr =0. ]

We say that the strong uniqueness property holds for an mpdfor all the op-
erators having the same principal parts the uniquenessiés tr

In the next two corollaries, we suppose that C, ahd are didgordrices
in (2.1).
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Corollary 2.2. Ifin (2.1)a =a () has a zero of finite ordek > 3 at r = 0, then
the Cauchy problen{2.1)—(2.2)does not have the strong unigueness property

Proof. The proof follows from results for the scalar case as oan see in [7]
and [8]. ]

Summing up, from the two previous corollaries, wih) C abd  dizg matri-
ces, we have:

Corollary 2.3. The systent2.1) with a = a(¢) has the strong uniqueness property
if only if the condition(1.9) holds in a neighborhood of = 0.

Now we consider a regularization of the data of problem &2.p). For this goal
we take 0< ¢ ,¢"e C3°(R) such that

[owax=1 [5E)as =1 and supn(¥ 1111 supp(d [0
With € > 0 we consider the functiong. x( )& lp(x/€) and ¢, ¢ ) = 1@(o/€). Let

PA 0= [ gl = sty .
01l = [ e =PLil(r. 7 dr.
Now we consider the following functions:

¢l = Plol, vw!=Plyl. f/=0dfl,

(2.5) g . y
ae = Qe[a]a b’ej = Qe[bij] ’ Céj = Qe[ Cij] ) déj: Qe{ dl] -

These functions are well defined @& {=<0r < T —e¢, x € R}. Since condition (2.3)
of Theorem (2.1) is satisfied, the inequalities

ar (1) + (63)°) < ba. +dyac

ar (627 + (2Y?) < 0a, + b,

€

(2.6)
hold in G¢. For the proof of this we apply the operator to the bsithes of in-
equality (2.3) to obtain

Oc [atb}y] + Qc [ath?;] < 0Qc[a] + Qc[d,d] ,
O [ath3,] + Oc [ath3,] < 60[a] + Q. [8d] -
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By the Cauchy-Schwarz inequality

2
at(b)? = at(Qe[bij])? = ot ( /R /R 72t — Dl — )biy(v, ) dy dr)
= </R/R¢€(T = Dge(x = y)arbf(y. ) dy df> 1=0Q. [arb].

Also,

1 1
0. lal(x.1) = /0 / Mol — ezt + 0)dzda =8,0clal(. 1),

therefore condition (2.6) holds far< T — ¢
Before stating the basic lemma, the following elementamank is in order: The
system

(2.7 L. =137 —

€0
€ af - 3)(((1518)() + Beax +Ceat + D,

2
is strictly hyperbolic inG¢ ={ 0<7 <T —e€,x € R}.

For the regularized strictly hyperbolic problem we have:

Lemma 2.1. Let U.(x, t) be the solution of the Cauchy problem

(28) LGUG = fE’
(2.9) Uclizo = ®c(x), 0,Uecli=0 = We(x),

in G ={0<t<T-—¢€,x € R}. Then forO < t < T — ¢ the following inequality
holds

2 2 2 2 2
Ucllzx < M2 {”(De ox+p+at 1Wellggsprat 1 fellG o + I fellzh—2
(2.10)

2 2
2 el pizp + M LG o
P=Pp -

Before the long proof of this lemma, which runs from Secti@t 6, we make
two remarks and define some auxiliary functions that will Iseduin the proof of the
lemma.

Remark 2.2. The constani, depends on the maximum modulus of derivatives
aLof of ac, dac, Be, Ce, 3,Ce, D¢, in G¢, for [ +p <k — 2 and forp =0,/ <k , and
moreover, on the derivatived ef, d.a., B.,C., D, ,far<p apdl €p k+ +2
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atr =0, as well as the derivativeé$d  of these functions itk p K4,k taken
for0<r <n.

RemArRk 2.3. Since @, V., f have compact support in  and the system is
strictly hyperbolic, then the same holds o

Let us consider the functio, =4, vy) given by

t2 ) tp+2 p+2
(211) VP ZCDE +\IJE[ +581 UE|1:O+"'+ (p+2)l t U |, =0,

where the derivatives off. at =0 are expressed by means ofiequ&t8) and the
equations obtained from it by differentiation with respéztr, account being taken of
the initial conditions (2.9). By induction we can prove thgf depends on the deriva-
tives 3L9/ of a., d.ac, Be, Cc, D¢, f., Withl +p < p, att =0, and the derivatives
of &, and W, , withl < p +2 and < p +1, respectively.

ForU =U. - V,, we have the equation

(2.12) L(U)=fe — Le(Vp) =F(x,1).

We havea,(j)]-"(x, =0=0, 0<j < p. In fact, by Taylor expansion up to order +3
in r =0 of U, we have

P2 . (j)
0 U.(x,0
U.(x,1) = Z (x )i+ o("*d).
Hence
U=U.—V,=01"),

which proves our claim.
With U = (u1, uy), let

W = (wq, wy) = (/T ui(x,o)do, /T uy(x, a)do) .

