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Abstract

The « -parabolic Bergman spade is the set of allp -th integrable solutions
of the equation(d/dr + (—A)*)u = 0 on the upper half space, whefe< o < 1
and1l < p < oo. The Huygens property for the abowe will be obtained. After
verifying that the spacé? forms a Banach space, we discuss the fundamental prop-
erties. For example, as for the duali?)* = b2 for p > 1 and (b2)* = B,/R
are shown, wherg is the exponent conjugatgpto /gpds the o -parabolic Bloch
space.

1. Introduction

Let R"*! denote the { + 1)-dimensional Euclidean spagex( 2) ahd be its
upper half space

H={(x,1)eR"™: xeR", >0}
For 0< o < 1, we consider a parabolic operator
a
L@ = — +(=A)
5 T (=4)
on H, whereA is the Laplace operator with respecito . When E<,is the heat

operator. OtherwiseL® is a non-local operator.
For 1< p < oo, we denote by’ the set of all solutions oL.®u =0 on H such

that
o0 1/p
lullr(ay = (/ lu(x, 1)|” dx dt) < 0.
O Rn

It is shown thatb), is a Banach space under the norm || »). We call by
the « -parabolic Bergman space (of order ), becaliée has parabolic nature.
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In this paper we study the properties of solutionsiéfu =0 on H in the frame-
work of the Bergman space theory. One of our main results ishtaw the following
identity: for u € bf,

(1.2) ule,t)= | ulx—y, t—s)WO(y,s)dy

Ry
whenevert > s > 0. According to the heat operator case [12], we (hll)
the Huygens property for . Since all solutions bf)u = 0 form a balayage space
(cf. [2]), we make use of potential theory method for the prob (1.1). In particu-
lar, the theory ofe -harmonic measures is useful ([4] and.[lfj)the sequel, we call
a solutiony of L@y =0 an L®-harmonic function.

Our study is motivated by recent results [10] and [13] of hamio Bergman
spaces on the upper half space. We remark ¢hat -parabolgnier space is a gener-
alization of the harmonic Bergman space. In fact, (1 2)dpalia Bergman spaces co-
incide with harmonic Bergman spaces, because in the gase / ,=tHe Zundamental
solution of L%/?) is equal to the Poisson kernel ¢t (see Corollary 4.4 below).

Based on the Huygens property, we shall discuss the folpwsubjects:
the boundedness of the point evaluations, the explicit fofrthe « -parabolic Bergman
kernels, the dual space 6f, the o -parabolic little Bloch space and the pre-dual space
of b. The estimates of the fundamental soluti# of L play crucial roles in var-
ious contexts.

2. L®@-harmonic functions

In this section, we discuss mainly in the case<Oa < 1, becausedhe-
sponding results are well-known in the case =1 (e.g. seeri@][41]). For an open
set D inR"™, let C¥(D) denote the set of all infinitely differentiable fuimts with
compact support o . In order to defifié-harmonic functions, we shall recall how
the adjoint operatod.© = —3/dt + (—A)* acts onCP R™?Y). For O< a < 1, A Y
is the convolution operator defined byc,,  plf|~™ =%, where

+ 20
Cn,a = _4(x]_[—n/21—~ <—n 2 ) / F(—(X) > 0

and |x| = @2+ .. +x2)Y/2 Hence forp € C¥ R™Y),
7 () — 0 ; —n—2a
L¥¢(x, 1) = ——@(x, 1) — cpo liM (p(x +y,1) — @(x, 1))yl dy.
ot 540 Jiyi>5

It is easily seen that if supp( ), the support@f , is contaimeflx| <r, 1, <t < t3},
then

(21) |Z(°‘)¢(x, f)l < 2’”20{6'/1,0( < sup |¢(y’ S)| dy> . |x|—n—2a

n<s<ty JR"
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for (x, ¢) with |x|] > 2r. Remark also that
L9p) = ,L(p) and L@(d,9)=0,,L(p) for j=1,....n,

whereo, =d/0t andd,, /0x; .
Now we give the definition ofL®)-harmonicity. For an open sdb  iR"*%, we
put

s(D) :={(x,1) e R™; (y,1) € D for somey € R"}.

Since supp{®)¢) extends tas P ) even if supp(AQD , we can defih&)-harmonicity
on D by duality only for the functions defined onD( ).

DerinimioN 2.1, A funcion/ is said to bed.(-harmonic on an open sé , when
h is defined ons D ) and satisfies the following conditions:
(&) h is a Borel measurable function enD ( ),
(b) h is continuous onD ,
(c) for everyp € C¥ ©), [[,py Ih- LWl dxdr < oo and [, h- L@ dxdr = 0.
Remark 2.2. When O< o < 1, the inequality (2.1) implies that the inteditgb

condition in (c) of Definition 2.1 is equivalent to the follavg: for any closed strip
[t1, 2] x R" C s(D)

7]
(2.2) //|h(x,t)|(1+|x|)_"_2"‘dxdt<oo.
n R"

The following lemma will be useful in the Section 4.
Lemma 2.3. Letv be L®-harmonic onH. If v =0 continuously on the bound-

ary 9H =R" x {0} and if f(f Jre W(x, D)L +]x]) "> dx dt < oo for somes > 0, then
the functionV defined by

t
V(x,1) :/ v(x, 1) dt
0
is also L®-harmonic onH.

Proof. If « = 1, the lemma is clearly true, so we assume<Ox < 1. Take
arbitraryp € C¥ H ). Then

/ / V(x, )L®o(x, 1) dx dt
0 n

[ee] 12
= / / / v(x, 1) dtLWo(x, 1) dx dr
0 » Jo
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= /000 / v(x, )e(x, t)dx dt +‘/000 /Ot / v(x, T)(—=A)*o(x, t)dx dt dt.

