AN OBSTRUCTION TO ASYMPTOTIC SEMISTABILITY AND APPROXIMATE CRITICAL METRICS

Toshiki MABUCHI

(Received September 10, 2002)

1. Introduction

For a polarized algebraic manifold (M, L) with a Kähler metric of constant scalar curvature in the class $c_{1}(L)_{\mathbb{R}}$, we consider the Kodaira embedding

$$
\Phi_{\left|L^{m}\right|}: M \hookrightarrow \mathbb{P}\left(V_{m}\right), \quad m \gg 1,
$$

where V_{m} := $H^{0}\left(M, \mathcal{O}\left(L^{m}\right)\right)^{*}$. Even when a linear algebraic group of positive dimension acts nontrivially and holomorphically on M, we shall show that the vanishing of an obstruction to asymptotic Chow-semistability allows us to generalize Donaldson's construction [3] of approximate solutions for equations of critical metrics ${ }^{1}$ of Zhang [20]. This generalization plays a crucial role in our forthcoming paper [14], in which the asymptotic Chow-stability for (M, L) above will be shown under the vanishing of the obstruction, even when M admits a group action as above.

2. Statement of results

Throughout this paper, we assume that L is an ample holomorphic line bundle over a connected projective algebraic manifold M. Let n and d be respectively the dimension of M and the degree of the image $M_{m}:=\Phi_{\left|L^{m}\right|}(M)$ in the projective space $\mathbb{P}\left(V_{m}\right)$ with $m \gg 1$. Then to this image M_{m}, we can associate a nonzero element \hat{M}_{m} of $W_{m}:=\left\{\operatorname{Sym}^{d}\left(V_{m}\right)\right\}^{\otimes n+1}$ such that its natural image $\left[\hat{M}_{m}\right]$ in $\mathbb{P}\left(W_{m}\right)$ is the Chow point associated to the irreducible reduced algebraic cycle M_{m} on $\mathbb{P}\left(V_{m}\right)$. For the natural action of $H_{m}:=\operatorname{SL}\left(V_{m}\right)$ on W_{m} and also on $\mathbb{P}\left(W_{m}\right)$, the subvariety M_{m} of $\mathbb{P}\left(V_{m}\right)$ is said to be Chow-stable or Chow-semistable, according as the orbit $H_{m} \cdot \hat{M}$ is closed in W_{m} or the origin of W_{m} is not in the closure of $H_{m} \cdot \hat{M}$ in W_{m}. Fix an increasing sequence

$$
\begin{equation*}
m(1)<m(2)<m(3)<\cdots<m(k)<\cdots \tag{2.1}
\end{equation*}
$$

[^0]of positive integers $m(k)$. For this sequence, we say that (M, L) is asymptotically Chow-stable or asymptotically Chow-semistable, according as for some $k_{0} \gg 1$, the subvariety $M_{m(k)}$ of $\mathbb{P}\left(V_{m(k)}\right)$ is Chow-stable or Chow-semistable for all $k \geq k_{0}$.

Let $\operatorname{Aut}^{0}(M)$ denote the identity component of the group of all holomorphic automorphisms of M. Then the maximal connected linear algebraic subgroup G of $\operatorname{Aut}^{0}(M)$ is the identity component of the kernel of the Jacobi homomorphism

$$
\alpha_{M}: \operatorname{Aut}^{0}(M) \rightarrow \operatorname{Aut}^{0}(\operatorname{Alb}(M)), \quad \text { ccf. [4]) }
$$

For the maximal algebraic torus Z in the center of G, we consider the Lie subalgebra \mathfrak{z} of $H^{0}\left(M, \mathcal{O}\left(T^{1,0} M\right)\right)$ associated to the Lie subgroup Z of $\operatorname{Aut}^{0}(M)$. For the isotropy subgroup, denoted by \tilde{S}_{m}, of H_{m} at the point $\left[\hat{M}_{m}\right] \in \mathbb{P}\left(W_{m}\right)$, we have a natural isogeny

