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1. Preliminaries

Surface braidsare defined by Rudolph [13], [14] and Viro [18], corresporyio
oriented surface-links. Viro [18] and Kamada [10] proved #lexander’'s theorem and
Markov’s theorem for the oriented surface-links and swefacaids. In this paper, we
will give the lower bound ofw-indexfor non-ribbon oriented surface-links and deter-
mine values for some examples.

We review some definitions and notations for surface brdRiger to [6] for more
details. LetD?, D2 be 2-disks, angpr; D? x D3 — D? (i =1, 2) be the projection
map to thei -th factor. Le,, be a set of interior pointslof.

DeriniTion (see [6]). A surface braid of degreen (or a surfacem -braid is a
compact oriented 2-manifold embedded properly and lodtalyy in D? x D3 such
that the restriction mapr|s: S — D3 is a branched covering map of degree  and
0S = Q. x OD3. It is a simple surface braidf the associated branched covering is
simple.

In what follows, we assume that surface braids are simple.

Two surface braidsS and’ are equivalentif there is a fiber-preserving ambient
isotopy of Df x D which carriesS intoS’. Here, we regardD? x D3 as a trivial
D3-bundle overD3.

Identifying D? x D3 with a standard four ball irR*, we obtain a closed surface
in R* by attaching 2-disks onto the boundary of a surface bfid hao the 2-disks
are included in the outside of four ball. We call itcbosure of S.

Theorem 1 (Viro; Kamada [9] Theorem 1). Any oriented surface-link irR* is
ambient isotopic to a closure of some simple surface braid okrtain degree.

Take a bi-parameterizatioD? ~ Iy x I,. Let m: D#x D3 — I x D3 be a projection
map. We can assume a surface br8id is generic with respect Then the singu-
larity set T ¢r|s) consists of double points, isolated triple points andassl branch
points. For each double-point arc, which connects two ofated triple or branch
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Fig. 1. Vertices and a crossing of a surface braid chart

points in the singularity set, we define a label and an ortemta called Alexander
numbering (see [2] and [4]). The image oE n(s) projected ontoD2 is considered
to be an immersed graph with labels and orientations. Maedhese labels and ori-
entations ensure that we can reconstruct the surface maid the immersed graph.

We assume that a graph may be empty or have closed edges withdices
called hoops

DeriniTion (see [7]). Asurface braid chart of degree rfor simply, m-charf) is
an immersed one-, six-valent graph in the interior/2§ whose edges are oriented
and labeled, with additional conditions for the immersiawnd six-valent vertices
and the sigularity of the immersion as shown in Fig. 1. An edgdabeled an inte-
gerin{l,2...,m—1}.

We call a one-valent (resp. six-) vertexbéack vertex(resp. awhite verte), and
a point of the singularity set is called @ossing

RemaArk. In [6], an m -chart is treated as an embedded graph. Crossirgsilso
considered to be vertices.

For eachm -charl” , we construct a surface braid as the abovevalti®n shows.
We denote itSr and call amassociated surface braidkamada proved the following
theorem.

Theorem 2 ([7] Theorem 14). Let S be a simple surface braid of degree
Then there exists a surface braid chdrt of degmee  such shateqisvalent toSy .

Corresponding to the equivalence relation of surface braidcal moves of
m-charts, calledCl-move Cll-move and Clll-moveare defined. Each move changes
an m -chartl’ into anothem -chaft’ with outside of some 2-diskf unchanged, sat-
isfying one of the following conditions:

(Cl) There are no black vertices RN E andT' N E.
(C)TNE andT’' N E are as in Fig. 2, wherg — j| > 1.
(ClI) TNE andI’ N E are as in Fig. 3, wherg — j| =1.

We sayI’ andl’ are C-move equivalenif they are related by a finite sequence

of C-moves and ambient isotopies Dg.
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Fig. 3. Chart moves of type lll

Theorem 3 ([12] Theorem 1). Two charts of degree: represent the same, up to
equivalence, simple surface braid if and only if they are Grenequivalent.

At the end of this section, we see some notations and factst avom -chartl” .

A free edgeof an m -chart is an edge both of whose endvertices are bladkxer
An m-chart istrivial if it is C-move equivalent to the empty graph.

An m-chart is aribbon chartif it is C-move equivalent to the one which has no
white vertices.

We denote the number of white vertices byIw( ), black vertibgsb(I"), cross-
ings by c( ). Thew-index of a surface braidS , denoted by $( ), is defined as the
minimum number of W{' ) such thaf is equivalentfo . TWandexof an oriented
surface-linkL , denoted by v ), is defined as the minimum nundfev(S) such that
the closureS is ambient isotopic ta. . The w-index is first defined in [8].

