
Miki, K.
Osaka J. Math.
41 (2004), 295–326

INTEGRABLE IRREDUCIBLE HIGHEST WEIGHT MODULES
FOR sl2(Cp[x±1, y±1])

KEI MIKI

(Received August 28, 2002)

1. Introduction

Modules for loop algebras ⊗ C[ ±1
1 . . . ±1] and their universal central exten-

sions have been extensively investigated where is a finite dimensional simple Lie
algebra. The universal central extensions are affine Lie algebras in the case = 1
and called toroidal Lie algebras in the case> 1 [1]. Affine Lie algebras and their

-analogues have been well studied and found applications inseveral areas. Compared
with these algebras, the investigations of the representation theory of toroidal Lie al-
gebras are still under way, though much progress was made in references [1], [2], [3],
[4], to name a few, and their -analogues were applied in [5], [6], [7] and [8].

Among modules for these Lie algebras we are interested in integrable modules.
In the case = 1 (with the scaling element), in [9] and [10], irreducible integrable
modules with finite dimensional weight spaces were classified and, when the central
element acts trivially, they were shown to be isomorphic to loop modules of the tensor
product of some modules depending on continuous parametersor their irreducible sub-
modules. The -analogue of this problem was investigated in [11]. In the case = 2,
integrable modules were studied in [4] where some of the central elements act non-
trivially. For ≥ 2 these modules were considered in [3] and references therein.

In this paper we consider a loop algebra with the algebra of Laurent polynomi-
als replaced by a quantum torus [12]. For generic∈ C× let C [ ±1 ±1] be the
C algebra of the Laurent polynomials in the two variables , satisfying = .
We shall denote this algebra byC . Let 2(C ) be the Lie algebra of 2× 2 matrices
with entries inC with the usual commutator. We consider the Lie algebra2(C ) :=
[ 2(C ) 2(C )]. Lie algebras of this kind appeared in the study of some extended
affin Lie algebras in [13] and when taking the = 1 limit of the quantum toroidal al-
gebras in [5]. Representations of these Lie algebras were considered in [14] and those
of their central extensions were studied in [15], [16] and [17] in terms of vertex opera-
tors. The main result of this paper is the classification of integrable irreducible highest
weight modules for 2(C ). Our line of thought and result are similar to those in [9]
and [10] but more complex.

This paper is organized as follows. In Section 2, after giving the necessary defini-
tions, we state our result for the classification of integrable irreducible highest weight
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modules for 2(C ). The outline of the proof of this is given in Section 3 and the
technical details are proven in Sections 4 and 5.

2. Main result

2.1. The Lie algebra sl2(Cp). Fixing a nonzero complex number which is
not a root of unity, letC be theC algebra defined by generators±1, ±1 and rela-
tions

±1 ∓1 = 1 ±1 ∓1 = 1 =

We consider the Lie algebraL = 2(C ) := [ 2(C ) 2(C )]. Set 0 = (0 0). For k =
( ) ∈ Z2, m = ( ) ∈ Z2 \ {0} and = 1, 2, define the following elements ofL:

k = 12 k = 21 = 11− 22 ǫ (m) =

Then these elements form a basis ofL and satisfy the relations

[ k m ] =

{
ǫ1(k + m)− ǫ2(k + m) if k + m 6= 0

if k + m = 0

[ k m ] = 0 = [ k m ]

[ k ] = 2 k [ k ] = −2 k [ ǫ (m)] = 0

[ǫ1(k) m] = k+m [ǫ2(k) m] = − k+m

[ǫ1(k) m] = − k+m [ǫ2(k) m] = k+m

[ǫ (k) ǫ (m)] =

{
δ ( − )ǫ (k + m) if k + m 6= 0

0 if k + m = 0

wherek = ( ) and m = ( ).
Set

N− =
⊕

C k N+ =
⊕

C k

H =
2⊕

=0

H H0 = C H =
⊕

m6= 0

Cǫ (m) ( = 1 2)

ThenN±, H andH are subalgebras and the Lie algebraL is the direct sum of these
subalgebras:

L = N− ⊕H⊕N+

Note that [H H ] = 0 ( 6= ) but H is not commutative. Set

H′ = C ⊕
⊕

6= 0
=1 2

Cǫ (0 )
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Then this is a maximal commutative subalgebra.

2.2. Main result. In this paper we call anL module highest weightif there
exists 06= ∈ such that

= (L) N+ = 0 ∈ C (∀ ∈ H′)

We call such a vector a highest weight vector. AnL module is said to beinte-
grable if it admits a weight space decomposition with respect to

=
⊕

α∈C

α α = { ∈ | = α }

and

( m) = 0 and ( m) = 0 ( ≫ 1)

for any ∈ and anym ∈ Z2.
The main result of this paper is the classification of integrable irreducible highest

weight L modules. To describe the result, we introduce some notation.
Let be a linear map onC[ ±1] such that = ( ∈ Z) and let the
denote the matrix units acting onC2. For ∈ C×, let 1( ) denote theL module

C2[ ±1](= C2⊗ C[ ±1]) on which L acts as

k = 12 k = 21 = 11− 22

ǫ (m) = ( = 1 2)

and let 2( ) signify theL moduleC2[ ±1] on which L acts as

k = 12
−

k = 21
− = 11− 22

ǫ1(m) = − 22
− ǫ2(m) = − 11

−

For each Young tableau let denote the corresponding Young symmetrizer,
i.e.,

=
∑

σ∈ ( )

∑

τ∈ ( )

sign(σ)στ ∈ C[S ]

where is | |, the number of boxes of , and ( ) and ( ) are the subgroups of
S preserving the entries in each row and column of , respectively.

In this paper we shall neither consider a partition of 0 nor the empty tableau. For
each partitionλ fix a tableau λ of shapeλ. For a partitionλ, a nonzero complex
number and = 1, 2, set

λ( ) =
λ

( )⊗
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where =|λ| and the symmetric groupS acts on the tensor product ( )⊗ by per-
muting the factors. Since the action ofL on ( )⊗ commutes with that ofS , λ( )
is an L module. Let Z = { | ∈ Z}. For a nonnegative integer , partitions
λ1 . . . λ and nonzero complex numbers1 . . . such that / /∈ Z ( 6= ), set

λ1 ... λ ( 1 . . . ) = λ1
( 1)⊗ · · · ⊗ λ ( ) ( = 1 2)

where in the case = 0 the right hand side should be understood as the trivial L
moduleC.