$$
\iota_{m}: \tilde{S}_{m} \rightarrow S_{m}
$$

where S_{m} is an algebraic subgroup of G. For $Z_{m}:=\iota_{m}^{-1}(Z)$, we have a Z_{m}-action on M naturally induced by the Z-action on M. Since the Z-action on M is liftable to a holomorphic bundle action on L (see for instance [7]), the restriction of ι_{m} to Z_{m} defines an isogeny of Z_{m} onto Z. The vector space V_{m} is viewed as the line bundle $\mathcal{O}_{\mathbb{P}\left(V_{m}\right)}(-1)$ with the zero section blown-down to a point, while the line bundle $\mathcal{O}_{\mathbb{P}\left(V_{m}\right)}(-1)$ coincides with L^{-m} when restricted to M. Hence, the natural \tilde{S}_{m}-action on V_{m} induces a bundle action of Z_{m} on L^{m} which covers the Z_{m}-action on M. Infinitesimally, each $X \in \mathfrak{z}$ induces a holomorphic vector field $X^{\prime} \in H^{0}\left(L^{m}, \mathcal{O}\left(T^{1,0} L^{m}\right)\right)$ on L^{m}. Since the \mathbb{C}^{*}-bundle $L \backslash\{0\}$ associated to L is an m-fold unramified covering of the \mathbb{C}^{*}-bundle $L^{m} \backslash\{0\}$, the restriction of X^{\prime} to $L^{m} \backslash\{0\}$ naturally induces a holomorphic vector field $X^{\prime \prime}$ on $L \backslash\{0\}$. Since $X^{\prime \prime}$ extends to a holomorphic vector field on L, the mapping $X \mapsto X^{\prime \prime}$ defines inclusions

$$
\begin{equation*}
\rho_{m}: \mathfrak{z} \hookrightarrow H^{0}\left(L, \mathcal{O}\left(T^{1,0} L\right)\right), \quad m=1,2, \ldots, \tag{2.2}
\end{equation*}
$$

inducing lifts, from M to L, of vector fields in \mathfrak{z}. For a sequence as in (2.1), we say that the isotropy actions for (M, L) are stable if there exists an integer $k_{0} \gg 1$ such that

$$
\begin{equation*}
\rho_{m(k)}=\rho_{m\left(k_{0}\right)}, \quad \text { for all } k \geq k_{0} . \tag{2.3}
\end{equation*}
$$

For the maximal compact subgroup $\left(Z_{m}\right)_{c}$ of Z_{m}, take a $\left(Z_{m}\right)_{c}$-invariant Hermitian metric λ for L^{m}. By the theory of equivariant cohomology ([1], [8]), we define (see [15], [13]):

$$
\begin{equation*}
\mathcal{C}\left\{c_{1}^{n+1} ; L^{m}\right\}(X):=\frac{\sqrt{-1}}{2 \pi}(n+1) \int_{M} \lambda^{-1}(X \lambda) c_{1}\left(L^{m} ; \lambda\right)^{n}, \quad X \in \mathfrak{z} \tag{2.4}
\end{equation*}
$$

where $X \lambda$ is as in [13], (1.4.1). Then the \mathbb{C}-linear map $\mathcal{C}\left\{c_{1}^{n+1} ; L^{m}\right\}: \mathfrak{z} \rightarrow \mathbb{C}$ which sends each $X \in \mathfrak{z}$ to $\mathcal{C}\left\{c_{1}^{n+1} ; L^{m}\right\}(X) \in \mathbb{C}$ is independent of the choice of h. The following gives an obstruction to asymptotic Chow-semistability (see [5], [15], [16] for related results):

Theorem A. For a sequence as in (2.1), assume that (M, L) is asymptotically Chow-semistable. Then for some $k_{0} \gg 1$, the equality $\mathcal{C}\left\{c_{1}^{n+1} ; L^{m(k)}\right\}=0$ holds for all $k \geq k_{0}$. In particular, for this sequence, the isotropy actions for (M, L) are stable.

The following modification of a result in [7] shows that, as an obstruction, the stability condition (2.3) is essential, since the vanishing of (2.4) is straightforward from (2.3).

Theorem B. For sufficiently large $(n+2)$ distinct integers $m_{k}, k=0,1, \ldots, n+1$, suppose that $\rho_{m_{0}}=\rho_{m_{1}}=\cdots=\rho_{m_{n+1}}$. Then $\mathcal{C}\left\{c_{1}^{n+1} ; L^{m_{k}}\right\}=0$ for all k.

If $\operatorname{dim} Z=0$, by setting $m(k)=k$ in (2.1) for all $k>0$, we see that ρ_{m} are trivial for all $m \gg 1$, and consequently (2.3) holds. Note also that Donaldson's result [3] treating the case $\operatorname{dim} G=0$ depends on his construction of approximate solutions for equations of critical metrics of Zhang [20]. In Theorem C down below, assuming (2.3), we generalize Donaldson's construction to the case $\operatorname{dim} G>0$.

