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1. Introduction

We are interested in the Cauchy problem

P(t,x, 0, O )u(t,x) = f(t, x)
(CP) {u(o,x) =uolx), D0, x) = ua(x)

on [0, T] x R" where
P(tvxaafvax):Pz(taafaaz\')+Pl(taxvatvax)-i_c(t’x)a

Po(t, 0, 0,) = 7 = > ayj(1)0y, 0y,

i,j=1

Po(t, x, 0, 05) = bj(t, x)0s,.

j=1

We assume that;; € C*°([0, 1), b; and ¢ € C([0, T]; C>*(R")); moreover

a(t,§) =Y a;(&¢ >0, VEER", t€[0,T).

i,j=1

It is well known that the question of th€>° well posedness of the Cauchy problem
for general linear weakly hyperbolic equations is not sdttlRestricting our attention
to the second order equations, there are two main difficulitie studying C>> well
posedness of the Cauchy problem:

1) For the Cauchy problem to &> well posed, the lower order term must be dom-
inated in a suitable sense by the principal part of the opei@he so called Levi con-
ditions). For instance

uy —u, =0

is not solvable inC* but only in Gevrey class of order 2.
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2) Oscillations of the coefficients of the principal symboittwrespect to the time
variable can destroy the solvability i@°°. For instance, in [5] they show by an ex-
ample that the Cauchy problem for

uy —a(t)uy, =0

where the functioru 7( ) iSC> verifying a(0) = 0,a¢) > 0 for r > 0 and has an
infinite number of oscillations as| 0, may be not locally solvable g,

Thus in order to obtain positive results concerning &% well posedness, some
additional assumptions both on the principal symbol andhenldower order terms are
needed.

It is well known that the Cauchy problem > well posed for any lower order
term if and only if it is effectively hyperbolic (see [9] antkibibliography) . We recall
that the effective hyperbolicity on our operator is equévelto

d%a(t,€) >0

whenevera (, £) = 0, or we can express the condition as

2

> 10/at. 91 #0, VI¢|=1 t€[0,T].

Jj=0

In this note we assume that therekiss N, k > 2 such that

k
(1.1) > 10/at. 9l #0, VI¢|=1 te[0,T].

Jj=0

If k > 2 andd/a(t,&) =0, 0< j <k, da(r,€) # 0 then as noted above (see [7])
the lower order termb #(x, £) must verify some conditions for the Cauchy problem to
be C*° well posed.

Let us denote

b(t,x, €)=Y bt x)¢;

J=1

and introduce the following assumption ory, X, &):
(1.2) |08b(1, %, )| < Caalt, €)E1T*

for any a with

k-2
20— 1)

(1.3) ~ =
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For simplicity we also assume thats, ¢, £) = 0 for [x| > R with someR > 0. Then
we have

Theorem 1.1. Assume(1.1), (1.2) and (1.3). Then the Cauchy probleniCP)
is C*> well posed.

Note that a positive result in this direction is obtained #) Where the authors
studied the lower order terms ¢,€) and ¢ ¢) which are independent of . They
showed theC> well posedness of the Cauchy problem under the conditionk) (1
and (1.2) with

Moreover in [1] the authors considered the case of first otdem b (¢, &) inde-
pendent ofx , but zero order terms, £ ) depending on all the viagalobtainingC >
well-posedness under the conditions (1.1) and (1.2) with

v >

NI
= =

In the special case that = Lt,€) = 1262 and b ¢, &) = 176, c(t) = 0, a
necessary and sufficient condition for tlié® well posedness is (see [7], [10]) that

|b(z, 1) < Cr' ey

with someC > 0. This shows thaty = 1/2 — (1/k) is optimal.

