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1. Introduction

It is well known that each positive integar can be expressgaduely as a sum
n =dy+db+---+d,b" with an integral base numbér > 2, d, # 0 andd; €
{0, ...,b —1}. This concept can be generalized in several directions.

On the one hand the base sequence 152, ,... can be replaced by a sequence
1 =uy < u; < up < --- to obtain representations of positive integers. Of special
interest is the case where the sequetiegls, is defined by a linear recurrence. A
famous example belonging to this class is the so-called efedtiaf representation.

On the other hand, one can generalize the set of numbers wiaichbe repre-
sented. We mention two kinds of number systems belongingnitodass:

The so calleds-expansions introduced by Rényi [27] which are repredimts
of real numbers in the unit interval as sums of powers of a bemle numbers.
These digit representations of real numbers are strondgyerk to digit representations
of positive integers if3 is a zero of the characteristic polynomial of a linear recur-
ring base sequencfy; }%,. Of special interest is the case whefds a Pisot number.
These expansions have been extensively studied. We memtienthe papers Berend-
Frougny [6] , Frougny [12, 13], Frougny-Solomyak [14, 15danoraud [25] and refer
to the references given there.

Another kind of number systems which admit the represematif a set which is
different from N are the so-calleccanonical number systen{or short CNS). Since
CNS form the main object studied in the present paper we Ir¢balr definition
(cf. Akiyama-Pethd [2]).

Derinmion 1.1, Let
P(x):=byx" +b,_1x" 1+ ..+ bg € Z[x]

be such thak > 1 andb, =1 (seb; =0 foyj >n). Let N ={0, 1, ..., |bo| —1} and
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R be the quotient ring
R =Z[x]/P(x)Z[x].

e \We say thaty € R has a finite representation if it admits a representatiorhef t
shape

fy=do+d1x+---+d/1xh

with d; e N for 0< j <h andd, #0 for h # 0 (setd; =0 forj > h).

e The numbersd; =d; «), j > 0, are called the digits ofy with respect to
(P(x), N).

e The pair (P & ) V') is called canonical number system or CNSRn if eachy e
R has a finite representatiol is called digit set of this CNS.

o If P(x) is irreducible, then letw be one of its zeros. In this cage is isomorphic
to Z[a], the ring generated by, and «. Therefore we may replace hy in the
above expansions. In this case, we simplify the notatiBrnx(, X) to (o, N') and «
is called base of this CNS.

Unlike for “ordinary” number systems, where it is clear thesich intege > 2
can serve as base, it is a difficult problem to determine wigiclynomials provide
CNS. Despite there are many papers dealing with the chaizatien of possible poly-
nomials — we will give a detailed overview in the next sectien there does not
exist a complete characterization up to now. Some of the knogsults provide the
characterization of the polynomials for some classes of CdiBers give algorithms
that allow to decide whether a given polynomiBlx ( ) forms a CbiSnot. In the
present paper we have two aims. First we want to present alg@tithm for deciding
whether a givenP X ) is a CNS polynomial or not, in a second stepuge this new
algorithm to characterize a large class of CNS polynomi@ig: results prove Conjec-
ture 1 of Akiyama-Peth® [2] and provide a conditional pradfConjecture 2 of the
same paper.

The paper is organized as follows. In the next section weuds@arlier results on
the characterization of CNS and state some easy facts dfveut Section 3 is devoted
to the definition of certain graphs and automata which refleaty important proper-
ties of CNS and thus are very important for the proofs of owults. In Section 4
we establish a fast algorithm which allows to decide whethajiven P ) is a CNS
polynomial or not (Theorem 4.4). In Section 5 we use our dllgor to characterize
a large class of CNS polynomials (Theorem 5.8). Section Gatas characterizations
of cubic (Theorem 6.1) and quartic (Theorem 6.2) CNS undeergaim condition. In
Section 7 some numerically found examples are presentdthglesith conjectures on
CNS polynomials. We finish the paper with some remarks iniGe@.
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2. Some facts about canonical humber systems

In this section we want to review some earlier results on CB&8ne of them will
be used in the proofs of our results.

As mentioned in the introduction it is an open problem to giveomplete charac-
terization of all polynomials that provide a CNS. Neverdss, there are many partial
results. Knuth [21] considered certain examples of bases,af them the Gaussian in-
teger—1+i which is intimately related to the famous “twin dragonadtal (as for the
connection between fractals and CNS cf. also Akiyama-Thidwer [4, 5], Katai [17]
and Scheicher-Thuswaldner [29]). The first systematictimeat was given in Katai-
Szabb [20], where all Gaussian integers which are CNS baegsharacterized. This
result was generalized to quadratic integers in Kataidsv[18, 19] and independently
in Gilbert [16]. Kérnyei [22] dealt with a special class ofilic integers and very re-
cently Brunotte [9, 10] characterized all CNS whose basesraots of trinomials. As
for the general case Kovacs [23] proved that an algebrdigar o gives rise to a
CNS if its minimal polynomialP £ ) =" +b,_1x"~1+---+bix + by satisfies

2<byp>by>--->b,_12>1

However, this characterization is not complete. Examples aontained in this class
are provided in Kovacs-Pethé [24], where also an algorith established that decides
whether a givenn is a CNS base or not. Recently, Akiyama-Pethd [2] develoaed
much faster algorithm than the one in [24]. In particulagythproved the following
result. LetM be a positive integer and be an algebraic integer of degrae  with
minimal polynomial P & ) as in Definition 1.1. Iby > (1 + M1 Z’}:l|bj| then it
suffices to check for (& ") elements & whether they have finite representation in
order to decide ifP X ) is a CNS polynomial or not. Thesé#(2 ) narsbare given
explicitly. Since this criterion works for all polynomiakatisfying

(2.1) > Ibs| < bo
j=1

we will call (2.1) the Akiyama-Petfi-condition or the AP condition, for short. This
condition will also play an important role in our paper.

