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Abstract
We study coincidence points for magsk, f>: E — B into manifolds such that
/f1 is homotopic to f,. We analyze the first and higher obstructions to defofin
away to f,. The main results consist in solving this one problem for (gener-
alized) Hopf bundles, which ar& -principal bundlesG: E,G — B,G (the n-th
stage of Milnor's construction), witlG = S*, S°. We also consider the question for
general maps: E,G — B,G with G = §%, §°.

1. Introduction

Given two maps fi, f»: E — B we study the problem of making them
coincidence-free, i.e. deforming thenf; ~ g1, fo &= ga, such thatgi(x) # g2(x),

Vx € E. For the most and main results we assuBe to be a manifold. ffd8s
the advantage that we need only deform one of the maps,fsay g, and obtain
fi(x) # g5(x) whenevergi(x) # g2(x) (see [1]). We use the following notatiotfy || f>
if fi(x) # f2(x), Vx € E and f1 |} f2 if f> is homotopic to somg such thai || g.

For instance, if dinE < dinB (both paracompact) thgi | fo for all
fi, f. E — B. If dmE = dimB and B is connected, non-compact, then again
fi R fa, Yfi, fo. If Bis compact connected and dith = diBn =  then there is
one potential obstruction which can be regard as an elenfe#i"¢E, Z) (with some
local coefficient systenZ, see Proposition 2.11) fofi | f.

New viewpoints arise when dii > di® , and this is the subjecthef present
paper. We consider simple cases, however, e.g. fibre bundlee — B and ask
whether p |} p. For the classical Hopf bundleg,C: $**' — CP,, p,H: §%*3 —
HP,, we obtain

Theorem 1.1(see Theorem 3.5).We havep,C |} p,C <= 2|n + 1
Theorem 1.2 (see Theorem 3.9).p,H |} p,H <= 24n +1

General principalSt- resp. $*-bundlesp* :EX — CP, resp.p) :E) — HP, are
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classified byk € Map[CP,, CP.] = H2CPy = Z resp.y € Map[HP,, HP.] —
H*MHP,) = Z, where in the latter case the map is defined right before Riopo
tion 3.3.

Theorem 1.3(see Theorem 3.2). p* | p* = kln + 1.
Theorem 1.4 (see Theorem 3.4).p) I pl = k(y)In+ 1.

Examples of non-bundles which we can handle are the integmaltiples of
[pxC] € 72,+1(CP,) and [p,H] € m4,+3(HP,), as follows

Proposition 1.5 (see Proposition 4.3).If n is even thenp,C |} [p,C <= 2]I.

Proposition 1.6 (see Proposition 4.4).1f n + 1 is not divisible by24 then
Q) [prH ) IpH if 121
(2) For n > 1, Ip,H | Ip,H if 24|i.

For the case where&s  =S° (the cyclic groupZ,) then we have the maps
pn: 8" — RP,. So we have maps between manifolds of the same dimensione&Ve |
to the reader to verify thap, | p, < 2|n + 1.

The paper is divided into three sections. In Section 2 weudis@eneralities about
the obstruction to makef( f ) coincidence free, whénE + B is cootirs or dif-
ferentiable. Then we compute the primary obstruction agsyrthat B is a manifold
(Proposition 2.11). Also, we express the problem of remgp\inin(p, p) in two dif-
ferent ways: one in terms of the existence of a lifting of thapnf : E — B into the
sphere bundle of the tangent bundle ®f , (Proposition 2.18)the other in terms of
nowhere-zero cross section of the horizontal tangent leunfllf (Proposition 2.16).

In Section 3, using the explicit calculation of the cohongyl®f G-principal bun-
dles overB,G , forG either equal t6* or S3, and the primary obstruction, we show
that (pX, p*) and g}, pJ ) can not be made coincidence free for certairs pfi val-
ues ofk ,n andk ¥ )n , respectively (Theorems 3.2 and 3.4). Themsing results of
Section 2, we prove the cases whére =1 and induces the fibrepysp which
are Theorems 3.5 and 3.9. Also some otlier -bundles 8yeér G (S1,=5°) are
considered.

