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1. Introduction

A knot K in the 3-spheres® is called a 1-genus 1-bridge knot if a torés  splits
$% into two solid tori each of whichk intersects in a trivial aBuch splittings for
2-bridge knots are studied in [25]. We show thatkif is naithe2-bridge knot nor
a satellite knot, and ik has two non-isotopic 1-genus ldw®igplitting tori H1, Ho,
then we can move them to be interesect each other in two ésseintles, and either
(1) K is obtained from a component of a 2-bridge link by twigtialong the other
component, or (2) we can mowl; and H, further to meet in a torus with two holes
each circle of whiche; bounds a disc #; — K and a twice punctured disc iH; — K
for (i, j) = (1, 2) and (2 1). We consider also knots in lens spaces.

We recall the precise definition ¢f -genus -bridge splitingf links. LetW be
a 3-manifold with non-empty bounda®W, andT ={z,,...,1,} a set of disjoint arcs
properly embedded irfW , that is; " W = 0¢; for every 1< i < n. We sayT is
trivial in (W, T) if there is a set{Ds, ..., D,} of disjoint discs embedded i# so
that D; N (UT) =90D; Nt; =t; and so thatD; NOW is the arc cl§D; — ;). We call D;

a cancelling discof #;,. When W is a ball and’ s trivial, the paif{, 7T ) is called a
trivial n-string tangle

Let M be a closed orientable 3-manifold, add a linkdh . &t  beeaus
g Heegaard splitting surface o/ , that i#] dividés into two diahodiesW;
and W, of genusg . Suppose thaf is transverselto . Then weFsay gigenus
n-bridge splittingof (M, L) if L intersectsW; in a trivial set oh arcs far =1 and 2.
A link L is called ag -genus: -bridge link if it admits @ -genus iege splitting. A
link in $% is simply called am-bridge link if it has a 0-genus: -bridge splitting. For
studies on positive genus -bridge splittings, see [6], ,[22p], [17], [18], [19], [20],
[15], and [24].

H. Rubinstein and M. Scharlemann showed in [31] that twongfhp irreducible
Heegaard splitting surfaces are isotoped to intersect etdr in essential loops. They
applied this result to isotope two Heegaard splitting stefaof genus two to inter-
sect each other beautifully ([32]). In [25] T. Kobayashi a@d Saeki generalized the
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above result, and made twp -genus -bridge splitting susfacentersect each other
in “K-essential” loops as below.

We need to recall some terminologies. In general,Xet be aafHoid, andT
a properly embedded 1-manifold K , that 5,0 0X = 0T. Let F be a 2-manifold
properly embedded irX . Suppose that is transvers& to . IncpntoF N T =
(. We say F isT-compressibleif there is a discD embedded i  such that s
disjoint from 7', thatD N F = 0D and thatoD does not bound a disc disjoint froffi
on F. SuchD is called &-compressing disof F. We call F is T-incompressiblef
it is not T -compressible. Note that these definitions areedtifit from those in [25].

Let H be a 2-manifold properly embedded ¥  so that is trangveosT .
The 2-manifoldH is said to beneridionally compressiblén (X, T) if there is a disc
D embedded inX such that ilt intersecfs  transversely in aesipgint, that
DNH=DON(H—-T)=0D and thatoD in H does not bound a disc whose interior
intersectsT transversely in a single point. Sugh is calledesidionally compress-
ing discof H. We call H ismeridionally incompressibld it is not meridionally com-
pressible. We define & -compressible 2-submanifold and édimeally compressible
2-submanifold ofoX similarly.

Assume that either? is a 2-manifold properly embeddedXin dhelt P is
transverse tol' , o® is a 2-submanifold @ with 9P N T = (. A simple loop!
on P is said to beT-essentialif it is disjoint from T and if it does not bound a disc
which intersectsT transversely in zero or one point.

Let M be a closed orientable 3-manifold, ard a link M. Let be a
g-genusn -bridge splitting surface o L ), arél;, W, the handlebodies obtained
by cutting M alongH . We say thatd iweakly K -reducibleif W; and W, contain
K-compressing or meridionally compressing dides and D, of H respectively such
that oD1NOD, = (. We call H strongly K -irreducibleif it is not weakly K -reducible.
Note that these definitions coincide with those in [25] butrdi coincide with those
in [17].

Theorem 1.1 (Proposition 6.19 in [25]). Suppose tha{M, L) is not the pair of
the 3-sphere and the trivial knot and tha has a double cover binaacalongL .
Let H; be a stronglyK -irreducibleg; -genus; -bridge splitting @#, L) for i = 1
and 2. Then we can isotopé/; and H, in (M, L) so that they intersect each other in
a non-empty union of disjoint simple loops which dre -esakbbth in H; and in
H>.

It is well-known that it is easy to isotope the splitting auoés to be disjoint from
each other. Hence the condition “non-empty” in the conoluss very important. This
result has been applied to studies of splittings of 2-brilgets in [25] and [24]. In
particular, every 1-genus 1-bridge splitting of a 2-bridget is weakly K -reducible,
and hence is isotopic to a torus obtained by performing antuliperation on the
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2-bridge splitting 2-sphere along a single string of onehaf two trivial 2-string tan-
gles (Theorem 8.2 in [25]).

In this paper, we study on 1-genus 1-bridge splittings ofefits 1-bridge knots
in the 3-sphere or a lens space, where a lens space is a geamanifold except
52 x St

The class of 1-genus 1-bridge knots (1-bridge torus knots(1o01)-knots for
short) contains all torus knots and 2-bridge knots ((1.6]J28]), and is important in
light of Heegaard splitting theory ([23], Theorem 4 in [3T21]) and Dehn surgery
theory ([1], [7], [8], [33], [39], [40], [41]). See also [5]3], [4], [9], [11], [13], [14],
[16], [26], [27], [29], [35], [34].

Let M be the 3-sphere or a lens space. A knotMn is calledtiv@l knot if
it bounds an embedded disc M . Aknkt M  is calledae knotif its exterior
M — intN(K) is a solid torus. As we will see in Section 3¥(K ) has a wegak
K-reducible 1-genus 1-bridge splitting if and only&f s thévial knot, a core knot,

a 2-bridge knot inS® or a connected sum of a core knot and a 2-bridge knot. A knot
in M is called atorus knotif it can be isotoped onto a circle in a Heegaard splitting
torus of M .

Let V be a solid torus, and m essential loops @¥i. The loopm is of the
meridional slopeif it bounds a disc inV . The loop is of Eongitudinal slopeif it is
isotopic to a loopl’ on 9V such thatl’ intersectsn transversely in a single point.

Let (M, K) = (V1,t1) Un (V2, t2) be a 1-genus 1-bridge splitting. We say that the
splitting has asatellite diagramif there is an essential circle on the torés such
that r; and r, have cancelling disc€’; and C, disjoint from /. We call the set of arcs
0C1NH anddC,N H a satellite diagram, antl  thdope of it. We say that the slope
of the satellite diagram isneridional (resp.longitudinal)) if it is meridional (resp.lon-
gitudinal) on 9V or 9V,. When the slope is meridionak is clearly trivial. When the
slope is longitudinal ordV;, K can be obtained from a component of a 2-bridge link
by a Dehn surgery on the other component, as is essentiadhyrsltin [28]. (In fact,

K has a 1-bridge diagram on the annulds  H&l(— N(/)), and an adequate Dehn
surgery on a core of the other solid torls deforms  to a flat lasnn $2.) When
M = S8, the Dehn surgery is the same operation as a twisting. A kritht fvgenus
1-bridge splitting is a non-trivial non-core torus knot orsatellite knot if and only
if the splitting has a satellite diagram of non-meridionaldanon-longitudinal slope.
See Theorem 3 in [27], [28] and Theorem Il in [14].

Theorem 1.2. Let M be theS® or a lens spaceand K a knot inM . LetH; and
H> be 1-genusl-bridge splitting tori of (M, K) such that they intersect each other in
non-empty disjoint union of loops which ak¢  -essential othti; and H»>. Then one
of the four conditiong1)~«4) below holds.
(1) H: and H, are isotopic in(M, K).
(2) One of the splittings is weakli -reducible.
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(3) One of the splittings has a satellite diagram of non-mendio and non-
longitudinal slope. Moreoverafter an adequate isotopy aff; and Hy in (M, K), a
loop of H1 N H, gives the slope of the satellite diagram.

(4) We can isotopeH; and H, in (M, K) so that they intersect each other in one or
two loops which areK -essential on bofiy, and Ho.

In general, letX be a 3-manifold, aill  a 1-manifold properlybedded inX .
Let F be a 2-manifold embedded Xi  so th&at is transversg to llst a subarc
of T such thaty n F = 9. We take a small tubular neighbourhood af say N ) =
v x D?, so thatN ¢)NF = dvx D?. A tubing operationon F along~ is the operation
deforming F into the 2-manifold K — (9 x D?) U (y x D?).

Theorem 1.3. In case of the conclusio®) of Theorem 1.2pne of the four con-
ditions (a)—(d) below holds after an adequate isotopy Bf and H, in (M, K).
(@) One of the conclusion&l)—(3) of Theorem 1.Zholds.
(b) (M, K) is a sum of a trivial2-string tangle and a pair of a once punctured lens
spaceX and two strings = s; U s, properly embedded irX  such that the exterior
E; = cl(X — N(s;)) is homeomorphic to a solid torus and the other string  is #livi
in E; for (i, j) = (1, 2) and (2, 1). Moreover H; is obtained fromoX by performing a
tubing operation alongs;, for i =1 and 2.
(c) One of the splittings has a satellite diagram of a longitdislope two splitting
tori intersect each other in precisely two loops which areesdial on bothH; and
H,, and one of them gives the slope of the satellite diagram.
(d) There are a solid toru/ embedded M, and two disjoint discsD; and D, on
0V as below. The exteriotl(M — V) is also a solid torusK intersectg in two arcs.
There are two disjoint balls; and B, in cl(M — V) such thatV n B; = D;, that K
intersectsB; in a trivial arc and thak intersects the solidusrV; = V U B; in a
trivial arc for i =1 and 2. Moreover H; =9V; for i =1 and 2.

We will obtain the conclusion (c) precisely in Lemmas 5.8 &6l We will obtain
the conclusion (d) precisely in the end of Section 7.

K. Morimoto showed in Theorem 3 in [27] that 1-genus 1-bridgpitting torus
of a torus knot is unique. H.J. Song and K.H. Ko showed in [3&it the pretzel knot
P(—2,3 7) has at least two non-isotopic 1-genus 1-bridge smittori.

The author expects that the situation of the conclusion ii@sgmany examples of
mutually non-isotopic 1-genus 1-bridge splitting tori.dase (c),K has a 1-bridge dia-
gram on the annulug  obtained from the splitting toHjs byimgitalong the circle
of slope. Note that the core circle &f  forms a core knotMn . r€hare cancelling
discs C1, C2 which form the satellite diagram composed of the a@s; (N H;) C A,

i =1, 2. ThenS, =ON(AU ;) is a 1-genus 1-bridge splitting torus having a satellite
diagram of longitudinal slope fot =1 and 2. When &eand S, isotopic?
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We give an example of case (b) in Section 13 such that the tvimgsts; and s,
are not parallel inX .

Problem 1.4. Is there a knot which admits two non-isotopic 1-genus ldwmid
splittings located as described in (d)?

The author is wondering whether the conclusion (d) occursalb the 1-genus
1-bridge knots or only for a special subclass of them. It maypbssible that the split-
ting tori can be isotoped to intersect each other more be#lytin case (d).

The next corollary is on 1-genus 1-bridge knotssth There is a double covering
of M branched along a knok iM is the 3-sphere (ora )-lens speite p
odd). Hence we can apply Theorem 1.1 to 1-genus 1-bridgé&isgti, and obtain the
result below from Theorems 1.2 and 1.3.

Corollary 1.5. Let H; be al-genusl-bridge splitting of a knotk inS2 for i =
1 and 2. Suppose thatd; and H, are not isotopic in(S3, K) and that K is not a
2-bridge knot nor a satellite knot. Then either
(1) K is obtained from a component of Zbridge link by twisting along the other
componentor
(2) the conclusion(d) of Theorem 1.3nholds.

We can classify all the knot types of 2-bridge knots from thequness of the
isotopy classes of 2-bridge splitting spheres. The autRkpeas that all the knot types
of 1-genus 1-bridge knots are classified after studies incthese of this paper in the
future.

This paper is made up of 13 sections and 4 appendixes. InoBe2tiwe prepare
preliminary lemmas. In particular, we see in Remark 2.6 thatry 1-genus 1-bridge
splitting has infinitely many 1-bridge diagrams on the torudile it has a unique
“Heegaard diagram”s -incompressible amd)-incompressible surfaces inv(r ) are
studied in Lemma 2.10, wher& is a solid torus, and a trivial iar V. In Sec-
tion 3, we consider weakhk -reducible 1-genus 1-bridgettipdjs. In Sections 4-12,
we give a proof of Theorems 1.2 and 1.3. In Section 4, we censide “general”
case whereH; N H, contains three parallel loops oty — K or H, — K. In Section 5,
we consider the cas#&h N Hy is a single loop. We consider the caldé; N Hy| = 2
in Sections 6-9, the cagély N Hz| = 3 in Section 10 and the cadél, N Hy| = 4
in Section 11. In Section 12, we show that the conclusion “oh¢he splittings has
a semi-satellite diagram of non-meridional and non-lardjital slope” of Lemma 6.3
implies that eitherH; or H, has a satellite diagram, oK is a torus knot. In Sec-
tion 13, we give an example of the conclusion (b) of Theoreghslich thats; ands-
are not parallel inx .
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2. Preliminaries

The next lemma implies that a trivial arc in a solid torus does have a “local
knot”.

Lemma 2.1. Let M be an irreducible3-manifold and:s a trivial arc inM . Any
2-sphereS embedded in the interior &f  and intersecting transsly in two points
bounds a trivial1-string tangle(B, t’), wheret’ =t N B.

Proof. LetC be a cancelling disc of the trivial arc M . Singe  inse-
ducible, S bounds a ball, sag , i . A standard innermost logument shows
that we can isotop€ so that intersefts in a single arc congetite two points
tNS. This arc cuts off fromC a cancelling disc of the amo B in the ball B . ]

In the rest of this sectiony denotes a solid torus, and aatriaic inV . We
study “essential” surfaces inv(r ).

Lemma 2.2. Let D be at -compressing disc 6fV. Then eitherD is a meridian
disc disjoint fromz, or a peripheral disc which cuts off a baB  containing frobh
In the latter casewe can take a cancelling dis€ of witin D = 0.

Let 0 be a meridionally compressing disc @V in (V,¢). ThenQ is a meridian
disc of V.

Proof. WhendD is essential oroV (ignoring d¢), D is a meridian disc disjoint
from . WhenoD is inessential oroV, D is a peripheral disc cutting off a ball, say
B, from V. If B were disjoint from the are¢ , the® would not bera -caeysing
disc. HenceB contains entirely. By Lemma 271, is trivial Bn e Wan take a
cancelling discC oft in the balB so that the a¥€ N dB is disjoint from D .

Suppose thabQ bounds a dis@’ on V. SinceQ is a meridionally compressing
disc, Q' contains zero or two points dfz. Hence the 2-spher@® U Q' intersectsr in
one or three points, which contradicts that is irreducible. O

Lemma 2.3. Let C be a cancelling disc of iV, and D a meridian disc oV
with DNt =0. Then we can isotop® iV, ) to be disjoint fromC .