A surface-link L inR* is a ribbon surface-linkif L is ambient isotopic to a
suface-link which is obtained from a triviaé?-link by surgery along 1-handles.

Proposition 4 ([7] Lemma 2). If an m-chart has no black vertices, then it is un-
knotted.

Theorem 5 ([7] Proposition 20). AssumeL is an oriented surface-link. Thén
is a ribbon surface-link if and only (L) is equal toO.
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In this paper, we will prove following theorems.

Theorem 14. Assume that an oriented surface-link is non-ribbon. Then
w-indexw(L) is more than three.

Theorem 16. Assume that ar$?-link L is non-ribbon. Then the w-index(L) is
more than five.

2. Rails and Genus lemma

Let ' be anm -chart. For each edge which is not a hoopI'of , an linitia
(resp. terminal) vertex oé with respect to the orientatisndenoted by ini{ ) (resp.
terme)).

DeriniTion.  Let T be anm -chart and > 2 be an integer. Arail with ends of
lengthk in T is a finite sequence of distinct edges, o, . . ., ex) which satisfies fol-
lowing conditions:

e init(e;) and term¢; ) are black vertices,

e termfe; ) and inité;+1) are the same white vertex,

e ¢; ande;41 are diagonal with respect to teren( ), for 51.2.,k— 1.
A rail without ends of lengthk in T is a finite sequence of distinct edges, o, .- .,
er) which satisfies following conditions:

e termfe; ) and inité;+1) are the same white vertex,

e ¢; ande;41 are diagonal with respect to teren( ),
fori =1,2...,k, where indices are considered as miod

If 1= (e1, ez ...,e) is a rail without ends, thell = (ez, e3, ..., e1) is also a rail
without ends. Thus, we consider thiat aldare the same.

Let I' be anm -chart andr be an associated surface braidXleis.)(be the
singularity set of the projection|s.: Sr — I1 x D3. If x € Z(r|s.) is a double point,
the inverse imager—1(x)NSr consists of two points. Then one is higher than the other
with respect tol,, the direction of the projectiom. We say that the higher point is
over and the lower point isunder and these signatures, ‘over’ or ‘under’, is refered to
as height information

Along a rail with ends! , we consider an immersion of the inénv into D3.
Then this immersion is uniquely lifted int& =(s.), for I' corresponds to the projected
image of £ (r|s.). Since consecutive two edges in are diagonal, the lift isemer
lifted into Sr in two ways such that one is the over curve and ttieeois the under
curve. We define a generic immersign of the circle ST into Sr as the immersion
going along the over curve lift and coming back along the uraleve lift.

For a rail without ends , we also define generic immersi&mndﬂ in a sim-
ilar way. We consider an immersion of the circ# into DZ along! . It is uniquely



W-INDICES OF NON-RIBBON SURFACE-LINKS 895

Q
B

Fig. 4. Pull back of handle ralil

lifted into X (r|s.) and moreover lifted intaS-  in two ways. We defing as the lift
which is higher and); as the other lift.

Let ' be anm -chart and ={, ep) be a rail with ends of length 2. The rdil is
said to be ahandle rail if ¢; is the middle edge of a set of consecutive inward three
edges incident to the white vertex tewnj(

Lemma 6 (Genus Lemma. cf. [16]). If an m-chartI" contains a handle railthe
associated surface braidr contains a surface with positigaug.

Proof. Consider the inverse image }(Z(r|s.)) N Sr. Let [ be a handle rail.
Then ¢,,(St) is a simple closed curve in the surface br&id , andsg(S') there are
two points P andQ of three inverse image of the triple point Whaorresponds to
the white vertex orlg. By the definition of a handle rail, we see that a@d are the
highest and the lowest points in the three inverse imageeMar ¢,,(S*) crosses arcs
« and 3, parts of the inverse image=1(Z(n|s.)) N Sr, transversely al? an@ and
we see also that height information afis over and that ofs is under (see Fig. 4).

We show that the assumption th&t does not include a surfatie puasitive
genus contradicts the following fact.

Fact. Suppose two generic immersions frdgfh to a planar surface cross trans-
versely. Then the number of intersection points is even.