It is the aim of the present paper to give further improvemenft the Akiyama-
Pethd-Algorithm. These improvements allow us to charaxtea large class of CNS
polynomials. In principle we even get a complete charaza¢ion of all CNS under
the AP condition. But unfortunately this characterizatimontains many awkward sets
of inequalities which surely can be simplified consideralflgr the case of cubic and
guartic CNS we achieve such simplifications and are thus @bbgve easy criteria in
order to decide whetheP x( ) is a CNS polynomial or not.

In our proofs we use finite automata and graphs. These objected out to be
useful for the treatment of characterization problems f{of. instance Scheicher [28]
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and Thuswaldner [31, 32]).

It is easy to see that a necessary condition frx(, £) to be a CNS is that\V
forms a complete residue systeéfiix] modulo (x, P (x)), the ideal generated by and
P(x). Indeed, if the residue class mod P x ( )) does not occunNirthen noy € R
with v = r mod (x, P (x)) has a representation. Due to this fact we may defiee th
mapping® ¢ ) fromR to itself by

() =x"Yz—7r),

wherer is the unique element ¢f satisfyingz = r mod (x, P (x)). Kovacs-Pethd [24]
remarked thatP X ) can serve as a polynomial for a CNS only ifitallzeros are
greater than 1 in modulus. This ensures that the iterated z,, ®?(x), ... end up
in the finite set

S = {Z :Z0+Z1X+"'+anlxn71 ER: |Zi| < C},

where C > 0 is a certain computable constant. The finitenessS of  imghes the
sequence ®/(z)} ;>0 becomes ultimately periodic for eache R. Let P be the set of
all points which can occur in such a period, i.e.

p;:{peS|EIw€N:p:<Dw(P)}-

It is clear from the definition ok and that eachz; € R admits a unique represen-
tation of the shape

L
(2.2) 2 =) dix' +x"p
1=0

with p € P, d, € N and L € N as small as possible. Singe is a periodic point, it
has a representation of the shape

Nw—1

(2.3) p = Z ijoduxj +waP
j=0

for eachN € N. For this reason we will use the abbreviation
2= ([co—1---co]™dy - --do)

for the representation (2.2). Here,[1---co]*° is the infinite repetition of the string
Cw—1---co. Instead of ([0f°dL ---do) we will simply write (. - --dp). As mentioned
in Definition 1.1 in this case the representation is calledtefinGeneralizing Defini-
tion 1.1 we will use the notatiod; z( ) for thg -th digit in the repentation ot , i.e.
the coefficient ofx/ in this representation.
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The following lemma contains an easy criterion Brx ( ) to be fgolynomial of
a CNS.

Lemma 2.1. Suppose that each zero &f(x) has modulus greater that and
N is a complete residue systemod(x, P (x)) Then(P(x), N') is a CNS if and only
if P={0}.

Proof. If P ={0} then (2.2) ensures thaP(x (.)/') is a CNS. If 0# p € P and
®d“(p) = p then p has a representation of the shape (2.3). Itall <@ < w —1)
were equal to zero this would imply = 0, a contradiction. 8irthe representation
of pis ([cw_1---c0]®) this representation can not be finite. ]

We want to mention here that € R has finite representation if and only if the
sequence{®/(y)};>o0 is ultimately zero. This is an easy consequence of the definit
of @.

In the remaining part of the paper we will always assume fkat {0,1,...,
|bo| — 1} is a complete residue system medf x ( )) and that all zeroP of f(e) a
greater than 1 in modulus. By the above considerations thssires that each € R
admits a representation of the shape (2.2).

3. Definition of graphs and automata

In this section we want to define certain classes of directeglts. These graphs
will be used to perform the addition of fixed humbers on thecepaf representations.
Furthermore, we will state some properties of these grapldsdiscuss their relation
to so-called transducer automata. First of all we want t@ givdefinition of this kind
of automata.

Derinimion 3.1 (cf. Berstel [8] or Eilenberg [11]). The 6-tuple
A=(0,%, A, T, v, R) is called a finite state transducer automaton if
e 0, X and A are nonempty, finite sets, and
e7T:0xX—QandR :Q x ¥ — A are unique mappings.
The setsX andA are called input and output alphabet, resphct® is called the
set of states andy is the starting state. The mappin@s aRd are called transitio
and result function, respectively.
A finite automaton works as follows. The automaton startsimé tO at the state
vo. At each discrete time , the automaton reads an input digitd dgeiermines the
corresponding output diglt = R(v;, ;) as well as the next statg.; = 7' (v, [;).

A transducer automaton can be interpreted as a labeledtelirggaphG in the
following way. The vertices of; are the elements of the settafesQ . Furthermore,

. l l/
there exists an edge from a vertex to a vertexv, labeled byl; | I}, v1 L vy for
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short, if T (v1, /1) = v2 and R @1, /1) = ;. We will need this interpretation frequently in
the present paper.