Proof. We isotopeD inY{,t ) so thdlD intersects the ar0C —r transversely in
minimum number of points and thd interse¢ts transvergelgtandard innermost
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loop argument allows us to isotope  iW,(r ) to cancel all thergeetion loops of
D N C. Suppose for a contradiction th&t N C contains one or more arcs. Letbe
an arc of D N C such thaty is outermost onC away from , that is, cobounds a
disc Q¢ onC with a subarc 0§C — ¢ such thatQc N D =~. Let A be an annulus
obtained by cuttingdV along 9D, and/; and !/, the boundary loops oA . Then the
arc+y' =9Q¢ N A has its endpoints in the same componen®df, say/;, and+’ and
a subarc of/; cobound a discQ, om . P, contained no endpointzof , then we
could isotopeD along), to decreaseD N (0C — t)|. Hence Q4 contains the two
endpointsdt. 9CNA contains an arc with its both endpoints/insince |[;N(0C —t)| =
|IN(OC —1t)|. Near an outermost such arc, we can isotépe along the ouewdise,
to decreasédD N (OC — r)|. This is again a contradiction. ]

Lemma 2.4. Let D; be a meridian disc of/ witth; Nn¢ =@ for i = 1 and 2.
Then D; and D, are isotopic in(V, t).

Proof. LetC be a cancelling disc of i . Lemma 2.3 allows us tiape D;
in (V,t) so thatD; is disjoint fromC fori = 1 and 2. After an adequatealinso-
topy of D1 in (V,t), D1 and D intersect each other transversely. Siregeand D, are
meridian discs of pD; anddD, are isotopic indV (ignoring 0t). If dD1NOD, # B,
then 9D1 U 0D, has two bigons orH , where a bigon is an open disc component of
H —(0D,U0Dy) incident to a single arc of D; —9D, and a single arc o D,—0Ds.
One of the bigons does not contain the &cnN H, and hence is disjoint fromt. We
can isotopeD; along the bigon, to decreas@€D; N 9D,|. Repeating such operations
as above, we can isotopB; in (V,t) so thatdD; N D, = (. A standard innermost
loop argument shows that we can isotope to be disjoint fromD,. D; and D, to-
gether divideV into two balls, one of which is disjoint from ehkteD; and D, are
isotopic in (V,1). O

The next lemma implies that there are infinitely many isotofasses of cancelling
discs of a trivial arc in a solid torus.

Lemma 2.5. Let D be a meridian disc of/ witlD Nt =0. Let o be an arc on
OV with da = 9r and a N dD = . Then there is a cancelling dis€ of M  with
OCNOV=aandCnND=0.

Proof. LetB be the ball obtained by cuttiig alofily . By Lemma B.8on-
tains a cancelling dis€ of . We can isotope Bn  near thedfc 0B so that
0CNIB =a. U

Remark 2.6. The above lemma implies that every homeomorphism ctdss
1-genus 1-bridge splitting has infinitely many isotopy skss of 1-bridge diagrams on
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the torus up to homeomorphism, while it has a unitieegaard diagramup to home-
omorphism as below. Let be an abstract torus, andg , two disgioints onH .
Let I; andl, be two essential loops o withy (U ) N (p U ¢q) = (. From such a
system, we can form a 1-genus 1-bridge knot by attachingid smius V; containing

a trivial arcr; on the front side ofH so thay bounds a disc disjoint frony in Vi,
and attaching {2, t2) similarly on the reverse side. By Lemma 2.4, such a diagram i
unique under the condition|/i N /2| is minimal up to isotopy orHd — (p U g)". Theo-
rem B in [13] and Lemma 2.2 together imply that such a Heegdagdram represents
the trivial knot if and only ifp andg are in the same componentrbf- (/1 U I»).

A standard innermost loop and outermost arc argument aseinptbofs of the
above lemmas shows the next lemma. We omit the proof.

Lemma 2.7. Let D be a meridian disc o/ witlb Nz =0. Let 9 be a merid-
ionally compressing disc oV in (V,t). Then Q can be isotoped ifV,¢) to be
disjoint from the discD . Moreoverafter such an isotopy we can take a cancelling
disc C ofr so thatC is disjoint fromD and intersecs  in a single agnnecting
the pointzNQ and a point in the ar@C —¢. Hence we obtain a triviak-string tangle
by cutting(V, t) along Q.

The next lemma implies that there are infinitely many isotaigsses of merid-
ionally compressing discs @V in (V,1).

Lemma 2.8. Let D be a meridian disc o/ wittbnr=0. Let A be the annu-
lus obtained by cuttingV along dD. Let! be an essential loop omt A such that/
separates the two point8r on A. Then/ bounds a meridionally compressing disc of
oV in (V,1).

Proof. The loop/ dividesA into two anuuli, sa4; and A,. We push the inte-
rior of the discA; U D slightly into intV, to obtain a meridionally compressing dis
as desired. O

In general, letX be a compact 3-manifold, afid a l-manifoldperly em-
bedded inX . LetFF be a 2-manifold such that either is properhpedded inX
transversely toI' , orFF is a subsurface @k with OF N T = (. We say thatF
is T-0-compressibleif there is a discD embedded K  such that @)N T = 0,
(2) DN(FUo0X)=09D, (3) ODNF =« is an essential arc i — T, (that is,« does
not cobound a disc with a subarc 8F on F —T) and (4)oDN(@OX —intF) =4 is
an essential arc in the surface obtained by cuttihy € int F) — T along 0F. We call
such a discD dr-0-compressing disof F. If F is not T-0-compressible, then it is
T-0-incompressible
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RemArRk 2.9. In the usual definition, the above condition (4) is oedttBut, this
definition of 7" -0-compressibility is equivalent to the usual one fbr -incoegsible
surfaces.

Lemma 2.10. Let F be a2-manifold properly embedded iV, ¢r) such thatF is
transverse ta . Suppose that s -incompressible andineompressible. Thed s
a union of several surfaces of typ€b)—(6) below.

(1) A 2-sphere disjoint frony .

(2) A 2-sphere intersecting transversely in two points.

(3) A meridian disc ofV disjoint from

(4) A meridian disc ofV intersecting transversely in a singlenpoi
(5) A peripheral disc disjoint fronr .

(6) A peripheral disc intersecting transversely in a singlerpoi

Proof.

Step 1. Let C be a cancelling disc of ¥ . Suppose first tiat  is digjoin
from C. Let V’ be the solid torus obtained by cuttiig alogg , afdbe the disc
composed of the two copies @ i#AV’. Then F is contained ir’ and is disjoint
from C’. Since F is incompressible angtincompressible also iV’, F is of type (1)
or (3) or (5).

STep 2. We can assume that  interseats . A standard innermost loop a
gument allows us to isotopé” so th@ N C consists of arcs only sincé is
t-incompressible.

STeEP 3. Suppose thatF'NC contains an arc component which has both endpoints
in the arcdC N 9V. Let a be an outermost one away from among such arcs, and
C: the outermost disc ofv. Note thatCy Nt = (. We perform ar 8-compressing op-
eration onF alongCi, to obtain another 2-manifold;. Since F ist -incompressible
and r O-incompressible, Remark 2.9 implies that cuts off a disc, sayQ , fron¥
such thatQ Nt = (. F is obtained fromF; by taking a band sum of the disc
Q U C; disjoint from ¢ and another component. Note thgt is 7-incompressible and
t-0-incompressible in(, ¢ ). To show that is a union of surfacesypes (1)—(6), it
is enough to show thaF; is so. Hence we can assume thfath C does not contain
such an arc.

Step 4. If FNC contains an arc component which has both endpoints in . Then
let 5 be an outermost one among such arcs, @hdthe outermost disc. Note that
0C, — 8 C t. Let N’ be a regular neighbourhood d@f; in the 3-manifold obtained
by cutting V alongF . ThenV’ intersectsF in a dis® which forms a regular neigh-
bourhood of the arg in F. Let Ry be the disc cN’ — R). Note thatR; N F = OR;.
Since F ist -incompressible, the logR; bounds a dis®®; disjoint from¢ in F. Thus
R U R, forms a 2-sphere intersecting in two points. L&t be a 2-manifold or an
emptyset obtained by discarding this 2-sphere fremF . is ®rumf surfaces of
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types (1)—(6) if F» is a union of such surfaces or an emptyset. Hence we can assume
that F N C does not contain such an arc.

STep 5. Thus F N C contains an arc component which has an endpoint in
and the other endpoint in the aét” N JV. Let v be an outermost one among such
arcs. That is,y cuts off a discC3; from C such thatC3 N F = ~ and thatCs is
cobounded byy, a subarc off and a subarc 6 N9OV. Let N” be a regular neigh-
bourhood ofC3 in the 3-manifold obtained by cutting along . ThaH’ intersects
F in a disc R’ which forms a regular neighbourhood ¢fin F. Let R; be the disc
cl((ON"NintV)—R’). SinceF ist -incompressible andj-incompressible, Remark 2.9
implies that the ard® N OR; cuts off a discR; disjoint froms from F . ThusR’ U Ry
forms a disc intersecting in a single point. LE§ be a 2-manifold or an emptyset
obtained by discarding this disc frofi . It is easy to see thas a union of surfaces
of types (1)—(6) if F5 is a union of such surfaces or an emptyset. Hence we complete
the proof by an induction on the number of the afcs C. ]

3. Weakly K-reducible splittings

We will show that a 1-genus 1-bridge splitting is wealdy weithle if and only
if the knot K is the trivial knot, core knots, 2-bridge knots @smposite knots of a
core knot and a 2-bridge knot.

Throughout this section, le  denote the 3-sphere or a leasesmandk a knot
in M with a 1-genus 1-bridge splittingM, K ) F/, t1) Ug (V2, t2).

In this paper, we callH iK-reducibleif there areK -compressing disd3; and
D, of H in V; and V, respectively such tha®D; N 9D, = . A K-reducible 1-genus
1-bridge splitting is weaklyK -reducible. If there are a aalling disc C; of #; and a
meridian discD; of V; disjoint from¢ such thabCin D, =0, then H isK -reducible.

Lemma 3.1. If the splitting H isK -reduciblethen K is the trivial knot.

Proof. Let D1, D, be discs as in the above definition & -reducibility. By
Lemma 2.2,D; is either a meridian disc disjoint from the arc agperipheral disc
cutting off from v; a ballB; withs; C B;. SincedD; N 0D, = (), at least one ofD;
and D, is a peripheral disc. (Otherwis@/ =~ §? x S1.)

First we suppose that both are peripheral discs.iFor =1 ams@td); =B; N H,
which is a disc containin@:. By Lemma 2.1, inB; we can take a cancelling diSc
of t; with C; N 9B; C Q1. We can isotope the dis€1 near the arddC1 N (Q1 U Q2)
so thatoC1 N H =90C,N H. Thus K is the trivial knot.

Suppose that one ab; and D,, say D;, is a meridian disc. Them, is periph-
eral, and cuts off a balB, from V,. We perform aK -compressing operation on a
copy of the once punctured torus’ = cl(H — B;) along D1, to obtain a peripheral
disc disjoint fromz; in V1. Then K is the trivial knot as shown in the previous para-
graph. [l
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Lemma 3.2. If the splitting H is weaklyK -reducibjeghen K is the trivial knat
a 2-bridge knot inS3, a core knot in a lens space or a connected sum of a core knot
in a lens space and &-bridge knot inS3.

Proof. Let D; and D, be discs as in the definition of weakly¥ -reducibility.
We can assume that one of them, sBy, is a meridionally compressing disc by
Lemma 3.1. ThenD; is a meridian disc ofi; by Lemma 2.2. Since ¥ S? x S1,
D, is a peripheralk -compressing disc, and cuts off a Ball  cointgir, from Vs.
The pair B, 1) is a trivial 1-string tangle by Lemma 2.2. L&  be a small ftagu
neighbourhood ofD; in Vi such thatr; intersectsN in a single short trivial arc . By
Lemma 2.7, (cly1— N), cl(t1 —1))) is a trivial 2-string tangle. SeX; = Nucl(V,— B),
X, =cl(Vi— N)UB ands; =K N X;. ThenX; is a ball if M is the 3-sphere, and is
a once punctured lens spaceMf is a lens space. The exterigr iaf X; is home-
omorphic to the solid torus dip — B). Since 3, s2) is the sum of a trivial 1-string
tangle and a trivial 2-string tangle along the diBa H, we obtain the trivial knot or
a 2-bridge knot in the 3-sphere if we attach a trivial 1-gfrtangle to &, s2). U

Conversely, we consider weakly -reducibility for splitigyof such knots.
Lemma 3.3 (Theorem B in [13]). If K is a trivial knot, then H is K -reducible.

Katura Miyazaki told us a very easy proof of the above lemmiagushe handle
addition theorem. We omit it. Similar argument gives an eagiroof of the weakly
K -reducibility for core knots as below.

Lemma 3.4 (Essentially Theorem C in [13], 6.2 Lemma in [21])Suppose that
H is not K -reducible. TherK is a core knot if and only if there areamcelling disc
C; of t; in V; and a meridian dis®®; o¥; wittR;Nz; = () such that the ardC;NH
intersectsoR; transversely in a single point fofi, j) = (1, 2) or (2, 1).

Remark 3.5. We can easily see weakly -reducibility by isotopiRg  még;
along a subarc 0bC; N H.

Proof. “If" part follows from Lemma 2.5. We consider the “gnif” part. Sup-
pose thatk is a non-trivial core knot. L& be a meridian disd/ofvith D;Nt; =0
for i = 1 and 2. We take regular neighbourhoaslsD,) in V, and N ¢1) in Vi with
N(D2) N N(t1) = 0. SetE ¢1) = cl(V1 — N(t1)) and X =E ¢) U N(D3). Then X is
homeomorphic to the exterior of the knét M . We take an egsdeldop m on
the annulusdN(t1) — H. D; gives a compressing disc of the surfag&(r)) — m in
E(t1). The torusdX has a compressing disc sindgé  is a core knot. By the gener-
alized handle addition theorem (Theorem 1 (a) in [38]), &itAE (1)) — (0D2 U m)
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has a compressing disc i 1), or JE(r1)) — 0D, has a compressing disb i 1)
such thatoD Nm # 0. In the former caseH iK -reducible, which is a contradic-
tion. We consider the latter case. L€{ be a cancelling disc of; in E(1), that is,
[0C1 Nnm| = 1. We takeC; so thatCi N D consists of arcs only antC; N D| is
minimal over all the cancelling discs of. Let A be the annulus obtained from by
cutting alongdD;.

When the arc$C;N A separate the two point8r;, we will obtain a contradiction
as below. SincédD Nm # (), between every two adjacent points @D Nm on dD,
there is an intersection point DNOC1. Hence there is an outermost arcof C1ND
on D such thatx cuts off an outermost dis@ fro witlPQ Nm|=0 or 1. The
arc « divides C; into two discsC andC’ where |0C Nm| = 1. When|0Q Nm| = 1,
the cancelling disaQ U C’ intersectsD in less number of arcs th@a does, which
is a contradiction. WhendQ Nnm| = 0, we obtain a contradiction again, considering
cCuUOQ.