If we assume the abovey and g in Fig. 4 must be parts of the same generic
immersion. But height information of and 3 shows that it cannot be; or Y. Letl
be the rail of lengthk such that;(S) includesa and 3, and parametrizes* c C,
the domain ofg;, so that the following conditions are satisfied:
o ¢;(¢°) and ¢;(¢%) correspond to black vertices and
e ¢(¢7) and ¢;(¢%*~7) correspond to the same white vertices,
where¢ = exp{(v/—17)/k} andj =1 2...,k — 1.
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The imagen () is the intersection of the top and the middle sheets arobadtriple
point, thus if #;,(¢/) = P on o, ¢;(¢€¥77) # Q becausep,(¢£%~7) is on the middle
sheet and3 is on the bottom sheet. Then there exigts? j such that¢,(§2’<*f/) =0

on 3 and ¢, (¢%~7) = ¢(¢"), for {P, Q, ¢ (€%~7) = ¢i(¢/")} is the inverse image of
the triple point corresponding to the white vertex gn However, the restriction ofy,

to J = {exp{(v/~107)/k} | j' <6 < 2k — j} is assumed to be a generic immersion
of S1, which intersecty,(S) exactly at one point, contradicting the Fact. [l

Remark. First part of this proof is proved by Satoh, i.e. for the cageand i;.
The author generalize the statement.

3. Braid monodromy

The m-strand braid group,, is generated by standard generators,, ...,
Om—1-

We identify the braid group with the fundamental growg(F,,(D?), Q,.), where
F,,(D?) is the configuration spacef the interior of DZ.

Let S be a surface braid of degree amd  be a set of branch poinf3Zin
Let y be a fixed point ofD3\=. For any loopy: (1,01) — (D3\X, y), we define a
loop §: (I, 01) — (F.(D?%), ) such that

() = pry ()N S,

where y is the inverse image of byi|S)~1. By choosing a path fronQ,, to ~,

we obtain an element of the braid grody), 7HF,.(D?), Q). This braid is called a

braid monodromyof the loop~y and denoted by(y). If we choose another path, then
the resulting braid may be different, but the conjugacy <lak them are the same.
Moreover, if we fix a path fromQ,, to ~, then the map

p: T(DA\Z, y) — By

becomes a homomorphism.

Let ' be anm -chart andr be an associated surface braid. We eoribiel sub-
set of F,, (D?) each of whose element consists/of  pointsi¥f ~ I x I, such that
I, coordinates ofn  points are distinct from each other. For eaech D3\I', the in-
verse imagey~ Zpr|, *(y) N Sr is in this subset. Since this subset is contractible, we
choose a path fron@,, te ~ uniquely determined up to homotopyeémhy € D3\T'.
Then we can easily read the braid monodromy of a simple clasede v of D7\ %
which starts fromy and intersecid transversely as the faligway:

Assign each intersection a lettef where; is the label on the edge/loop and
is +£1 which is determined from the orientation of edge/loop andBy reading the
letters alongy, we obtain a braid word, denoted By ~)( of the braid monodromy

p(7) (see [11]).
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ExavpLE. Let ' be anm -chart. Assume that there is an edge  satisfying
init(e) = term(). Thene separate®?3 into two components, a 2-disk and an annu-
lus. One of the two components includes only one edge intittennit(e), and the
other includes three edges incident to init( ). L&t  be fornNow, we consider the
monodromy along the simple closed curyewhich is obtained by perturbingE into
Int(E). Assume that the label of i and another label of theesdmncident to
init(e) is j, where|i — j| = 1. We get the braid word

€1 €p

Wr() =05 oft - oi!,
Whereaf: is obtained from the edge which intersect . From the comifr the la-
bel at crossings, it satisfigs—i,| > 1.

Let S,, be the symmetric group and B;, — S,, be the canonical homomorphism.
It is easy to see that Wr 7{])(j) # j and it follows thats (Wr €)]) # ids,. Thus~y
is not null-homotopic inD3\ X, for the braid monodromy is assumed to be a map
from free homotopy class of simple closed curves to a set pfugacy classes oB,,
Moreover~ is not homotopic todD3 in D3\ because)D3 N T = () and Wr OD3) =
empty. Therefore we conclude:

Lemma 7. In the above situationl N E and ' N (D3\E) must have a black
vertex.

Let SA,, be the subset oB,, consisting of conjugates of the standangrators
and their inverses. Each element 4, is callebamd

It is easy to see that the permutation associated with a bmadtiansposition and
the braid obtained by removing two strings which corresptmdhe transposition is
the trivial braid. It is also clear that the closure of a basdhe trivial link consisting
of m — 1 components. Since the square of a band is conjugate to ttegesqf one of
standard generators and their inverses, it is easy to seehthgermutation associated
with the square of a band is the identitys, = and the braid obtalmeremoving from
the square one of two strings which correspond to the trasispo of the band is the
trivial braid of m — 1 strings.