Put $N_{m}:=\operatorname{dim}_{\mathbb{C}} V_{m}-1$. Let h be a Hermitian metric for L such that $\omega=c_{1}(L ; h)$ is a Kähler metric on M. By the inner product

$$
\begin{equation*}
\left(\sigma, \sigma^{\prime}\right)_{h}:=\int_{M}\left\langle\sigma, \sigma^{\prime}\right\rangle_{h} \omega^{n}, \quad \sigma, \sigma^{\prime} \in V_{m}^{*} \tag{2.5}
\end{equation*}
$$

on $V_{m}^{*}=H^{0}\left(M, \mathcal{O}\left(L^{m}\right)\right)$, we choose a unitary basis $\left\{\sigma_{0}^{(m)}, \sigma_{1}^{(m)}, \ldots, \sigma_{N_{m}}^{(m)}\right\}$ for V_{m}^{*}. Here, $\left\langle\sigma, \sigma^{\prime}\right\rangle_{h}$ denotes the function on M obtained as the the pointwise inner product of the sections σ, σ^{\prime} by the Hermitian metric h^{m} on L^{m}. Put

$$
\begin{equation*}
K(q, h):=\frac{n!}{m^{n}} \sum_{i=0}^{N_{m}}\left\|\sigma_{i}^{(m)}\right\|_{h}^{2}, \tag{2.6}
\end{equation*}
$$

where $\|\sigma\|_{h}^{2}:=\langle\sigma, \sigma\rangle_{h}$ for all $\sigma \in V_{m}^{*}$, and we set $q:=1 / m$. We then have the asymptotic expansion of Tian-Zelditch (cf. [18], [19]) for $m \gg 1$:

$$
\begin{equation*}
K(q, h)=1+a_{1}(\omega) q+a_{2}(\omega) q^{2}+a_{3}(\omega) q^{3}+\cdots, \tag{2.7}
\end{equation*}
$$

where $a_{i}(\omega), i=1,2, \ldots$, are smooth functions on M. Then $a_{1}(\omega)=\sigma_{\omega} / 2$ (cf. [11]) for the scalar curvature σ_{ω} of ω. Put $C_{q}:=\left\{m^{n} c_{1}(L)^{n}[M] / n!\right\}^{-1}\left(N_{m}+1\right)$. Then

Theorem C. For a Kähler metric ω_{0} in the class $c_{1}(L)_{\mathbb{R}}$ of constant scalar curvature, choose a Hermitian metric h_{0} for L such that $\omega_{0}=c_{1}\left(L ; h_{0}\right)$. For a sequence as in (2.1), assume that the isotropy actions for (M, L) are stable, i.e., (2.3) holds. Put $q=1 / m(k)$. Then there exists a sequence of real-valued smooth functions φ_{k}, $k=1,2, \ldots$, on M such that $h(l):=h_{0} \exp \left(-\sum_{k=1}^{l} q^{k} \varphi_{k}\right)$ satisfies $K(q, h(l))-C_{q}=$ $O\left(q^{l+2}\right)$ for each nonnegative integer l.

The last equality $K(q, h(l))-C_{q}=O\left(q^{l+2}\right)$ means that there exist a positive real constant $A=A_{l}$ independent of q such that $\left\|K(q, h(l))-C_{q}\right\|_{C^{0}(M)} \leq A_{l} q^{l+2}$ for all $0 \leq q \leq 1$ on M. By [19], for every nonnegative integer j, a choice of a larger constant $A=A_{j, l}>0$ keeps Theorem C still valid even if $C^{0}(M)$-norm is replaced by $C^{j}(M)$-norm.

3. An obstruction to asymptotic semistability

The purpose of this section is to prove Theorems A and B. Fix a sequence as in (2.1), and in this section, any kind of stability is considered with respect to this sequence.

Proof of Theorem A. Assume that (M, L) is asymptotically Chow-semistable, i.e., for some $k_{0} \gg 1$, the subvariety $M_{m(k)}$ of $\mathbb{P}\left(V_{m(k)}\right)$ is Chow-semistable for all $k \geq k_{0}$. Then the isotropy representation of $Z_{m(k)}$ on the line $\mathbb{C} \cdot \hat{M}_{m(k)}$ is trivial (cf. [5], [15]) for $k \geq k_{0}$, and hence by [15], (3.5) (cf. [16]; [20], (1.5)), we obtain the required equality

$$
\begin{equation*}
\mathcal{C}\left\{c_{1}^{n+1} ; L^{m(k)}\right\}(X)=0, \quad X \in \mathfrak{z} \tag{3.1}
\end{equation*}
$$

for all $k \geq k_{0}$. For λ in (2.4), by setting $h:=\lambda^{1 / m}$, we have a Hermitian metric h for L. Put $\chi_{m}:=\mathcal{C}\left\{c_{1}^{n+1}, L^{m}\right\} / m^{n+1}$ for positive integers m. Then by the Leibniz rule,

$$
\begin{equation*}
\chi_{m}(X)=\frac{\sqrt{-1}}{2 \pi}(n+1) \int_{M} h^{-1}(X h)_{\rho_{m}} c_{1}(L ; h)^{n}, \quad X \in \mathfrak{z} \tag{3.2}
\end{equation*}
$$

where the complexified action $(X h)_{\rho_{m}}$ of X on h as in [13], (1.4.1), is taken via the lifting ρ_{m} in (2.2). Then by (3.1),

$$
\chi_{m\left(k_{0}\right)}=\chi_{m\left(k_{0}+1\right)}=\cdots=\chi_{m(k)}=\cdots,
$$

and since lifts in (2.2), from M to L, of holomorphic vector fields in \mathfrak{z} are completely characterized by χ_{m} (cf. [7]), we obtain (2.3), as required.