We note that wherk = 2 any lower order term verifies (1.2). Thisaispecial
case of effectively hyperbolic case as we remarked beforeth® other hand we get
~v = 1/2 formally whenk = +o. The condition (1.2) withy =1/2 is sufficient for the
C> well posedness for any z,(x,£) > 0 andb ¢, x, ) analytic with respect ta and
x, if the space dimension is equal to 1 (see [8]), or, for every 1, if a(t, &) > 0
andb ¢, £) depend, analytically, only on (see [3]).

2. Preliminaries

I
e

Assume (1.1) at

k
(2.1) > 10/a(0,¢)| #0, V¢l =1

j=0
Let us set

.9 =5
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so thata(z, £) is homogeneous of degree 0 §nand start with
Lemma 2.1. There existc > 0, 6 > 0 such that for any|¢| = 1 one can find
0 <r(&) <k so that we have
o [0/, 2 e, 1<
e dla(t,£)=0,0< j <r(&), |t| < 4§ has at mostr(¢) — j roots with respect ta .
We first prove
Lemma 2.2. Let |¢| = 1 be fixed. Then there exi®t< r <k, ¢ > 0, § > 0 and
a neighborhoodV  of such that
o |9a(t. &) zc, |t|<d, L€V
e d/a(t,£)=0,0<j<r, £€V, |t| <J has at most — j roots with respect ta .

Proof. If a(0, 5_) # 0 the assertion is clear with = 0. Assumé, 5_) = 0. From
(2.1) there is 1< r < k such that

9"a(0,€)=0, 0< pu<r 0a(o,¢) #0.
Hence one can choose> 0, 5) > 0 and a neighborhood ™ of ¢ so that
07, ) > ¢, 1| <69, ¢ev®.
Considerd/a(r, &) for 0 < j < r. Note that
90/a)0.=0, 0<i<r—j, & (da)0.§#0.

By the Malgrange preparation theorem, one can fiii and a neighborhood () of
& such that one can write

ofate, & = . &) [ +a T 4 +a ()
for || < 60, ¢ € V) wherea(€) = 0 andeW)(z, &) # 0 (for || < 60, ¢ € V).

Thus we conclude that if € V), |¢| < §() thend/a(r, £) = 0 has at most — j roots
with respect tor . Now taking

- i ) - )
5 oTin. sO, vy ﬂo 1%
i=

we get the desired assertion. O
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Proof of Lemma 2.1. From Lemma 2.2, for af§} = 1, there exist 6< r(¢) <
k, c(&) > 0, §(£) > 0 and a neighborhoodt £) of ¢ such that

|8{(€)5(I, n| >c(§), for [t]| <), neV(E),
811‘50’ n) =0, 0<j <r(€), ne V() has at most
r(€) — j roots with respect to inr| < §(¢).

Since {|¢| = 1} is compact one can fing,, ..., &y so that
M
{Igl=1 cJvE).
i=1
Let us set
0<é= lgr??M&(gj), c= 1§rrj]lgnMc(gj) > 0.

Then for any|¢| = 1 there isi such tha§ € V(&). Taking r €) = r(&) we get the
desired assertion. ]

Fors <t we set

b e ()] * e |a<f>(s,f>|+|f|1>
(@2) Foe58) = max<|a<f>(s, O+ e T G0, )|+ e T

whereaU)(r, £) = 9/a(r, €). It is obvious that
Bl¢| > FU(s, 1;¢) > 1

with some B > 0. We definewU)(z, £) as follows: letN be fixed (which will be de-
termined later). We set

N-1

(2:3) W1, ) = sup) _ log FO (5, 1141; €),

i=0
where supremum is taken over all sequenfgs, such that
(2.4) 0<fHo<n<---<ty<t

Note that WU)(z, €) is an increasing function im by definition so th#t()(z, £) is
differentiable almost everywhere and
d

2w >
dtW (t, &) >0 ae.
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Let us put
k
W, &)= w9
j=0
Then we have
W(t,€) < Clog (2 +[¢)),
with someC > 0. We now recall thati(z, £) is non negative:
a(t,€) = 0.