Multiply (2.12) by We?" and integrate oveG, to obtain
(2.13) (L), We™],, =[F. we't],

We need to estimate all the derivatives/U [ ,p+<k . In the next thestian we
estimatesU p!U | <k and d/U ,far # <k , respectively.
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3. Estimate for U

In this section we prove one inequality foF
Lemma 3.1. For 0 <t <19 we have
(3.2) U, U’ )= < Mat? ™| F 13,1,

M3 is a constant depending on the maximum modulus,&;, C., 9,C., D, and
1 1
Here | FI12,1,, = Y2 M=o = (97 ), 97 F) | o,

Proof. We will prove the lemma in three steps. In the first ardosd steps
we estimate the left- and right-hand sides of (2.13), respdyg. In the third step we
prove the estimative (3.1), by using the Gronwall's lemma.

STep 1. Using integration by parts we write each term of the |eftdh side
of (2.13) in order to have the smallest order of derivativelbfpossible. To achieve
this we use the fact thaﬁ,(")uj|,=o =0, Vo <p+2,w;k,v)=0and thatr; ana;
have compact support in . For9r < 19, we have:

1 3
. B e by € )i=r e, - A 3
(3.2) iU, we', 2(U Ue’) Ue’, 0?w 50U
Gr
(3.3) [e;02u;, e(”wj]Gr = —% (dewj, e dcw;) o — %’ [0w), Ge(”aij]Gr ,

1 1
(3.4) [ax(anx)a Wth]Gr = _E(Wm acWy)li=o — 2 [Wx’ (Bac + 3rae)erm]Gl

We further obtain

(3.5)
2

[CcoU. we ], Z i, cle”uy—o(cl’e"w;],
1

+ [ug, clzemul E),(celzee’)wl]cr + [ul, CZlee’uz 3;(6521691)11)2](;1

By definition the term

2
[BeoxU, We™] . [bF dcuj, wje”]

+ [bE Oytt, wie’! ] + [bflaxul, wzee’]

G, [
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For the first two terms in the right side of (3.6) we have

- ‘[béfaxuj, wjeO’]Gr‘ < Myt?[u;, z‘_lujee’]Gr * s [tb7 0, w;, béfaijem]cr
3.7

1 _
+£ [uj,t 1Mj€9t]Gr.

where M, is a constant depending on supd, B.| . In fact, take ufF w, wr
b =bY and integrating by parts in  we obtain

[, e ], = = [, we ], ~ [, e,

From xy < (1/ 2)ex? + (1/a)y?) it follows that

‘[wa, ue@’]Gr

/ (ta)Y?bw, e 2ue’ ) V2 dx dt
G

IA

1
E/ tab?w?e’ + (ta)u?e” dx dt
G

X

1
= P [twa, wae(""]Gr + o [u, t ueQ’]Gr

On the other hand,

/T u(x, 1)by(x, e w(x, 1) dt
0

- fo u(x, )b, (x, 1) / u(x, o) do d

1

= / / u(x, t) (g> &2y (x, o) (—) 2 dt do
o Jo t o

1 T o
> / / u?(x, ot~ b, |+ uP(x, 0)to "L’ b, | dt do
o Jo

IA

T
< M412/ u?(x, 1)t dt.
0

Hence (3.7) holds.
For the mixed terms in (3.6) we will prove the inequalities:

1 1
[bflaxul, wzee’] < 59 [tbflax wo, bflaxwzeg’](;r + o™ [ul, 1‘7114169’]0r

G-

(3.8)

+ % [ul, Bx(bfl)zuleef]cf + Mst? [uz, t_lugee’]Gt



WEEKLY HYPERBOLIC SYSTEMS

and

1 1
[belzfixug, wlee']Gr < 59 [tbizax w1, belzaxwle("]cr + o [uz, t_luzem]

(3.9) L
+3 [u2, (axbflz)zugeG’]Gl + Met? [u, t_lule"’]Gr .

In fact, sinceU has compact supportin , integration by parts yields
[bflaxul, wzee’]G = —/ ulax(bflwz)ee’ dx dt.
’ G
Using the elementary inequality for real numbeys,< / (1y2Xz%), we have

[ul, Bx(wz)bflem] < —« [tbflaxwg, bflax wzeG’]G + 2i [ul, t_luleO’]G .
T a T

NI =

G

On the other hand

[ulaxbfl, woe’ ], < = [ua, (E)xbfl)zee’ul]cr + % [w2, woe]

G;~

NI =

G

By Cauchy-Schwarz’s inequality and® < x? + y> we have

[w2, wgeg']cr = /R/O (/’Zuz(x,o)do) (/,ruz(x, y)dy> e’ dt dx

G,

843

[T Yz /o pe 1/2
< / / f (/ u%(x, O')e9’ do-) (f u%(x, y)eez da) dy dt dx
RJO Jt t '

1 AR A o1 i ot
<= us(x,0)e” do+ | us(x,y)e”dotdydtdx
2JrJo Ji U ‘

T
§M512// us(x, 1)t te dt.
R JO

Hence (3.8) follows. In a similar way we obtain (3.9).
STEP 2. Now we estimatef, We]g..
a) Integrating by parts im  we obtain