Proof of Theorem B. For $q:=1 . \operatorname{c.m}\left\{m_{k} ; k=0,1, \ldots, n+1\right\}$, we take a q-fold unramified cover $\nu: \tilde{Z} \rightarrow Z$ between algebraic tori. Then the Z-action on M naturally
induces a \tilde{Z}-action on M via this covering. Since ν factors through $Z_{m_{k}}$, the lift, from M to $L^{m_{k}}$, of the $Z_{m_{k}}$-action naturally induces a lift, from M to $L^{m_{k}}$, of the \tilde{Z}-action. The assumption

$$
\begin{equation*}
\rho_{m_{0}}=\rho_{m_{1}}=\cdots=\rho_{m_{n+1}} \tag{3.3}
\end{equation*}
$$

shows that the lifts, from M to $L^{m_{k}}, k=0,1, \ldots, n+1$, of the \tilde{Z}-action come from the same infinitesimal action of \mathfrak{z} as vector fields on L. For brevity, the common $\rho_{m_{k}}$ in (3.3) will be denoted just by ρ. Then the proof of [6], Theorem 5.1, is valid also in our case, and the formula in the theorem holds. By $Z_{m_{k}} \subset \operatorname{SL}\left(V_{m_{k}}\right)$ and by its contragredient representation, the \tilde{Z}-action on $V_{m_{k}}^{*}=H^{0}\left(M, \mathcal{O}\left(L^{m_{k}}\right)\right)$ comes from an algebraic group homomorphism: $\tilde{Z} \rightarrow \operatorname{SL}\left(V_{m_{k}}^{*}\right)$. Hence, by the notation in (3.2) above, $\int_{M} h^{-1}(X h)_{\rho} c_{1}(L ; h)^{n}=0$ for all $X \in \mathfrak{z}$, i.e., $\mathcal{C}\left\{c_{1}^{n+1} ; L^{m_{k}}\right\}=0$ for all k, as required.

4. Proof of Theorem \mathbf{C}

Throughout this section, we assume that the first Chern class $c_{1}(L)_{\mathbb{R}}$ admits a Kähler metric of constant scalar curvature. Then a result of Lichnérowicz [10] (see also [9]) shows that G is a reductive algebraic group, and consequently the identity component of the center of G coincides with Z in the introduction. Let K be a maximal compact subgroup of G. Then the maximal compact subgroup Z_{c} of Z satisfies

$$
\begin{equation*}
Z_{c} \subset K \tag{4.1}
\end{equation*}
$$

For an arbitrary K-invariant Kähler metric ω on M in the class $c_{1}(L)_{\mathbb{R}}$, we write ω as the Chern form $c_{1}(L ; h)$ for some Hermitian metric h for L. Let $\Psi(q, \omega)$ denote the power series in q given by the right-hand side of (2.7). Then

$$
\begin{equation*}
\int_{M}\left\{\Psi(q, \omega)-C_{q}\right\} \omega^{n}=\int_{M}\left\{-C_{q}+\frac{n!}{m^{n}} \sum_{i=0}^{N_{m}}\left\|\sigma_{i}^{(m)}\right\|_{h}^{2}\right\} \omega^{n}=0 . \tag{4.2}
\end{equation*}
$$

Let h_{0} be a Hermitian metric for L such that $\omega_{0}:=c_{1}\left(L ; h_{0}\right)$ is a Kähler metric of constant scalar curvature on M. We write

$$
\omega_{0}=\frac{\sqrt{-1}}{2 \pi} \sum_{\alpha, \beta} g_{\alpha \bar{\beta}} d z^{\alpha} \wedge d z^{\bar{\beta}},
$$