In Section 4 we analyze for which multiples of a m@p S":— B, c&ty (! f,
be made coincidence free. In the appendix we show that forf Fllogtion H : S*° —
S8, (H, H) can not be made coincidence free. We were not able to plosdast re-
sult, using the techniques developed in Sections 3 and 4.
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2. Generalities

Let p: E — B denote a fibration, ang £ — B an arbitrary map. In this
section we study the problem of making,(f &:— B coincidence f\e. con-
sider several cases, assuming certain hypotheses on tkesspad on the mag
The case wheref is a fibration, introduces some simplificatind will be treated
in the next section. A variation of the above problem is tadgtthe problem of mak-
ing (f, f): E — B coincidence free by small deformation. The preciseniulation of
this question is given after Proposition 2.12 in terms of hloemal bundle of the graph
of f. We use the following notations and definitiors:pair of mapsf,g: E — B is
disjoint (coincidence freg in symbolsf || g, if f(x) # g(x), Vx € E. They are homo-
topy disjoint in symbol f | g, if deformationsf; :E - B ,g .E - B ,0<r < 1
exist such thatfo = f, go = g, and f1 || g1. Otherwisethey are not disjointin sym-
bols f # g, or they are not homotopy disjoint, in symbaofs g, respectively. We
have chosen the unsymetiicnotation because in many cases one of the deformations
is redundant. For example, B is a manifold Proposition Zhves the problem of
making (f, g ): E — B coincidence free by deforming both maps is edeivato the
problem of making them coincidence free by either deforntimg first map or the sec-
ond map.

For f: E — B an arbitrary map we have:

Proposition 2.1. If the identity of B can be deformed to a fixed point free map,
then for all f: E — B, f |} f by composingf with the given deformation.

Corollary 2.2. If the baseB is a non-compact connected manijftien for all
f:E— B f| f.If Bis a compact connected manifold andB) = 0, then f |} f
forall f: E— B.

Proof. In both case® admits a deformation without fixed oint O

Proposition 2.3. Let G be a topological group which acts freely on a space
and K C G a subgroup. If the connected path componenGof  whichacenthe
identity is different from the connected componentkof widohtains the identity
(i.e. K. # G.), then we havey |} g, whereq: E — E/K is the projection.

Proof. Take any element € G, — K . Ag ¢ K and tiie -action is free we
have thatg ¢x )/=¢ £ ), for allx € E . On the other hand, ase G, , there is path
w: [0,1] - G with w(0) = y, w(1) = e = identity. Therefore» r( )x provides a
deformation ofy- intoid , hencgy =~ g [l

ExampLE. If G = S° acts freely onE , andk =S' ¢ S° then Proposition 2.3
applies to the projectiog E — E/K ,i.e g. f E= E,G = §%*3= E,, 1K this
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gives g |} ¢ for the Hopf mapg =p2,«1K: S¥*3 — CP,,.1. This proves a half of
Theorem 3.5.

For (f1, f2): E — B an arbitrary pair of maps, wher®@ is assumed to be a man-
ifold, we have (see [1, Theorem 1]):

Proposition 2.4. If f] and f, are homotopic tofi and f>, respectively then
there existsf, homotopic tof, such that

coin(f1, f2) D coin(f1, f5).

Proof. The following is a simple proof. LetB(x B, B x B— A —’S B, where p;
is the projection in the first coordinate. Siné&  is a manifddg [3], this is a fibre
pair. Let H be a homotopy fromy] to fi. This homotopy at the level = 0 has a
liting, namely (f], f3): E — B x B, (f{, f3)(E —coin(f{, f3)) C B x B — A. By the
lifting property of fibre pair, the homotopyl has a liftind’  $uthatH' (-, ¢ )E —
coin(fy, f3)) C Bx B—A, for all t € [0, 1]. In particular,H" ¢, 1)E —coin(f;, f3)) C
B x B— A. HenceH' (, 1) is of the form f, f,). O

Proposition 2.5. Let p: E — B be a fibration andp: E — E a map thenp |
po@ <= p | pog for someyp; >~ ¢.

Proof. If p | p o ¢ then there is a homotopy;, E — B , & r < 1, with
fo = pog and fi(x) # p(x), Vx € E. Sincep is a fibration there is a covering
homotopyg, :E — E withgg = ¢, and p o ¢; = f1. This proves one direction, the
other being clear. O

Remark. If i: A — B is a cofibration andy B — B a map then) ¢y oi <
i || ypoi for somey; >~ .

Corollary 2.6. Let p,St: $2*1 — CP, be the Hopf bundle. 1p,S* || f, then f
is homotopic top, S*.

Proof. The mapf $%*' — CP, lifts to a mapg¢ "1 — §2*! pecause
ppSt: §2'*1 . CP, generatesrs,.+1(CP,). By Proposition 2.5, the map is homo-

topic to a fixed point free map. Hence it has degree one. ]

Proposition 2.7. If p: E — B is a fibration then every map homotopic top
is equal top o ¢, Wwherep: E — E is (a deformatiof homotopic to the identity.