For s <t we put

P £i) = max(a(t, O+l 2 als. &)+ |£|2>_

a(s, &) +[¢]72" a(t, &) +[¢|~2

Define W*(¢,¢) by the same formula (2.3) wher@U)(s;, 1;+1;€) is replaced by
F*(t;, ti1;§)-

Lemma 2.3. ¢V 8 and "9 are temperatethat is we have

W*(t, &) < Clog (2 +]€ — nl) + W*(t, n),
wi(r, &) < Clog (2 +[¢ — nl) + Wz, )

with someC > 0, for |¢|, |n| > 1.

Proof. We prove the first assertion. We fix a smak @ <« 1. When|¢ —n| >
€|¢] we proceed as follows. Note that

~ -2
% < CEP < e ?Cle -l

This shows that

F*(s,1;€) < Ce 2l —nf? < C'(2+ ¢ — )™
Since F*(s, t;n) > 1 one gets
(2.5) F*(s,1;€) < C'(2+|¢ = n)*F* (s, 1:m).
Let {7 })¥, be any sequence verifying (2.4). Then we have

N-1 N-1

> log F* (i, fi+1;€) < NC"log (2 + & — ) + Y log F* (1, fi+1;7)
i=0 i=0
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by (2.5). Since the right-hand side is bounded by
NC"log (2 +[¢ —nf) + W*(t,7)

and {1}, is arbitrary we get the desired assertion.
We turn to the caseé — n| < €|¢| and henceC1|¢| < |n| < Cl¢| with some
C > 0. It is enough to show that

(2.6) a(t, &)+ €72 < Cc@+1[¢ = n)3a, n) +[nl 2.

Assume that (2.6) is proved. Then exchangihgndn and takingr =s one gets
(2.7) [a(s, &) + €727 < c@+ [ —n)lals, m) + |n| 21~

Thus from (2.6) and (2.7) we have

(2.8) F*(s,1;6) < CH2+[€ = n))°F* (s, 1;m).

The rest of the proof is just a repetition of the caée n| > ¢|¢|. We now prove (2.6).

Let us recall that: # &) is homogeneous of degree 2 with respect i@y the Glaeser
inequality one has

|0g,a(t, )| < C\/a(t, &).
Hence we have
a(t.€) < a(t, )+ Cl& —nl/alt.n) + CI¢ —nl®
from the Taylor expansion. Since/2(t, n) < a(t,n) + 1 it follows that
(2.9) a,&)+1< Cla(r,n)+1]2+¢ —n)>
Noting C~1¢] < |n| < CJ¢] and multiplying (2.9) by|¢|~=2? we get (2.6). This com-

pletes the proof of the first assertion.
To prove the second assertion we use the following inequalitplace of (2.6):

(2.10) D@, &)+ 67 < @ +[¢ = nD)(|aP @, )] + 0| 7).
To see (2.10) let us pub(z, &) = aY)(t, £)|¢|2. Since

o1, ) = ot m) + (€ —n) - Veg(r, n +0(E — n))
we have

(. ) < 9t m)| + C|€ = nl[¢]
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becauseC ~1[¢| < |n+6(¢ — n)| < C|¢|. Thus we have

|6(2, )] + €] < (e, m| + |nl + CIENIE = nl < C(le, )| + )2+ € = nl)

recalling C|¢] < |n| < C|¢|. Multiplying [£|~2 to the above inequality we get the
desired result. O

In what follows we takeN =R +1.

Lemma 2.4. There isD > 0 and ¢ > 0 such that we have for any

d s la'(t, §)|
o (W*(t, &) + Dt] > W +1
cleP*

< tw(r, 9+ D

(a(r, &) +1ENM*

in || <4.

Proof. We prove the second assertion. From Lemma 2.1 foréathere isr €)
such that the assertion of Lemma 2.1 holds. L&) <0 then one has

ait,&) >c, |t <.