To calculate the second integral of the last line, rfix 0. Codesng aC™ approxi-
mation of the indicator function of the set,[0 ], we see

‘/Ot /R" v(x, T)(—A)*¢(x, t)dx dt = /Rn (w(x, 0) — v(x, 1))@ (x, 1) dx.
Sincev , 0) =0, we have therefore
/000‘/” V(x, ) L®¢(x, 1) dx dt =0
and L@-harmonicity of V follows. 0

The fundamental solutio®@ of L© is

(2:1)‘”/ expt[E|* +/=1x - &)dE t > 0
Rn
0 t <0,

(2.3) W(x, 1) =

wherex - £ is the inner product of ard amg &-¢ Y?) Then
W (x, 1) = W (x, —1)

is the fundamental solution af@.
In the casex = 1WW is the Gauss-Weierstrass kernel

_ |x|?

n/2 =

WO(x, 1) = (4rt) exp( A ) t>0
0 t <0

In the casex =1 2W®/2 is the Poisson kernel (cf. [1, p.74])

nrl ! t>0
(2.4) W2 (x, 1) = 2 ) xp+yevz '~
0 t <0

The harmonicity of W/2 derives a close connection betweéf?-harmonic
functions and usual harmonic functions dh (see Corollady Helow). For other
« € (0, 1) any simple explicit expressions fov @ are not known.

Note also thatW@(x, ) > 0,

(2.5) WO(x -y, t —s)dx =1
R”
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and for every O<s <t

(2.6) WO, )= [ WO —y, 1 —s)WE(y, 5)dy.
Rn

When we put

(2.7) ¢u (x]) =W (x, 1),

then fort > 0O,
(2.8) WO (x, 1) = /@, (1Y @)|x))

ande, ¢) =0 ¢"~%) when O< o < 1 (use (3.3) below), anph(r) = O(exp(-r?/4))
asr — +oo . Further estimates ¥ will be given in next section.

Since W®(x — y, t)dy converges vaguely to the Dirac measurexat ras +0,
we see the following convergence result.

Lemma 2.4. Let f be a continuous function oR". If f belongs toL”(R")
with 1 < p < oo, then for everyx € R",

im [ WO = 5070 dy = £

t—+0 R

The fact thatWw@ is L@-harmonic off (Q 0) is important. In fact the following
assertion follows from this.

Proposition 2.5 (see [9, Proposition 10]).If u satisfies the Huygens property
that is for everyx e R and0 < s < ¢,

u(x, 1) = / ulx —y, t — s)W("‘)(y, s)dy,
Rll
thenu is anL®-harmonic function on#.

3. Estimates of fundamental solutions

In the sequel, we use the following notations. Bor 0 and atfoncf on H,
we write

Tsf(x,t) == f(x,t+3).

Then Ts f is a function orR" x (=6, o0). Let k be a nonnegative integer antd
(B1, ..., Bn) € N§ be a multi-index, wherdNo =N U {0}. Then|g| =1 +---+ B, and

glBI+k

HECOES 1),

xfl - dxPr ok
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Using the above notation, we start with the following edqyakvhich follows
from (2.3) easily.

(3.1) Pl 3tk w@ (x,1) = f(("+\/3|)/(20t)+k)(3/33/< W(a))(fl/(%)x, 1).
The following estimate ofW @ plays an important role in our later argument.

Lemma 3.1. Let (B8, k) € Nj x No. Then there is a constar@ > 0 such that for
every(x,t) € H,

(3.2) 1920F W (x, 1)| < 1R (e + x| 2)~CrHIAD/ @)=L
Proof. Forxp=(1,0,...,0)e R", we put
Valt) := W (xo, 7).
Then it was shown that
(3.3) Yet)=0¢) as t— O
in [5, Lemma 2.1]. The argument which was done there gives ftitaevery k € N,
(3.4) v ®(r) is bounded on (0 .)

In fact, as in [5] we have

000 = oy @y [ ( [ |$|2“ke—s'€'za(é)ds) do(s)

where v is the Fourier transform of the normalized uniformas@ev on the unit
sphere andd® ;)0 is the one-side stable semi-group on46 ) (see [1, p.74])sThu
(3.4) follows if we prove that

W(s) = /R g (E) g

is bounded on (0o ).
In the case thatvk is an integer, we have

W(s) = (20 )'72(=A)" (g5 * v)(0),

where g, &) = W®(x,s) is the Gauss-Weierstrass kernel. This formula shows
the boundedness of
If akis not an integer, we také e N such that— 2< @k — P< 0. Then

W(s) = (20 2enani(=A) (1xI "2 72%) % g, % v)(0)
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= (21 Y%cnan-i{(@(x) (x| 722K 5 ((— A) g5) * v)(0)
+ (=AY (1= @) (x| " 2%)) % g % 1)(0))
wherep € C¥ R") with 0 < ¢ < 1, suppg )C {|x| < 1 andp =1 ofijx|] < /1}3,
andc, gi—; =— &' "2T ((n+20k — 21)/ 2))T (—ak ). The boundedness &  follows

even if ek € N.
Now we return to the proof of (3.2). Sinc& @ (x, r) = |x| ¥, (Ix|"%1), we have

LA WO (x, 1) = 38 (x|~ 2*y B(1x|7>1)),

so that
(0L W)(x, 1) =8 (be| "> *y O (1x|72)
= (g/)af’(|x|"Z“k)af”(wé”axl2‘”)).
B=p'+p"
It is easily seen thav! [{|™24) = O(x|™"24-1F1) and 9/ @O(x|2)) =

O(|x|™"#"1) as|x| - oo . As a result, we have
(3.5) |@P* W) (x, 1)| < C|x|™""2~1F1 as |x| — oc.

Remark that (3.5) remains true for the case =0 because of (3ehce (3.1) shows
that if |x| > t¥@), then

|aﬂafw(a)(x N t—((ﬂ+lﬂl)/(2ﬂ)+k)|(3ﬂa[kw(0t)(t—l/(2a)x 1)|
X ’ X ’
< Ctlfk|x|7nf2af|/3|

by (3.5), and if|x| < t¥®), then

|afatkw(a)(x’ t)| — t—(/l+lﬂl)/(20t)—/<|(afatkw(a))(t—l/(2a)x’ 1)|
S Ct*("'"lﬁ‘)/(za)*k

by the boundedness ¢fafaf W@)(:—Y/@)x_1)|. These inequalities imply (3.2). [

We note here that T. Kakehi and K. Sakai gave an alternatigefpsf (3.5) ([6]).
As for the L4 -norm of derivatives o @, the homogeneity (3.1) gives us the fol-
lowing identity.