Proof. This follows by the covering homotopy property. U
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Corollary 2.8. We havep |) p if and only if there is a deformatiop: E — E
of the identity such thap(x) # p o ¢(x) for all x € E.

Remark. In Theorem 3.5 we will show that, S* & p,S* for n even. This shows
that p,S* has the property that the paip,(S*, f) has always a coincidence point for
any mapf i.e.p,S* has the coincidence point proper{in the notation of [2],p, S*
is a coincidence producing map). Note tl{@aP, (n even) has the fixed point property
which is the same as the identity has the coincidence poiepty.

Let [A,] € [CP, — CP,] be the unigue homotopy class of maps which
corresponds to the maps inducing in(CP,) multiplication by — 1. We have that
CP, is a simply connected manifold and, if is odd, the Lefschetumber of a
map in the homotopy class is zero. By the converse of the hefgcfixed point
theorem there isA, in the homotopy class which is fixed poine.frln fact we
can define explicitty one such map by the formula,.i[o, 1. ..., &m, Ean+d] =
[—£1, €0, —&3, &2, ..., —&2m+1, E20]. Thus,

Corollary 2.9. Aj,+10 pan+1 IS homotopic topa,+1, Vm.

Remark. Corollary 2.9 shows one of the implications of Theorem 86, if n is
odd = p,S* |} p.S*.

Proposition 2.10. If B = 8", then f1 } f> implies thatA o f> is homotopic tofi,
where A is the antipodal map o

Proof. Let f{ be a map homotopic tg; and f] | fo. Then f{ and A o f> have
distance less tham  so they are homotopic and we Ifave A o f>. ]

E. Fadell and S. Hussein in [4] developed the fixed point théorterms of clas-
sical obstruction theory. Their framework applies also ¢oincidence theory. In most
of cases, the problem of deforming a pair of maps to coinddenee is equivalent to
the problem of showing that certain higher obstructionsisfanAs a first stage in this
direction we compute primary obstructions to deform awalj-s@ncidences, i.e. to
deform (f, f) to coincidence free pairs, whefe E.— B is an arbitrasptiouous
map andB is a compact. In most cases, however, we’'ll have tbvd#a higher ob-
structions. Also under the hypothesis that the domain is-Bl-space, we compare the
obstruction to deform the pairf( gt f g+ ) to coincidence free vilth obstructions to
deform the pairs £, f ) andg(g ) to coincidence free. The backgtomnobstruction
theory can be found in [8] or [11].
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Proposition 2.11. If B is a connected: -dimensional manifo{dompactin view
of Corollary 2.2)and f: E — B, then the primary obstruction to lif¢f, f) in

BxB—-A

|

E——BxB
by deformationis the f* -image of the primary obstruction to Iifid, id) in

BxB—-A

id,id l

B—BxB

by deformation. The latter is the twisted Euler classBofi.e. = x(B)-ug, where x (B)
is the Euler characteristic oB ang p = 71 B-twisted fundamental class.

Proof. That the primary obstruction to lifid,id ) is the Euleristed class fol-
lows from [4, Remark 4.8]. The rest is by naturality. U

Proposition 2.12. Let E be a co-H-space and,g: E — B two maps. If for
giveni an obstructior®’ is defined both fgr and for then also forg, and for
these®’, O (f +g) =O'(f) +O'(g).

Proof. Consider the diagram:

BxB—-A

|

E-">pgvELl% pup—>pB—2 - BxB

The obstruction to liftA o Vo (Vv g ) is the cohomology class defined heg t
sum of two cocycles, ¢, where each oney, ¢, represents the obstruction to lift
AoVol(fVg) restricted to each one of the two copies Bf Ahv E . Hemgge
co represen®®’ f O 4 ), respectively. So the composite with  reEIsO’ 43 ).

O

A variation of our original question arises naturally in odiscussion. Given
p: E — B denote byI'’y, C E x B the graph op . We defin& pair of maps
(f, f): E — B is homotopy disjoint by small deformatioh NT,, the normal bun-
dle of T',, admits a nowhere-zero cross section. It follows frima definition that if
a pair (f, f) is homotopy disjoint by small deformation then ithiemotopy disjoint.
The converse is likely not to be true.
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In the next result we give a homotopy condition which is eglant (f, ) be ho-
motopy disjoint by small deformation. Also, under certaiypbtheses, we show that
being homotopy disjoint by small deformation is equivalémtbeing homotopy dis-
joint. Let f: E — B be a continuous mapt( arbitrary), add a compaffedin-
tiable manifold. Letry be the tangent bundle of the differablié manifoldB ,S 5 )
the sphere bundle ang S:7f - B  the projection map. We have:

Proposition 2.13. The mapf: E — B admits a lift to S(z) if and only if
(f, f) is homotopy disjoint by small deformation.