When 9C; N A does not separatér;, there is an arc, say, on A such thatw
is contained inA , connects the two poiritg and is disjoint from intfCy N H). We
can take a cancelling dis€; of f, in (Va, ) so thatdC, = o by Lemma 2.5. Then
0C2N0C1=KNH,andK has a 1-bridge diagram with no crossings/n

The loop K’ = (0C1 U 0C2) N H is of non-meridional slope of the solid tofi;
and V,. Otherwise,K would be the ftrivial knot. IK’ is of non-longitudinal slope of
V1 and V,, then the exterior ofK is a Seifert fibred space over a disc With ex-
ceptional points, which contradicts it is a solid torus. e’ is of a longitudinal
slope of Vi or V,, say Vi1 and we can take a meridian digt; of Vi3 such thatR;
intersectsk’ in a single point and that the intersection point is contdiime dC,. A
standard innermost loop and outermost arc argument all@ews isotope inR; so that
R is disjoint form the cancelling dis€;. O

Weakly K -reducibility of 1-genus 1-bridge splittings is sho in Theorem 8.2
in [25] for 2-bridge knots. For composite knots, it is esgalyt shown in Theorem 1.6
in [6]. See also Theorem Il in [14].

4. General case

We begin to prove Theorems 1.2 and 1.3. This proof is comgletethe end of
Section 13. LetM be the 3-sphere or a lens space, &nd a kntt inet HL be
a torus giving a 1-genus 1-bridge splittingZ(K ) ¥, t;1) Uy, (Viz, ti2) for i = 1
and 2. We assume thdi; and H, intersect transversely in non-empty collection of
loops which areK -essential on botty, and H,. If a loop ! of Hy N H; is inessential
on one of H; and H,, say onHj, then/ bounds a disc intersectiky  transversely in
two points onH;. Each of H; and H, contains zero or even number of essential loops
of Hi N H, since the splitting tori are separating M

The goal of this section is the next proposition.
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Proposition 4.1. Suppose that the loopd1 N H, contains three parallel loops on
Hy, — K or H, — K, say H, — K. Then one of the following three conditions holds.
(1) We can isotopeH; and H, in (M, K) so that they intersect in non-empty collec-
tion of smaller number of loops which aé -essential on bathand H,. Moreover
we can decrease the number of the intersection loops by twoare.
(2) The splitting H; is K -reducible.
(3) The splitting H; has a satellite diagram of non-meridional and non-longibad
slope. Moreovera loop of Hy N H, gives the slope of the satellite diagram.

To prove this proposition, we need the next three lemmas. ¥éetle basic lem-
mas in Appendix A.

In general, letX be a 3-manifold, arld  a 1-manifold properlybedded inX .
Let F; and F, be 2-manifolds embedded X  so th&tNF, = 0F; = 0F,. We sayF;
and F, are T-parallel if the 2-manifold F; U F» bounds a submanifold/ ok such
that the triple ¢4, F1, T N M) is homeomorphic to the tripleFg x [0, 1], F1 x {0}, P x
[0, 1]), where P is a union of finite number of points in iF.

Lemma 4.2. Suppose that one dfi; and Vi, say Vi1 contains a componens
of H, N V11 such thatS isK -parallel to a subsurfac® of 9Vi11. Suppose tha#; N
H, consists of larger number of loops thafsS|. Then we can isotopé/; and H,
in (M, K) so that H; and H intersect in non-empty collection of smaller number of
loops which areK -essential on botti; and H.. Moreover if S is an annulus disjoint
from K, then we can decrease the number of intersection loops by twoooe.

Proof. Suppose that ist is disjoint from H,. Then we isotopeH, near §
slightly beyond S’ along the parallelism, to cancel the intersection lo@g#s Since
|H1 N Ha| > |0S| before this isotopy,H; N H, # () after the isotopy. IfS is an an-
nulus, then we have decreasdgé N H| by two.

Suppose (in§’) N Hy # (. Then we isotopes’ very closely toS along the paral-
lelism to cancel the intersection curves @htN H,. The loopsdsS remain to be inter-
section loops ofH1N H,. We consider the case whefe is an annulus disjoint flom
If int S’ intersectsH, in two or more loops, then we have decreased the number of the
intersection loops by two or more. Suppose for a contraaticthat intS’ intersectsH,
in a single loopc . Since iK -essential i, it is essential in the annulu§’, and
bounds a surface in the parallelism between  &hdThis is a contradiction since
generates the homology group of the solid torus of paraiteli ]

Recall that we consider the general case whHieN H, contains three parallel
loops 1, I2, I3, appearing in this order, o, — K. (They may be essential or inessen-
tial on H,.) Let A; and A, be the annuli onH> — K betweenl; andl, and between
I, and I3 respectively. We can assume, without loss of generaligt #h is contained



384 C. HavasHi

H;
Fig. 4.1.
in Vy; fori =1 and 2. See Fig. 4.1.

Lemma 4.3. Suppose that at least one @f; and A,, say A;, has boundary
loops which are inessential i&/;. Then one of the two conditions below holds.
(1) A; is K-parallel in (Vy;, t1;) to an annulus onH; for i =1 or 2.
(2) K is the trivial knot.

Proof. We apply Lemma A.3 in Appendix A td; in (Vig,t11). (1) of
Lemma A.3 implies (1) of this lemma. Hence we can assume &jabf(Lemma A.3
holds. Then there is a cancelling disc, say, of 11 such thatoCi N Hy is contained
in the disc, sayQ , bounded by the outermost loop amingnd/, on Hj.

Sincel; is inessential onH;, by Lemmas A.2 and A.3, eithef, is K -parallel in
(V12, t12) to an annulus inHy, or there is a cancelling dis€, of 12 in (Vi2, t12) with
0C2NHy C Q. In the former case, we obtain the conclusion (1). In thestathse, the
knot K has a 1-bridge diagram on the di@&c , and hence is thaltkwot. [l

Lemma 4.4. Suppose that one component @f; is essential and the other is
inessential ondV1;. Then one of the two conditions below holds.
(1) Az is K-parallel in (Vi2, t12) to an annulus inHj.
(2) The splitting Ay is K -reducible.

Proof. We assume that the conclusion (1) does not occur t $hat (2) occurs.
Then, applying Lemmas A.1, A.2 and A.3 t, in (Vi t12), there is a cancelling
disc C, of 11, with C; N 0A, = 0. By Lemma A.2 a component adA; bounds a
meridian discD disjoint fromK inVii. If A, containsdD, then H; is K -reducible
since C,NOD = (). If a component 0f)A; is inessential onHy, then the ardCoNHy
is contained in the disc bounded by @h, and henc&C; is disjoint fromdD. Thus
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H, is K -reducible. Ol

Proof. We prove Proposition 4.1. (1) of Lemma 4.3 and (1) ofnb@a 4.4 im-
ply (1) of this proposition together with Lemma 4.2 singg N H, contains three or
more loops. (2) of Lemma 4.3 implies (2) of this proposition Bheorem B in [13].
(2) of Lemma 4.4 is contained in (2) of this proposition.

Hence we can assume that the loopsoef; and 0A, are essential inH;. If at
least one ofA; and Ay, say A1, is K -parallel in (11, #17) to an annulus inH;, then
we obtain the conclusion (1) by Lemma 4.2 sindle N H, consists of three or more
loops. Then we can assume that the annuli are kot -paratiel Ah, and thatoA;
is of non-longitudinal slope oVy; for i =1 and 2 by Lemma A.1. Hence there is a
cancelling discC; oft; in Yy, ty;) with 0C; N 0A; = 0 for i = 1 and 2.13, I, and
I3 together divideH; into three annuli, one of which, saR , contains the two points
K N H;. We can isotopeC; and C, near their boundary so that the ar@€; N H;
and 0C, N H; are contained inR . This implies thai; admits a satellite diagram of
a non-longitudinal slope. If the slope of the satellite déag is meridional, therk is
the trivial knot, andH; is K -reducible by Lemma 3.3. This completes the proof of the
proposition. O

5. When|HiNHz =1

In this section, we study the case wheile and H, intersect each other in a sin-
gle loop! . We are going to use the basic lemmas in Appendix BceSiL is odd] is
inessential andk -essential in bofy and H,. [ bounds a disc, say; , intersecting
K in two points inH; fori =1 and 2. See Fig. 5.1.

For ¢,j)=1(1 2) and (2 1),0; is contained iW;; or V;3, say V;1, and forms a
2-sphere bounding a 3-balt  together widy in the solid tovys. K intersectsB
in two subarcs each of which conneas  agd . 8gt=cl(V;1 — B) andt}; =
tjpN Vi for j =1 and 2. Note that}; =1, for (i, j) = (1, 2) and (2 1).
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By Lemma 2.10,Q0; isK -compressible & 0-eompressible in ¥;1, ¢;1). Hence
it is sufficient to consider the four cases (1), (2), (3)(8)(lf) below.
(1) Q: is K-compressible in\;1, ;1) for (i, j) = (1, 2) and (2 1).
(2) Q1 or Q,, say Qi is K-incompressible in W»1,121), K-0-incompressible in
(V34, 157) and K 9-compressible in 8, K N B).
(3) Q1 or Oy, say Q1 is K-incompressible in Y2y, 27) and is
K-0-compressible in (3, 15,). There are two subcases.

(a) Q2 is K-compressible in¥y1, £17).

(b) Q- is K-incompressible in¥i1, 117) and K 0-compressible in ¥/, 11,).

We do not need to consider the subcase whérge is K -incompressible in
(V11, t12), K-0-incompressible in ¥/,, #1,) and K 9-compressible in B, K N B), since
this case is contained in the case (2).

Lemma 5.1. In case(1l) H, is K -reducible.

Proof. SinceQ; is K-compressible in Y1, £21), 0Q» bounds aK -compressing
disc D of Hy in (V21,121) by Lemma B.1 in Appendix B. LeD’ be aK -compressing
disc of O, in (Vi1, t17). By Lemma B.1(1),D’ is contained inV{; = Vi1 N V2. Then
D and D’ show thatH, is K -reducible. ]

Lemma 5.2. In case(3)(a) K is isotopic to a core ofV,; in M.

Proof. SinceQ; is K-compressible in Y1, £11), by Lemma B.1 (2), there is a
cancelling discC ofty; in (Va1, £17) with C N H; C Q;. Let D be aK d-compressing
disc D of 01 in (V3,,t5,). By Lemma B.3 (1)D is a meridian disc of;,, and by
Lemma B.3 (4) there is a cancelling dist  4f in (V},, t5,) such thatP is disjoint
from D and thatP N Q1 consists of two arcs each of which contains a poinogf.
Since K intersectg); in precisely two points, we can také amd so thatnoD
is a single point and tha®C N9P = K N Q;. HenceK is isotopic to the circledC U
dP)N Vs, and is isotopic to a core ofy;. Ol

Lemma 5.3. In case(3)(b) H; is isotopic to the torus obtained by performing a
tubing operation ondB along 1;; for (i, j) = (1, 2) and (2, 1). Moreover (B, K N B)
is a trivial 2-string tangle and its complementary tanglgx, S) with X = cl(M — B)
and S = KN X is as below.
(i) X is a ball or a once punctured lens space afid is a disjoint urebrwo arcs
S1 and 52,
(i) E;=cl(X — N(s;)) is a solid torus fori =1 and 2 and
(iii) s; is trivial in E; for (i, j) = (1, 2) and (2, 1).
In particular, K is the trivial knot or a2-bridge knot whenV = $3.
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Proof. For {,j)=(1 2) and (2 1), we consider the arguments helat D; be
a K -0-compressing disc 00; inv(j’l, t;l). The arcD; N Q; separates the two points
KN Q;in Q;. Let N(D;) be a regular neighbourhood &f; I, and setB’ = B U
N(D1) UN(D3). Then B’ is a ball isotopic toB in{,K ). SeK = — B’), s; =
iy =tiz and S =s1Usp. The ballN; =clV;; — N(D;)) forms a regular neighbourhood
of s; in X by Lemma B.3. Henced; s isotopic in/, K ) to the torus obtelirisy
performing a tubing operation ofiB along ;. SinceV;1UB’ is a solid torus isotopic
to V1 in (M, K), the exteriorE; =cl§ — N;) of s; is isotopic to the solid torud;,.

We can take a cancelling dis€;  of in (Vj,t;2) with C; N D; = . ThenC;
is also a cancelling disc of; 5, in E; = cl(X — N;). Since the tangleR’, K N B’)
is isotopic to B, K N B) in (M, K), and since B, K N B) is a trivial 2-string tangle
by Lemma B.2 (3), B/, K N B’) is a trivial 2-string tangle.

When M =S$3, X is a ball, cl(X — N1) and clX — N,) are solid tori, and ci{ —
N1U N>) is a handlebody because is trivial in E;. Hence &, S ) is a trivial 2-string
tangle by Theorem 1 in [10]. ThuK is the trivial knot or a 2dge knot. U

Lemma 5.4. Assume thatB, KNB) is a trivial 2-string tangle. Suppose that the
once punctured torugl, N Vip or HiN Vap, say Hy N Viy is compressible inVi2 N Vao.
ThenM = % and K is the trivial knot or a2-bridge knot.

Proof. LetD be a compressing disc H#6NVi, in VioNVao. Note thatVioNVas is
disjoint from K . We perform a compressing operation on a coipy{en Vi, along D .
Then we obtain a dis@’ (and possibly a torus component) withD’ = 9Q;. The
2-sphereD’ U Q; bounds a ballw; inV;, for i = 1 and 2. Moreovers;; is trivial in
W; by Lemma 2.1 fori = 1 and 2. TheriMg Up, Wo, t12 U £22) IS a trivial 2-string
tangle, and henc& is the trivial knot or a 2-bridge knot. O

Lemma 5.5. In case(2) either K is the trivial knot or a2-bridge knot inS2, or
we can isotopeH; in (M, K) so that
() HinN H, consists of two essential loops on bath and Ho,
(i) HiNH, divide H; into two annuli one of whiglsay A;, intersectsk in two points
fori=1and 2 and
(ii) there is a parallelism(P, K N P) of A; and A, with (int P) N (Hy U Hp) = 0.

Proof. In case (2), K, K N B) gives a parallelism betwee®; and Q, by
Lemma B.4. Suppose first that, N Vi, has aK -compressing disD iV, t12).
Then by Lemma B.2 (4D is contained >N V2. By Lemma B.2 (3), B, K N B)
is a trivial 2-string tangle, and hendé s the trivial knotao@-bridge knot inS® by
Lemma 5.4.

Hence we can assume th&b N Vi, is K -incompressible in Y1z, 112). Then Hy N
Vi2 has aK d-compressing discR  inWio, t19) by Lemma 2.10. IfR is contained
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in V,;, then R N Qy is an arc essential i1 — K by the unusual definition of
K-0-compressibility. HenceR is also & d-compressing disc of21, which contra-
dicts that we are now considering case (2). Then is contaiméd, N Vo, The arc
R N (Hy N V) is essential inH1 N Vo by the definition of K §-compressibility. We
isotope H, along R, and obtain the desired conclusion. ]

In the rest of this section, we consider the latter half of t@nclusion of
Lemma 5.5, that is, we assume that the conditions (i), (i) &) are satisfied. See
Fig. 5.2. SetA! = cl(H; — A;) for i =1 and 2. LetV;; be the solid torus bounded by
H; and containing the annulug; for,( ) =,(1 2) and (2 1). D&t be the other
solid torus bounded bys; i . Set KENV,;. Let V) be the solid torus/;y — P,
and letr/; = KNV fori =1 and 2. In {;2,¢;2) the annulusA! is K -compressible
or K-0-compressible by Lemma 2.10. Hence there are five cases B))(C), (D)(i),
(D)(ii) below.

(A) One of A} and A}, say A7 has aK -compressing disc ivho N V2.

(B) A} and A} are K -compressible in\{f,, #;,) and in (V,, #5,) respectively.

(C) One of A7 and A}, say A} has aK &-compressing disc ifVi2 N Vao.

