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1. Preliminaries

Surface braidsare defined by Rudolph [13], [14] and Viro [18], corresponding to
oriented surface-links. Viro [18] and Kamada [10] proved the Alexander’s theorem and
Markov’s theorem for the oriented surface-links and surface braids. In this paper, we
will give the lower bound ofw-index for non-ribbon oriented surface-links and deter-
mine values for some examples.

We review some definitions and notations for surface braids.Refer to [6] for more
details. Let 2

1, 2
2 be 2-disks, and : 2

1 × 2
2 → 2 ( = 1, 2) be the projection

map to the -th factor. Let be a set of interior points of21.

DEFINITION (see [6]). A surface braid of degree (or a surface -braid) is a
compact oriented 2-manifold embedded properly and locallyflatly in 2

1 × 2
2 such

that the restriction map 2| : → 2
2 is a branched covering map of degree and

∂ = × ∂ 2
2. It is a simple surface braidif the associated branched covering is

simple.
In what follows, we assume that surface braids are simple.

Two surface braids and ′ are equivalent if there is a fiber-preserving ambient
isotopy of 2

1 × 2
2 which carries into ′. Here, we regard 2

1 × 2
2 as a trivial

2
1-bundle over 2

2.
Identifying 2

1 × 2
2 with a standard four ball inR4, we obtain a closed surface

in R4 by attaching 2-disks onto the boundary of a surface braid so that the 2-disks
are included in the outside of four ball. We call it aclosureof .

Theorem 1 (Viro; Kamada [9] Theorem 1). Any oriented surface-link inR4 is
ambient isotopic to a closure of some simple surface braid ofa certain degree.

Take a bi-parameterization 2
1 ≃ 1× 2. Let π : 2

1× 2
2 → 1× 2

2 be a projection
map. We can assume a surface braid is generic with respect toπ. Then the singu-
larity set (π| ) consists of double points, isolated triple points and isolated branch
points. For each double-point arc, which connects two of isolated triple or branch
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Fig. 1. Vertices and a crossing of a surface braid chart

points in the singularity set, we define a label and an orientation, called Alexander
numbering (see [2] and [4]). The image of (π| ) projected onto 2

2 is considered
to be an immersed graph with labels and orientations. Moreover, these labels and ori-
entations ensure that we can reconstruct the surface braid from the immersed graph.

We assume that a graph may be empty or have closed edges without vertices
called hoops.

DEFINITION (see [7]). A surface braid chart of degree m(or simply, -chart) is
an immersed one-, six-valent graph in the interior of22 whose edges are oriented
and labeled, with additional conditions for the immersion around six-valent vertices
and the sigularity of the immersion as shown in Fig. 1. An edgeis labeled an inte-
ger in {1 2 . . . − 1}.

We call a one-valent (resp. six-) vertex ablack vertex(resp. awhite vertex), and
a point of the singularity set is called acrossing.

REMARK. In [6], an -chart is treated as an embedded graph. Crossingsare also
considered to be vertices.

For each -chart , we construct a surface braid as the above observation shows.
We denote it and call anassociated surface braid. Kamada proved the following
theorem.

Theorem 2 ([7] Theorem 14). Let be a simple surface braid of degree .
Then there exists a surface braid chart of degree such that isequivalent to .

Corresponding to the equivalence relation of surface braids, local moves of
-charts, calledCI-move, CII-move and CIII-move, are defined. Each move changes

an -chart into another -chart′ with outside of some 2-disk unchanged, sat-
isfying one of the following conditions:
(CI) There are no black vertices in∩ and ′ ∩ .
(CII) ∩ and ′ ∩ are as in Fig. 2, where| − | > 1.
(CIII) ∩ and ′ ∩ are as in Fig. 3, where| − | = 1.

We say and ′ are C-move equivalentif they are related by a finite sequence
of C-moves and ambient isotopies of22.
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Fig. 2. Chart moves of type II

Fig. 3. Chart moves of type III

Theorem 3 ([12] Theorem 1). Two charts of degree represent the same, up to
equivalence, simple surface braid if and only if they are C-move equivalent.

At the end of this section, we see some notations and facts about an -chart .
A free edgeof an -chart is an edge both of whose endvertices are black vertex.