Proof. The lift provides a nowhere-zero vector field tramsgetoI', . So we
obtain a nowhere-zero cross section of the normal bundle. Gdnverse is similar.
O

Now we will show some results that if a pair is homotopy disjdihen it is also
homotopy disjoint by a small deformation and will be used ur applications. LetE
be aCW complexpy =dinB and I, S"') — (B, B — y) be the inclusion of a
small closedn -dimensional disk around the point

Lemma 2.14. Let f: E — B be a map andH¥E,m(B,B — y)) =
HYE,m(B)) = 0 for k < mo. If mg < 2dimB — 2 or iy: mpu,(D", " 1) —
Tme(B, B — y) is a split monomorphismthen them — th obstruction to hav¢ | f
vanishes if and only if the: — rh  obstruction fof: £ — B admits a lift to S(zp)
vanishes.

Proof. Because of the hypotheses thg-th obstruction is well defined in both
situation. Suppose that the -th obstruction for £ .— B admitsftatdi S(zp) is
zero. Then the magy E — B restricted to the-skeleton, denoted by;, admits
a lift to S(rz), which we denote byf,. Then by Proposition 2.13 the paifi( f1) is
homotopy disjoint by small deformation; hengg |} f1 and them -th obstruction to
have f |} f vanishes.

Conversely suppose thern -th obstruction to haye |} f vanishes. Let
i: (D", S" Y — (B, B—y) be the inclusion of a closed disk agd B,(B—int(D")) —
(8", yo) the map of degree one which takes the subspeent(D") into the pointyo.
The composite induces a mag D'(, " 1) = m_1(S" 1) — mi(S”, yo). It is not hard
to see that this homomorphism is the suspension homomanphi®w we argue by
obstruction theory. Consider the map of padg: (D(tg), S(ts)) = (BXxB, BXxB—A)
given by the exponential map wher® tz( ) is the disk bundle of the-
gent bundle of B . The inclusionsi;: (D", $"Y) —  (D(rp), S(t)) and
i2: (B,B —y) — (B x B,B x B — A) induce isomorphisms in the homotopy
groups. So we can look at the obstructions to lift to the spiemdle and to deform
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to coincidence free having coefficients an D'(, ") and m; B, B — y ), respectively.
Let B € H™(E, n,,,o_l(S"'_l)) be themo-th obstruction to find a lifting taS #z ). Since
J«(B) is the obstruction at dimensiomg to have p ) p, we havej, g ) = 0. Since
the suspension homomorphism is an isomorphismufgr< 2n — 2, we conclude that
B = 0. Finally if ig: ,,(D", S"1) — m,,,(B, B — y) is a split monomorphism, then
H"™(E; w,y(D", S"71)) is @ summand ofd"°(E; 7,,,(B, B — )). O

Corollary 2.15. Let E be them -sphere an®# either a sphere of dimengioh
or 8, or a K(r, 1). Then the following conditions are equivalent
@ rers
(2) the mapf: E — B has a lift to S(z3)
(3) (f, f) is homotopy disjoint by small deformation.

Proof. Since (2) and (3) are equivalent and (3) implies (tljs ienough to show
that (1) implies (2). Let dimension a8  be either 2,4 or 8. ®ithe suspension map
(D", 8" 1) = m_1 (8" — m(S”, yo) has a left inverse forn =2, 4 and 8, see [9,
Introduction] or [8, 21.2], we have in particular that =, (D", S* 1) = 7,.(B, B—Y)
is a split monomorphism and the result follows by Lemma 2.14ldw let B be a
K (7, 1). Call B the universal cover o8 . TheB is a contractible space and the ho-
motopy groupsr; B, B — y ) are isomorphic to; B‘(E —T'), whereI" is a discrete
subset which has the cardinality of the growf(B). But B-T has the homotopy type
of a bouquet of spheres. The inclusion of one of these splem@sesponds to the in-
clusioni : (0", $"') — (B, B — y) and again we obtain thak: =, (D", "% —
mm(B, B —y) is a split monomorphism. ]

ReEMARK. SupposeE is the sphe®" and E:— B is a fibration which has
the property that every great circle is contained in someefibhen f |} f if and only
if the map f :E — B admits a lift toS €5 ) without the hypothesis<  2din 2.
This follows easily from Proposition 2.5 and the uniqueneks geodesic connecting
two non antipodal points in the sphere.