Theorem 1. Set = 1
λ1 ... λ ( 1 . . . )⊗ 2

µ1 ... µ ( 1 . . . ). The submodule
of generated by the weight space+ has a unique irreducible quotient, which we
denote by λ1 ... λ ;µ1 ... µ ( 1 . . . ; 1 . . . ). Then
(1) An L module is integrable, irreducible and highest weight if and only if it is iso-
morphic to one of the λ1 ... λ ;µ1 ... µ ( 1 . . . ; 1 . . . ).
(2) TheL modules

λ1 ... λ ;µ1 ... µ ( 1 . . . ; 1 . . . ) and λ′
1 ... λ′

′ ;µ′
1 ... µ′

′
( ′

1 . . . ′
′ ; ′

1 . . . ′
′ )

are isomorphic if and only if ′ = , ′ = and there existσ ∈ S and τ ∈ S such
that

λ′σ( ) = λ ′
σ( )/ ∈ Z µ′

τ ( ) = µ ′
τ ( )/ ∈ Z

for 1≤ ≤ and 1≤ ≤ .

REMARK 1. Since in the theorem admits a weight space decomposition with
respect to the commutative subalgebraH′, so does

λ1 ... λ ;µ1 ... µ ( 1 . . . ; 1 . . . ).

3. Proof of Theorem 1

In this section we shall prove Theorem 1, leaving the technical details to later sec-
tions. First we introduce some notation. For a subalgebra ofL and a complex num-
ber α, set

( )α = { ∈ ( ) | [ ] = α }

Then

(H) = (H)0 and (N±) =
∞⊕

=0

(N±)±2
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If is a highest weightL module with highest weight vector and =α (α ∈ C),
then

=
⊕

≥0

α−2 α−2 = (N−)−2 (H)

Let be an irreducibleH module on which acts as a scalarα and set

( ) = (L)⊗ ( +)

where is regarded as a+ := H +N+ module by lettingN+ = 0. Since ( )≃
(N−)⊗ as vector spaces, we get

( ) =
⊕

≥0

( )α−2 ( )α−2 ≃ (N−)−2 ⊗

So, noting that is irreducible, we find that theL module ( ) has a unique max-
imal submodule , which intersects ( )α ≃ trivially. We set ( ) = ( )/ .
Let be a nonzero vector in and the image of 1⊗ in ( ). Then we can
identify with theH submodule ( )α = (H) .

DefineW to be the set of irreducibleH modules generated by a nonzero vector
such that

(3.1) ∈ C (∀ ∈ H′)

Note that acts on anH module inW as a scalar. Suppose that ∈ W and that
∈ is a nonzero vector satisfying the above condition. Let denote the image of

1⊗ in ( ). Then ( ) is an irreducible highest weightL module with highest
weight vector . Note that any highest weight vector of ( ) is obtained in this way.

Proposition 1. (1) An L module is irreducible and highest weight if and
only if there exists ∈ W such that ≃ ( ).
(2) For , ′ ∈ W , ( ) ≃ ( ′) if and only if ≃ ′.

Proof. (1) The ‘if part’ has just been proved before the proposition. We show
the ‘only if ’ part. Suppose that is an irreducible highest weight module with highest
weight vector . Set = (H) . Then we can easily see that ∈ W and ≃

( ).
(2) Follows from the definition and the fact ( )α ≃ asH modules.

The argument used above for ( ) is quite standard. See [9] and [3] for similar
constructions in the case of loop algebras.

By the standard theory of 2(C), we can see that for an integrable highest weight
L module with highest weight vector there exists a nonnegative integer such
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that

=
⊕

=0

−2 and ∈

For a nonnegative integer letIH( ) denote the set of pairs of an integrable highest
weight L module and its highest weight vector satisfying the above condition.

The following lemma was proved for one variable loop algebras in [9, Lemma 4.4].
The proof in our case is essentially the same.

Lemma 1. Let be a highest weightL module with highest weight vector
such that = for some nonnegative integer . Then
(1) is integrable if and only if m +1 · · · m1 = 0 for any m ∈ Z2 (∀ ).
(2) If is irreducible, then it is integrable if and only if

k1 · · · k +1 m +1 · · · m1 = 0

for any k , m ∈ Z2 (∀ ).

SetA = (H1) andB = (H2). Note thatA andB commute with each other. Let
(k) = ǫ1(k) and (k) = −ǫ2(k) for k 6= 0. Define ±

A( ) =
∑

≥0 A ± ∈ A[[ ]]
and ±

B ( ) =
∑

≥0 B ± ∈ B[[ ]] by

±
A( ) = exp

(
−
∑

>0

(0 ± )
)

and ±
B ( ) = exp

(
−
∑

>0

(0 ± )
)

respectively.

Lemma 2. For ( ) ∈ IH( ) define formal power seriesλ±A( ) by

±
A( ) = λ±A( )

and λ±B ( ) similarly. Then there exist nonnegative integers and and nonzero com-
plex numbers 1 . . . , 1 . . . such that + = ,

(3.2) λ±A( ) =
∏

=1

(
1− ±1 ) and λ±B ( ) =

∏

=1

(
1− ±1 )

To prove this lemma, we need the following result [18]. Let bethe loop algebra
of type 2, 2(C)⊗ C[ −1], and set for ∈ Z

= 12⊗ = 21⊗ = ( 11− 22)⊗
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Define ±( ) ∈ ( )[[ ]] by

±( ) =
∑

≥0

± = exp

(
−
∑

>0

±

)

An module is said to be integrable if it admits a weight space decompositoin with
respect to 0 and the and the act on it locally nilpotently.

Lemma 3 (Proposition 1.1, [18]). Let be an integrable module and a
vector in such that = 0 for any and = for a nonnegative integer .
Then

−( ) = +

(
1
)

In particular, this implies

= 0 (| | > ) and − =

Proof of Lemma 2. For an integer , set

±( ; ) = exp

(
−
∑

>0

± (0 ± ) + (0 ± )
)

so that

±( ; ) = ±
A( ± ) ±

B ( )

For each the subalgebra ofL generated by the elements− and ( ∈ Z) is
isomorphic to and for this subalgebra

= (0 ) + (0 ) for 6= 0

and 0 = . Applying Lemma 3 to these subalgebras, we find that for any integer

λ( )λ−A

( )
λ−B ( ) = λ+

A

( )
λ+
B

(1)

whereλ( ) is a nonzero complex number. From this we get the assertion.