Lemma 3.2. Let(B,k) e Ny xNp and letg > 1. If ¢ > (n+2a)/(n +|B| + 2xk),
then there is a constanf > 0 such that for anys > 0

(3.6) 080K Ty W Loy = €8 HIB/@)H)+e/ @)+ (¥g )
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Proof. Noting that Lemma 3.1 ensures the integrability, vikaim the equality
immediately. [l

4. Huygens property

We have seen in Proposition 2.5 that every Borel measuralletibn satisfying
the Huygens property i4©-harmonic onH . In this section, we shall prove the con-
verse assertion fop -th integrable®-harmonic functions. This result will be very
useful in other contexts as well.

Theorem 4.1. LetO <o < land1 < p < oo. If an L®-harmonic functionu
on H belongs toL?(H), thenu satisfies the Huygens propertiat is

(4.2) ule,t)= | ulx—y,t—s)W(y,s)dy
Rn
holds for everyx e R” and0 < s <t < oo.

The next two lemmas will be used in the proof of the above theorThe first
lemma is concernind.®-harmonic measures. Ford«o < 1 and- 0, put

0 if |x|<r

wy (x) = n a7

—  ifIx|>r
(K2 =gy =7

wherea, , =T @/ 2r~"/?>"1sin(ra). We know thatw® £ ¥x is the balayaged measure
on {|x| > r} of the Dirac measure at the origin with respect to the Riesnel |x|*~"
(see [4]). Recalling the equality

00 0
(4.2) Cn—o|x|2" = / W (x, 1) dr :/ W (x, s)ds,
0 —o0

wherec, _, = &*77"?T'((n — 2a)/2)/T (@) (cf. [1]), we see the following relation
between the above balayaged measure and.ffleharmonic measure.

Lemma 4.2. Let 0 < « < 1 and let v* be the L®-harmonic measure at
the origin on B,(0) x R, where B,(0) is the ball of radiusr and cented in R". Then

(4.3) /Aw‘r"(x)dx =vY (A x (—o0, Q])

for every Borel setA irR".
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Proof. Since the L®-harmonic measurev® is the balayaged measure on
{Ix] = r} x (—oc, 0] of the Dirac measure at the origin with respectig®,

0
W@y, 5) = f WOy — x5 — 1) dv*(x, 1)
[x|=r J —oc0

holds for |y| > r. Furthermore, by [5, Proposition 4.2 (2)], thisuality holds

for |y| = r, because every boundary point is regular with respedt®. Now we de-

note by u, the measure oR" defined byu, A ) =v* A x oo, 0]). Then by (4.2),
for |y| > r,

0
ol y2 " = / W (y, 5)ds
o0

S f 900 nasia) o
- /xlzr /ZO (/;O W =y, 5 —1) ds) dve(x, 1)

=Cn—a / lx — .V|20(_n dpr(x).
[x[=r

On the other hand, since? x (dy is the balayaged measurgxom r} vafece
to |x|2~", we have

Iy = / I — y 2w (r) dx
|x|=r

on |y| > r, and by the reason similar to above, this equality alsdshoh its bound-
ary {|y| =r}. Hence

(4.9) / I — P () = / x — Y (x) dx
[x|=r

|x|=r

on |y| > r. Since the support of both measurgs antlx df ) is contained
in {|x| > r}, the domination principle ([2, Corollary 4.13]) impligkat (4.4) holds for

all y € R". Finally the unicity principle for the Riesz kernel ([7, Tdrem 1.12]) gives
the equality (4.3). O

The next lemma is an estimate of the functiﬁﬁ defined by

e 2R
wi(x) = %/R wy (x)dr (R > 0).
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Lemma 4.3. Letl < p < oo. Then there is a constarif > 0 such that for every
R >0,

IIIE% | Loy < CR™P,

whereg is the exponent conjugate o

Proof. We takex withjx] > R . IfR <|x|] < & , then we have

r2a 261,1’0, 3r1+4o¢

Jx|
an,a 2a —n—20
dr < ——R%“|x| "%
il GE B

wh(x) <

Next if |x| > 3R, thenw® )< (9 5Ja,.R*|x| "% becauseR < r < R .
Hence whenp =1, theg =0 and the lemma holds clearly. Whea p < oo
using the above estimates, we have

o0
/ uﬂ)\‘;’Q(x)q dx < C/ R4 p—32gn=14, — cp—1a—1)
n R

with some constan€ > 0. O

Now we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. In the case that = 1, the assertion isvikn(see
for example [11, Theorem 3.6, p.76]) and in the case o= , thertiss follows
from [9, Proposition 11]. Hence we may assume that @ < land p < o0

Remark that for anyg > 0, there exists G § < §g such that
us( -,0) e LP(R"),
whereus ,t) :=Tsu &,t ) =u ,t +5 ). Define the function by
v(x, t) == us(x, t) — is(x, 1),
where
iis(x, ) ::/R W (x — y, r)us(y, 0)dy.
Then v is clearlyL®-harmonic onH and by Lemma 2.4, vanishes continuously

on the lower boundanR”" x {0}. By the Minkowski inequality,|lus ¢ .t )rr@rr) <
lus( -, 0)llrrmy, SO that the Holder inequality shows

5
/ liis(x, 1)|(1 + |x| )"~ * dx dt < oo.
0 Jre
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By definition us also satisfies the same inequality, so that Iigilthe assumption
in Lemma 2.3. Hence

V(x,t):= /(;[ v(x, 1) dt

is L@-harmonic onH . LetX,t ¥ H be fixed. Then thé®)-harmonic measure{")
of a sylindero =B, § )x (0r +1) can be written as

V5 =050 g, et + 08 s, wx 0,
where the first term in the right hand side is

V(Y = X, 8 — O)l{ly—x|zr, ~1<5-1<0}

and the second term is absolutely continuous with respecthéon -dimensional
Lebesgue measur¢y  whose density is boundedV)(x — y, r). SinceV ¢, 0) =0,
by (4.3),

0
|V(x,t)|=‘/ [ vesriean.s
|y|=r J—t

i -/Ot </|}'|>r /TO, o(x +y. D)l dvi(y. S)) dt
< ‘/01 </|y|zr lu(x +y, T)|wf{(y)dy> dr

so that

t
V()] < /0 / (. T B(x — v)dy dr.
RII

Therefore by the Holder inequality and Lemma 4.3, lettiRy— oo we have
V(x,t)=0. Sincev §,r ) =0,V £,¢t)=0,

us(e, 1) = [ W (x —y, u(y, 8)dy.
Rn
By (2.6), the right hand side satisfies the Huygens propedydoesu becaus is
arbitrary. O

Recalling (2.4) and Proposition 2.5, we have the followintgiesting corollary of
the theorem above.