Suppose thaff E — B is a maB( smooth manifolds). Then we have thie ho
zontal bundle with respect to the mgp , denotedfByzg ( ), whictihéspullback of
the tangent bundle oB by . Then we have:

Proposition 2.16. If f: E — B is a map whereB is a smooth manifold then
the mapf: E — B admits a lift to S(zp) if and only if the horizontal tangent bun-
dle f*(rp) over E has a nowhere-zero cross section. Therefore we have(hg)
is homotopy disjoint by small deformation if and only if tharihontal tangent bundle
f*(rp) over E has a nowhere-zero cross section.
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Proof. The second part follows from the first part togethethviRroposition 2.13.
To show the first part let us first assume that £ :— B has a liftStog ( He T
universal property of a pullback together with the liftin§ 6 provides a nowhere-zero
cross section off* 73 ). Conversely let the horizontal tangamidie f* ¢z ) overE
has a nowhere-zero cross section. Then flet be the compdsitdsosection with
the projectionf™* €3 »> 1 . Since the cross section is nowhere-Zgyajividing it by
its norm, if necessary, we get the desired lift pf . [l

3. Principal St and S*-bundles over CP, and HP,, respectively

In this section we discuss self-coincidences for princigabundle maps over pro-
jective spaces wher€ s eithét or S°. In the particular case of the generalized
Hopf bundles we denote the complex ones/pyC: E,C — CP, and the quaternionic
ones byp,H: E,H — HP,. We divide this section into two parts. In Part | we treat
those cases where the problem is solved by using the printstyustion and the main
results are Theorems 3.2 and 3.4. In Part Il we analyze highstructions. Then we
obtain the main results which are Theorems 3.5, 3.9 and Bitigo 3.10.

Part I: The primary obstruction

Let us start with the principas-bundles overB,S* which is CP,. Over CP,,
for each integek , we have thg&'-principal bundlep! :EFX — CP, where the total
space is obtained by taking the quotient $f* by the cyclic subgrou; € S* of
order k. The quotient* |, are the Lens spaées (.1 1) which fibez ©P,.
This bundle p* :E¥ — CP, is the principalS-bundle classified by the magp, —
CP,, which represent& € H>(CP,,7Z) = Z, and which we also denote by . Unless
stated, the coefficients will be the integers.

Proposition 3.1. The principal S*-bundles overCP, are classified by integers,
say EX — CP,, and

Z i=0,2n +1
H(EY=10 i=13...,2— 1.
ZIKZ i=2,4,...,2
Proof. This follows easily from the Gysin sequenceydf . U

Theorem 3.2. pk |\ pf = kln+ 1.

Proof. The primary obstruction to makeX( p* ) coincidence free i
P*(x(CP,).ucp,) = (n + 1).p** (ucp,). From the Gysin sequence (see Proposition 3.1)
Pk (uce,) generates ' (EX) = 7. Therefore if pk ) p the primary obstruction van-
ishes andk|n + 1. |
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Now we look at the symplectic case. Even though the classditaof the
S3-principal bundles is more complicated than in the complage¢ we obtain similar
results. Thes®-principal bundles oveH P, are classified by homotopy classes of maps
into BS® or into HP,. The homomorphism induced by the classifying map of the
S3-principal bundles on cohomology at dimension 4, is multgtion by an integer.
For a given classifying map denote this integerby ( ) andey e Shprincipal
bundle overHP, which is classified by the map

Proposition 3.3. As in Proposition 3.1the total space of thes3-principal bun-
dles p} : E} — HP, classified by the map has

A i=04 +3
H'(E})=140 i=1,235679...., A— 14 +14 +2
Z/k(y)Z i=4,8...,%

Here k(y) is given by the induced homomorphism Aff of the classifying map  of
the principal bundle.

Proof. Similar to the proof of 3.1. U
Theorem 3.4. p) | pl = k(y)ln+1
Proof. Similar to the proof of 3.2. U

Part 1I: Higher obstructions

Now we will consider the remaining principa -bundles whiekre not analyzed
in Part I, which correspond to the values lof ahd ( ) which divid+ 1. See The-
orem 3.2 and Theorem 3.4. We first consider the generalizqef Blandles, in which
casek =1,pl=p,C, andk ¢ )=1,p; =p,H.