DeriniTion 3.2. Let P (¢ ) be as in Definition 1.1. We say that the additiontadf t
numberz € R is computable by the finite state transdueet (), if
o for any v € R the transducer z( ) is able to read the digits~) 6f the repre-
sentation ofy as input string and returns the digi#s v € z) of the representation of
~ +z as output string.
e a finite representation of results in a finite representation ¢f+ z.
The transduced (1) is called the counting automaton or addiachine of £ £ JN).

We will need the transducers z ( ) for certain numbers R in order to derive
our characterization results. These transducers will genéom the following infinite
labeled directed graph. Led(R) be the labeled directed graph with set of vertiGes
The edges connecting two vertices are defined as follows.vget; be two vertices
of R. Then there exists an edge from to v; labeled byio|l; with lo, I € N if and
only if

(3.1) vo + 1o = [§ + xvy.

This edge will be denoted by

Of course, relation (3.1) can be iterated. If one starts atviértexvy and uses as input
the digits of the representation of a numbge - - - + [;x*, one ends at the statg.;
where

(3.2) vo+lo+ -+ hxt =10+ + xR+ X .

The /; and!l/ can be interpreted as input and output digits, respecti&lyppose that
we use the digits of the finite representation

y=(L---lo)

as input digits (from right to left) starting at a vertex € R. Then we can see
from (3.2) that the sequend§, /1, ... of output digits is the representation

y+z= ([l/L’+w .. -l’L+1]°°l’L/ .. .16),

The representation formed from the output string is obvioadways finite, i.el}, ., =
0 andw =1, if (P(x),N') is a CNS.
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The above procedure becomes more clear if we set up a new fypepesen-
tation for the elements ofR. This representation has been found independently in
Brunotte [9, 10].

Lemma 3.3. Let P(x) be as inDefinition 1.1 Eachg € R has a unique repre-
sentation

n—1
(3.3) q=Y x'q;
0
with
(34) q; :Zﬁ,‘b,‘ﬁ, (E,‘EZ, jZO,...,n—l).

i=1

For such sums we will use the notation

(3.5) q = €1, En)e.

This representation will be called therepresentation of; . The change

(g0, - - -»qn-1) — (£1,...,en)e corresponds to a linear base transformation of the lat-
tice R.

Proof. The equations (3.4) provide a linear systemuof  eqoati

b,l o ---0 €1 qn—1
bnfl bn . : — :
: 0 : :
by by --- b, €n q0
This system has a unique solution such thate Z for all i, sinceb, = 1 and; ,
qi € 7. |
Let g = (e1,---,¢en)e. We will now examine how thig-representation changes if

we move along the edg@L g’ in A(R), i.e. we will determine the-representation
of ¢’ from the e-representation off . By the above lemma we have

n—1 n

(3.6) g => x> cibisj.
j=0 i=1

By the definition of the edges ofi(R) there exists a uniqué € Z such that

(3.7) g1by+---+e,b, +1 =kbo+1'.
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Since
bn-x” + bn—lxn_l K bO =0

we can subtrack times this minimal polynomial from (3.6) tatain

q= ixj <—kbj +i€,‘b,‘+j> .
=0 i=1

Sinceq + =xq’ +1’ this implies that

n—1 n
q' = ij <_kbj+1 + Z5ibi+j+l) =(—k,e1, .., En_1)e-
/=0

i=1

Thus thee-representation off’ emerges from the-representation of by cancel-
ing &,, shifting ey, ..., ¢,_1 to the right and inserting-k, which is defined according
to (3.7), as the first element.

Derinimion 3.4. An edge of the shapes(...,e,)e — (t, €1, ..., en—1)c IN A(R)
is called anedge of type. If we emphasize on the type of an edge we will use the
notation

type ¢
(617 cet EH)E - (tv 617 cety E\1171)6'

We will be interested in subgraphs of(R) which are closed in a certain sense.
To this matter we need the following definition.

Derinimion 3.5, A numbervi+1 is called reachable fromyg if there existly, ...,
I € N such that (3.2) holds. We will denote this by ~ vi+1. The series of states

lollg Ll Il
Vg — V1 — -+ — U+l

is called the path connectingy with vi+1. Let M C R. Then M denotes the set
M={q"|qg~q', qeM}.

In the following lemma we show the existence of a rather “$hsét E, which
is closed in the sense of the above definition.

Lemma 3.6. Let P(x) be as inDefinition 1.1and suppose thaP(x) fulfills the
AP condition(2.1). ThenE ={q | ¢ = (c1, ..., €n)e» & € {—1,0, 1}} satisfiesE = E.
Thus E has 3" elements.
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Proof. We have to show that for eaghc E the existence of an edgpi q'
in A(R) implies ¢’ € E. Suppose thay =cf,...,e,). with ¢; € {-1,0, 1}. From
the AP condition it follows that

n
E 6,'1?,'
i=1

n
<) |bi| < bo,
i=1

and thus
—bg < e1b1+---+e,b, < bg.
Sincel € N/, we obtain
—bo < erb1+---+eby +1 < 20— 1.
Hence there exists A€ {—1, 0, 1} such that

(38) e1br1+---+eb, +1 :kb0+l/.
Thus the edgey , g’ is an edge of type-k and we obtain

q/ = (_k7 E1y -y 6)1—1)5'

Since |k| < 1 this impliesq’ € E and we are done. O

Let A(E) = A(E) be the restriction ofA(R) to the set of vertices£ . SincE s
closed in the sense of Definition 3.5 we conclude that for asiyp <€ E, [ € N there
existq’ € E, I’ € N such thatg L q' is an edge inA(E).