In this case the assertion holds obviously if we tdke> O large because
d
—W(@, € >0.
W6 >

We show the assertion when¢)(> 1. From Lemma 2.1 it follows thag'/ (s, £) and
al* i, ¢), 0< j < r(€) — 1 have at mosk zeros ifi| < §. Choosingto =0, ty =1t
andr <1, < --- <ty_1 to be the zeros ofil/)(s, &) andal*V(s, £) in (0,r) we get

* v, o)

N—1
A W ds = Z log FU (1, 1141, ) < WOz, €).

i=0
On the other hand we have

@B, )|
D(r, I+ g~

for any s <t (see [4], proof of Lemma 2.2). This shows that

dr

(2.11) logfFW (s, 1;€) < / t P

< s, o)
w009 % || o gy e
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Hence one gets

; au*(s, &)
2.12 Wi ey = [ 0091
(212) 0= | @G+
for 0<j <r(§) —
Now we have
d d der
TWe = - Y WO+ > wi(g)
=) j=0
r(€)—1 ~(j+1)
au*i(, )|
(2.13) > S
jzg laW(t, &)| +1¢|1

We note that

@O, ¢) @O, ¢)| @OV, &) +[¢]7t @D, &) +]¢| T
ae, )+ (@@, o[ +[¢[ L [al©O@-, [ +[¢[T alr, &) +¢[?

"©
3 r-1 [al* (e, &)+ €|t
=\ % @09+
20
MO0, g)
< [r©+ Z @G, ] + €[
k
O g
@@, )|
k [@0 @, O+ &1 | -
< +jz:g|ao)(t,£)|+|£|’l

Since [av@)(t, £)| > ¢ in |t] < & by Lemma 2.1 it follows that

¢ & jaue o)
@(r. ) + g O <( Z @@ g +1e |-

Thanks to (2.13), the right-hand side is estimated by
< kv W)
dt ’
and this proves the assertion. [l

Lemma 2.5. We have

€12

2/k 2/k\1/2 IS
|£| < C(Cl(t, £)+ |£| ) (Cl(l,g)"' |£|)l/k
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Let v = (k — 2)/2(k — 1). Then we have

|2

alt. I < Clal O+ KPSy

Proof. The first assertion is obvious because

(a(t. &) + |EDY*
(a(t. &) +[€[2/F)1/2

is bounded sincé > 2.
We prove the second assertion. Noticing 2y —2/k = —2+/k it suffices to show

a(t f\T _(ale.€) + €[22
(Fep) << “aov

or rather
a(t, (€172 (a(t, §) +[¢]) < Clalt, )% +[¢)).
Sinceky+1—k/2=(k —2)/(2(k — 1)) =~ it is clear that

a(t, §)
117

On the other hand, remarking that =(2y) > 1, ¢ = 1/(1 — 2v) > 1 because
0 <~ < 1/2 we have from the Young’s inequality that

alt. el = (457 (e, 97 < Clate. 0+ k).

a(t, &[T < 2va(t, )P + (L= 29)[¢|2 < Cla(r, )% + [€)).
This proves the assertion. O

3. Energy estimate

In this section we prove Theorem 1.1. We apply the Fouriemsfiaem with re-
spect to the space variable to the equation, thus we obtairottowing ordinary dif-
ferential equation irr , depending on the paraméter

(3.1) v +alt, v +ibu+cu =1,

wherev denotes the Fourier transform:of  with respeckto  aedsgmbol = de-
notes the Fourier transform with respectito
We consider the following energy function

(32) £(1) = /R B9 = /R E(OK (0 de



FINITELY DEGENERATE HYPERBOLIC OPERATORS 943

with
E(t,€) = [V'(t, O + (a(t, &) + [§7* + vz, &)
and
K(r.§) =09
where

A(t,&)=—Dt — W*(¢t, &) — W(t,§).