We consider first the complex case.

Theorem 3.5. We havep,C |} p,.C <= 2n +1

Proof. Letn be odd. By Corollary 2.9 follows that, o p, is homotopic p, .
Since they are disjoint followg,C |} p,C. For the converse assume thatC | p,C.
By Proposition 2.16, Lemma 2.14 far > 1 and Proposition 2.16roflary 2.15 for
n = 1 there is a nowhere-zero section of the horizontal buntite fact that the ver-
tical bundle is trivial, implies the existence of at leasbtlinearly independent vector
fields over the spher§?*1. By the formula which gives the number of vector field on
the spheres (see [5] Theorem 8.2 page 156) we must mave +1 even O
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For the quaternionic case we give a description of the hot&obundle of the
fibre map.

Proposition 3.6. The horizontal tangent bundle of the projectipps®: E,S° —
B,S® is isomorphic to(Sp(n + 1) x H")/SHn) — S**3. Sf(n) acts on the left ofd”,
in the obvious wayand on the right of S + 1) by multiplication by the inverse.

Proof. Consider the evaluation map frddu(nz + 1) x H" to the horizontal bundle.
Namely, givena € Spn + 1) andv € H" thenw @) is a vector which is perpendicular
to the symplectic subspace generatedoby,.1§. So it is an element of the horizontal
bundle, and the result follows by routine argument. U

For the sake of clarity we will start by studying the Hopf fitioa, piH: S* —
54,

Proposition 3.7. We havep;H f p1H.

Proof. Since the base of the bundle is the sph&teby Corollary 2.15 and
Proposition 2.16 the claim is equivalent to the non existeot a nowhere-zero hor-
izontal vector field. We consider the clutching function dfet principal fibration
SH1) — S{H2) — S7 which is a map fromS® into S1). It is not hard to see
that when we compose the inclusion 8f(1) into SQ4) followed by the projection
onto S, we get a map homotopic to the identity, after ident8g1) with S°. So the
composition of the clutching function with the compositiabove is homotopic to the
clutching function, which we know is not trivial. In fact isia generator ofrg(S%).
So the bundle does not reduce. ]

Remark. The argument used in the proof above shows that if we repB(®)
by any non trivial S3-principal bundle overs?, then the associated 4-dimensional vec-
tor bundle R* over S’ does not reduce.

Now we will prove the remaining cases in the symplectic $itula namely when
the fibre maps arg, S€)n > 1.

Proposition 3.8. p, 1H |} p,_.1H <= the homomorphismt,, »(Sgn — 2)) —
a—2(SPn — 1)), induced by the inclusion $p— 2) — Spn — 1) is a bijection.

Proof. The bundles in question satisfy the hypothesis of man®.14. So by
Proposition 2.16 the first condition is also equivalent te #xistence of a nowhere-
zero horizontal vector field. We have already seen in PrtipasB.6 that the horizon-
tal bundle is isomorphic toSgn) x H"~1)/Spn — 1) — S*~1. The clutching function
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for this vector bundle is the compositicsf~2 %> Sp(n — 1) — SQdn — 4) where
the first map calledp, is the clutching function for the priradipundleSpn — 1) —
Spn) — S*~1 Let ¢, denote the composite map. We want to decide whether the

map al‘l

SQ(4n — 5)

g2 sQan — 4)

|

S41175
factors throughSQ4n — 5). From the commutative diagram of fibrations

Spn — 2) — > SQ4n — 5)

|

Sn — 1) ——= SQ4n — 4)

l |

S41175 —>-: S4"*5
by taking the long exact sequences in homotopy, we get themuaative diagram

Tan_2(SEn — 2)) ——— 14, _2(SAn — 1)) P J.[4"’_2(5411,—5)

l l |

Tan-2(SQUn — 5) —— 74y 2(SAdn — 4)) —> 714, _5(S*~5) —

and ¢, factors throughSQ4n — 5) if and only if p., is zero. The first row above,
which is the exact sequence homotopy associated with thetibbrSg(n—2) — San—
1) — §*5 becomes:

s 7.[4’171(5411,—5) — 74,_2(SAn — 2)) — m4,_2(SHn — 1)) — 7.[4’172(54/1—5) .

where the first group is the 4-stem homotopy group of the sphehnich is zero,
see [9]. So follows that the induced homomorphisi_,: 74,—2(SHn — 2)) —
ma4,—2(SPn — 1)) is injective. The clutching functionp, of the principalurdie
Spn —1) — Spn) — S*~1is a generator of the cyclic groups,_(Spn — 1))
by [10, Theorem 2.2]. Therefore this element is in the imafehe homomorphism
if i4,_2: au_2(SEn — 2)) = ma,—2(SHn — 1)) is surjective. ]
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By using the knowledge of some metastable homotopy grouSpaf we have.
Theorem 3.9. p, 1H |} p,_1H <= 24n.