144 M. NisHio, K. SHIMOMURA AND N. Suzuki

Corollary 4.4. Letl < p < oo and suppose that € L?(H). Thenu is an
L®2-harmonic function if and only ifs is a usual harmonic function H.

Remark 4.5. Throughout this paper we always assume that 2. The measo
is that some arguments in this section are not valid for thee ga= 1. For example,
(4.2) does not hold i =1 and/1 2@ < 1 (cf. [1, p.135]).

5. a-parabolic Bergman spaces

In this section, we shall define -parabolic Bergman spacesdistuss some ba-
sic properties.

Derinmion 5.1, For 1< p < oo and O< o < 1, we denote iy} the set
of all L®-harmonic functions orH  which belong t” H( ). The spddeis called

the « -parabolic Bergman space (of order ).

To show the closedness &, in L?(H), we use the following boundedness of
point evaluations.

Proposition 5.2. Let1 < p < co. Then there is a constanC > 0 such that for
everyu € by and every(x,t) € H,

(5.1) u G, 1) < Cllull Loyt~ /@I DY),

Proof. If p =00, thenju &, ) < [lull.~), Which is the assertion of the lemma.
We suppose k p < oo . For fixed 9 a1 < ay < 1, the Huygens property (4.1) gives

u(x,t) :/ ulx —y, t —s)W(y, s)dy (t>s>0)
1 ast
:7/‘ / ulx —y, t —s)W(y, s)dy ds.
(a2 —a)t Joy Jre
Then using (3.2), we have
u(x, )] < Cllull Loyt ™/ CDAP), U

The next theorem implies thdt, is a Banach space under tii¢  -norm.
Theorem 5.3. Let1l < p < oco. Thenb is a closed subspace df*(H).
Proof. By Proposition 5.2, thé.? -convergence implies thefaunmi convergence

on R" x [t1, 00) C H for everyr; > 0. Hence the limit function of any.” -convergent
sequence inb; is continuous and satisfies the Huygens property. The rdsildws
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from Proposition 2.5. O
It follows from the Huygens property thadf, c C*°(H), whereC* {# ) is the set
of all C*-functions onH . Furthermore, as in the proof of Proposi 5.2, we have

the following estimate for point evaluations of derivatve

Theorem 5.4. Letl < p < oo and (B, k) € Nj x No. Then there is a constant
C > 0 such that

(5 2) |3ﬂ8,ku (x t)| < C||u||LP(H)t—(lﬂl/(th)+/<)—(ﬂ/(20t)+1)(1/17)
. X s =
for any u € b, and (x, ) € H.

The following norm inequality is also established.

Proposition 5.5. Let1 < p < oo and (B, k) € Nj x No. Then there is a constant
C > 0 such that for every: € b,

(5.3) VPV DB ul| Lorry < Clluell Logar)-

Proof. By the Hyugens property,

Bfatku(x, 1) = / ulx —y, s)(afa,kW("‘))(y, t—s)dy
RII

for everytr > s > 0. Hence, taking @ y < 1 amnd 7 , we have

889k u(x. 1) = /R u(x — y. y) @ EW)(y, (L— y))dy

= (@) e [ = (@ @z a1
RI

U

Thus the Minkowski inequality yields

[PV QB k|| Loy < (1 — ) (AI/@*),, =1/p ( / (@28 w)(z, 1)| dz) Nl 2o gary-
Rll
]

Finally we discuss the integrals over the hyperplafres =taofis The following
lemma is interesting in itself.

Lemma 5.6. Letl < p < oo. For u € bf, the functiont — [lu( -, )| rrgn is
decreasing on0, co).



146 M. NisHio, K. SHIMOMURA AND N. Suzuki

Proof. Taket, > r; > 0. By the Huygens property,

u(e, )= | ulx —y, )Wy, 12 — t1) dy.
Rll

The Minkowski inequality gives that
lu( - 2)llzorey < / lu - )o@y WO (v, 12 = 1) dy = lu( -, )y, O
RII

RemarRk 5.7. For 1< p < oo, we define the -parabolic Hardy spageon H
as follows:

h? = {v; L®-harmonic onH and supu( -, 1)||Lrg) < oo} )

t>0

Then as a corollary to Lemma 5.6, we see tiiat € hl for everyu € b, ands > 0.
The next result is called the cancelation property.

Proposition 5.8. For everyu € b1 and everyr > 0,
(5.4) / u(x,t)dx =0.
Proof. By the Huygens property, we have

u(y,t+s)= u(x, YW (y — x, s) dx.
R”

Integrating the both sides by and then , we find

T T
/ / u(y,t+s)dyds 2/ / u(x,t)dxds = T/ u(x,t)dx.
0 n 0 n R"

Since the left hand side converges®s—> oo, (5.4) follows. U

Remark 5.9. This proposition shows th#l does not contain any nonzero non-
negative element. More generallpl, contains a nonnegative  such that / = 0 if
and only if p > @ + 2x)Yn. This condition is related to (3.6) in Lemma2 Xor
(B, k) =(0, 0). Using Lemma 3.2 again foB(k )=,00 2), we have

NELW Ol _ o sosarnwe-va)
102Ts W || Lamy

for all § > 0. Hence the closed graph theorem tells us that thenmoiinclusion rela-
tion betweenb? and bl for p #gq.
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6. «-parabolic Bergman kernel

Since the point evaluation is boundebf, has the reproducing kernel. In this sec-
tion, we shall prove that the kernel

(6.1) Ry(e,1:y,8)=—2,WO(x — y, 1t +5)

is the desired reproducing kernel df2 (see Remark 6.5 below). We cak,
the o -parabolic Bergman kernel.
Form =0 1 2..., we also use the kerng}! defined by