An -chart is trivial if it is C-move equivalent to the empty graph.
An -chart is aribbon chart if it is C-move equivalent to the one which has no

white vertices.
We denote the number of white vertices by w( ), black verticesby b( ), cross-

ings by c( ). Thew-index of a surface braid , denoted by w( ), is defined as the
minimum number of w( ) such that is equivalent to . Thew-indexof an oriented
surface-link , denoted by w( ), is defined as the minimum number of w( ) such that
the closurê is ambient isotopic to . The w-index is first defined in [8].

A surface-link in R4 is a ribbon surface-link if is ambient isotopic to a
suface-link which is obtained from a trivial2-link by surgery along 1-handles.

Proposition 4 ([7] Lemma 2). If an -chart has no black vertices, then it is un-
knotted.

Theorem 5 ([7] Proposition 20). Assume is an oriented surface-link. Then
is a ribbon surface-link if and only ifw( ) is equal to0.



894 I. HASEGAWA

In this paper, we will prove following theorems.

Theorem 14. Assume that an oriented surface-link is non-ribbon. Then
w-indexw( ) is more than three.

Theorem 16. Assume that an 2-link is non-ribbon. Then the w-indexw( ) is
more than five.

2. Rails and Genus lemma

Let be an -chart. For each edge which is not a hoop of , an initial
(resp. terminal) vertex of with respect to the orientation is denoted by init( ) (resp.
term( )).

DEFINITION. Let be an -chart and ≥ 2 be an integer. Arail with ends of
length in is a finite sequence of distinct edges (1 2 . . . ) which satisfies fol-
lowing conditions:

• init( 1) and term( ) are black vertices,
• term( ) and init( +1) are the same white vertex,
• and +1 are diagonal with respect to term( ), for = 1 2. . . − 1.

A rail without ends of length in is a finite sequence of distinct edges (1 2 . . .

) which satisfies following conditions:
• term( ) and init( +1) are the same white vertex,
• and +1 are diagonal with respect to term( ),

for = 1 2 . . . , where indices are considered as mod .

If = ( 1 2 . . . ) is a rail without ends, then′ = ( 2 3 . . . 1) is also a rail
without ends. Thus, we consider that and′ are the same.

Let be an -chart and be an associated surface braid. Let (π| ) be the
singularity set of the projectionπ| : → 1 × 2

2. If ∈ (π| ) is a double point,
the inverse imageπ−1( )∩ consists of two points. Then one is higher than the other
with respect to 2, the direction of the projectionπ. We say that the higher point is
over and the lower point isunder and these signatures, ‘over’ or ‘under’, is refered to
as height information.

Along a rail with ends , we consider an immersion of the interval into 2
2.

Then this immersion is uniquely lifted into (π| ), for corresponds to the projected
image of (π| ). Since consecutive two edges in are diagonal, the lift is moreover
lifted into in two ways such that one is the over curve and the other is the under
curve. We define a generic immersionφ of the circle 1 into as the immersion
going along the over curve lift and coming back along the under curve lift.

For a rail without ends , we also define generic immersionsψ andψ in a sim-
ilar way. We consider an immersion of the circle1 into 2

2 along . It is uniquely
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Fig. 4. Pull back of handle rail

lifted into (π| ) and moreover lifted into in two ways. We defineψ as the lift
which is higher andψ as the other lift.

Let be an -chart and = (1 2) be a rail with ends of length 2. The rail is
said to be ahandle rail if 1 is the middle edge of a set of consecutive inward three
edges incident to the white vertex term(1).

Lemma 6 (Genus Lemma. cf. [16]). If an -chart contains a handle rail, the
associated surface braid contains a surface with positive genus.

Proof. Consider the inverse imageπ−1( (π| )) ∩ . Let 0 be a handle rail.
Thenφ 0(

1) is a simple closed curve in the surface braid , and onφ 0(
1) there are

two points and of three inverse image of the triple point which corresponds to
the white vertex on0. By the definition of a handle rail, we see that and are the
highest and the lowest points in the three inverse image. Moreoverφ 0(

1) crosses arcs
α and β, parts of the inverse imageπ−1( (π| )) ∩ , transversely at and and
we see also that height information ofα is over and that ofβ is under (see Fig. 4).

We show that the assumption that does not include a surface with positive
genus contradicts the following fact.