(D) One of A} and A}, say A} is K-0-compressible in ¥;,, #1,). There are two sub-
cases.

(i) A% is K-compressible in\;,, 5,).

(i) A% is K-0-compressible in ¥y, 15,).

Lemma 5.6. In case(A), K is the trivial knot.
Proof. A K -compressing operation on a copy Af in V12N Va; yields meridian

discs D; and D, of Vi, and V,,. By Lemma A.1, there is a cancelling digg e’}
disjoint from D1 and D, in (V;2,1;2) for i =1 and 2. TherdC; N H; C A;. Since A;
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and A, are K -parallel in £, K N P), we can extend’, to a cancelling discC}, of 111
in (V11,t17) with 9C1 N H; C A;. Thus K admits a 1-bridge diagram oty. (Note
that C, may intersectA].) SincedA; is meridional ondVi,, A1 is an unknotted and
untwisted annlus, an& is the trivial knot. O

Lemma 5.7. In case(C), H; and H, are isotopic in(M, K).

Proof. LetD be akK @-compressing disc oA} with D C Vip N Vao. The arc
0D N A connects two distinct components 8f}. Hence the ar@D N A} is also
essential inAj. If we perform a K d-compressing operation od) along D, then
we obtain a disc whose boundary bounds a discAgn These discs together form a
2-sphere bounding a ball il12. Thus V12NV, gives akK -parallelism betwees) and
AS in (M, K). Since ¢, K N P) gives K -parallelism betweerA; and A,, H; and H
are isotopic in {, K ). ]

Lemma 5.8. In case (D)(ii), there is an annulusA embedded M satisfying
the following two conditionga) and (b).
(a) A core loop ofA forms a core knot it/
(b) K has al-bridge diagram onA . That jSK intersectsA transversely in two
points and is divided into two subargs and f», and there is an embedded digg
with KN C; =1 C 9C; C|(8C,‘ — l‘,') =C;NnintA and C1NC, C intA for (i, j) = (1, 2)
and (2, 1).
Moreover let R; be the annulus obtained by isotopiag  fixifig along C; slightly
beyonds; . ThenH; is isotopic to the torusU R; in (M, K) for i = 1 and 2, after
changing suffix numbers if necessary.

Proof. For (,j) = (1 2) and (2 1), we consider the argument beldiwnce the
annulus A/ is disjoint from the knotk , performingX d-compressing operation on a
copy of A/, we obtain a dis@®; such thaQ; bounds a disa! on A;. The 2-sphere
Q; U Q; bounds a ballB; inV;,. HenceA; and A; are parallel il  (ignoringk ).
A standard innermost loop and outermost arc argument allewv take a cancelling
disc Cjp of ;2 in (Vj2,1;2) with Cj2 N Q; = (). Since A1 and A, are K -parallel in
(P, K N P), we have the desired conclusion. [l

Lemma 5.9. In case(B), we have a contradiction.
Proof. A K -compressing operation af; yields meridian discsD1 and D, of
Va2. Since A, has aK -compressing disc iW,;, M = §2 x S1, which contradicts our

assumption. O

Lemma 5.10. In case(D)(i), H» is K-reducible.
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Proof. Performing a K &-compressing operation oM}, we obtain a K -

compressig disc ofd,, which is peripheral inVy, (ignoring #,,). This disc and a
K-compressing disc oft}, in V,; show thatH- is K -reducible. ]

6. When H; NnH, consists of two essential loops (1)

In this and the next sections, we consider the case whegre H, consists of two
loops which are essential on bofth and H» (ignoring the pointsk N H;).

See Fig. 6.1. The loop#/; N H, divide H; into two annuliA;; and A; for i =1
and 2. LetV;; be the solid torus bounded b§; W  with;; C Vi1 for (i, j) =
(1, 2) and (2 1). LetVi> be the other solid torus bounded B . $gt K+ V;;.

Lemma 6.1. Ai1, A1p, A2, Ay are parallel to an annulus in the boundary of
Va1, Va2, Vi1, Vi respectively(ignoring K). Hence these solid tori are divided the
anuuli into two solid tori.

Proof. In this proof we ignor&k . We considdr ;. The same argument will do
for the other annuli.

We can assume thalAi; are of meridional slope of,;. (Otherwise, the con-
clusion is a well-known fact.) Them; is compressible inV,;. Moreover, we can
assume, without loss of generality, that; has a compressing dis@ Vb, N Vio.
Then, compressingl;;, we obtain a compressing dif®  df, in Vo1 N Vi, 90 is
of meridional slope ofV1,, and hence it is of non-meridional slope ©f;, otherwise,
M = S x §2. HenceA»; is parallel to one ofd1; and Ay, in Vii. When A,y is par-
allel to A1;, we are done. Hence we can assume that is parallel toAi. Then we
can isotopeH; into intV,; so that it is disjoint from the meridian disR ~ &6;. Let S
be the 2-sphere obtained by compressifigalong R .S bounds a ball containing;
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Fig. 6.2.

H]_ H2

V12 V22

Fig. 6.3.

in V1, and on the other side bounds a ball Wip. See Fig. 6.2. Henca/ §°, and
0Ay; is of longitudinal slope ofVy; before the isotopy ofHi. Hence A,y is parallel
to A]_]_ in Vi1. O

We can assume, without loss of generality, théy N K| > |A;» N K|. There are
two cases: in case (A11NK|=|A21NK|=]A12NK|=|A22NK| =1 (See Fig. 6.3),
and in case (I))A;1N K| =]A21N K| =2 andA;;N K = AN K = 0. We consider
case (I) in this section, and case (Il) in the next sectionthia section, we will use
lemmas in Appendix C.

When 4;; has aK @-compressing disd inWy, 1 ) fori(j ) =(1 2) or (2 1)
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andk € {1, 2}, we say thatD isessentialif the arcODN A;; is essential o4;, , and
inessentialotherwise, following the definition in Appendix C.
There are many cases as below.
(1) Precisely one of the four solid tofy1 N Vo1, Vi1 N Voo, VioN Vo3 and Viz N Voo
contains an essentidl 0-compressing disc (Lemma 6.6).
(2) Precisely two adjacent solid tori do (Lemma 6.5).
(3) Two non-adjacent solid tori do (Lemma 6.4).
(4) None of the solid tori does. There are 2 subcases.
() At least one ofA11, Agp, Az, Ao is K-compressible (Lemma 6.2).
(b) All of the annuli are K -incompressible, and hence havesdnatial K 9-
compressing discs (Lemma 6.3).

Lemma 6.2. Suppose that;; K -compressible (i, ¢;x) and A; does not
have an essentiak d-compressing disc i{V;;, ¢;;) for (i, j) = (1 2) or (2, 1) and
(k,1)=(1,2)or (2, 1). ThenH; is weaklyk -reducible.

Proof. Suppose, without loss of generality, that the priglary conditions hold
for (i, j) =(1,2) and k,1) = (1 2). Letb be & -compressing disc Af;. We can
assume, without loss of generality, thBt  is contained/innN V,1. Then A,; has a
K-compressing disc irV11N Vo1 by Lemma C.1. Moreovei9A11 = 0A2; is meridional
on V1 and Vi1.

First, suppose that;, is K-compressible inWzz, 120). ThendAi, is of meridional
slope of Vo, and M = §? x S, which is a contradiction.

Secondly, suppose that;, is K-incompressible in Wz, f29). Then Ao has a
K-0-compressing discD’ by Lemma 2.10. By the preliminary condition, the arc
0D’ N Ay, is inessential inA;;. By Lemma C.3, we can take a cancelling disc
C of o in (Vaz, 129 sO that 9C is disjoint from a component obAz,. ((1) of
Lemma C.3 contradicts our assumption in this lemma.) On tierohand, by per-
forming a K -compressing operation ofy; along D, we obtain meridian discs, each
of which intersectsk at most one point. Hentle is weakly K -reducible. [l

We introduce the notion of “semi-satellite diagrams”. Inngeal, let M, K ) =
(V1, t1) Uy (Vo, 1) be a 1-genus 1-bridge splitting. We say thfat  hasemi-satellite
diagram if there is a pair of disjoint simple loops and!/, on H such that; and i,
are essential ol and that has a cancelling disc disjoint ffoim V; for i =1
and 2. A satellite diagram is a semi-satellite diagram. W lgaand [, the slopesof
the semi-satellite diagram. We say tliatand /> are meridional (resp.longitudinal) if
they are meridional (resp. longitudinal) @iy or 9Va.

The next lemma immediately follows from Lemma C.3.
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Lemma 6.3. Suppose thatA;;, A1z, A2z and Ay, are K -incompressible in
(Va, t21), (Va2, t229), (Va1, t17) and (Vio, t12) respectively. Suppose that two non-adjacent
solid tori among Viiz N Va1, Vi N Vo, Vio N Vap, Viz N Vao contain inessential
K-0-compressing discs 0fi1;, A2, A21, A2, and that these solid tori do not con-
tain an essentialk g-compressing disc. Thef; has a semi-satellite diagram of non
longitudinal and non-meridional slope far= 1 and 2. Moreover the other splitting
torus is a union of two annuli as i{2) of Lemma C.3.

In Section 12, we will study what the conclusion of Lemma 6Grilies.
The next lemma immediately follows from Lemma C.2.

Lemma 6.4. Suppose that two non-adjacent solid tori amorigN Va1, V11N Vo,
Vi2 N Va1, V1o N Vap, say Vi1 N Vop and Viz N Voy contain essentialk 3-compressing
discs of A11, A12, A1, A2o. Then Hy and H, are isotopic in(M, K).

Lemma 6.5. Suppose that only two adjacent solid tori amoign Vs, V11N Vaa,
Vi2 N Va1, Via N Vay, say Vio N Vap and Vip N Vay contain essentialk g-compressing
discs of A1p, A1, Aps. Then either
(1) one of H; and H- is K -reducible or
(2) we can isotopeH; and H, so that they are in the situation of the latter half of
Section 5 (hich is considered inLemmas 5.6-5.10)

Proof. Suppose thati;; is K-compressible inW»1, 21). Then aK -compressing
operation onAi; yields a meridian disc, sa@ , disjoint froli and bounded by a
loop of 0Aj1. Since Ay; and Ay, are parallel in Voo, t22), we can take a cancelling
disc C of 12 in (Vap, t20) with 9C N OQ = . Thus H, is K -reducible.

Hence we can assume thak; is K-0-compressible by Lemma 2.10. Then one
of Vi1 N Vo1 and Vo N Vo, say Vip N Vpp contains an inessentidk d-compressing
disc D of Aj1. Then D cuts off a ballB intersectingg in a single arc, say , from
V11N Vo1, and we can take a cancelling digc nof B so that eaclWAfn 0V,
and OA N dVy; is a single arc. See Fig. 6.4. We isotoje near alang  slightly
beyond the ar@dA —t. See Fig. 6.5. TherK is in the same situation as in the latter
half of Section 5, sinceWi2 N Vo, K N V12N Vo) gives aK -parallelism betweeA,
and Ay, before the isotopy. Note that this isotopy does not changeidbtopy classes
of H; and H, in (M, K). Ol

Lemma 6.6. Suppose that precisely one solid torus amadngn Va1, Vi1 N Vo,
V12N Va1, ViaN Vap, say Vi1 N V1 contains an essentiak g-compressing disc ofig;,
Az1. Then one of the following three conditions holds.

(1) One of H; and H; is weakly K -reducible.
(2) We can isotopeH; and H, so that they are in the situation of the latter half of
Section 5
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Fig. 6.4.

H; H;

V12 Va2

Fig. 6.5.
(3) The conclusion of emma 6.3holds.

Proof. By Lemma C.2A1; and Ay; are K -parallel in Y11N Va1, K N Vi N Vay).
Suppose that one ofl;; and Ay, say Ajp is K-compressible in Wy, £21). Then H,
is weakly K -reducible by Lemma 6.2 sincé;, does not have an essenti&l 0--
compressing disc by the assumption of this lemma. Hence weasaume thatdi;
and Ap; are K -incompressible.

Suppose that one of;>, and Ay, say A has a K -compressing disD in
(Vaz,t29). If D is contained in Vi; N Vi, then Ay is also K -compressible by
Lemma C.1, which contradicts our assumption. Heize is auoedain Vio N Voo
By Lemma C.1,r =K N (V12N Va,) has a cancelling dis€’ in Vi, N Vo, such that
each ofdC'NA, anddC’'NA,; is a single arc. We isotop&  near aloag slightly
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V12 V22
Fig. 7.1.

beyond the ar@C’ —t. Then K is in the situation in the latter half of Section 5.
Hence we can assume thdt, and A, are K -incompressible, and henéé 0- -
compressible by Lemma 2.10. Suppose tlat N Vo, contains an inessentiagk 0-
compressing dis® ofi;; and A, Then D cuts off a ballB  fromVi, N Vo, and
we can take a cancelling dis¢  of the akon B so thatoC N A;, is an arc fori =1
and 2. Then we isotop& along to be in the situation of lattdfr dfaSection 5.
Hence we can suppose th&i; N Vo, and Vi, N Vo contain inessentiak o~
compressing discs ofi;; and A, respectively. This is the situation of Lemma 6.3.
]

7. When H; N H; consists of two essential loops (II)

In this section, we will use Lemma D.1 in Appendix D. L&y V;; Aj; t;, be
as in Section 6. In this section, we consider case (Il) whdig N K| = |A21N K| =2
and AN K =A»NK =0. See Flg 7.1.

K N (Vi1 N Vo) consists of two arcs, say and t,, each of which connectdj;
and Ap;. By Lemma 2.10,4 1 is K-compressible oK g-compressible in ¥4, ;1) for
(i,/)=(2) and (2 1).

Suppose that ;; is K-0-compressible in ;1 N V2, tj2). Any K-0-compressing
disc of Aj; intersectsA;; in an essential arc by the unusual definition &f0- -
compressibility, and hence it is alsok 0-eompressing disc ofi;». K-0-compressing
a copy of A;», we obtain aK -compressing disc df;1 in (Vi1 N Vjo, t;2).

HenceAj; is K-compressible in¥;1, #;1) or K -0-compressible in {11 N Vaq, t1 U
1). In the latter case, & J-compressing disc ofi;; is also aK é-compressing disc
of A;1 in (V11N Vo, 11U £2). Thus it is sufficient to consider the following two cases.
(1) A;; and Ay; are K 0-compressible in W11 N Vo, t1 U 12).

(2) A11 and Ay are K O-incompressible in Wi N Vo, 11 U 1), and Ajp is
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K-compressible in \;1, t;1) for (i, j) = (1, 2) and (2 1).

Lemma 7.1. In case(1l), one of the three condition&)—(c) below holds.
(a) We can isotopeH; and H, so that H; and H, intersect each other in a single
inessential andK -essential looWe have already considered this situation $ec-
tion 5.)
(b) We can isotopeH; and H, so that H; N H, divide H; into two annuli each of
which intersectsk in a single point far= 1 and 2. (We have already considered this
situation in Section 6.)
(c) One of Hy and H, is weaklyK -reducible.

Proof. LetD be aK @-compressing disc ofAi1; and A1 in Vi1 N Vo1, Then the
arc 9D N A;p is either essential in botA;; and A,;, or inessential in them.

In the former case, we isotopd; along D . ThenH; and H; intersect each other
in a single inessential an  -essential loop. This is the losian (a).