For nonnegative integers and we letIH( ) denote the subset ofIH( + )
consisting of the elements for which (3.2) holds for some nonzero complex numbers

1 . . . , 1 . . . .
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For a nonnegative integer , ≥ 1 and k = ( ) ∈ Z2 (1 ≤ ≤ ), define
(k1 . . . k ) ∈ A and (k1 . . . k ) ∈ B by the recurrence relations

1(k) =

{
(k) if k 6= 0

if k = 0
(3.3)

(k1 . . . k ) = 1(k ) −1(k1 . . . k −1)

−
−1∑

=1
−1(k1 . . . k + k . . . k −1) ( ≥ 2)(3.4)

and

1(k) =

{
(k) if k 6= 0

if k = 0
(3.5)

(k1 . . . k ) = 1(k ) −1(k1 . . . k −1)

−
−1∑

=1
−1(k1 . . . k + k . . . k −1) ( ≥ 2)(3.6)

respectively. In the case = 0 we set0 = 0 = 1.
The following lemma easily follows from Lemmas 7 and 15 in Section 4.

Lemma 4. The elements (k1 . . . k ) and (k1 . . . k ) are symmetric in
the variablesk1 . . . k .

For the study ofIH( ) we need the following two lemmas, the proofs of which
will be given in Section 5. Let<> denote the projection from

(L)0 = (H)⊕
⊕

≥1

(N−)−2 (H) (N+)2

to (H). For ≥ 1 andk = ( ), m = ( ) ∈ Z2 (1≤ ≤ ), set

(k1 . . . k ; m1 . . . m ) = 〈 k1 · · · k m · · · m1〉

For a nonnegative integer let denote the left ideal of (H) genereted by the ele-
ment − . Since − commutes with (H), is an ideal.

Lemma 5. For nonnegative integers and, the following hold in the quotient
algebra (H)/ + :

(k1 . . . k ; m1 . . . m )

=
∑

σ∈S

∑

⊔ ={1 ... }

P
α=1 σ( α) α +

P
β=1 σ( β ) β
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× (kσ( 1) + m 1 . . . kσ( ) + m ) (kσ( 1) + m 1 . . . kσ( ) + m )

Here = { 1 . . . }, 1 < · · · < and = { 1 . . . }, 1 < · · · < in the
summand.

Lemma 6. For ( ) ∈ IH( ),

+1(k1 . . . k +1) = 0 and +1(k1 . . . k +1) = 0

for any k ∈ Z2 (∀ ).

Admitting the above two lemmas for a while, we can prove the following propo-
sition.

Proposition 2. An irreducible highest weightL module with highest weight
vector is integrable if and only if there exist nonnegative integers and such that

= ( + ) and

+1(k1 . . . k +1) = 0 and +1(k1 . . . k +1) = 0

for any k ∈ Z2 (∀ ).

Proof. If is integrable, then ( )∈ IH( ) for some nonnegative integers
and by Lemma 2. Hence the ‘only if ’ part follows from Lemma 6. Conversely if
the conditions in the proposition hold, then

(k1 . . . k ) = 0 and ′(k1 . . . k ′) = 0

for ≥ + 1, ′ ≥ + 1 andk ∈ Z2 (∀ ) by the recurrence relations (3.4) and (3.6).
Hence, by Lemma 5,

+ +1(k1 . . . k + +1; m1 . . . m + +1) = 0

for any k , m ∈ Z2 (∀ ). Therefore the ‘if’ part follows from part (2) of Lemma 1.

For nonnegative integers and , letA and B be the left ideals ofA and
B generated by the elements +1(k1 . . . k +1) (k ∈ Z2, ∀ ) and the elements

+1(k1 . . . k +1) (k ∈ Z2, ∀ ), respectively. Let further be the left ideal of (H)
generated byA, B and + .

Proposition 3. (1) The left ideals A, B and are ideals ofA, B and (H),
respectively.



304 K. M IKI

(2) SetA = A/ A, B = B/ B and (H) = (H)/ . Then the mapA ⊗ B →
(H) (¯⊗ ¯ 7→ ) is an isomorphism ofC algebras wherē denotes the image of
in A for ∈ A, and ¯ and are defined similarly.

The proof of this proposition will be given in Section 4.4.

Proposition 4. Suppose that ∈ W . Then the irreducible highest weightL
module ( ) is integrable if and only if there exist nonnegative integers and such
that the (H) module structure on induces a(H) module structure on .

Proof. Let be a highest weight vector of ( ). Then, by Proposition 3 (1),
annihilates ≃ (H) if and only if = 0. Hence we get the claim by

Proposition 2.

By Propositions 1, 3 and 4, the classification of integrable irreducible highest
weight L modules is reduced to that ofH modules inW , the (H) module struc-
tures on which induce (H) (≃ A ⊗ B ) module structures for some nonnegative
integers and . The answer for the latter problem is given in the following theorem.

For ∈ C× let 1( ) denote theH moduleC[ ±1] on whichH acts as

( ) = ( ) = 0 = 1

and let 2( ) signify theH moduleC[ ±1] on whichH acts as

( ) = 0 ( ) = − = 1

For ∈ C× and a partitionλ set

λ( ) =
λ

( )⊗ ( = 1 2)

where =|λ|. For a nonnegative integer , partitionsλ1 . . . λ and nonzero complex
numbers 1 . . . such that / /∈ Z ( 6= ), set

λ1 ... λ ( 1 . . . ) = λ1
( 1)⊗ · · · ⊗ λ ( ) ( = 1 2)

where in the case = 0 the right hand side should be understood as the trivial H
moduleC.

Theorem 2. (1) Let and be nonnegative integers. AnH module is in
W and the (H) module structure on it induces a (H) module structure if and
only if it is isomorphic to one of the 1

λ1 ... λ ( 1 . . . )⊗ 2
µ1 ... µ ( 1 . . . ) with∑ |λ | = and

∑ |µ | = .
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(2) TheH modules

1
λ1 ... λ ( 1 . . . )⊗ 2

µ1 ... µ ( 1 . . . ) and
1
λ′

1 ... λ′ ( ′
1 . . . ′ )⊗ 2

µ′
1 ... µ′ ( ′

1 . . . ′ )

are isomorphic if and only if ′ = , ′ = and there existσ ∈ S and τ ∈ S such
that

λ′σ( ) = λ ′
σ( )/ ∈ Z µ′

τ ( ) = µ ′
τ ( )/ ∈ Z

for 1≤ ≤ and 1≤ ≤ .

The proof of this theorem will be given in Section 4.5.
Now we can give the

Proof of Theorem 1. Set = 1
λ1 ... λ ( 1 . . . )⊗ 2

µ1 ... µ ( 1 . . . ). Then
we can and do identify with + as H modules and ∈ W by Theorem 2.
Let us denote the submodule of generated by+ by ′. By considering theL
module homomorphism ( ) = (L)⊗ ( +) → ( ⊗ 7→ ), we find that ′ is
isomorphic to a quotient of ( ). Therefore′ has a unique maximal submodule
and ′/ ≃ ( ). So the claim follows from Propositions 1 and 4 and Theorem2.