Fact. Suppose two generic immersions from1 to a planar surface cross trans-
versely. Then the number of intersection points is even.

If we assume the above,α and β in Fig. 4 must be parts of the same generic
immersion. But height information ofα andβ shows that it cannot beψ or ψ . Let
be the rail of length such thatφ ( 1) includesα and β, and parametrize 1 ⊂ C,
the domain ofφ , so that the following conditions are satisfied:

• φ (ξ0) and φ (ξ ) correspond to black vertices and
• φ (ξ ) andφ (ξ2 − ) correspond to the same white vertices,

whereξ = exp{(
√
−1π)/ } and = 1 2 . . . − 1.
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The imageπ(α) is the intersection of the top and the middle sheets around the triple
point, thus if φ (ξ ) = on α, φ (ξ2 − ) 6= becauseφ (ξ2 − ) is on the middle
sheet andβ is on the bottom sheet. Then there exists′ 6= such thatφ (ξ2 − ′

) =
on β and φ (ξ2 − ) = φ (ξ

′

), for { φ (ξ2 − ) = φ (ξ
′

)} is the inverse image of
the triple point corresponding to the white vertex on0. However, the restriction ofφ
to = {exp{(

√
−1θπ)/ } | ′ ≤ θ ≤ 2 − } is assumed to be a generic immersion

of 1, which intersectφ 0(
1) exactly at one point, contradicting the Fact.

REMARK. First part of this proof is proved by Satoh, i.e. for the caseψ andψ .
The author generalize the statement.

3. Braid monodromy

The -strand braid group is generated by standard generatorsσ1 σ2 . . .

σ −1.
We identify the braid group with the fundamental groupπ1( ( 2

1) ), where
( 2

1) is the configuration spaceof the interior of 2
1.

Let be a surface braid of degree and be a set of branch points in2
2.

Let be a fixed point of 2
2\ . For any loopγ : ( ∂ ) → ( 2

2\ ), we define a
loop γ̃ : ( ∂ ) → ( ( 2

1) ˜ ) such that

γ̃( ) = −1
2 (γ( )) ∩

where ˜ is the inverse image of by (2| )−1. By choosing a path from to ˜ ,
we obtain an element of the braid group =π1( ( 2

1) ). This braid is called a
braid monodromyof the loopγ and denoted byρ(γ). If we choose another path, then
the resulting braid may be different, but the conjugacy class of them are the same.
Moreover, if we fix a path from to ˜ , then the map

ρ : π1( 2
2\ ) →

becomes a homomorphism.
Let be an -chart and be an associated surface braid. We consider the sub-

set of ( 2
1) each of whose element consists of points of21 ≃ 1 × 2 such that

1 coordinates of points are distinct from each other. For each∈ 2
2\ , the in-

verse image ˜ = |−1
2 ( ) ∩ is in this subset. Since this subset is contractible, we

choose a path from to ˜ uniquely determined up to homotopy foreach ∈ 2
2\ .

Then we can easily read the braid monodromy of a simple closedcurve γ of 2
2\

which starts from and intersects transversely as the following way:
Assign each intersection a letterσǫ where is the label on the edge/loop andǫ

is ±1 which is determined from the orientation of edge/loop andγ. By reading the
letters alongγ, we obtain a braid word, denoted by (γ), of the braid monodromy
ρ(γ) (see [11]).
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EXAMPLE. Let be an -chart. Assume that there is an edge satisfying
init( ) = term( ). Then separates 2

2 into two components, a 2-disk and an annu-
lus. One of the two components includes only one edge incident to init( ), and the
other includes three edges incident to init( ). Let be former. Now, we consider the
monodromy along the simple closed curveγ which is obtained by perturbing∂ into
Int( ). Assume that the label of is and another label of the edges incident to
init( ) is , where| − | = 1. We get the braid word

(γ) = σǫ · σǫ1

1
· · · · · σǫ

whereσǫ is obtained from the edge which intersect . From the condition for the la-
bel at crossings, it satisfies| − | > 1.