In the latter case, leD; be the disc cut off from by the arcoDNA;; fori =1
and 2. Then K N D1| = |K N Dy|. This number of the intersection points is determined
by the number of the arcs contained in the ball  bounded by tbegh2reDUD;UD;
in V11N Vo,

When |K N D1l = |[K N D2] =1, KN B is a single trivial arc. Hence we can
isotope H; along B so thatH; and H, are in position as in case (l). This is the con-
clusion (b).

When |K N D1| = |K N Dy| = 2, we isotopeH; along D. ThenH; N Hy is a
union of a single inessential ankl -essential loop and twentisd loops on botht;
and H,. We apply Lemma 10.1 in Section 10 to this situation. The keicn (1) of
Lemma 10.1 implies that we can isotopfs and H, so that they intersect each other
in a single inessential and  -inessential loop. This is thecksion (a) of this lemma.
The conclusion (3) of Lemma 10.1 is the conclusion (c) of teimma. The conclu-
sion (2) of Lemma 10.1 implies that the disé and D, are K -parallel after the
isotopy alongD . Before the isotopy8  containskag-compressing disc ofi;; and
A1 as we considered in the previous paragraph. Hence we oltaicdnclusion (b).

O

In the rest of this section, we consider case (2) just befenma 7.1. LetD; be
a K -compressing disc ol ;1 in (Viq, ;1) for (i, j) = (1, 2) and (2 1). We say thab;
is essentialif 0D; N Aj1 is essential or4 1, and otherwise it isnessential following
the definition in Appendix D.

We consider 4 cases below.
(1) Both D; and D, are essential (Lemma 7.2).
(2) One of D; and D, is essential, and the other is inessential (Lemma 7.4).
(3) Both D; and D, are inessential. There are two subcases.
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(@) Aj1 or Ay, say A1 does not have & d-compressing disc inWi2 N Va1, 112)
(Lemma 7.5).

(b) Aj1 has aK 8-compressing disc inW;j2N Vi1, t;2) for (i, j) = (1, 2) and (2 1)
(right after Lemma 7.5).

Lemma 7.2. If D; is essential forj = 1 and 2, then one ofH; and H- is
K-reducible or weaklyk -reducible.

Proof. Suppose first that one &f; and D», say D; is not contained inV11N Vas.
Then D, is contained inVi, N Vo1, Similar argument as in the proof of Lemma A.1
(1) shows thatD, is not contained inVy3 N Vo1, and hence is contained Vi1 N Voo.
We perform aK -compressing operation da; along D1 and obtain a meridian disc
D of V2. Since D; is a meridian disc ofVz,, D, and D} shows thatM =~ $2 x S%,
which contradicts our assumption.

Secondly, we assume that both bf and D, are contained inVy; N Vo1, A1z IS
K-compressible oK @-compressible in W22, 127 by Lemma 2.10.

If A;2 has aK -compressing disc, theh -compressing, we obtain a merid-
ian disc of V,,. Since D, is a meridian disc ofi;, M =~ §2 x S. This is again a
contradiction.

Hence A;, has aK 9-compressing dis® inWy, £27). First, we consider the case
where D is contained V11N Va,. K-0-compressingAi, along D, we obtain a periph-
eral discD’ in Vo D' is a K -compressing disc of,;. We perform aK -compressing
operation onAj;; along D1, to obtain a meridian dis@®@ of,; such thatQ inter-
sectsK in at most one point. Sinég) C JAj; is disjoint from dD’, H, is weakly
K -reducible.

Secondly, we consider the case whdpe is contained;sm Voo.

Since V12 N Vo is disjoint from K , Vio N Va, gives K -parallelism betweed
and A,,. Hence we can isotopél; nearAj, in (M, K) so thatH; is contained inVy;
and thatH; is disjoint from the K -compressing disb, of A,1. Since D, C Vi1 N
Vo1, OD; is essential ond,1, and D, is a meridian disc ofV,;. Note thatM =S3
becauseH; is contained in the ball obtained by cuttiig; along D,. Then we can
apply Theorem 7.3 below, which is an extension of Lemma 4.8i]. HenceH; is
weakly K -reducible. [l

Theorem 7.3 ([24]). Let M be a closed orientabl@-manifold and L a link
in M. Assume that¥ has a double cover branched aldng . Het ke anusge
n;-bridge splitting of (M, L) for i = 1 and 2, and W a handlebody of genug
bounded byH, in M. Suppose thatd; is contained inint W, and that there is an
L-compressing or meridionally compressing diec  Hf in (W, LNW) with DN H; =
(). Then eitherM = S and L is the trivial knat or H, is weakly L -reducible.
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Lemma 7.4. Suppose that one ab; and D,, say D; is essentigland that the
other disc D is inessential. TherH, is weakly K -reducible.

Proof. K -compressingi;; along D1, we obtain a meridian disQ of»; such
that Q intersectsk in at most one point.

Since dD; is inessential inA,1; and the arcsk N Vi1 N Va1 connectsAi; and Ajg,

D, is contained in V22, t22). Hence H, is weakly K -reducible becausgQ N oD, = ().

|

Lemma 7.5. Suppose thatD; and D, are inessential. IfA1; or Az, say A
does not have & 0-compressing disc ifVi2 N Vay, t19), then H, has a satellite dia-
gram on Aj;.

Proof. D; and D, are inessential. Then, by Lemma D.1, there is a cancelling
disc C1 of 121 in (Va1, t21) With 0C1 N H, C App. There is a cancelling dis€, of 2,
in (Vaz, t29) With C2 N D, = (). Note thatdC, N Ha C Az1. Then C1 and C; together
give a 1-bridge diagram on ;. ]

ReEmARK 7.6. SinceAj; is K -0-incompressible in W2 N Vay, t12), the loopsH; N
H, are of non-longitudinal slopes of»; and Vi,. But they may be of longitudinal
slopes ofV,, and Vi;.

Thus we can assume that;; has an inessentiak -compressing difg in
(Vi1 t;1), and thatA;; has aK é-compressing disc inWj2 N Vi, t;2) for (i, j) = (1, 2)
and (2 1). Isotopingd; and H, near A;; and Ap; along thesek @-compressing discs,
we obtain the conclusion (d) of Theorem 1.3.

8. When H; N H;, consists of two inessential loops

In this section, we consider the case whéfen H, consists of two loops which
are inessential and -essential on baéth and H,. Fori =1 and 2,H; contains two
loops, sayl;1 andl;», one of which, say;;, bounds a disqQ; intersecting in two
points and disjoint from/;,. Let R; be the annulus cobounded lyy and /> on H;,
and H/ the once punctured torus cut off By from H; for i =1 and 2. Note thar;
and H; are disjoint fromk foi =1 and 2. Léf; be the solid torus bounded h¥;
in M such thatV;; containsQ; ande’. for (i, j) = (1, 2) and (2 1). LetV;, be the
other solid torus bounded b§; W  WwitR; C Vjo. Setr;; =K N V;;.

If I11 =lp and 12 = Ip1, then H{ U Ry U H, forms a closed surface of genus two
which is disjoint fromK and separate®; and Q.. See Fig. 8.1, which is schematic.
This contradicts that botl®; and Q» intersectk andK is a knot rather than a link.
Henceli; = [1 andli = lp. See Fig. 8.2, which is also schematic. L&t  be the ball
component ofVi, N Vo, bounded byQ; U Q.
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Fig. 8.2.

By Lemma 2.10,Q; U H/ is K -compressible oK od-compressible in¥;, ¢;1) for
(i, /) =(1,2) and (2 1). Hence one of the following four conditiofils-(iv) holds.
() H/ has ak -compressing disb  iVf, t;1) with DN Q; = 0.
(i) H/ has aK é-compressing disd inW1, ¢;1) with DN Q; = .
(i) Q: has aK -compressing disP  inV{y, 7;1) with D N H/ = (.
(iv) Q; has aK #-compressing disd® inW;1, ;1) with DN H/ = 0.

Lemma 8.1. Suppose that the conditiofiv) holds for (i, j) = (1, 2) or (2, 1).
Then Q1 and Q, are K -parallel in (B, K N B), and we can isotopeQ; along
B slightly beyond 0, to make H; and H, intersect in a single inessential and
K-essential loop as irBection 5

Proof. Suppose, without loss of generality, that the caowli{iv) holds fori =
(1, 2). Then there is & &-compressing dis®® 0of1 in (Va1, f21) with DN H{ = (.
If the arc 9D N H, is contained inR,, then it is an inessential arc iR, because it
has both endpoints if;. This contradicts the unusual definition & 0-eompressing
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disc. Hence the ar@D N H, is contained inQ,, and Q1 and Q, are K -parallel in
(B, K N B) by Lemma B.4. [l

Lemma 8.2. Suppose that the conditiofi) holds fori = 1 or 2. Then one of
the two conditions below holds.
(1) We can isotoped; and H, so that they intersect each other in a single loop which
is inessential andk -essential on botly, and H, as in Section 5.
(2) One of H; and H; is weaklyK -reducible.

Proof. Assume that (i) holds fof = 1. By the unusual defimtiof K-0-
compressing disc, the ar@D N H, is contained inH;. Hence D is also aK -
0-compressing disc off; in (Vi1,711). We isotope H; along the K 8-compressing
disc D, and makeH; and H; intersect in a single inessential loop and two essential
loops both inH; and H,. We apply Lemma 10.1. The conclusion (1) of Lemma 10.1
implies that we can isotope one of the parallel annuli aldmg parallelism, and ob-
tain the conclusion (1) of this lemma. The conclusion (2) efrima 10.1 implies that
Q1 and Q, are K -parallel before the isotopy alodg . Then we can isot@pealong
the parallelism slightly beyond,, to cancel the intersectioh; = l;. Hence we ob-
tain the conclusion (1) of this lemma again. The conclusi®haf Lemma 10.1 is the
conclusion (2) of this lemma. ]

Lemma 8.3. Suppose that the conditiof) holds for (i, j) = (1, 2) or (2, 1).
Then Q; has aK -compressing disc (#;1,;1), (Which may intersect{;).

Proof. Suppose that the condition (i) holds for { )= (1 R). mgoessingH,
along D, we obtain a dis®’ with D’ N (K U Q1) =0 and 9D’ = 9H/. Then the disc
R, U D’ forms aK -compressing disc a;. O

By Lemmas 8.1, 8.2 and 8.3, we can assume t@at Kis -compressibl
(Vi1 11) for (i, j) =(1,2) and (2 1).

Lemma 8.4. Suppose thap); iK' -compressible (#;1,¢;1) for (i, j) = (1, 2)
and (2, 1). ThenK is the trivial knot.

Proof. Applying Lemma B.1 (2) toQ:1 in (V»1,121), we obtain a cancelling
disc C; of 1,1 in Vo1 with C1NH> C Q2. Applying Lemma B.1 (3) toQ» in (Vi1, t11),
we obtain a cancelling dis€, of 2, in cl(Vi1 — B) with 9C2 N H> C Q2. Note that
the interior of C; and C, may intersect each other ivh; N V»;1. However, a standard
innermost loop argument allows us to retake these discsatathikir interiors are dis-
joint form each other. Therk has a 1-bridge diagram on the discand hence is
trivial. ]
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9. Two essential and inessential loops

In this section, we consider the case whérgn H, are consists of two loops both
of which are inessential in one df; and H,, say H;, and both essential in the other
(ignoring the pointsk N H; and K N H,). See Fig. 9.1.

Then a component off; N H,, sayl;, bounds a disc, sa@ , ifil; with QN H, =
Iy and |K N Q| = 2. The other loop, say,, cobounds an annulus, sa& , within
Hy— K. Let H{ be the once punctured torus bounded/pyn H,— K. Let V»; be the
solid torus bounded by{, in M with Q U H{ C V1. The other solid torus bounded
by H, is denoted byV,,. Then R C Va,. [ andl, together divideH, into two annuli,
say A; and A,. Since R is separating i¥22 and is disjoint fromkK , one ofA; and
Ay, say A; intersectsk in two points, and the other disjoint frath . l&§ be the
solid torus bounded by; in M with A; C Vi1. The other solid torus bounded ki,
is denoted byVi,. Then A, C Vio. Sety;; =K NV;; for i, j € {1, 2}.

Lemma 9.1. M = 5% [; and [, are longitudinal loops ofV,, and R is
K-parallel to Ay in (Vay, t29).

Proof. We ignoreK in this paragraph. Sinog is essential inH, it is of the
meridional slope ofV,;. Hencel; andl, are not of the meridional slope dfy,. Oth-
erwise, M = §? x S1, which contradicts our assumption. Thits is parallel to ohe o
A1 and A, in V2. Hence we can isotopé/; into intV,1 so that H; is disjoint from
a parallel copy of the meridian dis@ k. Performing aK -compressing operation
on H, along O, we obtain a 2-sphe® W, whereS bounds a ball which contains
Hi. This sphereS bounds another ball on the other side in a sofigs tbounded by
Hi. HenceM =$3.

Since before the isotopyy and [, are of the meridional slope oV, they are
of a longitudinal slope ofV,,. Then R is parallel toA; and A, in V,, ignoring t2».
BecauseViz N Vop does not interseck Ajp is K -parallel toA; in (Vap, 129). O

By Lemma 2.10,Q U H, is K-compressible orK d-compressible in {1, 121).
Hence we have the four cases below.
(1) O has akK -compressing didg  ivA, r21) with DN H] = 0.
(2) 0 has ak 8-compressing dis® inWy, t21) with DN H] = (.
(3) H{ has aK -compressing dis® V4, 721) with DN Q = 0.
(4) H{ has aK &-compressing dis® inWs, 721) with DN Q = 0.

Lemma 9.2. Suppose thati; has aK -compressing or a meridionally compress-
ing disc P in(V11N Va1, K N (V11N V21)). ThenH; is weakly K -reducible.

Proof. SinceR andA, are K -parallel in V2p, 122, we can isotopeH; into
int Vo1 so that Hy is disjoint from P . SinceM = S$° by Lemma 9.1,M has a dou-
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ble cover branched along . Hence we can apply Theorem 7.3priolude thatH,
is weakly K -reducible. [l

Lemma 9.3. In case(2) H, is weakly K -reducible.

Proof. Q has aK @-compressing dis® inWs, 721) with DN H; = (. Since A,
is disjoint from K , the ar@@D N H, is contained inA;, and D in Vi1 N Vo1 The arc
0D N Q divides Q into two discs, each of which intersedfs in a singhénip and
one of which, sayQ’, forms a meridian disc, say , df,; together withD .P is a
meridionally compressing disc of;. Thus we conclude thall, is weakly K -reducible
by Lemma 9.2. O

Lemma 9.4. In case(4) H, is weakly K -reducible.

Proof. H{ has aK &-compressing dis® inW1, 721) with D N Q = . The arc
0D N H; is essential inA; — K, and D is contained /13 N V1. Let O be the an-
nulus obtained byk 3-compressing a copy off; along D . Note thatO is contained
in V11N V21. A component ofdO is essential onH,, and the other one is inessential
and bounds a disc, saf’, on Aj.

Suppose first thaD’ intersectsk in a single point. Then the diecU D’ gives a
meridionally compressing disc of;. Hence H; is weakly K -reducible by Lemma 9.2.

Secondly, we suppose thd®’ intersectsK in two points. We isotop#; in
(M, K) along D slightly beyond the ar@D N H,. Then H, and H» intersect each
other in threeK -essential loops, ait] N H, contains a loop which is essential @)
and inessential orff; fori(; ) =(1 2) and,(2 1). Then by Lemma 1@3,and H>
are weaklyK -reducible. O

Lemma 9.5. In case(1l) H, is weakly K -reducible.