4. Proofs of Proposition 3 and Theorem 2

In this section we shall prove Proposition 3 and Theorem 2.

4.1. The algebraAr .

Lemma 7. (1) The (k1 . . . k ) are symmetric in the variablesk1 . . . k .
(2) The (k1 . . . k ) satisfy the following:

(k1 . . . k ) = −1(k1 . . . k −1) 1(k )(i)

−
−1∑

=1
−1(k1 . . . k + k . . . k −1)

(k1 . . . k −1 0) =( + 1− ) −1(k1 . . . k −1)(ii)

Proof. (1) We show the claim by induction on . Suppose that the
(k1 . . . k ) are symmetric for < . Then by the definition (k1 . . . k )

is symmetric in the variablesk1 . . . k −1. So it is sufficient to show that it is also
symmetic in the variablesk −1 and k . Substituting (3.4) for = − 1 into the right
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hand side of (3.4) for = , we get

(k1 . . . k −2 k −1 k )− (k1 . . . k −2 k k −1)

= [ 1(k ) 1(k −1)] −2(k1 . . . k −2)

−
(

−1 − −1
)( −2∑

=1

( −1+ )
−2(k1 . . . k + k −1 + k . . . k −2)

+ −1(k1 . . . k −2 k −1 + k )

)

= 0

This completes the proof.
(2) Part (ii) is immediate from (3.4) We shall show (i). Let usdenote (k1 . . . k )
defined by (3.3) and the recurrence relation in part (i) (instead of (3.4)) by

′ (k1 . . . k ). Suppose that ′ (k1 . . . k ) = (k1 . . . k ) for < . Since
(k1 . . . k ) is symmetric in the variablesk1 . . . k by part (1), the following

holds:

(k1 . . . k ) = 1(k1) −1(k2 . . . k )− 1
−1(k2 . . . k −1 k1 + k )

−
−1∑

=2

1
−1(k2 . . . k + k1 . . . k )

We rewrite the right hand side of the above equality by substituting the relation in (i)
for = − 1 into the first term and the summand of the last sum. By rewriting
the right hand side of (i) for = by making use of (3.4) similarly, we find that

′ (k1 . . . k ) = (k1 . . . k ).

Recall that for a nonnegative integer A is the left ideal ofA generated by the
elements +1(k1 . . . k +1) (k ∈ Z2, ∀ ). Fix a total order� on Z2.

Proposition 5. (1) The left ideal A is an ideal ofA.
(2) SetA = A/ A and let − : A → A be the canonical map. For ≥ 1 the C
algebra homomorphismφ : A → C⊗ defined by

φ (¯( )) =
∑

=1

1⊗ −1 ⊗ ⊗ 1⊗ −

is injective.
(3) A0 ≃ C (¯( )↔ 0) andA =

⊕
k1�···�k C ¯ (k1 . . . k ) for ≥ 1.

Proof. From (3.4) and part (i) of Lemma 7 (2) we get

−1(k1 . . . k −1) 1(k )
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= 1(k ) −1(k1 . . . k −1)

+
−1∑

=1

( − ) −1(k1 . . . k + k . . . k −1)

SinceA is generated by the 1(k), part (1) follows from the above equality for =
+ 2.

Next we show the case ≥ 1 of parts (2) and (3), the proof of the case = 0
being similar. Let

=
∑

k1�···�k

C ¯ (k1 . . . k ) ⊂ A

By part (ii) of Lemma 7 (2), (0 . . . 0) = ! . So 1̄ ∈ . Hence, to prove thatA =
, it is sufficient to show that is preserved by left multiplication by the ¯(k). Since
(k1 . . . k ) is symmetric in the variablesk1 . . . k by Lemma 7 (1), this can be

checked, using (3.4) and the fact̄+1(k1 . . . k +1) = 0.
Let φ : A → C⊗ be the C algebra homomorphism determined byφ( ( )) =∑

=1 where = 1⊗ −1 ⊗ ⊗ 1⊗ − and is defined similarly. Then since

φ( (k1 . . . k )) =





∑
1≤ 1 ... ≤

1 ... distinct

∏
=1 if ≤

0 if >

this induces aC algebra homomorphismφ : A → C⊗ . Let k = for k = ( ) ∈
Z2. Then

φ
(

¯ (k1 . . . k )
)

=
∑

σ∈S

kσ(1) ⊗ · · · ⊗ kσ( )

Since the vectorsk form a basis ofC , we can see that the vectorsφ ( ¯ (k1 . . . k ))
(k1 � · · · � k ) are linearly independent. This proves that the sum on the right hand
side of is direct and thatφ is injective.

Corollary 1. In A the following hold:

¯A = 0 for | | > and ¯A ¯A − = ¯A − for 0≤ ≤

Proof. The claim follows from the following equality.

φ
(

¯±
A( )

)
=
∏

=1

(
1− ±1 )

Compare this corollary with Lemma 3.
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REMARK 2. An A module is anA (or H1) module which the elements

+1(k1 . . . k ) annihilate.

Letting 1 = (0 1), set

± =





(−1) (±1 ... ±1)
! if > 0

1 if = 0

Note that is independent of .

Lemma 8. In A the following hold.

(−1) −1 (±1 . . . ±1 k)
( − 1)!

=
−1∑

=0
1(k ± 1) ±( −1− ) for ≥ 0 and ≥ 1(1)

= A for any(2)

Proof. (1) The assertion can be easily proven by induction on, using (3.4) and
Lemma 7 (1).
(2) Letting k = ±1 in (1), we get

± = −
∑

=1

(0 ± ) ±( − )

for any ≥ 1. This can be rewritten as

∑

≥0

± = −
(∑

≥1

(0 ± )
)(∑

≥0

±

)

Noting that the and the (0 ) are elements of the commutative algebra (H′), we
find that

∑

≥0

± = exp

(
−
∑

≥1

(0 ± )
)

REMARK 3. Noting Lemma 5, we can see that Lemma 8 was essentially proved
for one variable loop algebras in [9] and [18].

Lemma 9. In A the following hold.

¯ (k1 . . . k ) = 0 for ≥ + 1(1)

∑

=0

¯ (k1 . . . k −1 k ± 1) ¯
±( − ) = 0 for ≥ 1(2)
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Proof. (1) Follows from the fact̄ +1(k1 . . . k +1) = 0 and (3.4).
(2) From Lemma 8 (1) for = + 1 and part (1), we get

∑

=0

¯
1(k ± 1) ¯±( − ) = 0

Hence the claim is proved by induction on , using part (i) of Lemma 7 (2).