Differentiating £(¢) with respect to the time we have

0= [ (EC.O+ AN OEC ) K(r. O de.
Note that
E' =2Rep”, v') + 2Ret’, v)(a + [¢[¥* + 1) +a'[v[?
and using (3.1) we have
E'(t, €) < 2bul|v'| + 2cul|v'| + 2| F||v'] + 2% vl [v'] + 2Jv][v'] + |a’[[v].

Since

L) cle2t
A o1 W

from Lemma 2.5 it follows that

1

€17

2/k l
26l < C ot

((a + €79+ v'|P) < —CA'(1, §E(t, €).
Now we use the following estimates
2cu||v'| < [cal?+E, 2| < [FP+E. 2v|v| < E.
Thus we obtain
(3.3) E' < 2lbu||v'| + [ci|> — CA'E +|F|2
We now estimate

2 / (Bu(t. &)||v/(t. €)| + [cat. DK (r. €)de.
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Let us recall that

(3.4) |07b(1, x, €)| < Caalt, &) [E[*
for every a. We denote
Z)\(t, n,&) = /e‘”’xb(t, x,&)dx.

Note that, by integration by parts, for aly we have
(3.5) b(t. 0. )] < Ci(2+ |n)alz, I,

Lemma 3.1. Assume(3.4). Then we have

[ e 0l e K69 d <~ [ N 0EC KGO

with someC > 0.

Proof. Note that

bullv’ d
2/@1' Al |K (1, €) de

@+ [EhY* ~ P,
< o T 948 [ el PR Ods

From Lemma 2.4 the second term of the right-hand side is bedify
~¢ [ 8. 9B 9K .9 e

Thus it is enough to show that

1k __
/£>1%|bu(t,£)lzlf(t, §)d¢ < —C/A’(t,g)E(t,g)K(t, €) de.
Note that

2

Bat. ) = \ 36— najatmay

< / @+[¢ — )My / @+[¢ — n) B, € — )2t mPdn
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< ¢ [(@le = )bt € — nn)fate. ) dn
From Lemma 2.3 it follows that
K(t.€) < (2+]€ —n)"K (. n).
It is easy to check that

(a(r, &) +1€DY*
|§1%7%

(a(t. n) + ) ¥*

for ||, |n| > 1. Then using these estimates one gets

1k __
/HMWWM(%)IZKO,&)%

1k
<cC /(2 +le— nI)N“NZ*M%M(t, & —n,mPla, n)PK (1, ) d€ dn.

From (3.5) and Lemma 2.5 it follows that

2 (alt, )+ [n[>* |
(a(tn)+ )"

We plug the estimate (3.6) into the above estimate to get

(3.6) b(t, € —m )P < CR+|E—n))” |4/

c [@+ic a2 LD D ey dcan

(a(t. n) + n|*")

- (a(t, n) + |n|)2/*

where N =N; + N, + N3 and we have takeh so that — 2/ < —n. This proves the
assertion because

In[?* (e, n)| 2K (¢, ) dn

c|n|?/*

_ O
= (al(t, n) + n))¥/x

—A'(t,n) >
Lemma 3.2. We have
[ @98k e < ¢ [ . 9PK . 9ae
with someC > 0.

Proof. Sincek {, &) < C1(2+|¢ —n|)V2K (t,n) we see

/ ca(t, PK (1, €) de
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< / K(t.9) / [a(e. € — n)jate, )2 de / (3Gt )| s
<q / / Kt n)ate. e, € — n)| @+ — n)™ dyde
<c / K (. ), n)2dn / 2. ©)|(2 + €)™ de

< Cs/K(t,n)lﬁ(t,n)lzdn- O

Multiply the inequality (3.3) byK 4, &) and integrate with respect g In view of

Lemma 3.1 and Lemma 3.2 one has

/E’de < —C”/A’EKd§+/|}|2Kd§.

Taking A > C” in the definition of energy we conclude that

() < / 7. OPK (1. €) de.
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