Let y: (I, 01) — (D3\X) be a simple closed curve. #f encloses only one black
vertex, v is homotopic to a loop which goes along a path frgm to the blasktex
and turns around the black vertex and comes back along the path (We call a loop
of this form alassqg. Hence by reading the braid monodromy with  we see Hq)
becomes a band. Sinden dD2 = ¢, the monodromyp(0D3) is identity idg, . Thus it
is easy to see that if encloses all but one black vertex, the braid monodrgrty)
also becomes a band.

Let I be anm -chart and be a lasso which goes along a pathfrom the initial
point of v to a black vertex. Suppose that a braid ward'ofw represents the mon-
odromy p(~), which may be different fromi¥ . S. Kamada showed that theist®xa
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Fig. 5. Turning edge over

C-move which changef into another -chBftwith outside of a neighborhood of
« unchanged such that the C-move does not move black vertices$Va () is equal
to wlofw as a word.

Using this technique, the following lemma is shown easily.

Lemma 8 (cf. [6] Lemma 29.5). A simple surface braid which has exact two
branch points is ribbon.

Proof. Suppose am -chalt has two black vertices. We choogelassosy;
and v, as they are disjoint except their initial point. Then it rolthat p(y1)p(y2) =
idp,. Thus we choose a representative 4§f;;) of the form w—lsfw and change’
into T such thatWr(v1) = w—lofw and Wr/(y2) = w~to; “w. We can find a C-move
which generate a free edge Itf andI"” becomes a ribbon chart. U

4. Surface braid charts as graphs

An m-chartT" is an immersed graph into the interior Bf. But we can consider
anm -chart as an immersed graph irft§, for there exists a sequence of C-moves such
that it turns an outermost edge over to the otherside (seeSrigrhe remaining out-
ermost hoop is not affect wheth& is a ribbon chart or nots thiuwill be ignored
in this paper.

RemarRk. There exists the notion of “conjugation” for surface bgaith view of
m-charts, it is to add or delete an outermost hoop tonan -dhalt does not change
the ambient isotopy class of a closure of a surface braid.

DeriniTion.  In anm -chartl” , a pair of edgezy, ¢2) is called acanceling pairif
it satisfies the following conditions:
1. the endvertices of; and the endvertices af are the common two white vertices
{W1, Wa}
2. ey is lefttoe, at Wy andes is left to e; at W,
3. the edge which is left t@; at W; and the edge which is left te, at W, are
oriented to the same. (both are oriented inward or outward)
If (e1,e2) is a canceling paire; U e; separatesD? into two components, a 2-disk and
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Fig. 7. Cancel white vertices

an annulus. Acanceling diskis the one of two components which includes no edge
incident to W1. Here, regardingD3 as in $?, an annulus which include8D53 is called
to be a ‘disk’ (see Fig. 6).

Lemma 9. If an m-chartT" has a canceling paife1, ¢2) whose canceling disk
includes at most one white verieken there exists am -chait’ such that
e [' is C-move equivalent to’, and
e wW(l')=w(l) — 2

Proof. We show by three steps that two white vertices, enidesrof a canceling
pair, are cancelled by C-move while a new white vertex is restegated. Assume that
i, i +1 are the label of the edges, ¢, respectively.

If each label of edges which intersect the edgdransversely is not equal -1,
we cancel init¢;) and termé;) by Cl-move as in Fig. 7.

If there exists no white vertex itk , there exist three casesrof in E which
intersecte, transversely:

(i) Arcs one of whose endvertices is @q and the other is o,

(i) Arcs one of whose endvertices is black and the other is0n

(i) Arcs both of whose endvertices is an

The case (i) is ignored. Arcs of the case (ii) are able to béegubut by Cll-move.
Let X be the set of arcs of the case (iii). We define a partial oadeX as follows:

For each arav in X, there exists a unique 2-disk, surrounded byx U e;.
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Fig. 8. Delete crossings with arcs ixi

Thus we define a partial order > ' is defined byD, C D,-.

Then we delete crossings @b and arcs inX according to this order as in Fig. 8.
Hence two white vertices are cancelled as in Fig. 7.

Assume that there exists one white vertexdn . Since labelsdges incident to
the white vertex differ by 1, these edges cannot interseet @inthe canceling pair
(e1, €2). Applying the previous argument to the edgeor the edgee,, we cancel two
white vertices. ]

Corollary 10. LetI" be anm -chart with four white vertices. If  has two can-
celing disksthenT" is C-move equivalent to am -chart with two white vesice

Proof. At least two white vertices are endvertices of cangepairs. If at least
three white vertices are endvertices of canceling pair$s ikasy to see that we can
apply Lemma 9. If only two white vertices are endvertices ahaeling pairs, the in-
tersection of canceling disks consists of white verticesedges. Thus we can apply
Lemma 9 regardless of the placement of the remaining twoemréttices. U

5. Main Theorem

DeriniTioN.  An m-chartT" is aC,z-minimal chartif I" satisfies a following con-
dition:

there exists nan -chaft’ which is obtained fronT" by at most one Cll-move

or one Clll-move and satisfies the inequalityT)+ c(I'") < w(T") + c(T").