Let be the symmetric group and : → be the canonical homomorphism.
It is easy to see that ([ (γ)])( ) 6= and it follows that ([ (γ)]) 6= . Thusγ
is not null-homotopic in 2

2\ , for the braid monodromyρ is assumed to be a map
from free homotopy class of simple closed curves to a set of conjugacy classes of .
Moreoverγ is not homotopic to∂ 2

2 in 2
2\ because∂ 2

2 ∩ = ∅ and (∂ 2
2) =

empty. Therefore we conclude:

Lemma 7. In the above situation, ∩ and ∩ ( 2
2\ ) must have a black

vertex.

Let be the subset of consisting of conjugates of the standardgenerators
and their inverses. Each element of is called aband.

It is easy to see that the permutation associated with a band is a transposition and
the braid obtained by removing two strings which correspondto the transposition is
the trivial braid. It is also clear that the closure of a band is the trivial link consisting
of − 1 components. Since the square of a band is conjugate to the square of one of
standard generators and their inverses, it is easy to see that the permutation associated
with the square of a band is the identity and the braid obtained by removing from
the square one of two strings which correspond to the transposition of the band is the
trivial braid of − 1 strings.

Let γ : ( ∂ ) → ( 2
2\ ) be a simple closed curve. Ifγ encloses only one black

vertex, γ is homotopic to a loop which goes along a path from to the blackvertex
and turns around the black vertex and comes back along the same path (We call a loop
of this form a lasso). Hence by reading the braid monodromy with we see thatρ(γ)
becomes a band. Since∩ ∂ 2

2 = φ, the monodromyρ(∂ 2
2) is identity . Thus it

is easy to see that ifγ encloses all but one black vertex, the braid monodromyρ(γ)
also becomes a band.

Let be an -chart andγ be a lasso which goes along a pathα from the initial
point of γ to a black vertex. Suppose that a braid word−1σǫ represents the mon-
odromy ρ(γ), which may be different from . S. Kamada showed that there exists a
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Fig. 5. Turning edge over

C-move which changes into another -chart′ with outside of a neighborhood of
α unchanged such that the C-move does not move black vertices and ′ (γ) is equal
to −1σǫ as a word.

Using this technique, the following lemma is shown easily.

Lemma 8 (cf. [6] Lemma 29.5). A simple surface braid which has exact two
branch points is ribbon.

Proof. Suppose an -chart has two black vertices. We choose two lassosγ1

and γ2 as they are disjoint except their initial point. Then it holds that ρ(γ1)ρ(γ2) =
. Thus we choose a representative ofρ(γ1) of the form −1σǫ and change

into ′ such that ′ (γ1) = −1σǫ and ′ (γ2) = −1σ−ǫ . We can find a C-move
which generate a free edge in′ and ′ becomes a ribbon chart.

4. Surface braid charts as graphs

An -chart is an immersed graph into the interior of22. But we can consider
an -chart as an immersed graph into2, for there exists a sequence of C-moves such
that it turns an outermost edge over to the otherside (see Fig. 5). The remaining out-
ermost hoop is not affect whether is a ribbon chart or not, thus it will be ignored
in this paper.

REMARK. There exists the notion of “conjugation” for surface braids. In view of
-charts, it is to add or delete an outermost hoop to an -chart .It does not change

the ambient isotopy class of a closure of a surface braid.

DEFINITION. In an -chart , a pair of edge (1, 2) is called acanceling pair if
it satisfies the following conditions:
1. the endvertices of1 and the endvertices of2 are the common two white vertices
{ 1 2}
2. 1 is left to 2 at 1 and 2 is left to 1 at 2

3. the edge which is left to 1 at 1 and the edge which is left to2 at 2 are
oriented to the same. (both are oriented inward or outward)
If ( 1 2) is a canceling pair, 1 ∪ 2 separates 2

2 into two components, a 2-disk and
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Fig. 6. Canceling pair
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2

Fig. 7. Cancel white vertices

an annulus. Acanceling diskis the one of two components which includes no edge
incident to 1. Here, regarding 2

2 as in 2, an annulus which includes∂ 2
2 is called

to be a ‘disk’ (see Fig. 6).

Lemma 9. If an -chart has a canceling pair( 1 2) whose canceling disk
includes at most one white vertex, then there exists an -chart ′ such that

• is C-move equivalent to ′, and
• w( ′) = w( ) − 2

Proof. We show by three steps that two white vertices, endvertices of a canceling
pair, are cancelled by C-move while a new white vertex is not generated. Assume that
, + 1 are the label of the edges1, 2 respectively.