We end this section with a definition that relates certairhpah the graph4(R)
to the iterates of the functio® defined in the previous sactio

DeriniTion 3.7. LetG be a subgraph ofi(R). Suppose we start at a vertey.
If we use an input string consisting only of zeros, the cgoesling walkvy — v1 —
v2 — --- is called the zero walk starting in,. Note that by the definition ofb we
havev; =®/ ¢o) for each; € N.

Definition 3.7 implies that zero walk in a subgraph 4{R) ends up in a cycle
whose vertices are contained  after finitely many steps.

4. The algorithmic characterization

In the present section we give a fast algorithm which decidbether a given
polynomial P (¢ ) provides a CNS, provided th&tx ( ) satisfies thHe @ondition. With
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help of this algorithm we will be able to determine a largesslaf polynomials which
provide a CNS. First we need some preparatory results.

Proposition 4.1. The addition of a numbet € E is computable by a finite
transducer automaton if each element{af has finite representation.

Proof. Since{z} C E, Lemma 3.6 shows thafz} is finite. If we start in a ver-
tex z € E of the graph.A(R) and move through its edges using the digitsy ( ) of
y € R as input string we get the digig; z ( + ) of y as output string.c8i
is closed in the sense of Definition 3.5 during this proceduesnever leave the sub-
graph A(E). Thus the addition ot to an arbitrary numberc R can be performed
with help of the finite graphA(E). Using the notation of Definition 3.1 we now define
the transducer automatof z () in the following way. Set

Q = E,
T=A =N,
T(v,1) := v/, wherev’ is the solution ofv # F'+xv" (' € N),
R(v,l) :=1I’, wherel’ ¢ N is the solution ofv 4 F'+xv’,

Vo = Z.

Thus A ¢) regarded as a graph in the sense explained after @wfir8.1 is equal
to A(E). So A) is able to read the input digit y ( ) and returns thepoudigits
dj(z+y).

In order to fulfill the requirements of Definition 3.2 it remaito check thatA z( )
transforms finite representations to finite representatid@ince the input string has
only finitely many nonzero digits after finitely many steps emter a zero walk. On
entering this zero walk the automaton rests at a certaire stat {z}. By Defini-
tion 3.7 this zero walk runs through the verticés v ( ). Sinceasgumptionv has
finite representation this walk reaches zero after finitegnynsteps. Because the re-
sult function R of the automatod z () fulfill (0 0) = 0, from thi®ipt on the out-
put digits are all equal to zero. Thus the output string is digit string of a finite
representation, and we are done. U

This proposition allows us to prove a first algorithmic ait@ to check whether
a given polynomialP £ ) provides a CNS or not.

Proposition 4.2. Let P(x) be as inDefinition 1.1 and suppose thai(x) ful-
fills the AP condition. Set; = (1,0,...,0),...,s, = (0,...,0,1). and F :=
{£s1,..., £}

Then(P(x), N) is a CNS if and only if eackh € F has a finite representation.
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Proof. SinceF C E, by Proposition 4.1 the addition of eaehs; € F is com-
putable by a finite transducer automatdnts(). We have to show that each e R
has a finite representation. By Lemma 3y3, hasaapresentation of the form

y = (615 sy 671)6 (6[ 6 Z).

We will now build up y in finitely many steps starting fromy = 0 = (0,..., 0)..
Obviously, 0 has the finite representation (0). Putting thgitsd of this trivial rep-
resentation in the automatoA (sigp¥s;) we obtain a finite representation ef =
(signEy) - 1,0, ...,0).. Putting the finite representation ef again in the automaton
A(signE1)s1) and repeating this procedute;| times produces a finite representation
of

1\61\ = (sign@1)|al|, O, ey O)g = (61, O, Ceey 0)5

The finiteness of this representation is assured by the faat the automaton
A(signEs)s1) sends finite representations to finite representations: We putz.,| for
le2| times in the automatod  (sign)s2) which yields thatz|.,|+(c,| = (€1,€2,0, ..., 0):
has finite representation. Treating the other coordinateke same way we finally ar-
rive at

B e e (€1, -+, €ne-

This implies thaty has finite representation. Since  was ranlyitwe conclude that
(P(x),N') is a CNS. O

Remark 4.3. This proves Conjecture 2. of [2] under the AP condition.
We are now in a position to prove our first main result.

Theorem 4.4. Let P(x) be as inDefinition 1.1 and suppose thaP(x) satisfies
the AP condition. TherfP(x), A') is a CNS if and only if each element of the set

4.1) D :={q|q=1(1,...,€n)e, & €{0, 1}}
has a finite representation.

Proof. By Lemma 2.1, ® x(,)VV) is a CNS if P = {0}, i.e. if all zero walks
in A(R) end up in the cycle at the vertex zero. By Proposition 4.2 isufficient to
check this only for the zero paths startingdne E, since F ¢ E. What we have to
show is that we can even confine ourselves to checking all gaties starting iz €
D. We will prove this in the following way. Suppose that therasts an element :=
(e1,...,€n)e € E with at least ones; = —1 having infinite representation. If we can
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show that this implies the existence of an elemesjt (.., ,). € D having infinite
representation we are done. Indeed, this would imply th#lheéfe exist elements with
infinite representation then some of them must liedn

Suppose now that € E has infinite representation. We will look more closely on
what happens if we follow the zero walk startingzat . Since itiput digit [ = 0, the
AP condition implies that

—bp < e1b1+---+e,b, +1 < bp.
Hence, there exist € {—1, 0} and!’ € N such that
e1by+ - +e,b, +1 =kbo+1'.