Lemma 11. For any m-chartT, there exists aC,3-minimal chartI'’ such that
e I is C-move equivalent td’, and
o W(T") > w(I').

Proof. If T is notCps-minimal, there existd™” which is obtained fronT" by one
Cll-move or Clll-move and satisfies W() + c(I'’) < w(T") + ¢(I'). Moreover, Cll-move
(resp. Clll-) keeps W ) (resp. E( )) unchanged. Thus it fiagsw(I" ) > w(I'’). We
can show the lemma by induction with W( ) Ht( ). [l

The edge whose endvertices are black and white is calldulv-edge Then a
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white vertexW inCyz-minimal charts is one of following three types:
(A) there is no bw-edge incident t&
(B) there is exact one bw-edge incident Wo and it is a middigeedf consecutive
three edges which are oriented in the same direction,
(C) there are exact two bw-edge incident Wo and they are middges.

A white vertex satisfying the condition (A) (resp. (B) or {d¥ called anA-type
white vertex (respB-typeor C-type.

For any m -chartl’ , the number of A-type white vertex is denotedw(T),
B-type is denoted by w(I") and C-type is denoted by{l"). And we denote by &{I")
the number of black vertices which is not an end of a free edge.

Remark. If T is Caz-minimal, then it holds that ¢§I") = wg(T") + 2w (T).
Lemma 12. For any m-chartl", bo(I") is even.

Proof. ky(I")+6w(l") is equal to a twice of the number of edges except fages
and hoops. O

Lemma 13 (cf. [7]). LetT be anm -chart. If it satisfiedy(I') < 2 then it is a
ribbon chart.

Proof. Note that §(I') is even. The caseold”) = 0 follows the argument of
Lemma 19 in [7]. The caseolI’) = 2 is similar. At first, we sweep free edges away
from a subgraph o which includes all of white vertices. Théis subgraph in-
cludes only two black vertices and is C-move equivalent torachart which includes
no white vertex from Lemma 8. ThuE is a ribbon chart even ifas liree edges.

]

Theorem 14. Assume that an oriented surface-lidk is non-ribbon. Thendex
w(L) is more than three.

Proof. We show that any chaiff  with W( X 3 is ribbon. By Lemma 11
and 13, we may assume thBt @sz-minimal and B(I") > 2. Since w(T") +wg(l") +
we(T) =w(l") < 3 and ws(T") + 2w (") = bp(T") > 2 and since T) is even, we have
the following cases:

(Wa(I'), wa(T"), we(I')) =(0,0.2) (1 0 2) (02 1) (00 3)

But for the case (1,0 2), (0,2 1) and,(Q O 3), the BW-orientatibiovss that
there is no such chart (see [15]). For the case (0 0 2), ealignthere exists only
one way to immers& as shown in Fig. 9. It clearly has two camgalisks and be-
comes ribbon by Corollary 10. Thus the theorem is proved. O
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Fig. 9. Immersion for w(I") = 2
Corollary 15. There exists a surface-link whose w-index is four.

Proof. In [3], a non-ribbon surface-link  which is namedsted Hopf2-link is
presented. In [1], there is a chart representing  with fouiteviiertices. Thus w{ )
is four. ]

Remark. The twisted Hopf 2-link is a pseudo-ribbon surface-linke. iit is de-
scribed by a surface diagram without triple points and bnapaints.

Theorem 16. SupposeL is a non-ribbos?-link. Then w-indexw(L) is more
than five.

Proof. We show that any chart  with W( < 5 is ribbon if the associated sur-
face braidSr is a planar suface. By Lemma 11 and 13, we may asfuéd is
Caz-minimal and B(I") > 2. Moreover by Lemma 6, we may assume thai(M) = 0.
Since w (') + wg(I") = w(T") < 5 and ws(I") = bp(I") > 2 and since §T') is even, we
have the following cases:

(Wa ('), wg(I"), we(T')) = (0,4, 0), (1 4 0)
But in the case (1 4 0), the BW-orientation shows that theraoissuch chart. Thus,
by showing that any chart in the case, (D 4 0) is a ribbon chaet,can prove the
theorem. This will be done in the next section. O

Corollary 17. The w-index of2-twist spun trefoil is equal to six.