Proof. In case (1), byk -compressin@ , we obtain a meridiarc d¥ of
Vo1 with K N Q' = (. A; is K-compressible otk g-compressible in Y13, 111) by
Lemma 2.10.

Suppose thatd; has aK -compressing disc. If it is contained Wi, N Va2, then,
together withQ’, it shows thatH, is weakly K -reducible. If it is inVi; N V,y, then
H, is weakly K -reducible by Lemma 9.2.

Hence we can assume that has aK d-compressing disc, sapy, in (Viy, t11).
If D1 is contained inV>y, then it is also aK @-compressing disc o oH;. Hence,
by Lemmas 9.3 and 9.4H, is weakly K -reducible. Thus; is contained inVi1 N
Vo, and it is also ak @-compressing disc oR . By performing E 0-compressing
operation on a copy oR , we obtain a periphekal -compressisg af A,. This disc
and Q' show thatH, is K -reducible. O



404 C. HavasHi

Lemma 9.6. In case(3) H» is weakly K -reducible.

Proof. K -compressing{;, we obtain a meridian dis€ of»; with EN K = 0.
If the K-compressing dis® is contained ;N Vo, then E is also inVip N Vo,
and H, is weakly K -reducible by Lemma 9.2. £ is contained W, N Vy;, then the
disc E’ = E U A, forms a K -compressing disc a@  inV4y, t1), and H, is weakly
K-reducible by Lemma 9.5. [l

10. When|HiNHy =3

We consider the case whef#; N Hp| = 3 in this section. By Proposition 4.1, we
can assume thatl; — K does not contain three parallel loops 8f N H,. Then H;
contains two essential loops and a single inessential Idof;00 H, for i =1 and 2.
Let Q; be the disc bounded by the inessential intersection o, . Note thatQ;
intersectsk transversely in two points for =1 and 2. Uet  beaheulus cut off
from H; by the two essential intersection loops such that Q; = for i =1 and 2.
Set H! = cl(H; — (A; U Q;)), the 2-sphere with three holes, for =1 and 2. Wt
be the solid torus bounded byf; W  wit®@; UA; C Vi1 for (i, j) = (L 2) and
(2, 1). The other solid torus bounded ¥ is denotedVhy Sety;; =K NV;; for i,
Jje{L1 2.

Lemma 10.1. Suppose that among the componentdph H, essential loops on
H; are essential also orf,, and the inessential loop o is inessential also orf>.
SeeFig. 10.1,which is schematic. Then one of the three conditions beldasho
(1) A; and A, are K -parallel and the interior of the parallelism intersect neithéh
nor Ho.
(2) Q1 and Q, are K -parallel and the interior of the parallelism intersect neithéh
nor Ho.
(3) One of H; and H, is weakly K -reducible.
In cases(1) and (2), we can isotopeH; and H; in (M, K) so that H; and H; inter-
sect in smaller number of non-empty collection of loops Wwisie K -essential on both
Hy, and Ho.

Proof.
Ciam 10.2. For each pair ofi(j )=(1 2) and,(2 1), one of the three diooi

below holds.

(i) The conclusion (1) or (2) of the lemma holds.

(i) Q; has a K -compressing disc inv{, #;1). (The compressing disc may intersect
A;l)

(iii) There is a meridian disc, sag; , ofiy with OR; C H/, R, N(Q; UA;)=0 and
|K n RJ| =1
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Fig. 10.1.

Proof. By Lemma 2.10,0; U A; is K-compressible orK d-compressible in
(Vis, tin).

Suppose first thaQ ;UA; has aK é-compressing dis® . We assume first tiiat
is incident toA; . WherdD C A1 U A3, A; and A are K -parallel. This is the conclu-
sion (1) of this lemma. Hence we can assume hBtC A; U H/. K-0-compressing
a copy of A;, we obtain a peripheral disc, s@, in V;1 such thatoD’ and 9Q;
cobounds an annulus afi/. The union of D’ and this annulus forms & -compressing
disc of Q;. This is the conclusion (ii). Hence we can assume fhas incident toQ; .
WhenoD C Q1U Q», Q1 and Q, are K -parallel by Lemma B.4. This is the conclu-
sion (2) of this lemma. WhedD C Q; U H/, by K-0-compressing a copy of; , we
obtain two meridian discs intersecting in a single pointteAfan adequate small
isotopy, this meridian discs are disjoint fro@; aAd . Thishe tonclusion (iii).

Suppose thaD; U A; has aK -compressing dise . B is incident @&; , then
we are done. IfP is incident tet; , then, by -compressing a copyl gfwe obtain
two meridian discs disjoint fronk irv;;. By K-compressing a copy aoff/ UA; along
such a meridian disc, we obtain& -compressing dis@ef  Vin, (;1). This is the
conclusion (ii). Thus Claim has proven. O

In case (i), performing & -compressing operation on a cdpy@ we obtain a
peripheral discS; disjoint fromk  such thatS; = 0Q;. Note that the discS; may
intersect the annulug; . In case (iig)R; is parallel to a component afA; = 0A;
on H/, and the loops)A; are of meridional slope of the solid tok;; and V;,.
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Fig. 10.2.

If (iii) holds for (i, j) = (1, 2) and (2 1), thenM = §? x S, which contradicts our
assumption. If (ii) holds, say fori,(j ) = (1 2), and (iii) holderf(i, j) = (2 1), then
S» and R, show thatH; is weakly K -reducible.

Suppose that (ii) holds fori(j ) = (1 2) and,(2 1). Sin¢a is K-compressible
in (Va1,121), Lemma B.1 (2) implies that,; has a cancelling dis&; in V,; with
0C1 N H, C Q. Let B be the ball bounded by; U Q, in Vj1. Since Q; is
K-compressible in V11, t11), Lemma B.1 (3) implies that; has a cancelling dis€,
in V{; = cl(Vi1 — B) with 9C1 N dV{; C Q2. C1 and C; may intersect each other in
loops in their interior. A standard innermost loop argumalidws us to retake”; and
C, so that their interiors are disjoint from each other and s they give a 1-bridge
diagram of K onQ,. HenceK is the trivial knot, and Theorem B in [13] implies that
H, is weakly K -reducible. O

Lemma 10.3. Suppose that the inessential loop #f N H, on H; is essential on
H; for (i, j) = (1, 2) and (2, 1). SeeFig. 10.2 ThenH,; isK -reducible fof = 1 and 2.

Proof.
Ciam 10.4. For(,j)=(1 2) and (2 1)Q; hasKE -compressing disc with
D;NA;=0in (Via, ;1)
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Proof. Note thatQ; is a meridian disc &f1 and that a component &fA;, say
[, is essential ond; and the other, shyis inessential ond; . By Lemma A.2, there
is a K -compressing dis® of; bounded hy We takeD so thaD N Q; consists
of minimal number of loops. Then a standard innermost logument shows that the
intersection loops are essential @; — K. If D is disjoint from Q;, then the disc
DUA; forms aK -compressing disc @?; . IP does intersgt , then anrmaost
loop on D bounds &K -compressing disc ©Of; as desired. Thus Clasnphoven.

]

For (,j) = (1 2) and (2 1), theK -compressing dig; of; is contained
in Vi1 N Vj2 since Vi1 N V21 contains two subarcs ok connectin@ and Q,. By
K-compressingQ,; alond; , we obtain a meridian ddc  Vof with P, N K = 0.
Since D; is aK -compressing disc &f;  ¥», and sincedD; and OP; are disjoint,

H; is K -reducible. |

11. When |Hy N Ho| = 4

We consider in this section the case whéfa N Hy| = 4. By Proposition 4.1 we
can assume fof =1 and 2 thaf; does not contain 3 loop#/hofi H, which are
parallel in H; — K. Then for each of =1 and 2, either
() H; contains two essential intersection loops paralleHn— K and two inessential
intersection loops parallel i#; — K, or
(I) H; contains two families of two parallel essential intec§on loops inH; — K.

In case () the two pointk N H; are contained in the disc component Bf — H;,
and in case (ll) the two point& N H; are contained in distinct and non-adjacent an-
nulus components oH; — H;. In both cases, fori(j ) = (1 2) and (2 1H; — H;
has two annulus components, say and A;», disjoint from K . They are contained in
the same solid torus, say;;, bounded byH; inM . Let;> be the other solid torus
bounded byH; inM , and sef, K NV for j, k € {1, 2}.

Lemma 11.1. For (i, j) = (1, 2) and (2, 1), one of the two conditions below
holds.
(1) Ai is K-parallel to an annulus ond; ir{V;1,t;1) for k=1or k=2
(2) There is a cancelling dis€1 of ¢;1 in (V;1,1;1) with (0C1N H;) N (H1N H2) = 0.
(int C; may intersectH; ).
Moreovey if the essential loops offyN H» are of a longitudinal slope o¥;1, then the
conclusion(1) holds.

Proof. By using Lemma 2.10 repeatedly, performikg -comgingsand K 6-
compressing operations ofy;; U A;2, we can obtain discs.

Suppose that there are peripheral discs. Qgtbe the outermost one cutting off
a ball By from V;1 such thatB; is disjoint from the other discs. IB; is disjoint
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from K, then Q; is yielded by aK &-compressing operation sindé, N H, does not
contain ak -inessential loop. Thus we obtain the conclusin If B; containsz;y,
then the conclusion (2) holds. Note that the interior of thec B, N H; is disjoint
from Hy N H, becauseQ; is outermost.

Suppose that there are no peripheral discs. Then the arguasein the proof of
Lemma A.2 allows us to assume that the operations ar& all poEssing ones, and
that we obtain four meridian discs which are boundedmyn H,, and together divide
V;1 into four balls. One of the balls contair, and the conclusion (2) holds.

If the essential loops o0B(A;1 U A;») are of a longitudinal slope o¥;;, then
Lemma A.1 implies that the conclusion (1) holds. ]

Lemma 11.2. Suppose thatfor (i, j) = (1, 2) or (2, 1), H; N V;, contains a pe-
ripheral disc Q; which intersectk in two points. Then one of theee conditions
below holds.

(1) Ai is K-parallel to an annulus orf; ir{V;1,t;1) for k=1 or 2.

(2) Qi is K-parallel to a disc inH; .

(3) H; is weaklyK -reducible.

In cases(1) and (2), Lemma 4.2allows us to isotopeH; and H, in (M, K) so that
H; and H, intersect each other in smaller number of non-empty catlacbf loops
which are K -essential on bot#/; and H,.

Proof. The conclusion (1) of Lemma 11.1 is the conclusion dflYhis lemma.
Hence we can assume that there is a cancelling disof ¢;; with (0C1NH;)N(H1N
Hy) =0 as in (2) of Lemma 11.1.

By Lemma 2.10,0; isK -compressible & J-compressible in¥;1, ¢;1). Suppose
first that Q; is K -compressible. BX -compressiy , we obtaik a mpressing
disc D; of H; with D, " K = (. Then D; andC, are disjoint, and show that/; is
K -reducible.

Suppose tha); has & Jd-compressing disc, sapp , inVfz,¢;2). Since Q; is
peripheral,0Q; bounds a discQ; orH; . If the ar@D N H; is contained inQ; ,
then we obtain the conclusion (2) by Lemma B.4. Hence we cannas that the arc
ODNH; is disjoint from intQ; . The ard&DNQ; divides Q; into two discs, and leR;
be one of themR; intersect& in a single point, &kjd= R; U D forms a meridian
disc of V;> by the unusual definition ok J-compressibility. After an adequate small
isotopy, R; is disjoint from Q; . Since the two point& NH; is contained inQ; PC1N
H; CintQ; and9R/NdCy = (. HenceH; is weaklyk -reducible. O

Lemma 11.3. Suppose thatfor (i, j) = (1, 2) or (2, 1), a component off; N V>
forms a meridian dis@); o#¥;, such thatQ; intersectk in two points. Then one of
the two conditions below holds.

(1) We can isotopeH; and H; in (M, K) so that H; and H- intersect each other in
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smaller number of non-empty collection of loops which &re sseatial on bothH;
and H.
(2) H; is weaklyK -reducible.

Proof. The conclusion (1) of Lemma 11.1 implies the condus{l) of this
lemma by Lemma 4.2. Hence we can assume that there is a ¢agagibc C1 of ¢,
with (0C1N H;) N (H1N H) =0 as in (2) of Lemma 11.1.

H; intersectsV;» in a disjoint union ofQ; and a 2-sphere with three holes, Bay
By Lemma 2.10,Q; UP is K-compressible oK d-compressible in ¥z, z;2). Suppose
first that O; U P has aK -compressing dise . Thé&h -compresgihg P, we obtain
a disc componenD’ disjoint from K and bounded by a component Bf N H,. Since
dD' N Cy = 0, H; is K-reducible. Note that similar argument shows is weakly
K-reducible whenP is meridionall)k -compressible ii{, ¢;2).

Suppose thap; U P has aK d-compressing dis® . 1D is incident t9; , then
performing aK &-compressing operation on a copy 6f , we obtain a meridiaa dis
D; and a peripheral dis®, such that each of them interseds in a single point. Let
D} be the disc bounded byD;, on H;. Then we can see thd, also intersectk
in a single point, considering the 2-sphebe U D5. If H;N H, contains an inessential
loop on H; , then such a loop bounds a disc intersecfihg in twotpoand hence
must intersect the ar@D N H;, which is a contradiction. Hence no loop &h N H> is
inessenital ond; , andD; and a loop, say , oH;N H, cobound an annulus, sa&
disjoint from K on H; . (Recall that{; — K does not contain three parallel loops of
Hi1N H,.) After an adequate small isotopy, the diBt= R U D; gives a meridian disc
of V> with |[R'NK|=1 anddR’ = 1. SincedR’'NIC1 =), H; is weakly K -reducible.

Hence we can assume th& is incidentRo . Suppose thiatdacompressing
operation on a copy ofP alon@ vyields & -inessential boundaop.l Then this
loop bounds a disc intersecting in at most one pointMN , andsem®pe this
disc near its boundary along the copies bf , to obtairKa -cesgimg disc or
meridionally compressing disc af  inV(y, t;2). Hence we obtain the conclusion (2)
by a similar argument in the second paragraph.

Hence we can assume that we can isotée MnK ) albng  slighttgriok
the arcoDN H;, so thatH; and H intersect each other ik -essential loops after the
isotopy. When the ardD N H; connects distinct components 8%, this isotopy de-
creases the number of intersection loops, and we obtain dhelusion (1). When the
arc 9D N H; has both endpoints in the same componend Bf this isotopy increases
the number of intersection loops by one. Note that H, has three parallel loops on
H;. We apply Proposition 4.1. The conclusion (1) of Propogitial implies that we
can further isotopeH; and H, so that H; and H, intersects each other in non-empty
collection of three or less number of loops which d&e -esaskehbth on H; and Ho.
The conclusion (2) of Proposition 4.1 is the conclusion (2jhis lemma. The conclu-
sion (3) of Proposition 4.1 is impossible, sinégN H, containsdQ; of the meridional
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slope of V5. O

Lemma 11.4. Suppose thatfor (i, j) = (1, 2) and (2, 1), H;N V> consists of two
annuli, say R;1 and R;», such that each of them intersecks in a single point. Then
one of the four conditions below holds.

(1) Ai is K-parallel to an annulus orf; ir{V;1,¢;1) for k=1 or 2.

(2) One ofR;; and R;» is K -parallel to an annulus orH; i{Vj2, ;2).

(3) One of H; and H, is K -reducible.

(4) One of H; and H» has a satellite diagram of non-meridional and non-longiid
slope given by a loop ofi; N H>.