Arguing in the same way as in the paragraphs preceding thenstat of Lemma 3.6
yields that the first edge on the zero walk is

(617 cct 6’1)8 - (_k7 617 cety E\1171)&‘

Thus after one step on the zero walk the first coordinate irettepresentation is zero
or one. lterating this procedure times yields

(€1, .v vn)e — ovvvee — (e, ..., eh) =1z

with a; € {0,1} for 1 < j < n. Thusz’ € D. Note that by assumption has an
infinite representation. Thu®/(z)};>o0 is not ultimately zero. Since’ = ®"(z) this
implies that{®/(z')} ;>0 = {®/*(z)} ;>0 is not ultimately zero. Hence; has an infi-
nite representation. Thus we found an elementbof  having finite representation.
This ends the proof. U

5. The characterization of a class of CNS polynomials

In what follows we want to exhibit algebraic conditions winigvill allow us to
decide whether a given polynomi® x ( ) provides a CNS or noesehconditions will
enable us to characterize a large class of CNS polynomiaist \Wwe want to give the
following definition.

Derinimion 5.1 (cf. Berlekamp [7, p. 84], or Lothaire [26]).
e We say a stringw’ emerges from the string by digit rotation if there exist two
wordsu andv such thab &v and’ =vu.
o A string wy---wy has periodp € {1,...,k} if wj=wjs, for j=1,...,k— p.
e A string w1 - - - wy has primitive periodpg € {1, ..., k} if it has periodpy and no
period p < po.
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e A necklaceof length £ is an equivalence class of strings of length  undéa-r
tion.

e A primitive necklaceof lengthk is a necklace with primitive period (i.e. an ape-
riodic necklace).

e A Lyndon wordis the lexicographically smallest representative of a i
necklace.

From the proof of Theorem 4.4 follows that it is sufficient teeck if all elements
of the setD have finite representation in order to decide vemethgivenP ¢ ) forms
a CNS or not. By the definition oo this is equivalent ®, = {0}, where

Pp:={peD|JweN:p=d“(p)}.

Since eachp € Pp generates a zero cycle in the gragiiD), which is the restriction
of A(R) to the set of verticed , we get the following simple result.

Lemma 5.2. Let P(x) be as inDefinition 1.1 fulfilling the AP condition. Then
(P(x), V') is a CNS if and only ifA(D) contains no zero cycle apart from
©,...,0). —(0,...,0)..

Note that the longest zero cycle containedAQD) can not be longer than”2- 1
becauseA(D) has 2 states and ,(0.., 0). must not occur in a nontrivial cycle. Sup-
pose that the state

(E1y -y €k €Ly - v Eks - - -5 Enmodk)e, €5 € {0, 1}
j

of A(D) has — regarded as a binary string — primitive peribd  forka €
{1,...,2" — 1}. (Heren modk is chosen from the residue systg..., k} modulo
k.) If this state belongs to a zero cycle of lendth , this is teeozcycle generated by
the periodeies - - -, i.€.

type &
(5‘1, E2y vy Eks E1,E2y v v v 5 Eky e Enmodk )5 EE—

type ex—1
(€k» €15 -+ s Ek—1s EksELyevvr Eh—ly wvvne En—1mod )e

type e1
(627 £€3,...,¢1, €2,E3,...581, ... En—k+1modk )E
(617 627 LN Eka 817 627 sy Eka """ 511m0d< )E

(note thate,modk = €n—kmodk). Since (0...,0). must not occur in a nontrivial cycle,
the state

(Ela L) Ek’ alv ceey akv ) E/lmOd()65 EJ 6 {Ov l}a
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regarded as a binary string must not contain more thanl consecutive zeros. Let

Jo = {j|1<j <k ande; 1moa = O},
Ji={j|1<j<kande; imoa = 1}.

Then by the definition of type edges this cycle exists if antly ahthe system of
inequalities

0 Sejbit+--teb_jrrterbi_jrot - +ej_1by < bo for j € Jo,

5.1
( ) —bo SEjb1+---+Ekbk_j+1+€1bk_j+2+---+Ej_1bk<O for e J;

holds (note thath, = 0 fof > n). Summing up what we have proved we get the
following result.

Lemma 5.3. Let P(x) be as inDefinition 1.1 satisfying the AP condition. Then
there exists a zero cycle of lengthe {1,...,2"—1} generated by the perioeh - - - e
if and only if the inequalitieg5.1) hold simultaneously. Thus to each zero cycle of
length k there corresponds a set bf inequalities.

Remark 5.4. Note that (5.1) provides a full characterization of @NS which
fulfill the AP condition. LetP § ) be as in Definition 1.1 fulfiig the AP condition.
Then P ) provides a CNS if and only if the set of inequalitieslj5does not hold
simultaneously for any cycle of length 2" — 1. Of course, this criterion is very hard
to survey. In Section 6, however, we will show that it can beduso derive simple
algebraic criteria in certain cases.

In what follows we will have to deal with concrete cycles ofahength. Thus
we are interested in how many cycles of a given length  exishéngraphA(D). To
this matter we need the following result.

Lemma 5.5. Let L, be the number of binary Lyndon words of length . Then
1 k
: == -2
(5.2) Le =+ dgkﬂ<d)

where ;. denotes the Ribius function.

Proof. The number of binary words of length i§ 2 . Each wordesfgthk has
primitive periodd withd | k. Therefore

2k = Z dLy.

d|k

Mobius inversion yields (5.2). U
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Remark 5.6. Concerning the sequendeg; we refer to sequeh@@l037 in
Sloane’s database of integer sequences [30].