Proof. In [6], there is a chart representing 2-twist spurfotteK with six white
vertices. 2-twist spun trefoil is not ribbon, thus &( ) is.six U

RemArk. In [17], it is shown that the triple point number of 2-twigtun trefoil
is four, i.e. it is represented by a surface diagram with foiple points and can not
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i1 J1 i2 J2 i3 J3 is Ja

Fig. 10. Labels and orientations of four white vertices.

Fig. 11. An edge satisfying inié( ) = term( )
be represented by surface diagram with less than four tppiets.

6. The last part of the proof of Theorem 16

Let I' be aCys-minimal m-chart which has four white vertices labeled and or
ented as in Fig. 10. We assume that the associated surfaick $yrdas a planar sur-
face. Counting the number of edges for labels and oriemstithe following equation
holds:

(1) {iv, iz, ig igisia = {j1, j1. j2 j2 j3 j 4,

where the equation holds including multiplicity. Note thhe equalities|iy — ji| = 1
hold fork =1, 2, 3, 4.
We show thatl" is a ribbon chart through four steps.

Step 1. T has no edge whose endvertices are the same white vertex.

Proof. Assume tha¢ satisfies irit( ) =terem( ) and Wt be initle). Thene sep-
aratesD3 into two components and the component including only oneeédgident to
init(e) is denoted byE . Letr and 3 be edges incident t&; which are not diagonal
to the edgee (see Fig. 11). Sind®, is B-type white vertexpe and 5 are not a bw-
edge. LetW, and W3 be another endvertices of and 3 respectively.W, in E and
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Fig. 12. Rails of length more than three.

W3 in D3\E.

Now we observe the place dV,, either in E or out ofE . If W, is in E then
edges which are incident t#/; and whose label is the same dsmust be connected
each other. Thus there exists another eegehich satisfies ini’) = term¢’). But the
componentE’ which is separated by’ including only one edge which is incident to
W3 has no black vertex, for the edge included &t is not a bw-edge and the other
bw-edge are out oF . Thus it contradicts to Lemma 7. It is theesén the case when
W4 is out of E and there is ne satisfying indt( ) = teren( ). U

STEP 2. Suppose that the rail which starts from the bw-edge imtite W1 has
the length larger than three. Théh is a ribbon chart.

Proof. By Step 1, first three white vertices on the rail ardimlis each other. We
examine two cases of positions of the bw-edge incident tos#e®nd white vertex as
in Fig. 12. If the bw-edge is nearer to the first white verteéhert the orientation of
the bw-edge is from black to white and it holds that= i,. The equation (1) shows
thati; = i» = j3 = js. Hence we assume that the label of the third edge in the rail is
and two cases of positions of the bw-edge incident to thel thinite vertex must be
considered. Moreover we consider whether the labeland j, are the same or not.

If the bw-edge is nearer to the third white vertex, then therdgation is from
white to black and we assume that = i3. The equation (1) shows that = i3 =
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Table 1. Ten cases of the monodromigs

monodromy ofy result

1_ -1 -1 _—1 -1 -1 _—1
oa W 04+1040,410 441 W™ 041 V77 o, 04n1 oy

(1) U,,+10,71 Voo o

1 -1 -1 -1 -1
(2) | ogr104 ly O'q+20‘q+1 w aq+1aq+2aq+laq+l W™ 041 V50 0401 | 0y

—1_—1 -1 _—1
W o, 30,5040 Wt o1 Vo, 0y | NOT

71
(3) Ull*'laq V Ogq q+1 q+1%q

-1 -1 -1 -1
(4) | ograo, 'V aq+zaq+l W o +laq+laq+20,,+1 Wt o Vo togen | NOT

1 —1_-1 -1 -1 -1
(5) og+10, - V 040441 W aqﬂaq 0,:10q W~ 0q V770 0gn o,

-1 -1 -1 -1 -1 -1 _—1
(6) | ograoy "V 04r20441 W Uq+10'q+20'q+10,,+2 W™ 02 V77 0y 7041 | oy

-1 —1,-1,-1 1 71 -1 1
@) og+10, -V oq04a W Uqu+10'q o W 1% aq g+l NOT
-1 —1, -1 -1 -1 -1 1
(8) | og+10, = V oyr20gs1 W Uq+2%+1%+2‘7,,+1 Wo V™ og4+1 | NOT
9) 04410,V o001 W ogn0 wlto vt 0710 NOT
q+104 q0q+1 q+10¢q q+1 q+l q 9q+1
—1 -1 -1 1 1 y-1 -1
(10) og+10, V040421 W 0,40,.90,0421 W™ 0,7 V77 0 04n b

J2 = ja, i2 = jz andiaq = jy, for the first equation induces thédty, is, is} = {j1, j1, j3}-
Hence the label of the third edgeiisor i4 and four cases of positions of the bw-edge
incident to the third white vertex is must be considered. ther case that the label of
the third edge is,, we consider whether the labejg and j; are the same or not.