If each label of edges which intersect the edge2 transversely is not equal to−1,
we cancel init(2) and term(2) by CI-move as in Fig. 7.

If there exists no white vertex in , there exist three cases ofarcs in which
intersect 2 transversely:
(i) Arcs one of whose endvertices is on1 and the other is on2

(ii) Arcs one of whose endvertices is black and the other is on2

(iii) Arcs both of whose endvertices is on2
The case (i) is ignored. Arcs of the case (ii) are able to be pulled out by CII-move.
Let be the set of arcs of the case (iii). We define a partial order of as follows:

For each arcα in , there exists a unique 2-diskα surrounded byα ∪ 2.
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1

2

Fig. 8. Delete crossings with arcs in

Thus we define a partial orderα > α′ is defined by α ⊂ α′ .

Then we delete crossings of2 and arcs in according to this order as in Fig. 8.
Hence two white vertices are cancelled as in Fig. 7.

Assume that there exists one white vertex in . Since labels ofedges incident to
the white vertex differ by 1, these edges cannot intersect one of the canceling pair
( 1 2). Applying the previous argument to the edge1 or the edge 2, we cancel two
white vertices.

Corollary 10. Let be an -chart with four white vertices. If has two can-
celing disks, then is C-move equivalent to an -chart with two white vertices.

Proof. At least two white vertices are endvertices of canceling pairs. If at least
three white vertices are endvertices of canceling pairs, itis easy to see that we can
apply Lemma 9. If only two white vertices are endvertices of canceling pairs, the in-
tersection of canceling disks consists of white vertices oredges. Thus we can apply
Lemma 9 regardless of the placement of the remaining two white vertices.

5. Main Theorem

DEFINITION. An -chart is a 23-minimal chart if satisfies a following con-
dition:

there exists no -chart ′ which is obtained from by at most one CII-move
or one CIII-move and satisfies the inequality w(′) + c( ′) < w( ) + c( ).

Lemma 11. For any -chart , there exists a 23-minimal chart ′ such that
• is C-move equivalent to ′, and
• w( ) ≥ w( ′).

Proof. If is not 23-minimal, there exists ′ which is obtained from by one
CII-move or CIII-move and satisfies w(′) + c( ′) < w( ) + c( ). Moreover, CII-move
(resp. CIII-) keeps w( ) (resp. c( )) unchanged. Thus it satisfies w( ) ≥ w( ′). We
can show the lemma by induction with w( ) + c( ).

The edge whose endvertices are black and white is calleda bw-edge. Then a
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white vertex in 23-minimal charts is one of following three types:
(A) there is no bw-edge incident to ,
(B) there is exact one bw-edge incident to and it is a middle edge of consecutive
three edges which are oriented in the same direction,
(C) there are exact two bw-edge incident to and they are middle edges.

A white vertex satisfying the condition (A) (resp. (B) or (C)) is called anA-type
white vertex (resp.B-typeor C-type).

For any -chart , the number of A-type white vertex is denoted by wA( ),
B-type is denoted by wB( ) and C-type is denoted by wC( ). And we denote by b0( )
the number of black vertices which is not an end of a free edge.

REMARK. If is 23-minimal, then it holds that b0( ) = wB( ) + 2wC( ).

Lemma 12. For any -chart , b0( ) is even.

Proof. b0( )+6w( ) is equal to a twice of the number of edges except free edges
and hoops.

Lemma 13 (cf. [7]). Let be an -chart. If it satisfiesb0( ) ≤ 2 then it is a
ribbon chart.

Proof. Note that b0( ) is even. The case b0( ) = 0 follows the argument of
Lemma 19 in [7]. The case b0( ) = 2 is similar. At first, we sweep free edges away
from a subgraph of which includes all of white vertices. Thenthis subgraph in-
cludes only two black vertices and is C-move equivalent to an-chart which includes
no white vertex from Lemma 8. Thus is a ribbon chart even if it has free edges.

Theorem 14. Assume that an oriented surface-link is non-ribbon. Then w-index
w( ) is more than three.