Lemma 10. Let : A → A ⊗ A be the C algebra homomorphism defined by
(k) 7→ (k)⊗ 1 + 1⊗ (k). Then with the notation ofLemma 5

(
+ (k1 . . . k )

)
=

∑

⊔ ={1 ... }

(k 1 . . . k )⊗ (k 1 . . . k )

for any nonnegative integers and .

Proof. The claim is proved by induction on .

Corollary 2. Let and be anA module and anA module, respectively.
Then ⊗ is endowed with aA + module structure via .

Proof. By Remark 2 it is sufficient to show that the elements
( +

+ +1(k1 . . . k + +1)) annihilate ⊗ . This can be easily checked, using
the lemma and part (1) of Lemma 9.

REMARK 4. ⊗ in Corollary 2 is nothing but the tensor product module if
regarded as anH1 module.

4.2. Ar modules. In this subsection, we studyA modules andA modules. We
shall endow the tensor product ofA modules with anA module structure via and
consider the tensor product ofA modules ( ≥ 0) as in Corollary 2. By Proposi-
tion 5 (3),A0 ≃ C. So anA0 module is nothing but aC vector space. Therefore we
assume that ≥ 1 until just before Theorem 3. In the following, for∈ A we shall
denote the image of inA simply by .

SetH′
1 =
⊕

6= 0 C (0 ). We call anA (or A ) module a weight module if the
following holds:

=
⊕

∈(H′
1)∗

= { ∈ | = ( ) for any ∈ H′
1}

We shall call the above decomposition a weight space decomposition and a nonzero
vector in each weight space a weight vector.

For a finite sequence = (1 . . . ) of nonzero complex numbers, define ∈
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(H′
1)

∗ by

( (0 )) =
∑

=1

( 6= 0)

In the following we need the following simple fact.

Lemma 11. = ′ if and only if coincides with ′ as sets with repetitions
allowed.

For a = ( 1 . . . ) ∈ (C×) let (a) be the left ideal ofA generated by the
elements (0 )− (a) ( 6= 0) where (a) =

∑
=1 . Set (a) = A / (a).

Proposition 6. Suppose that is anA module generated by a weight vector .
Then
(1) is isomorphic to a quotient of (a) for somea ∈ (C×) .
(2) If is further irreducible, then is isomorphic to a quotient of (a) for some
a ∈ (C×) such that the are distinct.

To prove this proposition, we need the following lemma.

Lemma 12. Let a = ( 1 . . . ) ∈ (C×) and set

(a) = ( (a) )1≤ ≤ =




0 0 · · · 0 0 (−1) −1 (a)
1 0 · · · 0 0 (−1) −2

−1(a)
0 1 · · · 0 0 (−1) −3

−2(a)
· · · · · · · · · ·
0 0 · · · 1 0 − 2(a)
0 0 · · · 0 1 1(a)




where (a) is the -th elementary symmetric polynomial in the variables1 . . . .
Suppose that is a vector in anA module satisfying (0 ) = (a) for any 6= 0.
Then the following hold for1≤ ≤ , , ∈ Z and ≥ 1:

(k1 . . . k −1 ( + )) =
∑

=1

(k1 . . . k −1 ( )) ( (a) )

Proof. Fixing ,k (1≤ ≤ − 1) and , set

= (k1 . . . k −1 ( ))

By Lemma 8 (2)

= (−1) (a)
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for ≥ 0. Hence Lemma 9 (2) gives

+ =
∑

=1

+ −1 (a)

for any integer . From this we obtain

( +1 . . . + ) = ( 1 . . . ) (a)

for any intger . The claim follows from this.

Proof of Proposition 6. (1) By Corollary 1

∑

≥0

A ± =
∏

=1

(1− ±1 )

for some nonzero complex numbers1 . . . . This implies (0 ) = (a) for 6= 0
with a = ( 1 . . . ). This proves the claim.
(2) For a = ( 1 . . . ) let (a) denote the number of pairs ( ) such that< and

= . We shall prove the claim by showing that if is isomorphic toa quotient of
(a) with (a) > 0, then is isomorphic to a quotient of (b) with (b) < (a)

(♯).
Noting ( σ(1) . . . σ( )) = (a) for any σ ∈ S , assume that

a = (
1︷ ︸︸ ︷

α1 . . . α1 . . .
︷ ︸︸ ︷
α . . . α . . .

︷ ︸︸ ︷
α . . . α )

where theα are distinct and 0 > 1 for some 0. Noting that the characteristic poly-
nomial of the matrix (a) is

∏
1≤ ≤ ( −α ) , let denote the generalized eigenspace

of (a) corresponding to the eigenvalueα 0, i.e.,

(4.1) ={ ∈ C | ( (a)− α 0) 0 = 0}

Let ∈ be the image of 1+ (a) under the canonical homomorphism (a)→ .
Then 6= 0. Setting ( ) = ( ) , let

( ) = spanC

{
∑

=1

( )
∣∣∣ = ( 1 . . . ) ∈

}

for ∈ Z. For a while admitting that there exists a nonzero integer such that ( ) 6=
0 and 6= α /α for 1≤ ≤ , we shall prove (♯). By the relations among the (k)
and Lemma 12 we get

( (0 )− (a)) ( ) = ( − 1) ( + ) = ( − 1)
∑

=1

( ) ( (a) )
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for 1 ≤ ≤ and 6= 0. Hence (0 )− (a) preserves ( ). Set = ( (0 )−
(a)) | ( ) /( − 1) for 6= 0. Then ( − α

0
) 0 = 0 by (4.1). Noting this and the

fact that the commute with each other, we can see that there exists 0 6= ∈ ( )
such that =α

0
for any 6= 0. This implies that (0 ) = (b) for 6= 0

where b is the sequence obtained froma by replacing oneα 0 by α 0. Since is
irreducible, this proves (♯).

Now we shall show the fact assumed above. Leta′ denote the sequence obtained
from a by deleting all theα 0 ’s and set = − 0. Letting

= ( )1≤ ≤ = (

0−1
︷ ︸︸ ︷
0 . . . 0 (−1) (a′) . . . 2(a′) − 1(a′) 1) ∈ C

set

γ( ) =
∑

=1

( )

Then after a little calculation we find that∈ and that

[γ( ) γ(− )] = φ( )

whereφ( ) is a nonzero Laurent polynomial in depending ona. (Explicitly φ( ) =

0α
2 0

0
(1)( (1/ ) − ( )) with ( ) = 0

∏
6= 0

( α 0 − α ) .) Noting γ(± ) ∈
(± ), we can see from this thatφ( ) = 0 if (± ) = 0. Therefore ( ) 6= 0

for an infinite number of . This completes the proof.