In cases(1) and (2), Lemma 4.2allows us to isotopeH; and H, in (M, K) so that
H; and H, intersect each other in smaller number of non-empty callacbf loops
which are K -essential on both/; and H>.

Proof. Note that the loop#/; N H, are essential both of; and H,.

The conclusion (1) of Lemma 11.1 is the conclusion (1) of teimma. Hence we
can assume that there is a cancelling digcof 7;; with (9C1 N H;) N (HyN Ho) =0
as in (2) of Lemma 11.1.

By Lemma 2.10,R;1 U R;» is K-compressible oK g-compressible. Suppose first
that it is K -compressible. Th& -compression yields a memidisc disjoint fromK
and Cy. Then H; isK -reducible.

Suppose thatR;; U R;» is K-incompressible, and has & 0-eompressing disc,
say D, in (Vj2,tj2). We can assume, without loss of generality, tiat is indiden
to R;1. If the arcdD N R;; is essential onk;;, then we obtain the conclusion (2) by
Lemma C.2. Hence we can assume that theddPe\R;; is inessential orR;;. Then by
Lemma C.3 either the conclusion (2) holds, or there is a dhmgedisc C> of ¢;> in
(Vj2,tj2) such thatoC, N H; is disjoint from a component ofR;;. HenceC1 and C»
together show that/; has a satellite diagram. If the slope efsditellite diagram is
meridional, thenK is the trivial knot. If the slope of the dhtie diagram is longitu-
dinal, then one of the conclusions (1) and (2) of this lemmafdy Lemmas A.1
and C.3. O

12. Semi-satellite diagrams

In this section, we will show that the conclusion of Lemma Brplies that either
H; admits a satellite diagram o€ is a torus knot.

Lemma 12.1. Let M, K, H;, Vi, ti, Ajx as in Section 6 Suppose that the
loops H1 N H, are non-meridional and non-longitudinal with respect W, r fi
ke {12} For (i,j) = (1,2)and (2,1),if A;2 and A, are of the form as in the
conclusionLemma C.3 (2)in Appendix C,then either
(1) H; admits a satellite diagram of non-meridional and non-ldadinal slope or
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(2) K has al-bridge diagram with no crossings oH; such that the diagramerin
sects each component &f; N H, in a single point.

Proof. SinceA;; and A;, are of the form of Lemma C.3 (2)if; has a semi-
satellite diagram of non-longitudinal and non-meridiosédpe. More precisely, there
is a cancelling disaC;; of;,  inVy, tix ) such th&C,;, N H; is disjoint from a com-
ponent, sayl;, , ofH; N Hy for k = 1 and 2. If/;; and/;, are the same component
of HiN H,, then the semi-satellite diagram is a satellite diagramichvis the conclu-
sion (1). Hence we can assume # /;».

We retake the cancelling disC;x  so that it intersdgts in mimmuumber of
points for ¢, 2) = (1 2) and (2 1). Lekz be the number of intersectiwints of
oCi, Ny, We will show thatn, =1 fork =1 and 2.

For (,j) = (L 2) and (2 1) and < {1,2}, Aj is isotopic in V. tx ) to the
annulus which is the union of the two annuti; and R, as below.Ry; is obtained
by cutting a copy ofH; alond;; and isotoping alorg; R is obtained from a
copy of one of the two annuli ot/; between the lodi#sN Hz = [;1 U l;2 by slightly
isotoping into intV;, . Ry is disjoint from K , andR;, intersectsK in a single point.

Sublemma 12.2. n;, =1 for k=1 and 2.

Proof. If Ri2 and Ry, are copies of the same annulds; or A;2, say A;1, then
H; is isotopic to a union of two parallel copies df in M (ignoring K ), and hence
the loops0dA;> are of longitudinal slope of one of;; and V;> becauseH; is a Hee-
gaard splitting torus. This is a contradiction. See Figl12.

Hence we can assume thRt, is a copy ofA;; fork € {1, 2}. See Fig. 12.2. We
can isotopeH; so thak,. is contained ind;; , that one component @R, coincides
with /;, and the other is contained in iAf,  and is very closd;to fornj = (1, 2)
and (2 1).

Set A}, = cl(Aix — Ri2) after the isotopy. Them;, &5, for(; )=(1 2) and,(2 1)
and for ,2)=(1 2) and (2 1). Note thad(;;, N H;) C (R12U A}, U Rpp) for (k, h) =
(14,2) and (2 1).

A}, is K-incompressible and d-incompressible in {jx N Vie, K N (Vi N Vig))
since H; N H, is of non-meridional and non-longitudinal slope &f, . It issal
K-incompressible in{;xNVi,, KN(V;xNV;y)) since HiNH> is of non-meridional slope
of Vi;. Since A, is K-compressible oK d-compressible in ¥, t;x ) by Lemma 2.10,
A}, has aK é-compressing dis® iV N V;,. We leave the proof of the next claim
to readers. See Fig. 12.3, whe#g, is contracted td;; .

Ciam 12.3. LetD be a disc properly embedded in the solid tarysV;,. Sup-
pose thatD is aK -compressing disc of the toral boundary of dhid sorus, and is
disjoint from C;, . ThendD intersectsA;, in n;, or larger number of arcs. 1§D in-
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Fig. 12.1.

tersectsA/, in just n, arcs, thenD is a meridian disc &f; N V.

Recall thatP is ak @-compressing disc ofA}, in V. N Vi;. OP intersectsA],
in a single essential arc. We retalkke  among all skck-compressing discs so that
OP intersectsoC;, N H; in minimum number of points. A standard innermost loop
argument allows us to isotopB  so that each componemnt ofC;, is an arc rather
than a loop.

If P is disjoint from C;;,, then Claim shows thalP intersectA/, in n, or larger
number of arcs. In factY P N A}, consists of a single arc, and hence we obigin =1
as desired. We consider the caBen C;;, # 0. We can isotopeP neadP so that
OPNIC;, N A,’-j = (. Let p be an arc ofP N C;;, such thatp is outermost away from
A}, on P. That is,p cuts off a discP’ from P such thatoP’ is disjoint from A},.
The arcp divides C;;, into two discsC’ and C” where 9C’ is disjoint from¢;, and
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OC” containst;;, entirely. LeD be a disc obtained from the dis¢) P’ by isotoping
slightly to be disjoint fromC;;, .

We first suppose thaD is not E -compressing disc of the tofis= O(V;r N
Vir). Then @D bounds a diseD’ on 9V such thatD’ is disjoint from K . Note that
OP’ may intersectR;;, while 9C’ does not intersecR;;, and thatoC’ may intersect
A}, while 9P’ does not intersect/,. Hence we can isotop®’ near the ar@P’'NOV
so thatP’ does not intersecR;;, U A},. See Fig. 12.4. IDC' N A}, # 0, then the disc
C" U P’ gives a cancelling disc of, which intersect$, in smaller number of arcs.
This is a contradiction.

If C’" N A, =0, then lety be an outermost arc of N C;, on C’, and C"” the
outermost discy cuts P into two discs, one of which, sa§”, intersectsA, in a
single arc. ThenP” U C"" gives aK é-compressing disc ofi/,, intersectingdC;; in
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Fig. 12.3.

smaller number of points tha . This is again a contradiction

Hence we can assume thAt ika -compressing dig¢VofBy Claim 12.3,0D
intersectsA’, in n, or more arcs. Since, {Ci; Nij|, and sinced P’ N Al, =0, the
arc 0C’' N H; intersectsA], in n;, arcs, and als@D does in onlyn; arcs. HencéD
is a meridian disc ofv , and the aftP’ N 9V must intersectR,;. Moreover, the two
arcs QC;, — 9C')N H; do not intersectd,. One of them and a subarc 6fP' N OV
give an arc inRy, such that it connects a point & N H; and a component afR;1,
and is disjoint from the ar®C;, N H;. Hence there is no arc component@f;, N R12
with both endpoints in the same componentodt;,. Then we obtaim, =1. |

Thus we have shown thatC;, intersects the loof; in a single point for,¢ ) =
(1, 2) and (2 1). Then we can take the diggs and C;, so thatoC;1N9oCi2 = KN H;.
(In general, there is only a single isotopy class of arcs eoting a fixed point in an
annulus and a fixed boundary component of the annulus.) Tindids thatK has a
1-bridge diagram orH; with no crossing points. U
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R; /
ih Aik

Fig. 12.4.

In the case of Lemma 12.1 (2X is a torus knot. Kf is the trikabt or
a core knot, thenH; and H, are weakly K -reducible as noted in Section 3. Hence
we obtain the conclusion (2) of Theorem 1.2. Af is neither theial knot nor
a core knot, thenH; is “cancellable” by the result of Theoremn3[27]. That is,
for i = 1 and 2, there is a cancelling disG; of fer = 1 and 2 such that
0Ci;1 N OCi;2 = K N H;. The loop K’ = (0C;1 U 8C;2) N H; is isotopic to K and is
of non-meridional and non-longitudinal slope. Its exteri(K’) = M — int N(K') has
a Seifert fibering structure over a disc with two exceptiditales such tha#f, N E(K’)
is a vertical essential annulus with respect to the fiberMoate that such an annulus
is unique up to isotopy irE K’). Hence H; and H, are isotopic in ¥, K ), and we
obtain the conclusion (1) of Theorem 1.2.

13. An example of case (b)

We give an example of a pair of a once punctured lens space veamdlisjoint
arcss; and s, properly embedded irX as described in the conclusion (b) &oTh
rem 1.3. That is, the exteriak; = &l(— N(s;)) of the strings; is a solid torus, and
the other arcs; is trivial inE; fori( j ) = (1 2) and (2 1). We will givenaexample
wheres; ands, are not “parallel”.

The exteriorE = cl§¥ — N(S)) of the two strings is homeomorphic to a handle-
body of genus two sincé& is the exterior of in E;. In Fig. 13.1 we can find the
boundary of the ballB obtained frof by cutting along two dides and D,. We
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Fig. 13.1.

can find two copies oD; in the figure for =1 and 2. The neighboodWw (s;) of s;
contains a meridian dis®; of . That is, by some homeomorphigm) ( D? x s;
with D? x ds; = N(s;) N 0X, the discR; is mapped t®? x p, where p is a point
of ints;. In the figure,dR; is described by three solid lines, aBdR, is described by
three broken lines. The four copies @éf; and D, and these six lines together form
vertices and edges of a 1-skeltan  of a tetrahedron. Notentittier the union of the
three solid lines nor the union of the three broken lines ®antriangle. Each copy of
D; intersectsOR; in a single point, and intersectdR; in two points for (, j ) = (1 2)
and (2 1). We can recoveE; by attaching the 2-hamslle; ( )Fon  alRg D;
shows thats; is trivial inE; .

We will show thats; and s, are not “parallel” in §, S ). The arcs; and s, are
parallel if there is a discP properly embedded m  such ti#anh OR; is a single
point for i = 1 and 2. We assume, for a contradiction, that thsreuch a discP .
We take P so that it intersect8D1 U 9D, in minimum number of points over all the
discs of parallelism. A standard innermost argument allogzgo isotopeP so thaP
intersectsD; and D, in arcs only. Then there is an outermost arof (DU D) N P
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on P, that is,a cuts off a disc, sayQ , fromP such th&n (D1 U D7) = a. We can
take o so thatoQ N (ORy U OR2) is empty or a single point. The arg = 0Q NoP

is contained in the 2-sphe@B, and has both endpoints in the same cdpy [Dof

or D,. If 5 does not intersecOR; U OR», then it is entirely contained in a single
face of the tetrahedron, and hence we can isotBpe  fieiar E so thatdP inter-
sectsoD; U 0D, in smaller number of points. This is a contradiction.dfintersects
OR1 U OR> in a single point, then it is contained in a union of two adjackaces of
the tetrahedron. Hencg and a subarc, say, of 9D cobound a discO intersecting
OR1 U ORz in a single arc connecting and ~. We can isotopeP alon@ so that
OP intersectsoD; U 9D, in smaller number of points, which is a contradiction. Thus
P is disjoint from D, and D,. 9P is contained indB so that it is disjoint from the
four vertices of the tetrahedron. Sinde intersects the 1-skelton  of the tetrahedron
in two points, it is contained in a union of two adjacent faeesl bounds a disc in-
tersectingA in a subarc of an edge. TheR intersectsdR; in two points fori =1

or 2, which is a contradiction.

Similar argument shows that is not trivial irX(S ) fer = 1 and Batt is,
there is a discP; properly embedded ih  so tB# intersectsoR; in a single point
and is disjoint fromdR; neither for ¢, j ) = (1 2) nor (2 1).

Similar situations are studied in Lemma 2.3.2 in [2], [1A]2].

A. Annuli disjoint from t

Let V be a solid torus, and a trivial arc il . Let  be an annulusperly
embedded iV withdA N ¢ = .

Lemma A.1. Suppose that the loops 6fA are essential or0V. Let A; and A»
be the annuli obtained by cuttingV along 0A. Supposedt C Aj. Let R, be the
region bounded by the torud; U A in V. Then one of the three conditions below
holds.

(1) A is t-compressiblethe loopsdA bound meridian discs of  disjoint from a can-
celling disc ofr . Moreoverif R; contains ar -compressing disc of, then A, is
t-incompressible inR,.

(2) A has ar 9-compressing disc iR, and ist -parallel to As.

(3) A has ar 9-compressing dis® i1, and there is a cancelling dis€ of such
that 90C N9V CiintA; andC N (AU D) =0.

Moreover if the slope ofdA is longitudinal ondV, then (2) holds.

Proof. Lemma 2.10 implies tha#  is -compressible 08-compressible in
(V,t). Suppose that has a -compressing dizc . Siaaer = (), 9Q divides A
into two annuli. We perform a -compressing operationAon  @lgh that is, take a
tubular neighbourhoodv = Q x [0,1] of QO so thatN N A = 90 x [0, 1], and we
deform A into the surfaceA— (0Q x [0, 1])) U (Q x {0} U Q x {1}). Then we obtain
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meridian discsD1, D> disjoint from ¢ and bounded byA. Then a standard innermost
loop and outermost arc argument allows us to take a cangelisc ofr to be disjoint
from Dy, Do.

SupposeQ C R;. We take a straight are. in N C Ry connectingQ x {0} and
QO x {1}. After the t -compressing operation, connectsD; and D, and is contained
in the ball bounded byD1UD,UA, in V. If Ay has ar -compressing dise , théw
separate$)D; and 9D, on A, becaused, Nt = (). Hence P must intersedd; U D,
or a, and cannot be contained iR, entirely.

Suppose thatA ig g-compressible. Sinced is disjoint from , anyo-eom-
pressing disc intersectd in an essential arc. Performing-&ompressing operation
on A, we obtain a disc, sapp , i . Since the loapd are essential o@V, oD
bounds a disc, sap’, on 9V, and the 2-spher® U D’ bounds a ball, say3 , itV
If B does not contairr , the is -parallel ', and A is alsor -parallel to an an-
nulus indV. If + C B, then a standard innermost loop and outermost arc argument
allows us to take a cancelling dis¢ of withn D=0 in B.

If the slope ofdA is longitudinal, then it is well-known that in both regioiy
and R, A haso-compressing discs, which iR, is disjoint from¢ . U

Lemma A.2. Suppose that a componersay /;, of A is essential or¥V and
the other componensay [, is not. LetQ be the disc bounded Byon 0V. Suppose
Ot C Q. Then(1) /1 bounds a meridian discsay Dy, with Dy N (t U (A — 1)) = 0,
(2) I, bounds a peripheral discsay D;, with D, N (r U (A — I5)) = 0, and (3) there is
a cancelling discC of witthC NdV c Q and C N D, = 0.