Proof. We show that any chart with w( )≤ 3 is ribbon. By Lemma 11
and 13, we may assume that is23-minimal and b0( ) > 2. Since wA( ) + wB( ) +
wC( ) = w( ) ≤ 3 and wB( ) + 2wC( ) = b0( ) > 2 and since b0( ) is even, we have
the following cases:

(wA( ) wB( ) wC( )) = (0 0 2) (1 0 2) (0 2 1) (0 0 3)

But for the case (1 0 2), (0 2 1) and (0 0 3), the BW-orientation shows that
there is no such chart (see [15]). For the case (0 0 2), essentially, there exists only
one way to immerse as shown in Fig. 9. It clearly has two canceling disks and be-
comes ribbon by Corollary 10. Thus the theorem is proved.
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Fig. 9. Immersion for wC( ) = 2

Corollary 15. There exists a surface-link whose w-index is four.

Proof. In [3], a non-ribbon surface-link which is namedtwisted Hopf2-link is
presented. In [1], there is a chart representing with four white vertices. Thus w( )
is four.

REMARK. The twisted Hopf 2-link is a pseudo-ribbon surface-link, i.e. it is de-
scribed by a surface diagram without triple points and branch points.

Theorem 16. Suppose is a non-ribbon2-link. Then w-indexw( ) is more
than five.

Proof. We show that any chart with w( )≤ 5 is ribbon if the associated sur-
face braid is a planar suface. By Lemma 11 and 13, we may assumethat is

23-minimal and b0( ) > 2. Moreover by Lemma 6, we may assume that wC( ) = 0.
Since wA( ) + wB( ) = w( ) ≤ 5 and wB( ) = b0( ) > 2 and since b0( ) is even, we
have the following cases:

(wA( ) wB( ) wC( )) = (0 4 0) (1 4 0)

But in the case (1 4 0), the BW-orientation shows that there isno such chart. Thus,
by showing that any chart in the case (0 4 0) is a ribbon chart, we can prove the
theorem. This will be done in the next section.

Corollary 17. The w-index of2-twist spun trefoil is equal to six.

Proof. In [6], there is a chart representing 2-twist spun trefoil with six white
vertices. 2-twist spun trefoil is not ribbon, thus w( ) is six.

REMARK. In [17], it is shown that the triple point number of 2-twist spun trefoil
is four, i.e. it is represented by a surface diagram with fourtriple points and can not
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1 1 2 2 3 3 4 4

Fig. 10. Labels and orientations of four white vertices.

αβ 23

Fig. 11. An edge satisfying init( ) = term( )

be represented by surface diagram with less than four triplepoints.

6. The last part of the proof of Theorem 16

Let be a 23-minimal -chart which has four white vertices labeled and ori-
ented as in Fig. 10. We assume that the associated surface braid is a planar sur-
face. Counting the number of edges for labels and orientations, the following equation
holds:

(1) { 1 2 3 3 4 4} = { 1 1 2 2 3 4}

where the equation holds including multiplicity. Note thatthe equalities| − | = 1
hold for = 1, 2, 3, 4.

We show that is a ribbon chart through four steps.

STEP 1. has no edge whose endvertices are the same white vertex.

Proof. Assume that satisfies init( ) = term( ) and let1 be init( ). Then sep-
arates 2

2 into two components and the component including only one edge incident to
init( ) is denoted by . Letα and β be edges incident to 1 which are not diagonal
to the edge (see Fig. 11). Since1 is B-type white vertex,α and β are not a bw-
edge. Let 2 and 3 be another endvertices ofα and β respectively. 2 in and
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1 1 2 3 32 1 1 2 3 32

1 1 3 3 2 2 1 1 3 3 2 2

1 1 3 3 4 4 1 1 3 3 4 4

(1) (2) (3) (4)

(5) (6) (7) (8)

(9) (10)

Fig. 12. Rails of length more than three.

3 in 2
2\ .

Now we observe the place of 4, either in or out of . If 4 is in then
edges which are incident to 3 and whose label is the same asβ must be connected
each other. Thus there exists another edge′ which satisfies init(′) = term( ′). But the
component ′ which is separated by′ including only one edge which is incident to

3 has no black vertex, for the edge included in′ is not a bw-edge and the other
bw-edge are out of . Thus it contradicts to Lemma 7. It is the same in the case when

4 is out of and there is no satisfying init( ) = term( ).

STEP 2. Suppose that the rail which starts from the bw-edge incident to 1 has
the length larger than three. Then is a ribbon chart.