The above notion is useful for counting the possible zerdesyn A(D).

Lemma 5.7. For eachk € {1,...,2" — 1} there exist at mosL, possible zero
cycles of lengthk ind(D).

Proof. Let.l; be the set of Lyndon words of length which do not have more
than n leading zeros and do not contain two equal subwords ngfthe: . If we re-
gard thee-representations of the states df(D) as strings, each vertex is a binary
string of lengthn . A cycle of lengthk € {1,...,2" — 1} is then generated by an
equivalence class of binary strings of primitive period emndotation. Thus by Defi-
nition 5.1 there is a one-to-one correspondence betweendhgivial cycles of length
k which do not contain (0..,0). and £;. The lemma now follows from Lemma 5.5.

]

We are now in a position to state the criterion.

Theorem 5.8. Let P(x) be as inDefinition 1.1 satisfying the AP condition. If

(5.3) > b;>0
j=1
and

then (P(x), V) is a CNS.

Proof. By Lemma 5.2 we have to show that under the assumptbrise theo-
rem there exists no zero cycle (D) apart from 0— 0. We start with the examina-
tion of the cycle

(5.5) 1.1, 2L a .. ).

By Lemma 5.3 this is the only possible nontrivial zero cycfdemgth one. This zero
cycle exists if and only if

b1+---+b, <0

holds. Since this inequality contradicts (5.3) we concltits the zero cycle (5.5) does
not exist in A(D).
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Now suppose that there exists a zero cycle of length> 2 in A(D). Let
e1---&; be the corresponding Lyndon word. Henege - - ¢, is lexicographic minimal
and ¢, = 1. Otherwise one could rotats - - - ¢, by one digit to get one more leading
zero. Furthermore, there exists a minimale {2, ..., k} with ¢, = 1 such that

515k2005m5k~

Sincee, = 1, there must be a type 1 edge

0,0,...,0, €y Emets -ov S eeens )e 222
(1,0,...,0, O, e, ... Ex—1, cen.-. )e.
This is only possible if
Embm +---+e,b, <O.
Sincee; > 0, this inequality contradicts (5.4). ]

Remark 5.9. Theorem 5.8 proves Conjecture 1 of Akiyama-Pethd [2].

6. Characterization of cubic and quartic CNS

In order to characterize cubic and quartic CNS we have to looke closely to
the possible zero cycles up to length21 =7 and 2 — 1 = 15, respectively. First of
all we give a complete list of these cycles up to length 4 togietvith their associated
inequalities. To this matter lek x( ) be as in Definition 1.lisfging the AP condition.

Furthermore, seb, =1 anb; =0 fgr> n. Now we determine the possible cycles
of the graph.A(D) associated taP x( ) up to length 4 as well as one importantecycl
of length 5.

e There exist two possible cycles of length one:
(1a)o,....0. X%, ...,0. X% .
This cycle is the trivial cycle.

Mb)@ ... 1. L. L
To this cycle there corresponds the inequality

—bg<by+---+b, <.

e There exists one possible cycle of length two:
1 0
@ ©010..).22@101..).22%010..).
This cycle occurs if

type 1

—bg < bp+bs+bgt--- <0,
0< by+bz+bs+--- < bg.
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e There exist two possible cycles of length three:

Ba) L 00..). 20 10..). 2 001..). P2
(1,00..). 2%
The related inequalities are
O0< by+bs+bs+--- < by,
O0< by+bs+bg+--- < bg,
—bg < bg+bgtbg+--- <O.
1 1 0
G011, ). a01..). 5@ La0..). X0
©L1..). 25 .
The related inequalities are
—bg < bp+bztbs+bg... < 0,
—bg < by+bztbsg+bg... < O,
O < byr+by+bs+bs... < bg.
e There exist three possible cycles of length four:
0 0 0
(42)@.000..). *°%50100..). *°%50010Q..) X5
t 1
(0.0.01..). =5

The related inequalities are

0< by+bs+bg+--- < by,
0 < by+bsg+bip+--- < bo,
0 < b3+by+b+--- < by,
—bg < ba+bg+bip+--- <O.

o0 r1a..).®%0011..) 22

type 1

(4b)1,104Q...)

(17 07 Q l )E
The related inequalities are

O0< by+bytbs+--- < by,
O0< by+bztbg+--- < by,
—by < ba+bs+br+--- <0,
—bg < byt+bstbs+--- < 0.

@o@a110a..).2%0111..). * @011..) 22
(1,1,01..) Y=L .
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The related inequalities are

0 < bi+by+bs+--- < by,
—bg < by+bz+bst+--- <O,
—bg < b1+b3+bst+--- <0,
—bg < byt+by+tbg+--- <O.

e By Lemma 5.7 there exist six possible cycles of length fivexc8ionly one of
them will play a prominent role in the forthcoming calcutats we will confine our-
selves to writing down only this one:

5) 1L0,0101..).Y%010010..) ¥
(,0,100Q1..). %%01021200..) X0

type 1

0,01,010..)-——(1,00210Q1..)
This cycle occurs if

type O

O0< by+bs+bg+--- < by,
—bg < bp+bs+byr+--- <0,
O0< by+bz3+bg+--- < by,
O0< by+bs+b;+--- < by,
—bg < bgt+bs+bg+--- < O.

Of course it is an easy task to extend this list up to cyclesrbitrary length with
increasing effort. To this matter one needs to know expfiatl Lyndon words up to
a certain length.