RI(x,t;y,8) =cus™0)" Ry (x, 8, y, 5),
wherec,, = 2)'/m !. Note thair® = R, and it is a symmetric kernel.
We begin with two lemmas concerning these kernels. The fimstie an estimate

of their growth order, which follows from Lemma 3.1 immedikyt

Lemma 6.1. Letm > 0 be an integer Then there is a constar@ > 0 such that
for any (x, 1), (v,s) € H,

IR (x, 15y, 8)] < Cs™(s+1) (s +1 +|x — y|*) /@)L,
In particular, R} (x,t; -, - )e L1(H) for everyqg > 1 and (x,t) € H.
The second one is an estimate of growth order for their iategr

Lemma 6.2. Letm > 0 be an integerlf —1 —m < y < 0, then there exists
a constantci(y) > 0 such that for everyr > 0,

[[ Rz iy sy ayds = ey
H
If —1 <y < m, then there exists a constant(y) > 0 such that for everys > 0,
// tY|RY (x,t;y,8) dx dt = ca(y)s”.
H
Proof. By (3.1) we have
// SY|RY (x,t;y,s) dyds
H
= 2Ich/ / sVs™Om W (x — y, 1t +5)|dy ds
0 n

o0
= 2] /O / §7 (1 4 5) @O G @)+ 5) Y@y 1) dy ds
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=a)’,

where

c1(y) = 2lenl (/R (3w @) (y, 1) dy) </Ooo w1 +y) L du) .

Remark that the second integral in the above is finite if ang dh—1 —m < y <O.
The second assertion follows similarly. ]

In the sequel, we use the same symiRj| for the integral opedsfined by
the kernelRY' :

R f(x,t):= // R (x,t;y,5)f(y,s)dyds.
H
Then the following interesting relation holds.

Theorem 6.3. Letm > 0 be an integer and lell < p < co. ThenR}'u = u for
everyu € bj, that is

(6.2) u(x,t)=//;IR;"()c,t;y,s)u(y,s)dyds.

Proof. Let (,t)e H be fixed. We shall show the theorem by inductionno
Letm =0. Take§ > 0 and puts su . Then, by the Fubini theorem, we have

J[ Rloctiv sty syayas
" o0
=2 [ usr. oW~y ay+2 [ [ austr WO -yt ) dsady.
n n JO

Here we use the estimate (5.1). Then by the Huygens property§ and dsus ,
the first term is equal tow x(¢ ) and the second term is equaldg x,t ( espec-
tively. Thus (6.2) holds fom; . Sinces convergesuo @i H ( )sas $eta zero,
Lemma 6.1 shows the theorem in the case =0.

Next we assume that the theorem holds for— >1 0. Take b, and put
us = Tsu as before. Then

Roustr.0) = [ [ RIG v sty s)dvds
H
=—2cp, / / us(y, s)s'"a‘:"J'lW(“)(x —y,t+s)dsdy
n 0

o0
=2cy, / / {mus(y, s)s’"’1 + 0us(y, s) - s™}o) W("‘)(x —y,t+s)dsdy
n O
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=2us(x,t) + 2y / / osus(y, s) - s’"aé"W("‘)(x —vy,t+s)dsdy,
nJo

here we use the induction assumption for— 1. Denoting/by therinntegral of
the second term, integrating by parks times and applying-#ikniz rule, we obtain

1= (—1)’"/ 9" [Osus(y, s) - s™] WO —y,t+5)ds
0

- [ o . 4
= (=1)" Z <m> L / ™ us(y, s)s™ W (x — y, t +5)ds.
g\ m =t Jo

Therefore, sincey” "'/

the integral, we have

2c,n/ Idy

= 2(_ Un Cm

us also satisfies the Hyugens property, by change the order of

T)wpzm mT o us(x, 1+ 25)ds

3

= 2(_ 1yncm Z

S

= —us(x,1).

2
g

) ,])' om— j(_ )m j(m—J)lfoo Bsu,g(x,t+2s)ds

us(x, 1)

Letting § | 0, we complete the induction. ]
The main result of this section is the following theorem.

Theorem 6.4. (1) For 1 < p < oo, R, is a bounded operator fronl?(H)
onto by.

(2) Letm >1and1 < p < co. ThenR? is a bounded operator from”(H)
onto by.

Proof. First we show (1). By Lemma 6.2 for = /4 , we have

|Ro f(r. 1)
5/ () Ra(r. 11y, 5)| dy ds
H

1/p 1/q
< <// If(y,s)l”sl/‘flRa(x,t;y,s)ldyds) (ff sl/”lRa(x,t;y,s)ldyds)
H H
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1/p
= cy(—1/ p)Ha Vo0 ( / / G P59 Rax, 15 v, 5)] dy ds) .
H

Therefore using the first estimate of Lemma 6.2 for —=/¢q1 agai@,have

// Ry f(x, )P dx dt
H
1 r/q
§c1<——> // <// t_l/qlf(y,s)|”sl/q|Ra(x,t;y,s)|dyds> dx dt
p H H
1 r/q 1
o (——) o (——) J[ 5o syest ay as
p p H
1 rlq 1 )
ci|—— e\ == ) W0 eremys
( p) < p) Lo

becauser, is symmetric. The surjectivity 8f,  follows from Thexa 6.3. Thus (1)
is shown. Similarly, using Lemma 6.2, we have (2). Note thamina 6.2 is applicable
fory =0inthe casen > 1 ang oo . U

Remark 6.5. By Theorems 6.3 and 6.4, we see that the keRyel is the-repr
ducing kernel forb2. Furthermore, the operatdt,  dt?(H) is the orthogonal projec-
tion to bg, becauser, is real-valued and symmetric. TiRgs is calledrvtharabplic
Bergman projection.

We generalize (6.2) in the following lemma.