Proof. By Step 1, first three white vertices on the rail are distinct each other. We
examine two cases of positions of the bw-edge incident to thesecond white vertex as
in Fig. 12. If the bw-edge is nearer to the first white vertex, then the orientation of
the bw-edge is from black to white and it holds that1 = 2. The equation (1) shows
that 1 = 2 = 3 = 4. Hence we assume that the label of the third edge in the rail is3

and two cases of positions of the bw-edge incident to the third white vertex must be
considered. Moreover we consider whether the labels1 and 2 are the same or not.

If the bw-edge is nearer to the third white vertex, then the orientation is from
white to black and we assume that1 = 3. The equation (1) shows that1 = 3 =
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Table 1. Ten cases of the monodromiesγ

monodromy ofγ result

(1) σ +1σ
−1 σ−1σ−1

+1 σ +1σ σ−1
+1σ

−1
+1

−1 σ +1
−1 σ−1σ +1 σ−1

(2) σ +1σ
−1 σ−1

+2σ
−1
+1 σ +1σ +2σ

−1
+1σ

−1
+1

−1 σ +1
−1 σ−1σ +1 σ−1

(3) σ +1σ
−1 σ−1σ−1

+1 σ−1
+1σ

−1
+1σ σ +1

−1 σ +1
−1 σ−1σ +1 NOT

(4) σ +1σ
−1 σ−1

+2σ
−1
+1 σ−1

+1σ
−1
+1σ +2σ +1

−1 σ +1
−1 σ−1σ +1 NOT

(5) σ +1σ
−1 σ σ +1 σ−1

+1σ
−1σ−1

+1σ
−1 σ −1 σ−1σ +1 σ−1

(6) σ +1σ
−1 σ +2σ +1 σ−1

+1σ
−1
+2σ

−1
+1σ +2

−1 σ +2
−1 σ−1σ +1 σ−1

(7) σ +1σ
−1 σ σ +1 σ σ−1

+1σ
−1σ−1

+1
−1 σ−1 −1 σ−1σ +1 NOT

(8) σ +1σ
−1 σ +2σ +1 σ +2σ

−1
+1σ

−1
+2σ

−1
+1

−1 σ−1
+2

−1 σ−1σ +1 NOT

(9) σ +1σ
−1 σ σ +1 σ +1σ σ−1

+1σ
−1
+1

−1 σ−1 −1 σ−1σ +1 NOT

(10) σ +1σ
−1 σ σ +1 σ−1

+1σ
−1
+1σ σ +1

−1 σ−1 −1 σ−1σ +1

2 = 4, 2 = 3 and 4 = 1, for the first equation induces that{ 2 4 4} = { 1 1 3}.
Hence the label of the third edge is2 or 4 and four cases of positions of the bw-edge
incident to the third white vertex is must be considered. Forthe case that the label of
the third edge is2, we consider whether the labels1 and 3 are the same or not.

Now we read the monodromy of the simple closed curveγ for each of ten cases.
In the Table 1, is the word obtained from the crossings on the second edge in the
rail and is the word from the crossings on the third edge. Let be a braid word
σ−1

+1σ σ +1σ
−1σ +1.

The monodromy must be a band for each case, for there exists exact one black
vertex outside of the simple closed curveγ. But there exist five cases such that the
monodromy cannot become a band, the mark ‘NOT’ in the Table 1.The reason why
the monodromy of the case marked ‘NOT’ cannot be a band is thatthe closure of the
monodromy includes a non-trivial link. This is showed as thefollowing way: For the
case (8) in the Table 1. At first, we see that the associated permutation is a transposi-
tion of the type ( +1 ), where is not equal to , +1, +2. Hence -th and +2-th
strings are the part of the trivial braid obtained by removing + 1-th and -th strings.
Second, we see that the permutation (−1) associated with −1 preserves + 1 so
that -th string becomes the part of the trivial braid and moreover −1 must include
the positive full twist of two strings corresponding to -th and + 2-th strings. This
full twist, in turn, becomes negative full twist of two strings correspoding to + 2-th
and -th strings in the word . Hence the link consisting of +1-th, +2-th and -th
strings is ambient isotopic to the closure of the 3-braidσ1σ2σ