For ∈ C× let ( ) = C[ ±1] be theA module on which (k) acts as

( ) =

As is easily shown, theA module structure on ( ) induces anA1 module structure.
For a = ( 1 . . . ) ∈ (C×) set (a) = ( 1)⊗ · · · ⊗ ( ). By Corollary 2 we can
regard (a) as anA module. We shall identify (a) with C[ ±1

1 . . . ±1] via the
correspondence 1⊗ −1 ⊗ ⊗ 1⊗ − ↔ .

Proposition 7. If the nonzero complex numbers are distinct, then (a) ≃
(a).

Proof. Let = 1 + (a) ∈ (a). Clearly there exists a homomorphism
ϕ : (a) → (a) determined byϕ( ) = 1. We shall show that this map is an iso-
morphism.

Set

(k1 . . . k ) = (k1 . . . k )
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Then by Proposition 5 (3) and Lemma 12

(4.2) (a) =
∑

1 ... ∈Z
1≤ 1 ... ≤

C (k1 . . . k )

where k = ( ). Rewriting (k1 . . . k ) (0 ) by making use of part (i) of
Lemma 7 (2), Lemma 9 (1) and Lemma 12, we obtain

(a) (k1 . . . k ) =
∑

=1

(k1 . . . k + 1 . . . k )(4.3)

=
∑

=1

∑

=1

(k1 . . . ( ) . . . k )( (a) )

for 6= 0 and 1≤ 1 . . . ≤ . Let be the inverse of the matrix ( )1≤ ≤ so that

−1 (a) = diag( 1 . . . )

For 1≤ 1 . . . ≤ set

(k1 . . . k ) =
∑

1≤ ′
1 ... ′≤

(k′
1 . . . k′ ) ′

1 1 · · · ′

wherek′ = ( ′). Then from (4.3) we get

(
(a)−

∑

=1

)
(k1 . . . k ) = 0 for any 6= 0

for 1≤ 1 . . . ≤ . Since the are distinct, this implies

(k1 . . . k ) = 0 unless{ 1 . . . } = {1 2 . . . }

So from (4.2) we obtain

(a) =
∑

1 ... ∈Z

C
(
( 1 1) ( 2 2) . . . ( )

)

Now it is sufficient to show that the vectorsϕ( (( 1 1) ( 2 2) . . . ( )))
( ∈ Z, ∀ ) form a basis of (a). Using Lemma 9 (1) and Lemma 10, we find that

ϕ( (k1 . . . k )) =
∑

σ∈S

1
1(kσ(1))1⊗ · · · ⊗ 1

1(kσ( ))1

=
∑

σ∈S

∏

=1
σ( ) σ( )
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Hence we getϕ( (( 1 1) ( 2 2) . . . ( ))) = 1
1 · · · . This completes the proof.

Now we summarize the well known results on the representations of the general
linear group. See, for example, [19].

Lemma 13. Let = C for ≥ 1 and set = ⊗| | for a Young
tableau .
(1) If the depth of ≤ , then is an irreducible ( ) (and ( )) module and
if the depth of > , then = 0.
(2) ≃ ′ if and only if and ′ are of the same shape.
(3) Let = diag( 1 . . . ) ∈ ( ) and of shapeλ and depth≤ . Then

tr = λ( 1 . . . )

where λ( 1 . . . ) is the Schur symmetric polynomial corresponding to the parti-
tion λ.
(4) The ( ) module ⊗ admits an irreducible decomposition

⊗ =
⊕

where the sum is taken over standard tableaux with boxes and depth≤ .

For a positive integer and a subset ofZ let ( ) be the set of nonincreasing
sequences of elements of . For

m = (
1︷ ︸︸ ︷

1 . . . 1 . . .
︷ ︸︸ ︷

. . . ) ∈ ( ) ( 1 > · · · > )

we let (m) signify a partition of obtained by reordering (1 . . . ). For a Young
tableau we denote the shape of by ( ). Let theλµ be the Kostka numbers
and let λ( 1 . . . ) denote the monomial symmetric polynomial corresponding to
the partitionλ. Part (3) of Lemma 13 implies the following corollary.

Corollary 3. Let 1 . . . be the canonical basis of = C . For a Young
tableau with boxes and depth≤ and m ∈ ({1 2 . . . }) set

m = ∩




∑

( 1 ... )∈S m

C 1 ⊗ · · · ⊗




Then

=
⊕

m∈ ({1 2 ... })

m and dim m = ( ) (m)
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Proof. The first claim is immediate. For a partitionλ such that (λ) ≤

λ( 1 . . . ) =
∑

µ

λµ µ( 1 . . . )

and for a partitionµ of such that (µ) ≤

µ( 1 . . . ) =
∑

m=( 1 ... )∈ ({1 2 ... })
(m)=µ

1 · · ·

Therefore we find by the first claim and part (3) of Lemma 13 that

∑
dim m 1 · · · =

∑
( ) (m) 1 · · ·

where the sums are taken overm = ( 1 . . . ) ∈ ({1 2 . . . }). The second
claim follows from this.

For a Young tableau and a nonzero complex number , set ( ) =
( . . . ) where =| |. For a positive integer , letST denote the set of stan-

dard tableaux with boxes.

Proposition 8. (1) ( ) is an irreducibleA module.
(2) For a tableau with boxes andm ∈ (Z) set

m( ) = ( ) ∩
(
∑

k∈S m

C k

)

where k = 1
1 · · · for k = ( 1 . . . ). Then

( ) =
⊕

m∈ (Z)

m( )

is a weight space decomposition and the dimension of each weight space is given by

dim m( ) = ( ) (m)

(3) ( )≃ ′ ( ) if and only if ( ) = ( ′) and / ∈ Z .
(4) TheA module ( . . . ) has an irreducible decomposition

( . . . ) =
⊕

∈ST

( )

Proof. (1) Set =| |. Since the action ofA on ( . . . ) commutes with
that of S , ( ) is anA submodule. Regard theA module ( ) as anH1 module



316 K. M IKI

naturally and letρ : H1→ End( ( )) denotes the action ofH1. Set =
⊕

=− C ⊂
( ) for ≥ 0. Then for each there exists a subspace ofH1 such that

ρ( ) ⊂ and ρ( )| = End (*). Let (6= 0), ∈ ( ). Then , ∈ ⊗

for some . Set = ⊗ . Since 2 is a nonzero scalar multiple of (See, for
example, [19]), we find that ∈ . This implies, by Lemma 13 (1), that 2 + 1
is greater than the depth of and that is an irreducible ( ) module. There-
fore, noting that ( . . . ) is the tensor product module ( )⊗ as anH1 module,
we find by (*) that there exists ∈ A such that = . This proves the irreducibility
of ( ).
(2) By Lemma 11 ( . . . ) =