Proof. We divide into two cases. Suppose first that is even.thgy previ-
ous Proposition we have that it suffices to see when the twapgras, »(Spn — 2))
and w4, 2(SPn — 1)) have the same cardinality. By [7] and [6] we have that
Tan—2(SHn — 1)) = Zo 2u—1y and mwa,—2(SHn—2)) = Zu—1)1. 24)y 12 T€SPeECtively, where
(n,24) is the g.c.d. oz and 24. Therefore the two groups havestime cardinality
if and only if (n, 24)/ 12 = 2, that is, 24 .

Therefore the first group has cardinality strictly bigged ame have thatp,_1H f
pn—a1H. If 24|n then the groups have the same cardinality and the tréslidws.

Now suppose that is odd. By [7] and [6] we have that_»(Spn—1)) = Z2.—1y
and 4,—2(SHn — 2)) = Zon—1)1n,24)y 24 respectively. So the first group has cardinality
greater than the second. ]

From the proof above we can see that the image of the genertatey, _»(SHn —
2)) in ma—2(Spn — 1)) is equal tow, - 24, 24). This might have some relation with
the higher obstruction which is an element in the graup.»(S*—1) = Z,4 for n > 1.

Remark. The result above shows that, at least in the case is notill&is
by 24, no non-vanishing tangent vector-field $f# ! is transverse to the vertical bun-
dle. E.g. no nontrivial linear combination of the n(4-) 1 fieldstransversal to the
vertical bundle, wher@ n{ ) means the number of linearly irselent vector fields on
the spheres” . Note thato f: ) is always greater than 4nif is divisible by 8.01

Finally, using the results above we analyze some cases whetd is a divisor
of n+1 and the principal bundle is ovéip,.

Proposition 3.10. Suppose that one of the conditions below holds
(1) n is odd greater thanl, and & is odd
(2) n is even
B) n=1
Then we havep! | pl < we havept | p.

Proof. The universal cover of the spa& is the sph#él; let p: "1 —
EX be the covering map. This is a map of degkee  and the compdsitevdth pt
is pl. By standard obstruction theory, we have thgt®@("(pk)) is the obstruction
to have p! |} pl. The mapp* is multiplication byt and the obstructions lie in the
groups H*Y(EX, R) and H>'*Y(§?'*1, R), respectively, where all these groups are iso-

morphic to the coefficienR . The coefficie® , by [4], 43,+1(CP,, CP, — y). In or-
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der to compute this group, first observe that we can replae— y by CP, 1, since
the inclusionCP, ; — CP, — y is a homotopy equivalence. Because the fibrations
§#-1 5 CP,_; and $?'*' — CP, have the same fibre, follows that the group in ques-
tion is isomorphic tom,,+1(S?**1, $2-1). Since the inclusiors?*~! — §2*1is homo-
topic to the constant map $2~! — §2*1 the homotopy fibre of the constant map
is §2-1 x QS§%*1 Therefore it follows thatr;+1(CP,, CP, — y) = m; (%1 x QS§2*Y
for all i > 0 and in particularry,+1(CP,, CP, —y) is equal toZ,+Z for n > 1 andZ
for n = 1. To finish the argument, first take = 1. Since the coeffitiR is isomor-
phic to Z, multiplication by k in R is injective. So we havg* |} p* if and only if
pL N pl. In the remaining casek is always odd and multiplicationkb injective.

]

As a corollary of the Theorem 3.5 and Proposition 3.10 we have

Corollary 3.11. If n is evenp* f p* for arbitrary k. If eithern =1 and k = 2,
or n and k are odd then p ) pX.

Remark. 1) It is not clear how to extend Proposition 3.10 to the queadmic
case.
2) In the next section Corollary 3.11 will be slightly impexV.

4. The multiple of certain bundle maps

Consider the generalized Hopf bundlpsC: $'*' — CP, and p,H: $¥*3 —
HP,. In this section we study the following question: determihe integersx 1 ) such
thatw (2 ) p, R «(n).p., Where p, denote the fibre map. Finally, as result of the tech-
nigues used, we make some improvement on Corollary 3.11.

We start with a general result.