T T
[]:j,wjee’]ar 2/]1&/0 Fi(x, )0 {—/t wj(x,s)egs ds}dtdx
. T .
:—f {./TJW]{K; —/ 8,(fj)W]{ dt}dx
R 0
where W{ = [7 w;e® ds. SinceF;(x,0) = W{(x,7) =0,

[fj’wjem]Gr:/R/O 31(.7:/')W1jdtdx.
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More generally, fromo{’ F;(x, 0) = W/ (x, 7) =0, VI < p, we get
[fj, wjeQr]G = [8,17+1Fj, W[{+l:| s
where Wy = We? and
. T X
Wj+1=/ W/ (x,0)do, v=01...,p.
12

b) The functionsW[{+1 satisfy the following estimate

J
‘ Wp+1

2 T
< r2”+3629T/ uf(x,a)dcr.
0

Indeed, by Cauchy-Schwarz’s inequality

.12 T 2 T T
‘Wé‘ <27 (/ luj(x, o)l dO’) < eZGT/ ’ulz-(x, G)} da/ ldo
1 1 1

< reZGT/ |uj(x,o)|2da.
0
Assume that the estimative holds quj , by Cauchy-Schwarz

12 =
|ij+1| -

T 2 T T
/IW({(x,a)da 5/ |qu'(x,a)|2daf’ ldo
t

T T
r/ [rz(q1)+3emr/ uf(x,a’)da’i| do
t 0

T T
< 1212(‘1_1)+3e:”/ u?(x, o')do' < 1:2‘1+3629Tf u?(x, o')do’,
0 0

IA

hence the claim follows.
c) It follows from b) that

2
o017 2p+6

10 2
= Z‘S [uj t tuje I]G, + 48 IF 14110
1

(3.10) )[f, we'],,

T

whered = constant and

2
2(0(71 +8) < 2p +6 ”‘F”fﬁl,ro = Zor;na)r( <8t(p+1)-7'-jv at(p+1)]:j)
1 <o =lo

=0
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Indeed, by Cauchy-Schwarz’s inequality we obtain

dxdt

p+1 j
‘[ff’ wfem]cr‘ S/G ‘8’(1+ FNWy

2 L2 .
5( / o717 dxdt) ( / Wiy
G, G,

2 1/2
dx dt) .

But

i
/ ‘ Wp+1
G,

2 T
dxdtf/ r2”+3eagT/ u?(x,a)dodxdt
G, 0
T
:t21’+3e29th/ u?(x,a)o*eg"(aee“)_ldadx
R Jo
T
frz”+3e29Tr2/f u?(x,o)ee"afldodx
R Jo
On the other hand,

2
/ ‘8,(“1)}",-‘ dxdtg/ max
G,

R 0<0 <t

2
8,(p+l)}"j(x, o)‘ Tdx

1 1
<7 max (a}”* VF; 9Pt )fj)‘tza = I F 120

0<o <19

Hence, using the fact thaty < §x2 + y2/(48), we obtain

‘[}"j, w,-ee’]Gr‘ < (Tllfjlllz,u,zo)l/z(T2p+3emfz[“jv r ]”jegt])l/z

2p +6€0T

<8 [uj 17"+ e 1 F e
Then (3.10) follows.
Step 3. From (3.2) to (3.10) and by the hypothesis (2.6), with dasmnough,

we deduce from (2.13) that far < 1

(U, ue) <2(s+a ) [U, 17U,

“1,, .0 2p+6 2
+ M7t [U, t " Ue r]G, + Mgt i ||-7:||1;+1,t0

where the constand/; depends on the maximum modulus @, of the 3, B, C.,
3Ce, D, and onT , andMg = €7 /(45). If we takey ¢ ) = U,t~Ue"];, and use
the fact thatd”U|,=o = 0, Vp < p + 2, then it follows

2
d i 2.1 o )
(t)y=1— E-t dtdx | =(U,Ue") _ .
7y'(1) Tdt </R/0 1uj e X ( e)t:T
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Therefore, we have the inequality
(3.11) Ty )< 26 +aY)y(r) + Myry(z) + Mgt O FI2, .

Using a technigue similar to the one in proof of Gronwall’smtea, namely multiply-
ing (3.11) bye-[2@+)ne+Mrt] e optain

-1
(y(-[)e*[Z(a*HB)In r+M7r])’ - [y’(f) . <M + M7) y(l’):l 67[2(0(71%) Int+M;7]
T

(-1
< M8t2p+671||f”§+1,foe [2(c +5)|nT+M7T].

Integrating int it follows that
T
y(T)t—Z(aflﬂs)e—Mﬂ < /(; M8s2p+6— l”]_-”127+1”08—M7Ss—2(a*1+8) ds.