Now we read the monodromy of the simple closed cuyvior each of ten cases.
In the Table 1,V is the word obtained from the crossings on #de®r®d edge in the
rail and W is the word from the crossings on the third edge. Aete abbraid word
O'L;‘_]io'qo'q+10'(;10'q+1.

The monodromy must be a band for each case, for there exiatd exe black
vertex outside of the simple closed curye But there exist five cases such that the
monodromy cannot become a band, the mark ‘NOT’ in the Tabl&ht reason why
the monodromy of the case marked ‘NOT’' cannot be a band istki®atlosure of the
monodromy includes a non-trivial link. This is showed as thkowing way: For the
case (8) in the Table 1. At first, we see that the associategiytation is a transposi-
tion of the type § +1r ), where is not equal §0 ¢, +i, +2. Hegce #l @+2-th
strings are the part of the trivial braid obtained by remgvin+ 1-th andr -th strings.
Second, we see that the permutationV (*) associated withW —* preserves; +1 so
that ¢ -th string becomes the part of the trivial braid and ragee W—! must include
the positive full twist of two strings corresponding & -thdag + 2-th strings. This
full twist, in turn, becomes negative full twist of two stge correspoding tg + 2-th
andr -th strings in the wordv . Hence the link consistinggof HRl¢t+2-th andr -th
strings is ambient isotopic to the closure of the 3-braido; *o; *o, ', *o1. This
is a Whitehead link and it contradicts that the monodromy isaad. For the cases
(3), (4), (7) and (9), similar arguments show that the moaogr includes a non-trivial
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link.

In the other five cases in the Table 1, the monodromies arerdieked as the
following way: For the case (10). At first, we see that the esded transposition is
(9,9 + 1). Then the permutatiom W) preserves; + 2, so that the end ¢f + 1-th
string becomes; . Moreover the permutatior () must preservior if otherwise,
the monodromy includes a Whitehead link. Second, we seegthd-th string is sep-
arated inW so that the braid obtained by removing -th and +4tting becomes
a trivial braid. Here, the wordeparetedmeans thatW is equivalent to a braid word
which does not includey,, nor og,,. Hence the monodromy is equivalent to the word
0110, V0,0, 50404110, Vo o, To see thay -th string is separatediin , we
examine the square of the monodromy. Then we get the equation

[Uq_lVosV_lasVaq_ZV_loq_l] =idp,,
for the braid obtained by removing +1-th string from the sgquaf the band becomes
a trivial braid. This equation implies tha\;fa§V*1 and 05 commute with each other.
Recall that the permutation V( ) preservgs and +1. The follgwemma is easily
proved by the argument similar to the Lemma 3.2 in [5].

Lemma 18 ([5] Lemma 3.2). Let 3 be a braid satisfying the following two con-
ditions
e 5(0) stabilizes{q, g +1}, and
e B023~ commutes withrZ.
Then3 commutes with,.

Outline of proof. Sinceds23~* commutes witho2, 3023~ has a §, ¢ )-band.
Moreover the assumption that S) stabilizes {g, ¢ + 1} shows thats itself has a
(¢, g)-band, for the intervald, ¢ +1] is the only arc stable by thei@t of 05 among
the arcs of D? whose ends aréq, ¢ + 1} and interior is included inD?\ Q,,. |

At last we see that the monodromy is equal to
-1 _-1 — -1 -1
0q0q+10q O'q Uq+1 - O'q+10'q0'q+10'q Uq+1.

For the cases (1), (2), (5) and (6), much easier argumenésmdigle the monodromy,
without the observation of the square of a band. Now we cantfiedC-move for each
of five cases that construct a free edge from two of black eestiwhich are endver-
tices of bw-edges. Note that eachwf awd commutes wjtland o,+1. By sweep-
ing this free edge out, we see that is a ribbon chart from Lerifia [l

Now we suppose thdl  has two rails with ends of length threendsg. 13. We
call each of the arcs in the following figures one of whose entibes is described
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i1 J1 i3 J3 i J2 is Ja

Fig. 13. Two rails of length three.
1 i3
; ; i jil i3 ;
el e1
() ()
e

Fig. 14. Two edges incident t&#/; and Ws.

an open edgeWe note that the affection of each of four white verticesvsrewhen
counting the number of open edges for labels and orientation

Step 3. If there exists another edge incidentWd and W3, thenT is a ribbon
chart.