Lemma 6.6. Letl < p < oo andm,k € No with m +k > 1. Then foru e b}
and§ > 0,

_(m+k— 1)

// BfT,gu(y, s) - sm+k713;nw(a)(x —y,t+s)dyds = WTW(X, 7).
. _

Proof. We remark that the integral is well-defined by (3.2} 4B.2). To prove
the formula by induction, we first consider the cagser{ ) ={0 Hefm > 1 and,
by Theorem 6.3,

// Tsu(y,s) - s’"_laf’W("‘)(x — vy, t+s)dyds
H

Tsu(x, 1)

1 1
=— R"T, f)=—
2cm—l( « 5”)(xv ) 2Cm—l

which is the desired equality, becausg_; = (—2)"1/(m — 1).
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Next let ¢, m) = (1 0). Then

o0
1
// A Tsu(y, s YW (x — y, 1 +s)dyds 2/ (0, Tsu)(x,t +2s)ds = —ET(gu(x, 1).
H 0

Finally we consider the general case with m+> 2. Assuming thatlemma
holds for ¢ — 1m ) andk— lm +1), we have

o0
‘/‘/0 Bngu(y,s)-s””k_la;"W("’)(x—y,t+s)dyds

= —/ </ 8;‘_1T5u(y, s)[(m+k—1)s’"+k—28;"+s"’+k—185’"+1] W (x—y, t+s)ds> dy
n O

_ (m+k=1)!

(_2)m+k T(;I/l(x, t)v

which completes the induction. U

The boundedness of the kerng{' and the above lemma give tlusviiad for-
mula.

Theorem 6.7. Letk,m € No. Then for every € b with 1 < p < oo,

(6.3) R™ ¢ 9ku) ="y
Cm+k

Proof. Recall thatc,, =+ 2)/m !. By Lemma 6.6, (6.3) holds foyu . Thus
letting § | 0, we have the assertion. O

Proposition 6.8. Let1l < p < oo and k € N. Then there is a constar@ > 1
such that for every: € bf,

CH* 8k ull Loy < Nullory < ClIE*OFull o-

Proof. The first inequality follows from Proposition 5.5. ddrems 6.4 (2)
and 6.7 give the second inequality. U

7. «a-parabolic Bloch Space

In this section we define the -parabolic Bloch space.

Dernimion 7.1.  We denote by3, the set of allL®-harmonic functionu onH
such thaty is ofC? class and that

(7.1) lullg, :=1u(0, 1) + sup {rY@)|V u(x, 1) +t8,u(x, )]} < oo,
(x,t)eH
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where V, denotes the gradient operator with respect to theespagable, and 0 =
(0,...,0) € R". As seen laterp, is a Banach space under the Bloch nofm ||z,.
We call B, the « -parabolic Bloch space.

We begin with the boundedness of point evaluation/%n

Proposition 7.2. There is a constan€ > 0 such that foru € B, and (x,t) € H,

(7.2) |ule, ) < Cllulls,(1+]logz| +log(1 +x]))

Proof. For anx € R”, we sett = ((1#Hx| J (1 +log(l+x| )§ > 1. Then we

have
T |x| X t
lu(x, 1) < |u(0, 1) +/ |0,u(0, s)| ds +/ V.u (rﬂ, r)‘dr + / ou(x, s)ds
1 0 X T
T t
< llulls, <1+f Lk f & )
1 S r S
1+log(1l+
< lluls, | 1 +logr + all ol +x])), |logz| +logt ).
1+|x|
Since logr < 2 log(1 #x| ), the assertion follows. [l

By the same manner as in Theorem 5.4, we have the following

Theorem 7.3. For (B, k) € N§ xNo\ {(0, O)}, there is a constanC > 0 such that
(7.3) 089 u (c, 1)) < Cllug,e (/@)
for u € B, and any(x,t) € H. In particular, B, C C*(H).

Proof. We first remark thabl® C C*(H). Let (xo, 7o) € H be fixed. Ifk £ 0O,
applying Theorem 5.4 td; ,20,u € b°, we have

1
9L 0 H(Tp/20,u) (xo’ §0>

_ o)1
=< CHTIO/ZB,M”LOQ(H)IO (1B1/(2a)+k—1)

|8fatku(xO, l‘o)| =

< 2C||M||Bat(;("3|/(2a)+k).
Similarly, we can obtain the theorem when the cgsg =0. O

Theorem 7.4. Every element inB, satisfies the Huygens propertgnd 5, is
a Banach space under the Bloch nofih1l).
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Proof. Takeu € B,. SinceT;d,u belongs t®Z° for everys > 0, we have

u(x,t+s) = / dulx — y, YW(y, s)dy
R”

and hence for, > 11 > 0,

7]
u(x,t2+s) —u(x,tp+s) = / / dulx — y, YW (y, s)dy dt
11 n

= (u(x =y, 12) — ulx — y, 1)) W (y, s) dy.

This impliesv , ¢z, s ) is a constant function with respectrto , where

o(r.1,5) = ulr.1 +5) / u(x — y. YW (y, 5) dy.

R’

A similar argument with respect to the variable gives that eloot depend ow
either. For fixedr > 0, since {(,t, - ) i&£®-harmonic, we have,v 18%1; =0,
which impliesv is a constant. Further this constant is eqoal t

limv(x,,s)=0,
s—0

so that the Huygens property far  follows.

To show the completeness &f,, consider any Cauchy sequence By with re-
spect to the Bloch norm. By Proposition 7.2, it convergesllgcuniformly to a con-
tinuous functionu onH . It is not difficult to show that this litrfiunction also satis-
fies the Huygens property, so that A$9-harmonic onH and is o€ class. The-
orem 7.3 giveslu|g, < 00. |

Since B, contains constant functions, we may identify /R = B, where
B, ={u € By; u(0, 1) = 0.

The « -parabolic Bergman kerndt, is not boundedioh H ( ), so thatere
sider the modifiedr -parabolic Bergman keretl, which is inspired by [10]:

Ra(x,2;y,5) = Ry(x,1;y,5) — Ry(0, 1;y, 5).

Lemma 7.5. There is a constanC > 0 such that for everyx,t) € H,

f/ |Ra(r. £y, )| dyds < C(1+log(1 +/x|) 4| logr|)
H
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Proof. Putt =((14x| ) (L +log(1+x| ). Then

1Ra(e, 15+, )l

=< ”Ra(x’t; R )_ Rd(xvr; R )||L1(H)+ ||Ra(x,r; R )_ Ra(oaf; EER )”Ll(H)
+||R01(07tl R )_R(X(Oa 11 R )”Ll(H)‘

The Minkowski inequality and Lemma 3.2 show that the firsirtesf the right hand
side is bounded by
t
/ s tds

2

t
/ IT502W @l 1y dS| < C
T

< C(]logt| +logr),

and the second term is less than
1

2]

0 H

and the third term is bounded by

9 1
a—(a,W("‘)(rx -y, T +s))‘ dydsdr < 2/ x| | T2 Vi 8 W | 114y dr
r 0

< C|)C|‘L'_l/(2a)

2

T
/ 17507 W ) gy d8| < Clogr,
1

which show the required estimate as in the proof of Propwsif.2.