Since 2¢1+8) <2p+6 we have 2 +6- & '+8)—1> —1, hence

_ _ T
(3 12) y(r) < _L,Z(a l+8)eM7r ”]:”127+l,toM9S2p+6_2@ 1_5) .
= Myt *®|| FII2, -

So from (3.11) and (3.12) we have

(U, U=, = 26 +a YM1or? || F |12, 1, + M7t M1or?"*0| F||2

p+Lio p+lto

2p+6 2
+ Mgt?*9 F|12,, . =

4. Estimates for iU, | <k

Lemma 4.1. Forl <k and0 <t <1y we have

2
p+lig’

(4.1) (0,0, 0jUe™),., < Ex®*®) " ol F|
B=k

where the constan; depends on the maximum modulus of theatless o\ of
Ae, 8xa€’ BE’ CE’ atce’ Dey l E k

Proof. For the proof we will use induction ovér . With a positive constant to
be chosen below we consider the equality

(4.2) [35L ) ajgwe"lf]cr = [9kF, a,{fWeW]Gr )

We will prove the lemma in two steps. In the first step, we tfams the integrals
in (4.2) by integration by parts in the same manner as was dorthe derivation
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of (3.1). In the second step the estimate (4.1) follows bygiggronwall’'s lemma and
the induction hypothesis.
Step 1. We have:

2
@3)  |[otF ok we ], | = 76 [Bhuyt0kuse ], + Mue?® oL F
1

ptli’

4.4) [0707U, xwe™ ], = %( ‘UL kUM [8er€1’,OfafW— gelanL ,
@) €05 02u;, e 0fw;],; = 2, (05 w;, 9 w; ),
— < [y, 010 ]
[B‘f(aeux)x, egl’afc‘w]ar = %(aeakwx, 91fa)’§wx)t:0
(4.6) - % [(6rac + diac)dw., €™ Ofw,] ;.
+ Z Cs [8f(a€)8f_ﬂux,eel’afc‘wx]Gt ,
1<p=<k

where Cg are constants. Let us estimate the last sum of equ@i6h Forg =1 the
integral

[Bx (ae)af_lux , et Bf wx]Gr

can be estimated using the Glaeser ([3]) inequality, nanfetyeachr € [QT ]
|0 (ac)(x, 1)I? < Mac(x, 1)
with M = sup;|02a.|. Using the inequalityry < x2/4) +y? we get

‘[ax(ae)aﬁ_lux, eMofwy ], | < 1ALl + M [acdfw,, e 0kw, ]

G,‘ G,

Here, as well as below, we denote Ry integrals admitting #ienate

|A;l < Ny Y e [ofu, i olue],
B<k

where theN; are constants depending on the coefficients intiequ@.8). We use in-

tegration by parts to transform the integrals in the lagintef (4.6) which correspond
to B > 2. We have

Z Cp [Bf(ae)affﬂux, eé)”affwx]cr
2<p<k

== Y Cp[@Pa)dt P uy)e, M kw],;, = Ag,
2<p=k
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where N, depends on the maximum of the modulus of derivati®és |, Ifor k
of ac, 0,ac.
By definition

(4.7)
2
[0 (BeaxU), &M Oi W], = D95 (b2 duuj) €™ 0w ] .
1

+[9F (b#0,u1) 691’8)’;11)2]6r +[9% (b220,uz2) , e 85w, ]

G

For the first two terms in the right side of (4.7) we have

[0 (e 0ay). o], | < [[6298 0y k], + )

Jigk,  firqk+l
5([1;6 Bu, 0t w; |+ Ag

o .. ..

Z bl 3% Lw .. e pii gkt 1y
< |Ag| + > [tb) 35w, e™'b]/ 0} wJ]G,

1
k1 0k
* o [05u, 1™ Byu;]

where N, depends on the maximum of the modulus of derivati&fgs lterk  blbf
For the mixed terms in (4.7) we have

k
[9% (b0, uz2), ™ 8)’;w1] = [b220 Mz, €™ 0k wr |, o+ Z [07 (190 Pz, €' 05w ],
1

As before we obtain

1
(1205 Uy, e 9wy ls. % [tb2%0% wy, b€12€91f3§+1w1]ct o [uz, flegl’a)/fug]Gr
1 1
+ > [akuz, eelt(axbelz)zaﬁuz](;t + > [aﬁwl, e"l’a)’jwl]Gr .
Again

k

3 [0 P uz, e dbwi], < |Ad],
1

where Ns depending o b2 for [ < k. Since we can prove an analogous inequality
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for the term [0} 6710, u1), €”'9fw] . in (4.7), we obtain

2
(B, U), e™ W],
[0
1
2

(4.8) 3 (jll [0%u;, 1 Y™ ofu, ],

a .. ..
Z [+pli gkt bitpjjaktl,
> (16797 w;, ™' bl 0} wj]Gr

=

[tb128k+lw blZ 0118k+1 :|Gr

L
2
L
E 16720k, Pe™ 3f+1w2]c, +]Ag|.

where Ng depends ord' B, , fof <k .
By definition
[05(Cca,U), i we™ ],
2
(4.9) = Z [8f(cgj8,uj), afwjeglt]Gt
1
+ [0 (cP0,uz), Bfwlee’]Gr + [0 (P ,uy), 8)’(‘11)269’]Gr
For the first two terms in right-hand side of (4.9) we obtain

[05(c/0uy), Dw;e™ ],
= [0y @ (cluy) = ujdrcl), ™ ogw;],;