for a system $\left(z^{1}, z^{2}, \ldots, z^{n}\right)$ of holomorphic local coordinates on M. In view of [10] (see also [9]), replacing ω_{0} by $g^{*} \omega_{0}$ for some $g \in G$ if necessary, we may assume that ω_{0} is K-invariant. Let D_{0} be the Lichnérowicz operator, as defined in [2], (2.1), for the Kähler manifold $\left(M, \omega_{0}\right)$. Since ω_{0} has a constant scalar curvature, D_{0} is a real operator. Let \mathcal{F} denote the space of all real-valued smooth K-invariant functions
φ such that $\int_{M} \varphi \omega_{0}^{n}=0$. Since the operator D_{0} preserves the space \mathcal{F}, we write D_{0} as an operator $D_{0}: \mathcal{F} \rightarrow \mathcal{F}$, and the kernel in \mathcal{F} of this operator will be denoted by $\operatorname{Ker} D_{0}$. Let \mathfrak{z}_{c} denote the Lie subalgebra of \mathfrak{z} corresponding to the maximal compact subgroup Z_{c} of Z. Then

$$
\begin{equation*}
\gamma: \operatorname{Ker} D_{0} \cong \mathfrak{z}_{c} c, \quad \eta \leftrightarrow \gamma(\eta):=\operatorname{grad}_{\omega_{0}}^{\mathbb{C}} \eta, \tag{4.3}
\end{equation*}
$$

where $\operatorname{grad}_{\omega_{0}}^{\mathbb{C}} \eta:=(1 / \sqrt{-1}) \sum g^{\bar{\beta} \alpha} \eta_{\bar{\beta}} \partial / \partial z^{\alpha}$ denotes the complex gradient of η with respect to ω_{0}. We then consider the orthogonal projection

$$
P: \mathcal{F}\left(=\operatorname{Ker} D_{0} \oplus \operatorname{Ker} D_{0}^{\perp}\right) \rightarrow \operatorname{Ker} D_{0}
$$

Starting from $h(0)=h_{0}$ and $\omega(0):=\omega_{0}$, we inductively define a Hermitian metric $h(k)$ for L, and a Kähler metric $\omega(k):=c_{1}(L ; h(k))$, called the k-approximate solution, by

$$
\begin{array}{ll}
h(k)=h(k-1) \exp \left(-q^{k} \varphi_{k}\right), & k=1,2, \ldots, \\
\omega(k)=\omega(k-1)+\frac{\sqrt{-1}}{2 \pi} q^{k} \partial \bar{\partial} \varphi_{k}, & k=1,2, \ldots,
\end{array}
$$

for a suitable function $\varphi_{k} \in \operatorname{Ker} D_{0}^{\perp}$, where we require $h(k)$ to satisfy $K(q, h(k))-C_{q}=$ $O\left(q^{k+2}\right)$. In other words, by (4.2), each $\omega(k)$ is required to satisfy the following conditions:

$$
\begin{align*}
&(1-P)\left\{\Psi(q, \omega(k))-C_{q}\right\} \equiv 0, \quad \text { modulo } q^{k+2} \tag{4.4}\\
& P\left\{\Psi(q, \omega(k))-C_{q}\right\} \equiv 0, \tag{4.5}\\
& \text { modulo } q^{k+2}
\end{align*}
$$

If $k=0$, then $\omega(0)=\omega_{0}$, and by [11], both (4.4) and (4.5) hold for $k=0$. Hence, let $l \geq 1$ and assume (4.4) and (4.5) for $k=l-1$. It then suffices to find $\varphi_{l} \in \operatorname{Ker} D_{0}^{\perp}$ satisfying both (4.4) and (4.5) for $k=l$. Put

$$
\Phi(q, \varphi):=(1-P)\left\{\Psi\left(q, \omega(l-1)+\frac{\sqrt{-1}}{2 \pi} q^{l} \partial \bar{\partial} \varphi\right)-C_{q}\right\}, \quad \varphi \in \operatorname{Ker} D_{0}^{\perp}
$$

Then by (4.4) applied to $k=l-1$, we have $\Phi(q, 0) \equiv u_{l} q^{l+1}$ modulo q^{l+2}, where u_{l} is a function in $\operatorname{Ker} D_{0}^{\perp}$. Since $2 \pi \omega(l-1)=2 \pi \omega_{0}+\sqrt{-1} \sum_{k=1}^{l-1} q^{k} \partial \bar{\partial} \varphi_{k}$, we have $\omega(l-1)=\omega_{0}$ at $q=0$. Since the scalar curvature of ω_{0} is constant, the variation formula for the scalar curvature (see for instance [2], (2.5); [3]) shows that

$$
\Phi\left(q, \varphi_{l}\right) \equiv \Phi(q, 0)-q^{l+1} \frac{D_{0} \varphi_{l}}{2} \equiv\left(2 u_{l}-D_{0} \varphi_{l}\right) \frac{q^{l+1}}{2}
$$

modulo q^{l+2}. Since u_{l} is in $\operatorname{Ker} D_{0}^{\perp}$, there exists a unique $\varphi_{l} \in \operatorname{Ker} D_{0}^{\perp}$ such that $2 u_{l}=$ $D_{0} \varphi_{l}$ on M. Fixing such φ_{l}, we obtain $h(l)$ and $\omega(l)$. Thus (4.4) is true for $k=l$.