Lemma 7.6. For every(x,t) € H and for every0 < § < 1,

1
// 3 |W(°‘)(x +y,t+s)— WOy, s+ 1)| dyds < oo.
HS

Proof. For fixedx =4£3,...,x,), the equality

1
WO(x +y, s +1)— W(y, s +1) :/ x - ViW®O(rx +y, s +1)dr
0

and (3.2) give

1
// s |W(°‘)(x+y,s+l)—W("‘)(y,s+l)| dyds
HS

1 oo
< Clx| / / ( / VWO (s +1) 7@ rx+y), 1)| dy) (s +1) @ s+8) L ds dr
0 Jo R

< C'|x|/ (s+1) V@) (5+8)Lds < oo,
0
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and since
t
WO +y,t+s5)— WO +y,s+1) 2/ AW (x +y,s +1)dT,
1

we also have

1
// +8|W(°‘)(x+y,t+s)—W(“)(x+y,s+l)| dyds
HS
t (o]
/ f < / |8, WO ((s + 7)™V @)(x +y), 1)) dy) (s +7) Y5 +8) L ds de
l O n
t [ee}
/ / (s +7) (s +8) tdsdr
1 Jo

=

<C < 0.

Thus our assertion follows from the triangle inequality. U
Theorem 7.7. The kernelR, is a bounded linear operator from.>*(H) to B,.
Proof. For everyf € L™ H ), we can defink, f(x, ) by Lemma 7.5. Further

since Ry(x,7; -, - ) is L@-harmonic, so isR, f. Clearly R, £(0, 1) = 0. For every
(B, k) € N§ x No with (8, k) # (0, 0), we have

1088K[ R £ (x, 1)]1 = V/ 3P Ry(x. 15y, 5) f(y. 8) dyds| < C| fll Loyt 1F/@IH),
H

by Lemma 3.2. In particulami?afnga < C|| fllz= holds. O

Similarly to Lemma 6.6, Theorem 6.7 and Proposition 6.8, w&e obtain the fol-
lowing results fora -parabolic Bloch spaces. Remark that lenv.6 assures the nec-
essary integrabilty in the following results.

Lemma 7.8. Let m,k be nonnegative integers with + k > 1. Then for evey
u € B, and everys > 0, we have

J[ tiuty.s) -5 0O = g1+ 5) = W5 + D)dyds
H

_(m+k—1)

(7.4)
(Tsu(x, t) — Tsu(0, 1)).

Theorem 7.9. For any u € By, u = —2R,(t9,u) holds More generally for any
k € N, we have

Ry (t*0%u) = =) u.
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Proposition 7.10. Let k > 1 be an integer Then thers is a constant > 1 such
that for everyu € B,

C 18k ull =y < llullg, < Cllt*dfull L)

8. Dual Spaces

In this section, we characterize the dual spacepffor 1 < p < co. In the fol-
lowing, we use the following convention: writ§ =x,t ¢ H and for ariegrable

function f onH ,
/Hf(X)dX://Hf(x,t)dxdt.

Theorem 8.1. Let1 < p < co. Then(bl)* = bl, that is the dual space obf
can be identified withb%, whereg is the exponent conjugate fo

Proof. Forv € b, we define a functional obj by
Av(u):/ u(X)v(X)dX.
H
Then A, € ®5)* and |Ayll < [[v]leqm). Pute @) =A, . By the open mapping theorem,

it is sufficient to show that the mapping bi — (b%)* is bijective.
AssumingA, =0, we have

v(X) :/ Ry,(X;Y)v(Y)dY = Ay(Ru(X; - ))=0
H
becauseR, X ; E bl, which implies: is injective.

Next for A € (b})*, using the Hahn-Banach theorem, there exigts LinH ( )
such that

A(u) :/Hu(X)f(X)dX
for all u € by. SinceR, is symmetric, Theorems 6.3 and 6.4 show
MW= [ RSN = [ 1R OVY = Ay @)
This implies: is surjective and the proof of Theorem comete U

To determine the dual space fpr =1, we use a subspadé®ofVe put

(8.1) D= {ueb; (L+1)(+r +x|2)/@)* Yy (x 1) is bounded onH}.
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Lemma 8.2. D is dense inbl for 1 < p < oco.

Proof. Letu € bj. Taking an exhaustioij};?“:1 of H, we see thatRl(u - XK;)
converges ta: by Theorems 6.3 and 6.4 (2), whege denotes dieaiar function
of K;. Further, Lemma 6.1 showB.(u - xx,) € D. O

Lemma 8.3. For u € D and v € B,

(8.2) /Hu(X)v(X)dX :—Z/HM(X)QDU(X)dX,

where ®v(X) =d,u(x, t). In particular

=< ull gy llvll sz, -

(8.3) VH u (X (X )dX

Proof. We first observe the following integrability. Sincév s bounded,
Lemma 7.5 shows that there is a constént 0 such that

/H </H u(X)Ro(X; Y)Du(Y)| dy) dX

1+ |Og(1 +|x| ) +| |Ogt|
=C dx dt
- //H (L+1)(L +1 +|x 2/t 5

> 1+ logt| 1 +log(1 +|x|)
=¢ </o (L+1)/2 a / (1+|x|2a)(n/(2a))+1/2dx

< Q.

We also observe that sind®, is symmetric and has the carwelatoperty,
u(Y):/ Ra(Y;X)u(X)dX:/ R (X;Yu(X)dX
H H
= [ (R0GD) - R IuCX) ax
H
:/ Ro(X;Y)u(X)dX,
H
where Xo = (0, 1). Hence these observations and Theorem 7.9 ensure that

/ u(X)v(X)dX:—Z/ u(X )R, dv(X)dX
H H

= _2/H (/Hu(x)iea(x; Y) dX) du(Y)dY
= _2/Hu(Y)c1>v(Y)dY.
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The inequality (8.3) follows from Definition 7.1. O
Now we shall characterize the dual spacebfffor the casep = 1.
Theorem 8.4. The dual space ob; can be identified witlh53,/R = l’;’a.