6.1. The cubic case. Let P(x) be as in Definition 1.1 satisfying the AP condi-
tion. In this subsection we want to find simple algebraic dimas under which there
do not exist cycles in4(D). This will lead to a complete characterization of cubic
CNS under the AP condition. Since the condition related ® diicle (1.b) must not
be fulfilled we get the necessary condition

(6.1) bi+b,+1>0

for P(x) to provide a cubic CNS. Next we deal with the zero cy@g Suppose that
b, < 0. Then, in order to avoid this zero cycle, we must haye+t 1 < 0 because
otherwise both inequalities for the cycle (2) would be fléfi. But adding these two
inequalities gives an inequality which contradicts (6.Thus we get

(6.2) by > 0.

(6.1) and (6.2) exclude the occurrence of the cycles (1.d) @y Since there can oc-
cur zero cycles up to length seven we have to check next whéd) and (3.b) can
exist. The third inequality of (3.a) readsby < 1 < 0 in the cubic case. It can ob-
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viously never be fulfilled. Thus (3.a) can not occur. The fin/gquality of (3.b) reads
—bo < bp+1 < 0. By (6.2) it can never be fulfilled. Thus also this cycle can accur.

Similarly, one can exclude the occurrence of all the othetlesy up to length
seven. By Lemma 5.7 one has to check all cycles which do notacommore than
three consecutive zeros. These cycles correspond to alrbibyndon words with
length < seven with less than three leading zeros. This@{g1 Ly =41 words. Thus
we have to check 41 sets of inequalities. This can be dondyesish help of a short
computer program. One can considerably diminish the nunobesets of inequalities
by arguing in a similar way as in the quartic case below.

So the necessary conditions (6.1) and (6.2) assure that thes not exist a zero
cycle in A(D) apart from 0— 0. Thus they are also sufficient. Summing up we proved
the following result.

Theorem 6.1. Let P(x) = x3+ box? + byx + by satisfying the AP condition. Then
(P(x),N') is a CNS if and only if

bi1+b,+1>0 and b, >0
hold.

6.2. The quartic case. For quartic polynomials we get the following character-
ization result.

Theorem 6.2. Let P(x) = x* + bax® + box? + byx + by satisfying the AP condition.
Then(P(x), V') is a CNS if and only if

by+bo+b3+1>0, bp+b3> -1, bo>-1, b1 >-1 b3>0 or
bi+by+b3+1>0, bp+bz>—1 by > -1 b1 <1 b3>-1

holds.
In order to prove this theorem we need the following premayatemma.

Lemma 6.3. Let P(x) be a quartic polynomialP(x) = x*+ bsx3+box? +bix + b
which fulfills

bs3+1 >0,
b+1>0.

Suppose that no cycle of length less than or equab txists in A(D). Then the re-
lated graph.A(D) contains no cycle of length greater th&n



346 K. SHEICHER AND J.M. THUSWALDNER

Proof. Note thatA(D) has 16 states. If we can show that there exist 10 states
which can not be contained in a cycle of length greater thahe6résult follows. For
abbreviation we call a cycle of length greater than Brg cycle.

Suppose that (0009)is contained in a long cycle. Then this cycle contains either

the edge (000Q) —— e O (0000). or the edge (000Q)—— e 4, (1000).. In the first case

(0000). forms a cycle of length 1, the second case would yield theualtips —by <

0 < 0 which are never fulfilled. Thus (00Q0ran not be contained in a long cycle.
Suppose that (0001)were contained in a long cycle. Then, since (0Q0B) ex-

cluded, we must have an edge (OQO%’E» (1000). in this long cycle. But this im-
plies the inequalities-by < 1 < 0 which are never fulfilled. Thus (00Q1kran not be
contained in a long cycle.

(1000). can also not be an element of a long cycle because it wouldyirthalt
one of the edges (0000}~ (1000). or (0001) — (1000) were contained in it, which
is impossible by the above paragraphs.

Now we show that neither (0101nor (0010) can belong to a long cycle. To this
matter we distinguish three cases.

e The caseb; > 0. (0101) —— bpe 1 (1010). is impossible because it would lead to

—bg < bp +1 < 0, a contradiction. Thus we must have (Ojgoﬁﬁ (0010).. But
(0010). has no successor since (000Tan not belong to a long cycle and the exis-

tence of the edge (OOLO)H (1001) would lead to the contradictiobs < O.

e The casebz; = —1 and b, > 0. In this case we must have + 1 < 0, because oth-
erwise the cycle (3.a) would exist. Furthermotg,+ b, > 0 and b, + b3 > 0 must
hold, because otherwise the cycle (1.b) would exist. Buteurttiese conditions the
only walk starting from (0101)is

type 0 fype 1

(0101) >**> (0010) ==

Y0 0110y P08

1001) Y% (1100)

P 9 9011) ¥*° 2 (0001).
But since (0001) can not exist in a long cycle, neither (010I1or (0010) can be-
long to a long cycle.

e The casebz = —1 and b, = —1. In this case we must hava +1 > 0 andb; +b3 >
0 in order to avoid cycle (1.b). Thus the only walk leading gviiam (0101) is

type 0 type 1

1001) ¥**° (0100)
(0101).