⊕
m∈ (Z)(

∑
k∈S m C k) is a weight space decom-

position. The first claim follows from this. We shall show thesecond claim. Suppose
that m = ( 1 . . . ) and ≥ 1 ≥ · · · ≥ ≥ − for some nonnegative integer .
Then with the notation of part (1) m( ) = ∩

(∑
k∈S m C k

)
. So we are done

by Corollaryd 3.
(3) Let and denote the numbers of boxes in and′, respectively. Suppose that

( ) =
⊕

m( ) and ′ ( ) =
⊕

′ n( ) are isomorphic. Then by considering the
action of (0 ) we find that

∑

=1

=
∑

=1

for any 6= 0

for some m = ( 1 . . . ) and n = ( 1 . . . ). From this we get = and =
for some integer by Lemma 11. Moreover we can see that any isomorphism

( ) → ′ ( ) maps m( ) onto ′ m′ ( ) with m′ = ( 1 − . . . − ). By
comparing the dimensions of these subspaces, we find by part (2) that

( ) (m) = ( ′) (m)

for any m ∈ (Z). This implies ( )( 1 . . . ) = ( ′)( 1 . . . ) for any ≥
max{depth of , depth of ′} and, hence, ( ) = (′).

Conversely suppose that ( ) = (′) and = for some integer . Then
there existsσ ∈ S such thatσ( ) = ′ and the map 7→ σ( )( 1 · · · )− is an
isomorphism ( )→ ′( ).
(4) Since ( )∩ ⊗ = ⊗ with the notation of part (1), we get by parts (1)
and (4) of Lemma 13 for = that

⊗ =
⊕

∈ST

( ) ∩ ⊗

for any ≥ 0. From this, we obtain the claim.

Proposition 9. Let 1 . . . be nonzero complex numbers such that/ /∈
Z .



INTEGRABLE MODULES FOR 2(C [ ±1 ±1]) 317

(1) For tableaux 1 . . . , 1( 1)⊗ · · · ⊗ ( ) is an irreducibleA module.
(2) Let 1( 1)⊗ · · · ⊗ ( ) and ′

1
( 1)⊗ · · · ⊗ ′ ( ) beA modules as in(1).

Then they are isomorphic if and only if = and there existsσ ∈ S such that

( ′
σ( )) = ( ) and σ( )/ ∈ Z for 1≤ ≤

(3) Letting 1 . . . be positive integers, set

= 1+···+ (
1︷ ︸︸ ︷

1 . . . 1

2︷ ︸︸ ︷
2 . . . 2 . . .

︷ ︸︸ ︷
. . . )

TheA module admits an irreducible decomposition

=
⊕

( 1 ... )∈ST 1×···×ST

1( 1)⊗ · · · ⊗ ( )

To prove this proposition, we need the following lemma, which is a special case
of [20, Chap. 8, Sect. 7, Theorem 2].

Lemma 14. Let and beC algebras. Suppose that and are an irre-
ducible module and an irreducible module such thatEnd ≃ C and End ≃
C, respectively. Then ⊗ is an irreducible ⊗ module.

Proof of Proposition 9. (1) For 1≤ ≤ , letting = ( ) and m =

m( ), set = 1 ⊗ · · · ⊗ and m1 ... m = 1 m1 ⊗ · · · ⊗ m . Then by
Lemma 11

=
⊕

(m1 ... m )∈ 1 (Z)×···× (Z)

m1 ... m

is a weight space decomposition since/ /∈ Z ( 6= ). Any element of EndA
preserves each weight spacem1 ... m and one of these subspaces is nonzero and fi-
nite dimensional. Therefore if we prove that is irreducible, we get EndA ≃ C.
The same argument shows that EndA ≃ C (1≤ ≤ ).

Now we show the irreducibility of by induction on . Suppose that the claim is
proved up to − 1. Then, by the discussion in the previous paragraph and Lemma 14,
the A ⊗ A module −1 ⊗ is irreducible. Therefore, to prove the irreducibility of

, we have only to show that any submodule of theA module is a submodule
even if we regard as anA ⊗ A module via = −1 ⊗ . Since is a weight
module, admits a weight space decomposition

=
⊕

(m1 ... m )∈ 1 (Z)×···× (Z)

m1 ... m
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where m1 ... m = ∩ ( −1 m1 ... m −1 ⊗ m ). For a sequence of integersm let m
denote the sequence obtained fromm by ordering the entries in nonincreasing order.
Set m = ( 1 . . . ). Since ( ( )⊗ 1) m1 ... m ⊂ −1 ⊗ m and

(1⊗ ( )) m1 ... m ⊂
∑

=1

−1 ⊗ ( 1 ... + ... )

we can see that both ( )⊗ 1 and 1⊗ ( ) map m1 ... m to for 6= 0. This
implies (A⊗A) ⊂ sinceA is generated by the elements ( ) (6= 0).
(2) The ‘if ’ part follows from part (3) of Proposition 8. We shall show the ‘only if ’
part. Let and be the numbers of boxes of and′, respectively. By considering
the action of (0 ) on both modules, we find as in the proof of Proposition 8 (3) that

= and there existsσ ∈ S such that

σ( ) = and σ( )/ ∈ Z

for 1≤ ≤ . Further we can see that

( 1) (m1) · · · ( ) (m ) = ( ′
σ(1)) (m1) · · · ( ′

σ( )) (m )

for any (m1 . . . m ) ∈ 1(Z) × · · · × (Z). This implies ( ′
σ( )) = ( ) for 1 ≤

≤ .
(3) Since = 1( 1 . . . 1) ⊗ · · · ⊗ ( . . . ), we get the direct sum decom-
position in the proposition by Proposition 8 (4). So part (1)proves the claim.

Corollary 4 (of the proof). If / /∈ Z for any 6= , then 1( 1) ⊗ · · · ⊗
( ) is a weight module and satisfies

EndA( 1( 1)⊗ · · · ⊗ ( )) ≃ C

Recalling that λ is a fixed tableau of shapeλ, set λ( ) =
λ
( ).