Proof. We consider only four cases in Fig. 14. For the casg tfiBre exists a
canceling disk and if there exists at least one white verben T is C-move equiva-
lent to anm -chart with two white vertices from Lemma 9. Othisey there exist no
edge adjacent to one d¢fwi, W3} and one of{ W,, W4}. Hence two open edge marked
e are connected with each other aiid is ribbon. For the casew@)see that two
open edges markeg) or two open edges marked are connected with each other, for
the placement oW, and W, is limited by counting the number of open edges. Hence
this case turns to the case (1). On the other hand, since fingtiaf of white vertices
for open edges is even, we cannot connect the open edges Wwanehthe same la-
bels markede; or e;. Thus there exist na: -chart which includes the part such as th
case (3) or (4). [l
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STEP 4. The remaining case.

Proof. We assume that there exist no edge incideriWioand W5 except one in
Fig. 13 and that there exist no edge incidentie and W, except one in Fig. 13. By
observing labels and orientations of open edges in Fig. E3see that if there exists
an edge incident tdv; and W, then all of four open edge are incident ¥, and W-.
Then the placement of four edges is similar to the chart inofém 14 (Fig. 9) and
I' has two canceling disks. Hende is ribbon from Lemma 9. We grnhe main
theorem. U

AckNOWLEDGEMENT.  The author would like to thank Yukio Matsumoto, Seiichi
Kamada and Shin Satoh for helpful suggestions.

References

[1] H. Aiba and T. NagaseOn the closure of a surface braid, represented by-ehart with at
most two crossings in one hoyg&eprint.

[2] J.S. Carter, S. Kamada and M. Saitslexander numbering of knotted surface diagramsoc.
Amer. Math. Soc.128 (2000), 3761-3771.

[3] J.S. Carter, S. Kamada, M. Saito and S. SatBbrdism of unoriented surfaces urspace
Michigan Math. J.50 (2002), 575-591.

[4] J.S. Carter and M. Saito: Knotted Surfaces and Thier Riaig; Math. Surv. Monad55, Amer.
Math. Soc., 1998.

[5] R. Fenn, D. Rolfsen and J. Zh€entralisers in the braid group and singular braid monpid
Enseign. Math42 (1996), 75-96.

[6] S. Kamada: Braid and Knot Theory in Dimension Four, MatbnS Mono. 95, Amer. Math.
Soc., 2002.

[71 S. Kamada:Surfaces inR* of braid index three are ribbgnJ. Knot Theory Ramificationd
(1992), 137-160.

[8] S. Kamada:2-dimensional braids and chart descriptignSopics in knot theory’ (Erzurum,
1992), 277-287, NATO Adv. Sci. Inst. Ser. C Math. Phys. S@9,Xluwer Acad. Publ., Dor-
drecht, 1993.

[9] S. KamadaA characterization of groups of closed orientable surfaced-space Topology 33
(1994), 113-122.

[10] S. Kamada:Alexander's and Markov's theorems in dimension foBull. Amer. Math. Soc.
(N.S.) 31 (1994), 64-67.

[11] S. Kamada:On braid monodromies of non-simple braided surfaddath. Proc. Camb. Phil.
Soc. 120 (1996), 237-245.

[12] S. KamadaAn observation of surface braids via chart descriptidn Knot Theory Ramifica-
tions 5 (1996), 517-529.

[13] L. Rudolph:Braided surfaces and Seifert ribbons for closed braidemment. Math. Helv58
(1983), 1-37.

[14] L. Rudolph:Special positions for surfaces bounded by closed brdRity. Mat. Iberoamericana
1 (1985), 93-133.

[15] S. Satoh:Lifting a generic surface irs-space to an embedded surface #space Topology
Appl. 106 (2000), 103-113.

[16] S. Satoh:No 2-knot has triple point number onéwo nor three preprint.



W-INDICES OF NON-RIBBON SURFACE-LINKS 909

[17] S. Satoh and A. ShimaThe 2-twist-spun trefoil has the triple point number fourrans. Amer.
Math. Soc.356 (2004), 1007-1024.
[18] O.Ya. Viro: Lecture given at Osaka City University, $ember, 1990

Graduate School of Mathematical Sciences
University of Tokyo

Komaba 3-8-1, Meguro

Tokyo 153-8914, Japan

e-mail: haseisao@ms.u-tokyo.ac.jp