Now, we have only to show that (4.5) is true for $k=l$. Before checking this, we give some preliminary remarks. Note that $C_{q}=1+O(q)$. Moreover, by (2.7), $\Psi(q, \omega)=$ $1+q\left\{a_{1}(\omega)+a_{2}(\omega) q+\cdots\right\}$, and hence

$$
\begin{aligned}
& \Psi(q, \omega(l))-C_{q}=\Psi\left(q, \omega(l-1)+\frac{\sqrt{-1}}{2 \pi} q^{l} \partial \bar{\partial} \varphi_{l}\right)-C_{q} \\
& \equiv \Psi(q, \omega(l-1))-C_{q} \equiv 0, \quad \text { modulo } q^{l+1} .
\end{aligned}
$$

By [17], p. 35, the G-action on M is liftable to a bundle action of G on the real line bundle $(L \cdot \bar{L})^{1 / 2}=\left(L^{m} \cdot \bar{L}^{m}\right)^{1 / 2 m}$. Then the induced K-action on $(L \cdot \bar{L})^{1 / 2}$ is unique, because liftings, from M to L^{m}, of the G-action differ only by scalar multiplications of L^{m} by characters of Z. In this sense, $h(l)$ is K-invariant. Put $r:=\operatorname{dim}_{\mathbb{C}} Z$. Then we can write $Z_{m}=\mathbb{G}_{m}^{r}=\left\{t=\left(t_{1}, t_{2}, \ldots, t_{r}\right) \in\left(\mathbb{C}^{*}\right)^{r}\right\}$. By the natural inclusion

$$
\psi_{m}: Z_{m} \hookrightarrow H_{m}=\operatorname{SL}\left(V_{m}\right),
$$

we can choose a unitary basis $\left\{\tau_{0}, \tau_{1}, \ldots, \tau_{N_{m}}\right\}$ for $\left(V_{m}^{*},(,)_{h(l)}\right)$ (cf. (2.5)) such that, for some integers $\alpha_{i j}$ with $\sum_{i} \alpha_{i j}=0$, the contragredient representation ψ_{m}^{*} of ψ_{m} is given by

$$
\psi_{m}^{*}(t) \tau_{i}=\left(\prod_{j=1}^{r} t_{j}^{\alpha_{i j}}\right) \tau_{i}, \quad i=0,1, \ldots, N_{m}
$$

for all $t \in\left(\mathbb{C}^{*}\right)^{r}=Z_{m}$. Now by (2.3), for some $\rho: \mathfrak{z} \hookrightarrow H^{0}\left(L, \mathcal{O}\left(T^{1,0} L\right)\right.$), we can write $\rho_{m(k)}=\rho$ for all $k \geq k_{0}$. Consider the Kähler metric $\omega_{m}:=c_{1}\left(L ; h_{m}\right)$ on M in the clasas $c_{1}(L)_{\mathbb{R}}$, where $h_{m}:=\left(\left|\tau_{0}\right|^{2}+\left|\tau_{1}\right|^{2}+\cdots+\left|\tau_{N_{m}}\right|^{2}\right)^{-1 / m}$. From now on, let $m=m(k)$, where k is running through all integers $\geq k_{0}$. Put $X_{j}:=t_{j} \partial / \partial t_{j}$. Then $\left\{X_{1}, X_{2}, \ldots, X_{r}\right\}$ forms a \mathbb{C}-basis for the Lie algebra \mathfrak{z} such that, using the notation as in (3.2), we have

$$
\begin{equation*}
h_{m}^{-1}\left(X_{j} h_{m}\right)_{\rho}=-\frac{\sum_{i} \alpha_{i j}\left|\tau_{i}\right|^{2}}{m \sum_{i}\left|\tau_{i}\right|^{2}}, \quad 1 \leq j \leq r, \quad \text { for } m=m(k) \text { with } k \geq k_{0} \tag{4.6}
\end{equation*}
$$

where in the numerator and the denominator, the sum is taken over all integers i such that $0 \leq i \leq N_{m}$. From (2.3) and Theorem B, using the notation as in (3.2), we obtain

$$
\begin{equation*}
\int_{M} h(l)^{-1}\left(X_{j} h(l)\right)_{\rho} \omega(l)^{n}=0, \quad 1 \leq j \leq r . \tag{4.7}
\end{equation*}
$$