Proof. By Lemma 2.10A i$ -compressible of-compressible in¥,z ).

Suppose that  is -compressible. Sinteir = (), performing ar -compressing op-
eration on a copy oA , we obtain a meridian dibg bounded byi;, and a peripheral
disc D, bounded by/, disjoint from . An adequate small isotopy makes their irteri
be disjoint fromA . A standard innermost loop and outermostagument allows us
to take a cancelling dis€ of witld N D, = (. Sincedr C Q, the arcOC N Hy is
contained inQ .

Suppose thatt is d-compressible. SincdNr = (), performing ar §-compressing
operation onA , we obtain a meridian disc, sBy ,lWf wibhn A = () after an
adequate small isotopy. ThenD and /; together dividedV into two annuli, one of
which, sayR , does not contai@ . Pushing the di3c/ R slightly into intV, we ob-
tain ar -compressing disc of . Then the previous paragraptvsiice lemma. [

Lemma A.3. Suppose that both components Af say /; and I», are inessential
and r -essential o®V. Assume that; bounds a disaQ disjoint fron, on 9V. Let A’
be the annulus o®V such thatdA’ = 9A. Then one of two conditions below holds.
(1) A is t-parallel to A’ in (V,1).
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(2) A is t-compressible in(V,t), {1 and [, bound peripheral discg, Q» disjoint
from 7, and there is a cancelling dis€ of withiCNOV C Q and CN(Q1UQ>) = 0.

Proof. By Lemma 2.10A i$ -compressible oH-compressible inV¥,z ).

Suppose that is -compressible. Performing a -compresgegation onA , we
obtain peripheral disc®i, Q» disjoint from and bounded byy and/, respectively.
Since [y is t-essential,0r € Q. Then a standard innermost loop and outermost arc
argument allows us to take a cancelling disc tof withQ; =0 anddCnoV c Q.

Suppose thatd  has md-compressing disd®® . The arb N 0V connects/; and
I, and hence is contained in the annulds Performing ar 8-compressing operation
on A, we obtain a peripheral disc, whichzis -parallel to a discii since A’'Ndr = (.
HenceA ist -parallel tod’. O

B. Discs with two punctures

Let V be a solid torus, and a trivial arc i . L&  be a peripheiat ¢gbrop-
erly embedded iV such that interse@s transversely in twntqolLet B be the
ball cut off from V by Q, and setQ’ = 9B N 9V the disc,V’ = cl(V — B) and
t=tnV.

Lemma B.1. Assumed:r C Q’. Thent is an arc. Suppose thap has a
t-compressing disd> i(V,t). Let D’ be the disc bounded b§D on Q, and set
R =(Q — D')UD. Then(1) ¢ intersectsD’ in two points RN ¢ = and D is con-
tained in v/, (2) we can take a cancelling dis€ of ifV,?) with CN R ={ and
o0C NIV c Q' and (3) we can take a cancelling dis€’ of the arct’ in (V’,t') with
C'NnD=0anddC’' NV’ C D'

Proof. 0D is essential onQ — ¢. If ¢ intersectsD’ at a single point, them in-
tersects the 2-spher® U D’ in a single point, which contradicts th& s irreducible.
Hencer intersect®’ in two points, andoD is parallel todQ on Q — . Suppose, for
a contradiction, thatD is contained iB . Théh  dividBs into thalls, both of
which intersect . This contradict® Nr = (). Thus we have shown thd? is contained
in v/, and (1) follows.

A standard innermost loop and outermost arc argument allesvgo take a can-
celling discC ofr invV withC N R = ). Then (2) follows fromdr C Q’. Similar
argument shows (3). O

Lemma B.2. Suppose tha is -incompressible (i, ). Then
(1) 0r c Q’, and hence’ is an arc inV’,
(2) any cancelling discC of can be isotoped (ivi, r) so thatCNQ consists of arcs
only and that the two pointsn Q are contained in distinct arc components @ Q,
(3) (B,tnN B) is a rational tangle that is a trivial 2-string tangle and
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(4) the punctured toru®v N oV’ =cl(@V — Q') is t-incompressible i(V’, ).

Proof. If Q' contains a single endpoint oz, then: intersects the 2-sphere
Q U Q' in three points, which is a contradiction. ®’ N 0t = (), then Q' gives a
t-compressing disc o2 , which contradicts our assumptiomdd@: C Q’, which is
the conclusion (1).

Let C be a cancelling disc of v . Sinc@ is -incompressible,andard in-
nermost loop argument allows us to isotofe W, ( ) so thah Q contains no
loops. If there is an arex of C N Q connecting the two pointsN Q, then it cuts off
from C a discD withdD=aUt, DNQ =« and D C V'. We take a small regular
neighbourhoodV ofD inV’. Then the disc cfN — Q) is at-compressing disc of
Q, which is a contradiction. Hence the two points) Q are contained in distinct arc
components ofC N Q. This is the conclusion (2). Lety and# be the two compo-
nents oft N B. The arcsC N Q divide C into subdiscs. There are two subdigts C»
such thatC; contains a copy of and th@tnzs; =0 for (i, j) = (1. 2) and (2 1).
These two subdiscs show thak,(t N B) is a trivial 2-string tangle. Thus we obtain the
conclusion (3).

Suppose for a contradiction that the punctured tofis & N v is
t-compressible in {’,t'). Then we compres§” and obtain a disc whose boundary
coincides withdQ. This disc is disjoint from the ar¢’, which contradicts thap is
t-incompressible. ]

Lemma B.3. Assumedr C Q’. Thent' is an arc. Suppose thaD has rad--
compressing dis® ifV’,t’). Then
(1) the arc DN Q separates the two pointsN Q on Q and D is a meridian disc of
v/,
(2) V has a meridian discR intersecting in a sigle point and disjdiom Q,
(3) Q is t-incompressible iV, ) and
(4) there is a cancelling dis®® af in (V’,t’) such that

(a) P is disjoint from D,

(b) P N Q consists of two arcs each of which contains a point of Q and

(c) PNR is a single arc.

Proof. The arcDN Q divides Q into two discsQ1, Q», each of which intersects
t in a sigle point. However, the two points) Q are connected by the arc ofin V',
Hence D is not separating iff’, and is a meridian disc o¥/’. This is the conclu-
sion (1). Then we can obtain a digt  as desired by isotopinglideD N Q; off of
Q slightly. Note that|R N¢| =|Q1Nt| = 1. Thus we obtain the conclusion (2).

We assume, for a contradiction, th& is -compressible Vint ( THen, by
Lemma B.1, there is a cancelling dig¢ of ' in (V’,¢’) with 0C’' N oV’ C Q. We
can isotopeC’ near the ardC’'NQ so thatdC’'NdDN Q is a single pointp . We can
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isotopeC’ slightly fixing OC’ so that it is transverse t® . Sinde is disjoint fram ,
(0C") N D consists of the only one point . This contradicts tddtand D intersect
properly embedded 1-manifold in the di§f. HenceQ ist -incompressible inv(z ).
Thus we obtain the conclusion (3).

Let C be a cancelling disc of inW,¢r ) as in (2) of Lemma B.2. Thatds) Q
consists of arcs only and the two points Q are contained in distinct arc components
of C N Q. Moreover, we can tak& so that the number of the arc compsnant
CNQ is minimal. Then a standard outermost arc argument showsatharc ofCNQ
separates the two pointsn Q on Q if it is disjoint from ¢ N Q. Let C’ be one of
subdiscs obtained by cutting  along the ar€$) Q such thatC’ contains:’. Note
that C’ is a cancelling disc of’ in (V’, ). We can isotope’’ so thatdC’ is disjoint
from the arcD N Q since the arcDh N Q separates the two pointsn Q on Q. Then
every arc ofC'NQ is parallel to the arddNQ in Q—¢ if it is disjoint from rN Q. We
can retakeC’ so that it is disjoint fromD by a standard innermost loop anteouost
arc argument orD . Then we add a copy®f along every arc compaifed’ N Q
if it is disjoint from r N Q. A standard innermost loop and outermost arc argument
allows us to retake”’ so that it intersect®® in a single arc. Thus we have obtained a
cancelling disc oft’ as desired, and we obtain the conclusion (4). U

Lemma B.4. Suppose thap i3 d-compressible in(B,t N B). Thenor C Q’,
and Q andQ’ are r-parallel in (V,1).

Proof. LetD be ar 3-compressing disc o inK,r N B). The arcD N Q is
essential inQ — T, and hence it divideg)? into two discs, s@4 and Q», each of
which intersects in a single point. The afen Q' divides Q' into two discs, sayQ)
and Q5, such thattQ;NdQ = 9Q.NOQ for i =1 and 2. Fori =1 and 2, the 2-sphere
Q; U Q! U D must intersect in even number of points. Becagsecontains at most
two endpointsdz, Q! contains a single point ofz for i =1 and 2. Thug)r C Q’. Let
B; be the ball bounded by the 2-sphefe U Q; U D. ThentN B; is a trivial arc in B;
for i =1 and 2 by Lemma 2.1. Thus3(zN B) gives a parallelism betwee@ an@
in (V,1). [l

C. Annuli with a puncture

Throughout Appendix C, we consider the situation as beloet ¥ be a solid
torus, and: a trivial arc inv . Led be an annulus properly embdduh V inter-
sectingr transversely in precisely one point. Suppose di#aare essential idV (ig-
noring the pointsdr). Then they dividedV into two annuliA; and A;. Let R; be the
region bounded by; U A, and set; N R; fori =1 and 2.

When A has a 3-compressing dis® inW{,r ), we sap e&ssentialif 0DNA
is an essential arc oA (ignoring the ponmh A), and sayD isnessentialif 0D N A
is inessential.
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Lemma C.1. Suppose tha has a -compressing di3c Rin ThendD is es-
sential in A (ignoring the pointr N A), Az is also ¢ -compressible iRy, t1), and A,
is t-incompressible iRy, t2). Moreover R; is a solid torus and the arct N R; has
a cancelling discC’ in R; such that each 06C’' N A and 9C’ N HV is an arc.

Proof. Suppose, for a contradiction, thab bounds a disc, say’, in A. Since
OD is essential inA — ¢, D’ containst N A. Then the 2-spher® U D’ intersectst in
a single point inV , which is a contradiction. Hend® is essential.

A t-compressing operation oA along yields a diB¢ disjoint from¢ and a
disc D, intersectings transversely in a single point. ThBa gives at -compressing
disc of Aj.

Similar argument as in the latter half of the first paragraphthe proof of
Lemma A.1 shows thati, is 7-incompressible in K5, t5).

Ry is a solid torus because it is obtained from the ball betwBgnand D, by
gluing the two copies of the -compressing diBc ¢+ . has a cangetliscC inV.
As in the proof of Lemma 2.7, a standard innermost loop anéroutst arc argument
allows us to takeC so that it intersec U D, in a single arc connecting the point
t N D, and 9D,. Moreover, we can tak€ to be disjoint from the copiesDof . Then
the discC’ = C N Ry gives a cancelling disc of the ara) R1 as desired. ]

Lemma C.2. Suppose thatA has an essentiab-compressing disdD  inR;.
ThenA ist -parallel toA; in (V,1).

Proof. Performing & @-compressing operation oA  along , we obtain a pe-
ripheral discQ .Q cuts off a balB fronRy; with t N B = 11. 11 is trivial in B by
Lemma 2.1. Henced and; aret -parallel. O

Lemma C.3. Suppose thatdA ig -incompressible and has an inessenttal -
compressing discD inR;. Let A’ be the annulus obtained by performing rad- -
compressing operation oA  along . Then either
(1) A is t-parallel to Az, or
(2) there is a cancelling dis€ of iV, ) with Cn A’ = 0.

If 0A is of a longitudinal slope ofv, then the condition(1) holds. In casg2), A is
isotopic in (V,t) to the annulus which is the union of the two annili and Z, as
below. Sed~ig. C.1.Let ! be the component @A disjoint from D .

(a) 7, is obtained by cutting a copy @V along! and isotoping along” and

(b) Z, is obtained from a copy ofA; by slightly isotoping intant V.

Proof. The arcdD N A cuts off a disc, sayD, , fromd . withN A C Dy4. The
arc 0D N A; also cuts off a disc, say;, from A; with 9r N Ay C D;. Then the
2-sphereD U D, U D; bounds a ball, sayB , iRy, with r N B = 11 trivial in B by
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Fig. C.1.

Lemma 2.1. We can recovet by pushing the interiordéfUu D; into intV. We can
recoverA also by taking the union of a copy af, two copies of cld; — D;) and a
copy of D;.

A’ is r-compressible or &-compressible by Lemma 2.10. First, we suppose that
A’ is r-compressible. LeP be a -compressing discAdf We isotopeP neabP so
that P N D = (). Then a standard innermost loop argument allows us to refake be
disjoint from D andD, . ThenP forms a -compressing discAf , cahtting our
assumption.

Hence A’ has ar §-compressing disd®’. When D’ is contained inR; U B, we
perform ar &-compressing operation on a copy af along D’, and obtain a periph-
eral discQ which cuts off a balB’ from R, U B with + C B’. Hence we can take a
cancelling discC off withCNnQ =0 andC c B’. Then A’ is obtained fromA, U D
by isotoping alongC . This implies the conclusion (2) by seftZ; = A’ U (A1 — Dj)
and Z, = A;.

We consider the case whef® is contained in clR; — B). Note that such a &~
compressing disc always existsdfA is of a longitudinal slope o/ . We can take’
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so thatD’ is disjoint from the copy ofD . Henc®' is also ar §-compressing disc of
A. Note that the ard’ N A is essential inA (ignoring the pointn A). HenceA and
A; arer -parallel in ¥, ¢ ) by Lemma C.2. [l

D. Annuli with two punctures

In Appendix D, we consider the situation as below. Leét be adstirus V ,
and: a trivial arc inV . LetA be an annulus properly embedded in tersectings
transversely in two points. Suppose that the loops are essential IOV (ignoring
the pointsdt). Then they dividedV into two annuli A; and A,, one of which, say
A; contains the two pointg)r. The annulusA separatéé  into two regioRs and
R, with OR; = A;UA fori =1 and 2. Wherd has & -compressing di3c W ),
we say thatD isessentialif 9D N A is essential omA , otherwise it inessential

Lemma D.1. Suppose thatA has an inessential -compressing disc (Vir)
and isr 9-incompressible in(R,, t N Ry). Then there is a cancelling dis€ of with
oC NOV C Aj.

Proof. Note thatD is contained iR,. By performing a compressing operation
on A alongD , we obtain a 2-sphere and an annulus, AayA’ is disjoint from ¢,
and separatey  into two regiom® and R;, one of which, sayR] containss . By
Lemma 2.10,4’ is r-compressible or 9-compressible in Y,z ).

If A’ is r-compressible, then, compressiAg we obtain two meridian discs df
A standard innermost loop and outermost arc argument allesvid take a cancelling
disc of ¢ disjoint from these discs. This implies the conausi

If A’ has ar §-compressing dis@) iR}, then we can isotopg near the arc
0QNA’ in R} so thatdQ is disjoint from the copy of the -compressing disc . This
implies thatA ist &-compressible in R, t N Ry), which contradicts our assumption.

If A’ is r-O-compressible inR;, then, performing a &-compressing operation on
A’, we obtain a peripheral disc which cuts off a ball containinffom R;. We can
take a cancelling disc of entirely contained in the ball.sThmplies the conclusion.

U
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