= [Bf(cgfuj), 6911(3!((1,{]- — Olafwj)]cr — [3!?(1,{1-8[({].), e91T8§wj']Gr = A7.
For the mixed term in (4.9) we have

[95 (c20,uz), 3} wlegl’]cr = [08(cPPuz), ™ (9fuz — 018fw1)]61

- [ajg(uzatcel?), egl’afwl](;r = Ag.
We can prove an analogous equality for the other mixed terif#.@). Therefore,
(4.10) [0f Co,U ) s We ], =As,

where Ng depends on the derivative$ 6t  afgC, fox k
Finally

(4.11) [05(DU), ™05 U | 6. = A,

where Nyo depends ord! D, fot <k .
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SteEP 2. From (4.3) to (4.11) as well as the condition (2.5) with 6=— 2M,
by choosing the constarti; sufficiently large, and by using the induction hypothe-
ses (4.1), we deduce from (4.2) that

kU, dkUe™),_ < 2(8 +a M)yi(r) + TK yi ()
(4.12) + TR N ol F|

ptln’
B<k

where y, ¢ ) =[0U, 1105Ue™'] . and the constantk, K depends on the maximum
of the modulus of derivative!  of,, d,ac B. G.,3,C.,D. fdr<k , as well as on
the derivativess! ofi. and,a. , for< 2 wheh =1. Since

typ(r) = (LU, L U™) _ .

it follows from (4.12) and from Gronwall's lemma that
2

yk(T) S Kz T21]+6Z || 8.5f||p+1,fo :
B=k

Therefore, forl <k we have

(U, aLUe™) _ <2(5 +a ) K> Y| PF| 0 * tKK 203 ol F

. p+Ll1o
pk p=k
. 2 2
e A < Y A O
p<k p<k

5. Estimates for 3a’U, p +1 <k

Lemma 5.1. Forl<k—-1and0 <7t <1 we have

(5.1) (31U, e™™0lU,),, < Mip A 72O P FI2,y, + Y [0V F. 0V F],
B=k y<k-1

where M1, depends of derivative&{. af, d.a., Be, Cc,9,C., D. far< k.

Proof. In order to estimate the derivativesU, fox k — 1, we consitie
equality
(5.2) [0iL W) e ? U], =[0.F, e ™0.U], .

where#, = constant- 0. The proof consists of two steps. In the first stepestimate
the right-hand side of (5.2) and using integration by pareswrite each term on the
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left-hand side of (5.2) in order to have the smallest possister of derivative o/ .
In the second step the estimates (5.1) follows from Grorsvidimma.
STEP 1. Integrating by parts we obtain

(6.3) [0 F. e ™oU ], < % ([ajf, "0, Fl, +[0.U, e_HZ’B;U,]GT),

1 1
(5.4)  [0L07U, e 3LU,] 6.5 5 (0LU,, e 0LU,),_ + = [0LU,, b2e™™' 9L U, | G,

2 2
[e;0L02u;, e 9. B,I,tj]Gr = —% (95w, e—ngafjlu,)rzr
©9) Y (05w, B0 % 01 ]
o L% i 2 x “ilG,
[8i(aEUx)x, 6792’8’{_ U’]G, = —% (aE 3)1(+1U, e %! E))l:rlU)t:r
(5.6) + % [0V, (dac — B2ac) e ™0, U] ;.
+ > Byl31(a)a U e 8, Ule,
1<y=i

where BV are constants.
By definition

2
[0,(Be0,U), 0, Ure ™ ], =Y [9(bY euj), e ™ 9\ 0pu;] ;.
1

5.7
7 + [8< (belzaxuz), 6792’8!‘ 8,141](7r
[

+ [0l (pF0sus), e *0L0uz) , -

For the first two terms in the right-hand side of (5.7) we abtai

(9 (62 ) ™8], = [0 (6000 ) e 0] (b0,
+ [0 0,uj, e aiat”j]c,
< [aia,uj, 679213)16311/”]61 + Ml3 Z [a))c/uj’ e*OZTaifuj]Gr :
y<i+1

where M3 depends on the derivative®b!’ , for< k — 1. The mixed terms in the
right-hand side of (5.7) have analogous inequalities toldisé estimates, therefore

[8,(BedxU), 9, Ue™™ ], < [8;0,U, e ™8,8,U],;
(58) + Ml4 Z [3;/[]’ e*f)zra}/l—]]Gr ,

y<I+1

where M14 depends of derivatives' B,  fdr<k — 1.
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Finally

(5.9) [0L(Cca,U), e L0,U];, < Masy_ [07U,, e ™07U,],
y=l

(5.10)  [3U(D:U), e ®3La,U], < Mi[d.U,e ™d.U],. +[0.U, e ™0.U,],

where M35 and M1 depend on the derivative C.  a®lD, [ <k— 1, respectively.
STEP 2. Using (5.3) through (5.10) together with (4.1), and clingshe con-
stantd, sufficiently large, we obtain from (5.2), using induction Qrthat for/ < k— 1

2
p+lio

(30U e ™00, , < Mz { [0LU e #0LU, ], + 120 [0l 7|

(5.11) =k
1
+3 2 lrFarF],

y<k—-1

where M17 depends of derivative&f( @f., dva., B C¢, 9,Ce, D, 1,<k . By Gronwall's
lemma the estimates (5.1) follows from (5.11). L]

Lemma 5.2. For p>0,l+p <k—2and0 <1t <1t we have

(L0, a;a,"*zu)

1=t
) 2
(5.12) < Mg t21+sz||aff||p+m+ > [arr. N Flg.
B<k y<k—1
+ Z (3507 fe. 920/ fc),_.
[+p<k—2

where Mg depends on the derivativeﬁa,” of, 0.a., Bc, Ce, 3;C., D, @ for
p<k—2andforp=0,l<k.