Proof. For anyv € B., we define a linear functional obl by
Ay(u) = —2/ u(X)dv(X)dX.
H
Then sincelA, € ) < Bulliglvliz, by Lemma 8.3A, € E)*. Putc@p) =A,. As
in the proof of Theorem 8.1, it is sufficient to show that theppiag ¢ : B, — (bl)*
is bijective. Sincei?a(X; -) € bl, the injectivity follows from Theorem 7.9.

To show the surjectivity, we tak& € b})* arbitrarily. Then by the Hahn-Banach
theorem, there existg € L H ) such thaf||.~@x) = |A] and

A(u):/ u(X)f(X)dx
H
for everyu e bl. Then Theorem 7.7 gives us thaﬁaf e B, and ||7€af||5a <

Cllfllz=@y = CllA| with some constanC > 0. Hence by the same reason as in
the proof of Lemma 8.3, we have

A(u):/Hu(Y)f(Y)dY
:/ (/ Ra(Y;X)u(X)dX) fy)dy
H H
:/ M(X)kaf(X)dX
H
-2 / u(X)® (Re f)(X) dX = A, ()
H
provided thatu € D. SinceD is dense inbl, the mapping is surjective. O

9. w«a-parabolic Little Bloch Space

In this section we define the -parabolic little Bloch spacéjolv turns out to be
the predual ofbl. The argument here is inspired by [13].

Derinimion 9.1. A functionu € B, is said to be ax -parabolic little Bloch func-
tion, if

(9.1) lim }{tla,u(x, 0]+ Y@V u(x, 1)} = 0.

(x,t)—>dHU{oo
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We denote by, o the set of allo -parabolic little Bloch functions o and cBll o
the « -parabolic little Bloch space.

Let B,.o := {u € Byo; u(0, 1) = 0. SinceB,.o and B, are closed subspace 5%,
they are both Banach spaces with the Bloch ndirm)z, .

We let Co(H) denote the set of all continuous functions &h  which vardsh-
tinuously onda H U {oo} .

Lemma 9.2. Byo={u € By; ®u € Co(H)} ={Rof; f € Co(H)}.

Proof. For the first equality it is sufficient to show thatdfu t&u elbngs to

Co(H) then so doesV @)V, u|. Sinceu =— R,(Pu) by Theorem 7.9, we have for
j=1...,n

O, ulx, 1) = —2// 8xj8,W("’)(x —y,t+s)-souu,s)dyds.
H
Givene > 0, there is a compact s&t such thaku| < ¢ outside . Then
1Y@, u(x, 1)) < 2et1/<2“>// 18,0 W€ (x — y, 1 +5)ldyds
e
' Ztl/(za)// 18,0, W@ (x — y, 1 +5)| - sdyuly, s)| dy ds.

K
The first term in the right hand side is less thafie<2 by Lemma ®lile the sec-
ond term tends to O provided that,¢ ) tendsa#l U {oco} (use (3.2)). Veeetore
concludetY®)|v, u| € Co(H).

To show the second equality in the lemma, tgke& Co(H) arbitrarily. ThenR,, f
is in B, by Theorem 7.7. The same argument as above shdwg, f)( € Co(H),
which implies B, 0 D {R.f; f € Co(H)}. The converse inclusion follows easily from
the equalityu =— R,(du). O

We can now prove the main result of this section.

Theorem 9.3. The pre-dual space di can be identified with3, o/R.

Proof. As in Theorem 8.4, we may identif§, o/R with l’;’a_o. Foru € b;, we
define a functional o3, o by

A, (v) = //H u(x, t)®v(x, t)dx dt.

Then by Lemma 8.3 the mapping b} — (5,.0)*, defined by: ¢ ) =A,, , is bounded.
To show the injectivity oft , we assume that, = 0. Then for evgrg Co(H), since
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B,RQ(x, t;y,8) =0, Ry(x,t;y,5) =0;Ry(y, s;x,t), we have

0= Au(Ra(f))

://H <u(x,t)//H ta,iea(x,t;y,S)f(y,S)dyds> dx dt
-[[ ( I u(x,r)ra,Ra(y,s;x,r)dxdr) £, s)dy ds

:—%//HRiu(y,s)f(y,s)dyds:—%/Lu(y,s)f(}’as)dyds’

which impliesu = 0. Note that all the above double integralsivesge. In fact,
by Lemma 6.1

/// lu(x, 1)1, Ry(x, t;y,5)f(y,s) dyds dx dt
HJJH

t
<o [ sl ([ sy v ds) dvar

< Cllflle=ellullagmy < o0.

Next, to show the surjectivity of , tak& e ég,o)* arbitrarily. Then because of
Theorem 7.7 and Lemma 9.2 — A R{f) defines a bounded linear functional on
Co(H). Hence by the Riesz representation theorem, there exibtsunded signed mea-
surepu onH such that

AR = [[ reaut.n.
H
for every f € Co(H). We define a functiont orH by
w9 =4 [[ 13 Ralw. 11,9 di ).
H

Thenu € bl. In fact, sincerd, Rq(x, 1; y, s) is L@-harmonic with respect toy(s ), so
is u. Furthermore

el 3 54//11 (/fH 08, R, 13y, S)Idlﬂl(x,t)) dyds
58//H (//H |tnafw<“>(x—y,s)|dyds) dpl(x, 1)

= 8// 02T, W sy | (r, 1) = 8C el
H

where we use Lemma 3.2 for the last equality. Now for everg l?a,o the equality
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v = —2R,(Pv) gives dv =— 2> R,(Pv)) so that

A(V) = —2A (Ry(Pv)) = —2// Qv (x, 1)du(x, 1)
H
= 4//}1 D (R (D)) (x, 1) du(x, 1)

=aff ( /[ ta,iea(x,z;y,s)du(x,t)) Pu(y. s)dy ds

= ‘/‘/H u(y, s)@v(y, s)dyds = A, (v).

This implies that the map is surjective, and hebge= (5’0‘,0)*. ]
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