By $\int_{M} h_{0}^{-1}\left(X_{j} h_{0}\right)_{\rho} \omega_{0}^{n} / \int_{M} \omega_{0}^{n}=0$, we have $\eta_{j}:=h_{0}^{-1}\left(X_{j} h_{0}\right)_{\rho} \in \operatorname{Ker} D_{0}$. Then $\gamma\left(\eta_{j}\right)=$ $\sqrt{-1} X_{j}$. Hence $\left\{\eta_{1}, \eta_{2}, \ldots, \eta_{r}\right\}$ is an \mathbb{R}-basis for $\operatorname{Ker} D_{0}$. Since $\Psi(q, \omega(l)) \equiv C_{q}$
modulo q^{l+1}, it follows that

$$
\begin{equation*}
-C_{q}+\frac{n!}{m^{n}} \sum_{i=0}^{N_{m}}\left\|\tau_{i}\right\|_{h(l)}^{2} \equiv v_{l} q^{l+1} \tag{4.8}
\end{equation*}
$$

modulo q^{l+2} for some $v_{l} \in \operatorname{Ker} D_{0}$, because (4.4) is true for $k=l$. In view of (4.2), (4.6), $h_{m}-h_{0}=O(q)$ and $\omega(l)-\omega_{0}=O(q)$, we see from (4.8) that, modulo q^{l+2},

$$
\begin{aligned}
q^{l+1} \int_{M} \eta_{j} v_{l} \omega_{0}^{n} & \equiv \int_{M} \eta_{j}\left(-C_{q}+\frac{n!}{m^{n}} \sum_{i=0}^{N_{m}}\left\|\tau_{i}\right\|_{h(l)}^{2}\right)\{\omega(l)\}^{n} \\
& \equiv \int_{M} h_{0}^{-1}\left(X_{j} h_{0}\right)_{\rho}\left(-C_{q}+\frac{n!}{m^{n}} \sum_{i=0}^{N_{m}}\left\|\tau_{i}\right\|_{h(l)}^{2}\right)\{\omega(l)\}^{n} \\
& \equiv \int_{M} h_{m}^{-1}\left(X_{j} h_{m}\right)_{\rho}\left(-C_{q}+\frac{n!}{m^{n}} \sum_{i=0}^{N_{m}}\left\|\tau_{i}\right\|_{h(l)}^{2}\right)\{\omega(l)\}^{n} \\
& \equiv \int_{M} \frac{\sum_{i} \alpha_{i j}\left\|\tau_{i}\right\|_{h(l)}^{2}}{m \sum_{i}\left\|\tau_{i}\right\|_{h(l)}^{2}}\left(C_{q}-\frac{n!}{m^{n}} \sum_{i=0}^{N_{m}}\left\|\tau_{i}\right\|_{h(l)}^{2}\right)\{\omega(l)\}^{n}
\end{aligned}
$$

Since $\sum_{i} \alpha_{i j}=0$ for all j, we obtain, modulo q^{l+2},

$$
\begin{aligned}
q^{l+1} \int_{M} \eta_{j} v_{l} \omega_{0}^{n} & \equiv C_{q} \int_{M} \frac{\sum_{i} \alpha_{i j}\left\|\tau_{i}\right\|_{h(l)}^{2}}{m \sum_{i}\left\|\tau_{i}\right\|_{h(l)}^{2}}\{\omega(l)\}^{n} \equiv C_{q} \int_{M} h_{m}^{-1}\left(X_{j} h_{m}\right)_{\rho}\{\omega(l)\}^{n} \\
& \equiv C_{q} \int_{M}\left\{h_{m}^{-1}\left(X_{j} h_{m}\right)_{\rho}-h(l)^{-1}\left(X_{j} h(l)\right)_{\rho}\right\}\{\omega(l)\}^{n},
\end{aligned}
$$

where the equivalence just above follows from (4.7). The last integrand is rewritten as

$$
\begin{aligned}
& h_{m}^{-1}\left(X_{j} h_{m}\right)_{\rho}-h(l)^{-1}\left(X_{j} h(l)\right)_{\rho}=X_{j} \log \left(\frac{h_{m}}{h(l)}\right)=-\frac{1}{m} X_{j} \log \left(\frac{n!}{m^{n}} \sum_{i=0}^{N_{m}}\left\|\tau_{i}\right\|_{h(l)}^{2}\right) \\
& \equiv-q X_{j} \log \left(C_{q}+v_{l} q^{l+1}\right) \equiv-C_{q}^{-1}\left(X_{j} v_{l}\right) q^{l+2} \equiv 0, \quad \bmod q^{l+2} .
\end{aligned}
$$

Therefore, $\int_{M} \eta_{j} v_{l} \omega_{0}^{n}=0$ for all j. From $v_{l} \in \operatorname{Ker} D_{0}$, it now follows that $v_{l}=0$. This shows that (4.5) is true for $k=l$, as required.