Proof. To prove this we apply the operat@frd; to the equatioh2Pand then
we obtain equations which give the derivati\Be,‘ﬁ,"+2 expressed in terms of the deriva-
tives estimated above. ]

6. Proof of Lemma 2.1 and the Theorem 2.1

First of all we prove Lemma 2.1 and then conclude the proof leéofem 2.1.
Proof of Lemma 2.1. The proof will be a consequence of theofahg two

steps. In the first step, we will use the estimates alreadyegrdo obtain (2.10) for
T < 1p. In the second step we will prove the estimative (2.10)sfox 7 < T.
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Step 1. ForU =U.—-V,, we have

U2, = > (8h0fUe, 0L0f U)o = Y (0007 (U +V,). 0L0f (U + V) .,

pHl<k ptl<k
=Y {(2lof U, 0,00 U),_, +2 (3107 U, 8,0 Vi),_, + (997 V). 040 V}) o, } -
pHl<k

We have two cases to consider:
a) Forp =0 and <k , by (4.1) and (2.12) we obtain

< E,r2p+62 ”8"3
B=<k

=Y (2207 f. = LoV, 080" — Levy)) |

O<o <1y

(aJlfU’ 8i U)r =t p+1 fo

But

max (af ¥ IL.v,, 08P L, vp)

0<o <19

=0

2 2 2
< M19 { ”q)e ||0;k+p+4 + ”\Pe ||O;k+p+3 + Z ”fe ||O;p,p+k+27p } s
P=p

where M9 depends on the derivativééa,p of, d,a., B., Ce, D, for<p apd +

Il < p+k+2att =0, and on the derivatived  of these functions witk p +1
and/ <k in 0< t < 5. Therefore,

(U, 0,U) -,

®U _u A VA +) Ifells + max || f.||2
= 20 ellok+p+4 €llok+p+3 €ll0;p, p+k+2—p 0<0 <10 ello;p+Lk [ »
pP=p -

where My is a constant depending ofy  afhg.
b) The other terms aré!U, I,<k— 1 a3/, [+p <k — 2, which are bounded
by the right-hand side of (5.12). But

> [ F a7,

y<k-1

2 2 2 2
=tMn { 1felZ 0 xmt + 1 PelGgaprat 1WelFpapsat D I felld, pricsap
pP=p

where the constanM,; depends on the derivative‘i,‘(a," at, 0.ac, B, Cc, D, for
p<pandp +l < p +k +2 att =0, as well as the derivatives of these func-
tions forl <k at 0<t < 1.
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Putting together a) and b), we have (2.10) fok .

STEP 2. We can obtain the estimates (2.10) for< < T — ¢ in a similar way.
Namely, to estimatel, U ,J, we consider the equation (2.13) and transform, using
integration by parts, its terms on the left-hand side in thees way as for < 7. But
instead of (3.7), (3.8) and (3.9) we consider the ineqesliti

.. o .. ..
JJ . o0t o0t ol JJ . Bl 01
b0y e g | < Maa[ug,uje” ]+ 5 [bF 0w, b dywe™ ],

1 B A .
(6.2) + % [”j” 1“feet]c,0 + 2 [béjaxwf’ bl 3ijem]0,7,o
1
2A ["‘/’ ”Jee ]GH0 ’

[bflaxul, woe ] [tb213 wo, bela woe”! ] + 1 [ul, t_luleg’]G
]

G: = 2 Go 20
(69 L G R R A T
+ % [u1, ax(bfl)zuleg’]cr + % [wa, wzee’]Gr ,
and
[6128,15, wie™],, < %[tblza wn, Do) + o [z, 1 M),
(6.4) ts [b128 w1, br2d,wre ]c,,,o 21k [z, uze” o,

+ % [u2. E)x(belz)zuzee’](;r + % [wi, u)lee’]Gr .

where L < at is a constant for > #,, and we use the estimate (3.12) forr) (=
[U.17tUe" ], . We estimate the right-hand side of (2.13) using the indtyual
0

[F. " Wlg:| <[F.e" F1+ Mas[U, € U,

where the constant/,3 depends only o’ . Settingt () [ Ue” ;] and choosing
the constant sufficiently large, far > 1y we obtain from (2.13) the inequality

(6.5) (1) < Maaz(t) + Mas| I3, + M2el 7. Fla, ..

where My4, Mys and Mg depends on the maximum of the absolute valueBofC. , ,
9,Ce, D and onz. Sincez’ ¢ ) =(U,e""U),_, hence by (6.5) we have the inequality

(6.6) (U. "), < Mao{IIFI241,, * [F. Flo,. } -

In a similar way we estimat¢d.U, 9.U),_ , | < k andz > 0. The derivativesd.U, ,
[ <k-1, andajca,‘”z, p>0,1+p +2<k, fort >ty are estimated in the same way
as fort < 1.
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From the estimates fot/' and the relatiéh & — V, , there follows(R.1
for U.. O

Now we will prove Theorem 2.1.