−1
1 σ−1

1 σ−1
2 σ−1

2 σ1. This
is a Whitehead link and it contradicts that the monodromy is aband. For the cases
(3), (4), (7) and (9), similar arguments show that the monodromy includes a non-trivial
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link.
In the other five cases in the Table 1, the monodromies are determined as the

following way: For the case (10). At first, we see that the associated transposition is
( + 1). Then the permutation (−1) preserves + 2, so that the end of + 1-th
string becomes . Moreover the permutation ( ) must preserve ,for if otherwise,
the monodromy includes a Whitehead link. Second, we see that+ 2-th string is sep-
arated in so that the braid obtained by removing -th and + 1-thstring becomes
a trivial braid. Here, the wordseparetedmeans that is equivalent to a braid word
which does not includeσǫ

+1 nor σǫ
+2. Hence the monodromy is equivalent to the word

σ +1σ
−1 σ σ−1

+1σ σ +1σ
−1 −1σ−1σ +1. To see that -th string is separated in , we

examine the square of the monodromy. Then we get the equation

[σ−1 σ2 −1σ2 σ−2 −1σ−1] =

for the braid obtained by removing +1-th string from the square of the band becomes
a trivial braid. This equation implies thatσ2 −1 and σ2 commute with each other.
Recall that the permutation ( ) preserves and + 1. The following lemma is easily
proved by the argument similar to the Lemma 3.2 in [5].

Lemma 18 ([5] Lemma 3.2). Let β be a braid satisfying the following two con-
ditions:

• (β) stabilizes{ + 1}, and
• βσ2β−1 commutes withσ2.

Thenβ commutes withσ .

Outline of proof. Sinceβσ2β−1 commutes withσ2, βσ2β−1 has a ( )-band.
Moreover the assumption that (β) stabilizes { + 1} shows thatβ itself has a
( )-band, for the interval [ + 1] is the only arc stable by the action of σ2 among
the arcs of 2 whose ends are{ + 1} and interior is included in 2\ .

At last we see that the monodromy is equal to

σ σ +1σ
−1σ−1σ +1 = σ−1

+1σ σ +1σ
−1σ +1

For the cases (1), (2), (5) and (6), much easier arguments determine the monodromy,
without the observation of the square of a band. Now we can findthe C-move for each
of five cases that construct a free edge from two of black vertices which are endver-
tices of bw-edges. Note that each of and commutes withσ andσ +1. By sweep-
ing this free edge out, we see that is a ribbon chart from Lemma13.

Now we suppose that has two rails with ends of length three as in Fig. 13. We
call each of the arcs in the following figures one of whose endvertices is described
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1 1 3 3 2 2 4 4

Fig. 13. Two rails of length three.

1 3

1 3

2

1

2

1

Fig. 14. Two edges incident to 1 and 3.

an open edge. We note that the affection of each of four white vertices is even when
counting the number of open edges for labels and orientations.

STEP 3. If there exists another edge incident to1 and 3, then is a ribbon
chart.

Proof. We consider only four cases in Fig. 14. For the case (1), there exists a
canceling disk and if there exists at least one white vertex then is C-move equiva-
lent to an -chart with two white vertices from Lemma 9. Otherwise, there exist no
edge adjacent to one of{ 1 3} and one of{ 2 4}. Hence two open edge marked

are connected with each other and is ribbon. For the case (2),we see that two
open edges marked1 or two open edges marked2 are connected with each other, for
the placement of 2 and 4 is limited by counting the number of open edges. Hence
this case turns to the case (1). On the other hand, since the affection of white vertices
for open edges is even, we cannot connect the open edges whichhave the same la-
bels marked 1 or 2. Thus there exist no -chart which includes the part such as the
case (3) or (4).



908 I. HASEGAWA

STEP 4. The remaining case.

Proof. We assume that there exist no edge incident to1 and 3 except one in
Fig. 13 and that there exist no edge incident to2 and 4 except one in Fig. 13. By
observing labels and orientations of open edges in Fig. 13, we see that if there exists
an edge incident to 1 and 2 then all of four open edge are incident to1 and 2.
Then the placement of four edges is similar to the chart in Theorem 14 (Fig. 9) and

has two canceling disks. Hence is ribbon from Lemma 9. We prove the main
theorem.
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