5. Concludung remarks

As in Donaldson's work [3], the construction of approximate solutions in Threorem C is a crucial step to the approach of the stability problem for a polarized algebraic manifold with a Kähler metric of constant scalar curvature. Actually, in a forthcoming paper [14], this construction allows us to prove the following:

Theorem. For a sequence as in (2.1), assume that the isotropy actions for (M, L) are stable. Assume further that $c_{1}(L)_{\mathbb{R}}$ admits a Kähler metric of constant scalar curvature. Then for this sequence, (M, L) is asymptotically Chow-stable.

Moreover, if a sequence (2.1) exists in such a way that (2.3) holds, then the same argument as in the case $\operatorname{dim} G=0$ (cf. [3]) is applied, and we can also show the uniquness, modulo the action of G, of the Kähler metrics of constant scalar curvature in the polarization class $c_{1}(L)_{\mathbb{R}}$. We finally remark that, if $\operatorname{dim} G=0$, the asymptotic Chow-stability implies the asymptotic stability in the sense of Hilbert schemes (cf. [17], p.215). Hence the result of Donaldson [3] follows from the theorem just above.

References

[1] N. Berline et M. Vergne: Zeros d'un champ de vecteurs et classes characteristiques equivariantes, Duke Math. J. 50 (1983), 539-549.
[2] E. Calabi: Extremal Kähler metrics II, in "Differential Geometry and Complex Analysis" (ed. I. Chavel, H. M. Farkas), Springer-Verlag, Heidelberg, 1985, 95-114.
[3] S. K. Donaldson: Scalar curvature and projective embeddings, I, J. Differential Geom. 59 (2001), 479-522.
[4] A. Fujiki: On automorphism groups of compact Kähler manifolds, Invent. Math. 44 (1978), 225-258.
[5] A. Fujiki: Moduli space of polarized algebraic manifolds and Kähler metrics, Sugaku 42 (1990), 231-243; English translation: Sugaku Expositions 5 (1992), 173-191.
[6] A. Futaki and T. Mabuchi: An obstruction class and a representation of holomorphic automorphisms, in "Geometry and Analysis on Manifolds" (ed. T. Sunada), Lect. Notes in Math. 1339, Springer-Verlag, Heidelberg, 1988, 127-141.
[7] A. Futaki and T. Mabuchi: Moment maps and symmetric multilinear forms associated with symplectic classes, Asian J. Math. 6 (2002), 349-372.
[8] A. Futaki and S. Morita: Invariant polynomials of the automophism group of a compact complex manifold, J. Differential Geom. 21 (1985), 135-142.
[9] S. Kobayashi: Transformation groups in differential geometry, Springer-Verlag, New YorkHeidelberg, 1972.
[10] A. Lichnérowicz: Isométrie et transformations analytique d'une variété kählérienne compacte, Bull. Soc. Math. France 87 (1959), 427-437.
[11] Z. Lu: On the lower order terms of the asymptotic expansion of Tian-Yau-Zelditch, Amer. J. Math. 122 (2000), 235-273.
[12] H. Luo: Geometric criterion for Gieseker-Mumford stability of polarized manifolds, J. Differential Geom. 49 (1998), 577-599.
[13] T. Mabuchi: An algebraic character associated with Poisson brackets, in "Recent Topics in Differential and Analytic Geometry," Adv. Stud. Pure Math. 18-I (1990), 339-358.
[14] T. Mabuchi: An energy-theoretic approach to the Hitchin-Kobayashi correspondence for manifolds, I, II, preprints.
[15] T. Mabuchi and Y. Nakagawa: The Bando-Calabi-Futaki character as an obstruction to semistability, to appear in Math. Ann.
[16] T. Mabuchi and L. Weng: Kähler-Einstein metrics and Chow-Mumford stability, 1998, preprint.
[17] D. Mumford, J. Fogarty and F. Kirwan: Geometric invariant theory, Third edition, SpringerVerlag, Berlin, 1994.
[18] G. Tian: On a set of polarized Kähler metrics on algebraic manifolds, J. Differential Geom. 32 (1990), 99-130.
[19] S. Zelditch: Szegö kernels and a theorem of Tian, Internat. Math. Res. Notices 6 (1998), 317331.
[20] S. Zhang: Heights and reductions of semi-stable varieties, Compositio Math. 104 (1996), 77105.

Department of Mathematics Graduate School of Science Osaka University Toyonaka, Osaka 560-0043 Japan

[^0]: ${ }^{1}$ In (2.6) below, $\omega=c_{1}(L ; h)$ is called a critical metric if $K(q, h)$ is a constant function on M. The same concept was later re-discovered by Luo [12] (see [14]).