Proof of Theorem 2.1. We will consider three steps. In the fitep, we obtain
a functionU as limit of the functiong/. obtained in the Lemma. 4rl the second
and third steps we prove the existence and the uniqueneggctevely.

Step 1. Consider, in the domaig© , the Cauchy problem for the systEnB)
with coefficients defined by (2.5) and initial conditions bg.9). Since fore > 0
the system (2.8) is strictly hyperbolic, the problem (2(8)9) has a solutionU. €
C®(G¢,R?) and by (2.6) the estimates (2.10) hold. Henég, € H* G¢,(R?) is a
bounded sequence, from Rellich theorem, it has a subseguéncthat converges for
a functionU in H' G,R?), for everyr < s. On the other hand, sindé* G ( ) is a
reflexive space and/., is a bounded sequence, it has a subsedignaveakly con-
verging to a functionV € H* ¢, R?) and the estimates (2.10) hold for a limiting func-
tion V. Therefore, by uniqueness of the limit we have V= H* G,R?).

STEP 2. LetU be given in Step 1:

a) SinceUc|=o = & — ® on H*P*4(R,R?) and U, — U in H*}(G, R?), then
Uli=o = ® in H*[R, R?). It is also true thail/;|,-o = ¥ in H*(R, R?).

b) Now U e H*(G,R?) satisfiesLU =f inD'(G,R?). Indeed, forp € C* G ) we
have

(Le;Uev0) = (fe. 0) = (f. ),
since f. — f inL?(G).
On the other hand, we ha\(eLerEj,go) — (LU, ¢) . Indeed, let's consider only
two typical terms of the left hand side. For the first term weeha
(BIZUGJ., q)) = (UE/., 3[2g0> — (U, 8t2(p> = <8,2U, (p) ,
since (Ue,, ¢) — (U, ¢), Vo € C>® C H**(G). For the second term,

(3:(ae,0:Ue,) — 8:(ad.U), ¢) = — (ae;0:Ue; — ad:U, 8:99)
=— (aejaerl. — aBXUEj +a3xU€j —ad, U, 8x<p>
= (Ue,- - U> ax(aax§0)> - <(aej- - a)axUsj: 3x</)> .

Since |[dla|,, < M.Vl < k, henced, doy¢ ¥ H'™* and (U, — U, 9\ @d.¢) — O.
Again, we have

((aej - a) afoj’ 8X90) = Hafoj ” 12 H (afj - a)axgouﬂ — 0.

Indeed, by hypothesisi'a € L*,VI < k henegsy) € L™ N L7, Vp. Therefore
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(ae; —a)xs) — 0 in LP,V1 < p < oo, whereys, is the characteristic function in
S(p). Sincek > 2, we havd o, U, ||,, < |U, ||, < M, Ve;, and the claim follows.

On the same way, we ha\&.,0,U.,, ¢) — (Bo,U, ¢) (Cc,8,Uc,, ) > (CO,U,¢)
and (De;Ue;, 9) — (DU, ¢) Vg € C* G).

HenceU € H* G,R?) verifies LU =f inD'(G,R?). Since f; € L¥([0,T], H(R)),
the equality holds inL?([0, T], H*?(R)).

Step 3. The uniqueness of the solution for the Cauchy problem){£212) fol-
lows from the estimates (3.1), which remains valid for thmififunction U . U

7. On the Cauchy problem for weakly hyperbolic 2x 2 systems of fst order

First we prove Theorem 1.1:

Proof of Theorem 1.1. The proof will be done in two steps. la finst step we
apply an operator (transpose of co-factor operator of praicpart) to the left hand
side of system (1.1) obtaining a system of the form (2.1) hia $¢econd step, we show
that the theorem follows from Theorem 2.1.

STep 1. Set

(7.1) 0 =13, +Ad,.

The matrixA &, ) enjoys a very good property, named?(x, 1) = a(x, r)I. Hence we
obtain a second order system

(7.2) (Qo P)U = Ia,ZU — 0y(ald,U)+ Bo,U +Co,U + DU = Qf,
whereC =A1, D = QA,, and

B= ( —0,a11 + a110xa11+ az10:a12 —a10,a 12— 0;a 17+ a120,a11

+ AA;.
—0;a21 + a110xa21— a210xa 11 0,a 11+ a110ca11+ a120xaz; )

With W = (yrq, ) and ¢; € C° G ), we consider the initial conditions
(7.3) U(x,0)=@(x), (©@U)k,0)=w(r)

for the problem 7.2.