Proposition 4.1. Let f: S" — B be a map into a manifoldd where is differ-
ent from2dim(B) — 2 if the dimension ofB is even. Thethere is a numbel such
that we havege- f, o- f) homotopy disjoint by small deformation if and onlyife [.7Z.

Proof. By Proposition 2.13, the pairg ( f,«a - f ) which are homotofsjotht
by small deformation are precisely those belonging to theeédeof the boundary ho-
momorphismd , B )} m,_1(S" 1) of the long exact sequence in homotopy of the
sphere bundle of the tangent bundle ®f . But by hypotheses ,/ (mn=21)—-1
which implies thatr,_1(S" 1) is finite. Ol

Corollary 4.2. The obstructions to deforrff, f) and (f’, f’) to coincidence free
lie in the torsion part of H'*Y(S%**1 7 + 7Z,) and H**3(S*'*3 7 + Z,,), respectively
forn > 1and f: §%*1 - CP, and f': $**3 — HP, arbitrary maps. Forn = 1 in
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the quaternionic case the group referred aboveHs$(S’, Z + Z1,).

Proof. The obstruction to deform the pair f,/.f ) coincidenceefre! times
the obstruction to deform the pairf,(f ) coincidence free bypBsition 2.12. Since
by Proposition 4.1, the obstruction to deform the pdirf,(.f )ishes for some
integer! , the result follows. For the symplectic case let wst ftalculate the group
where the higher obstruction lies. Following [4], this gpois H*'*3(S**3, R) = R =
Tan+2(S¥1 x QS**9) (in fact w1 (HP,, HP, — y)=m;(S* 1 x Q5%*3) for all i > 0)
which is equal taZy4+7Z for n > 1 andZq,+7Z for n = 1. From now on this is similar
to the complex case. [l

Since by the previous sectign,S* |} p,S* for n odd we are only interested in the
casen even.

Proposition 4.3. If n is even thenp,C |} Ip,C <= 2|i.

Proof. We know thatp,C { p,C. This together with Corollary 4.2 above tell us
that the obstruction to deform the pair to coincidence fies in Z,. The obstruction
of [. f will be zero if and only ifl is even. U

For the quaternionic case we have only a weak version of Ritipo 4.3. As re-
sult of Theorem 3.9 we assume that 24 does not diwide + 1.

Proposition 4.4. If n+ 1 is not divisible by24 then
(1) IpaH ) IpaH if 121
(2) For n> 1, Ip,H | Ip,H if 24)l.

Proof. Corollary 4.2 tells us that the obstruction ggH |} p,H lies either in the
group Zy4 or Zio. Then we apply Proposition 2.12. O

Now we make one last application of Corollary 4.2 which im@® Corol-
lary 3.11.

Proposition 4.5. Let £k be an integer such tha dividesn + 1. Then we have
k k
Py Py

Proof. First observe that the obstruction to deform the pgjr p¥) also lies in
the torsion part of the correspondent cohomology group. & this, as in the proof
of Proposition 3.10, we have that the covering n&p*™* — EX induces a map in co-
homology at dimension/2 +1 which is multiplication By , andrizss the obstruction
to deform @, p* ) coincidence free into the obstruction to defdh, pl) coincidence
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free. Since the last one belongs to the torsion part by Goxol.2, the first one also
does. Now consider the two fold cové — EZ. This map in cohomology takes the
obstruction forp?* into the obstruction fop* and the map is multiplication by 2itB
the obstruction forp? is torsion annulated by multiplication by 2. [l

Remark. Let 2 be the highest power of 2 which divides + 1. The Proposi-
tion 4.5 together with the other information from Sectionellst us that if one knows
the answer forp? then one has the answer for all cases.

Appendix

Let H: S*® — 58 be the Hopf fibration defined using the Cayley multiplication
We show thatH {® H. The same proof works for the quaternionic Hopf fibration
H: 8" — S% It is not clear how the method used in the proof here, couléxiended
to the S3-principal fibrationss**3 — HP". Also we do not see how the method used
in the Theorem 3.9 could be applied to analyze the fibrafions'®:— &,

Proposition. We haveH § H for the Hopf fibrationH : §° — S8,

Proof. If we haveH |} H, let H' be homotopic toH and{ | H . TheA o
H': §¥ — S®is homotopic toH by Proposition 2.10, where is the antipodapm
By the formula given in [11, section XI Theorem 8.5], and ttte¢ Whitehead product
[ts,t8] =2H — v, see [9, Propositions 2.5 and 5.15], we have thatH H =1v . So
we cannot haveHd || H. ]
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