(0101) 2% (0010) X2

e L1010y X8

type 0

This is a cycle of length 5. Thus also in this case neither IR1®or (0010) can
belong to a long cycle.
Since the above mentioned 5 elements can not be containedangacycle, the
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only path of length 3 which can lead to (1010h a long cycle is given by

0011) ¥ % (1001) 2** % (0100) ¥ (1010)
But the first edge yields-by < b3+ 1 < 0, a contradiction. Thus (1001)(0100). and
(1010). can not exist in a long cycle.
It is now easy to see that (00lltan have no successors and (1106n have
no predecessors in a long cycle. Thus, summing up we gettieatlements

(0000), (0001), (0010}, (0100), (1000)
(1001), (1010), (0101), (1100}, (0011)

can not occur in a long cycle. Thus there can not exist cycdldsemgth greater than 6
if the conditions of the lemma are fulfilled and we are done. O

After this preparation we are in a position to prove Theoreth 6

Proof. By similar arguments as in the cubic case we find that djxcle (1.b)
does not exist if

(6.3) b1+by+b3+1>0.
Again in the same way as above we see that the cycle (2) doesxisttif
(6.4) b,+1>0.

Furthermore, we see that cycle (3.b) does not exist if oneheffollowing conditions
is true.
(i) b2+b3 >0,
(i) by+b3+1>0,
(iii) by +Db+1<O0.
If (i) holds then b3 > 1 by (6.3). Together with (6.4) this implids, + b3 > 0 and we
reduced this case to (i).
In order to treat (i) we have to distinguish four cases.
e The caseb, > 0 and by +1 > 0. In this case we must have

b3 >0

because otherwise the cycle (3.a) would exist.
e The caseb, > 0 and b1 +1 < 0. In this case we must have

bz > -1

because otherwise the cycle (4.b) would exist.
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e The caseb, = —1 and b; + 1 > 0. In this case we must have eithes > 0 or
b1 + bz < 0 because otherwise the cycle (5) would exist. Sihge b3 < 0 together
with b, = —1 would imply the existence of the cycle (1.b) we conclude tha

b3 >0

has to hold in this case.
e The caseb, = —1 and b1 + 1 < 0. In this case we must have

b3 >0

because otherwise the cycle (1.b) would exist.
It remains to deal with (ii). Since (i) is already treated wan@ssume that

(6.5) by +b3 < 0.

Suppose first thab, > 0. Then (6.5) implieshs < 0 and thus by (ii) we also have
b1 > 0. But the last three inequalities yield the existence of tlele (3.a). Thus
b, = —1 must hold. In this case exactly the same arguments as uséjl yield the
additional conditionbs > 0.

Summing up we get that the condition

by+by+b3+1>0, bp+bs>—1 by >—-1 by >-1 b3>0 or

OO by tba 120, bythy > —1 by > —1, by < 1, by > —1

is necessary for the quartic polynomi&llx ( ) to provide a CNS.

Furthermore, it is easy to check that this condition enstiiat none of the cycles
up to length 6 can exist. To this matter by Lemma 5.7 one haﬁwlcz,f:l L, =23
sets of inequalities. Sincky —1 > 0 andbz—1 > 0, Lemma 6.3 yields that there does
not exist any cycle of length greater than 6. Thus conditi@®)(is also sufficient and
the proof is finished. [l

7. Some interesting examples

In this section we present some numerically constructeanpies of polynomials
which have interesting properties. The polynomials in #xsmples do not fulfill the
AP condition. However, they are expanding in the sense thah ef their roots lie
outside the unit circle.

e It was conjectured for a long time that # x ( ) is a CNS polynointaen P (x )+1
is also a CNS polynomial. A counterexample to this conjextigrgiven by

P(x) =x3+1732+257x +198

P(x) is a CNS polynomial (which can be proved by Brunotte’'s rdthcf. [9, 10])
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but P (x) + 1 possesses the cycle

(_1’ 3v _3)6 - ( _1v _1’ 3)5 - ( 3’ _1’ _1)5 -
(_3’ 3v _1)6 - ( 2’ _3’ 3)5 - ( 1’ Z _3)5 -
(-3,14, 2—-( 3 -3 1).—(-1, 3 -3)..

e Next we give an expanding cubic polynomial having a long eytlet
P(x) = x>+ 196¢% + 341x +199

Then P ¢ ) has a cycle of length 84. One element of this cycle-i$1( 1Q —6).. We
conjecture that already cubic polynomials can have aryitiang cycles.
o Let

P(x) = x3+192¢% + 272¢ +199

Then P () has a cycle of length eight which consists of eleménisx,, x3). with
|x;| > 2. One element of this cycle is—6, 3, 2).. We conjecture that to each €
N one can find a cubic polynomial having a cycle all of whose elet$ (1, y2, y3).
fulfill |y:| > k.

8. Concluding remarks

In the present paper all results apart from the examples énptievious section
are subject to the AP condition. Of course it would be de$grab get unconditional
results. We fear that this will be hard in general. There ave forthcoming papers
concerning related topics:

In Akiyama-Brunotte-Pethd [1], a conjecture of W.J. Gilben cubic CNS poly-
nomials is partially proved, and it is shown, that this cetjee is not complete.

In Akiyama-Rao [3], an efficient algorithm is given to detéms whether or not
P(x) is a CNS polynomial by Brunotte’s method [9]. Furthermolarge classes of
CNS polynomials are characterized.

Regarding the results under the AP condition we are suretligasets of inequal-
ities in (5.1) can be considerably simplified also for higklegrees. However the cal-
culations necessary to obtain such a simplification becoemg kard to survey. Up to
now we were not able to find a general principle that allows auslérive simplifica-
tions for the characterization of CNS of arbitrary degrees.
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