STep 2. By (1.7) the Cauchy problem (7.2)—(7.3) satisfies the Hygses of
Theorem 2.1. Hence, there is a unique solutidne H* G,?) of (1.1)—(1.2). In-
deed, if there are two distinct solutions;, U, € H*(G,R?) of (1.1)-(1.2), then
Ui, U, € HYG, R?) will be distinct solutions of (7.2)—(7.3), which is in ceatliction
with Theorem 2.1. U
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Now we prove Theorem 1.2:

Proof of Theorem 1.2.  Applying the operat@®r  to the rightdhaide of system
for P, we obtain the second order system

(7.4) 102U — 3,(ald,U) + Ba,U + A13,U = f,
where

B = ( dra11 +a119ya11+ a210:a12 —a190:a 12+ 8,412 + a120xa11
0ra21+ a110ya21 — a 210,x@ 11 —9;a 11+ a119,a11+ a0 a2

) + A1A,
with the initial conditions
(75) U(-X’O) =Ov (BIU)(xa 0) :q)@)

From (1.8), by Theorem 2.1, there exists a unique solutiore H* G,RP?) of the
problem (7.4)—(7.5). Hence we have thaty e H*(G,R?) is a solution of the
Cauchy problem (1.1)—(1.2). ]

As in Nishitani ([9]) we prove Theorem 1.3, where instead @f iveg in (7.1),
we take the operator

(7.6) Q =10, +Ad, — A, + fOAl)’ + E;
here {°A,)" is the transpose of co-factor matrix df; and A, =9, A . Hence

PoQ=13>—ald>+(A, — AE +1r(AA1)1)d,
+ (A1 + (A1) +E — A,)d, + (P(E + (A1) — A,

since A1A — A(*Ay)" = A1A + (*°(A14)) = tr(AA)I. With E = (¢;), the matrix
A, — AE +tr(AA1)I takes the form

(7.7) ( 0ia11 — a1 11— a 12 21+ tr(AA,) O;a1p —aye 12— a2 2 )
0iap1 +ayier — aze 11 —0ia 11+ ariexn — are 12+ tr(AAy)

Now we determiner;; so that (7.7) is a diagonal matrix. Since
aip(x,t) Z0 and ax(x,r) #0 V(x,1),

we takeei» =0, ep1 =0 and
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We set

Y(x,1) = a219;a11— a119;a 21+ ap1 tr(AAyq),

Z(x,t) = —ai20,a11+ andarn+ aiptr(AA;).
These choices are summarized in:
Lemma 7.1. Let Q be given by7.6), with E as aboveThen
PoQ=02—ald?>+ By, + R, +S

where

5= diag(Y(t’x), Z(t, x)

>, R=E— A, +A1+ (A1)
az = ar

and S = P(E) + P((*°Ay)' — A)).
We next obtain

Lemma 7.2. Let

Q=18 +Ad, +A, + (A +E,

with
- . ) 0,
E=— dlag<—'a12, —’aﬂ) -
app aziy
Then
QoP=02—-0./(ald,)+Bd, + R0 +85,
with

5= diag(z(t’ x)’ Y(z, x)

) . R=E+A +A1+(®A), §=0(A).
ai as

Proof. Note thats, =A,A #AA, andiA;—(“°A;)'A =tr(AA;)I. Then the proof
follows from a computation similar to the one presented ie groof of Lemma 7.1.
U

Summing up we have:

Proof of Theorem 1.3. By condition (1.11) and lemmas 7.1 ar®j the result
follows from Theorem 2.1. U
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8. On the Nishitani-Spagnolo’s result

As in [10], we consider
A= A(x) and A; = A]_(x)

then we takeE =0 and so the condition (1.11) is written as

(8.1) at[tr(AA1)]? < ba(x)
Suppose
_ (% B
Arl) = <,32 82)

with derivatives of all orders bounded dR. The condition presented by Nishitani-
Spagnolo (see [10]) for the Cauchy problem (1.1)—(1.2) tored posed are:
(8.2)

(a12a20)(x) = 0, [(a12B2)(x)| < M/ (a12a20)(x), |(a21B1)(x)| < M+/(a12a21)(x)

From the following proposition and Example 8.1 we see tha?)(& more restrictive
than (8.1).

Proposition 8.1. (8.2) implies (8.1).
Proof. We have
tr(AA1)® = (a12(81 — 82) + a12B2 + az1p1)’
< :—2% []|(81 — 32)2”oo a%y + (a12B2)° + (a2181)]

Buta = afl + ajoaz; and ayp(x)azi(x) > 0, then afl < afl +ajoa21 = a. Using the last
two inequalities of (8.2) it follows that t{A;) < Ma(x). ]

ExampLE 8.1. Consider the functiok € C* 5 /= 0 and with bounded deriva-

tives. Take
_{ blx) b(x)
Am'(—b(x) —b(x)>‘

then we haven { ) =— det = 0. Faoh + 8, = 1 + 5> we have thatd,(x) satisfies
tr(AA;) = 0, then (8.1) holds. However, the conditions (8.2) are saiisfied, because
there existx such thatys(x)azi(x) = —b%(x) < 0.
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