Theorem 3. (1) An A0 module is irreducible if and only if ≃ C on
which (k) acts as0.
(2) Suppose that ≥ 1. Then is an irreducibleA module generated by a
weight vector if and only if there exist a positive integer, nonzero complex numbers

1 . . . such that / /∈ Z for any 6= and partitionsλ1 . . . λ such that
|λ1| + · · · + |λ | = for which

≃ λ1( 1)⊗ · · · ⊗ λ ( )

(3) Let λ1( 1) ⊗ · · · ⊗ λ ( ) and µ1( 1) ⊗ · · · ⊗ µ ( ) be A modules as in
part (2). Then these two modules are isomorphic if and only if= and there exists
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σ ∈ S such that

µσ( ) = λ and σ( )/ ∈ Z for 1≤ ≤

Proof. (1) Follows from the discussion at the beginning of this subsection.
(2) Suppose that is an irreducibleA module generated by a weight vector. Then,
by Propositions 6 and 7, we find that is isomorphic to a quotient of (a) for
some a = ( 1 . . . ) ∈ (C×) . For ( 1 . . . ) ∈ Z and σ ∈ S the map

(a) → ( σ(1)
1 . . . σ( ) ) ( 7→ σ−1( ) − 1

1 · · · − ) is an isomorphism

of A modules. Therefore we can assume thata = (
1︷ ︸︸ ︷

α1 . . . α1 . . .
︷ ︸︸ ︷
α . . . α ) with

α /α /∈ Z ( 6= ). Hence we find by Propositions 9 that is isomorphic to one of
the A modules in the theorem. Since these modules satisfy the condition for by
Proposition 9 and Corollary 4, we are done.
(3) Follows from Proposition 9 (2).

REMARK 5. Since λλ = 1, the above theorem and Proposition 8 (2) imply that
in the case ≥ 1 any irreducibleA module generated by a weight vector is infinite
dimensional.

4.3. The algebraBr and Br modules. The following lemma is immediate.

Lemma 15. (1) There exist aC algebra isomorphismψ : A → B determined by

ψ( (k)) = − (k′)

wherek = ( ) 6= 0 and k′ = (− ).
(2) This isomorphism satisfies

ψ( (k1 . . . k )) = −
P

(k′
1 . . . k′ )

for ≥ 0 and ≥ 1 and induces an isomorphismψ : A → B .
(3) ψ( (0 )) = (0 ) for 6= 0 and ψ( A ) = B for any .

By this lemma we can see that any irreducibleB module generated by a nonzero
vector such that (0 ) ∈ C ( 6= 0) is obtained by regarding an irreducible
A module generated by a weight vector as anB module via the isomorphism
(ψ )−1 : B → A . Therefore we can obtain the necessary results for the algebra B
andB modules from the results in the previous two subsections.

4.4. Proof of Proposition 3. Set C = (H0). SinceH = H0 ⊕ H1 ⊕ H2 and
[H H ] = 0 if 6= , the mapC⊗A⊗B → (H) ( ⊗ ⊗ 7→ ) is an isomorphism
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of C algebras. If we identify (H) with C ⊗ A⊗ B via this isomorphism, then

= +
C ⊗A⊗ B + C ⊗ A ⊗ B + C ⊗ A⊗ B

where +
C is the ideal ofC generated by the element− − . By Proposition 5 and

Lemma 15, A and B are ideals ofA and B, respectively. Therefore is an ideal
of (H) and

(H) ≃ C/ +
C ⊗A ⊗ B

as C algebras. SinceC/ +
C ≃ C, we are done.

4.5. Proof of Theorem 2. In this proof, we write A(a), A(a), A(a) and
A( ) for (a), (a), (a) and ( ), respectively. SetB(a) = ψ( A(a)) and

B(a) = B / B(a). TheB module B(a) is isomorphic to A(a) considered as aB
module via (ψ )−1. We denote A(a) and A( ) regarded asB modules viaψ−1 by

B(a) and B( ), respectively.
By part (2) of Proposition 3 we can identifyA ⊗B modules withH modules the

(H) module structures of which induce (H) module structures. Under this iden-
tification anA ⊗ B module is endowed with anH module structure via the com-
posite mapH → (H) → (H) ≃ A ⊗ B ( 7→ + , (k) 7→ (k) ⊗ 1,
(k) 7→ 1⊗ (k)) where the second map is the quotient map. For a nonnegativeinte-

ger , tableaux 1 . . . , nonzero complex numbers1 . . . such that / /∈ Z

( 6= ) and =A, B, set

1 ... ( 1 . . . ) =
1
( 1)⊗ · · · ⊗ ( )

where the right hand side should be understood asC on which (k) or (k) acts as 0
in the case = 0. Suppose that

∑ |λ | = and
∑ |µ | = . Then theA ⊗ B module

(♮) A
λ1 ... λ

( 1 . . . )⊗ B
µ1 ... µ

( 1 . . . )

is identified with theH module 1
λ1 ... λ ( 1 . . . ) ⊗ 2

µ1 ... µ ( 1 . . . ) in the
theorem. Therefore it is sufficient to show, for the proof of part (1) of the theorem,
that is an irreducibleA ⊗ B module generated by a nonzero vector such that
(0 ) ∈ C and (0 ) ∈ C for any 6= 0 (where we identifyA and B with

subalgebras ofA ⊗B naturally) if and only if it is isomorphic to anA ⊗B module
of the form (♮) and, for the proof of part (2), that theA ⊗ B module (♮) and the
A ′ ⊗ B ′

module (♮′) are isomorphic asH modules if and only if the conditions in
part (2) of the theorem hold. Here (♮′) stands for (♮) with , the λ , etc., replaced by
′, the λ′, etc.

First we show part (1). Suppose that is an irreducibleA ⊗B module satisfying
the above condition. Then as in the proof of Proposition 6 (1), by Corollary 1 and
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Lemma 15, we find that there exista = ( 1 . . . ) ∈ (C×) and b = ( 1 . . . ) ∈
(C×) such that (0 ) = (a) and (0 ) = (b) for 6= 0. Using the argument
in the proof of Proposition 6 (2), we can assume that the and the are distinct,
respectively. SinceA(a)⊗B +A ⊗ B(b) annihilates , is a quotient of A(a)⊗

B(b), which is isomorphic to A(a) ⊗ B(b) by Proposition 7 and its counterpart
for B . So, by using the argument in the proof of Theorem 3, we find that is a
quotient of

⊕
A
1 ... (α1 . . . α )⊗ B

′
1 ... ′ (β1 . . . β )

where theα and theβ are some nonzero complex numbers and the sum is taken
over the standard tableaux and′ satisfying

∑ | | = ,
∑ | ′| = and some other

conditions. By Corollary 4, its counterpart forB and Lemma 14, each component of
the above direct sum is irreducible. Therefore we find, by Proposition 9 (3) and its
counterpart forB , that is isomorphic to anA ⊗B module of the form (♮). Since
anyA ⊗ B module of the form (♮) satisfies the condition for , we get part (1).

Next we show part (2). The ‘if ’ part follows from Proposition9 (3) and its coun-
terpart forB . We show the ‘only if ’ part. Suppose that theA ⊗ B module (♮) and
the A ′ ⊗ B ′

module (♮′) are isomorphic asH modules. Then they are isomorphic if
regarded both asA modules and asB modules via the isomorphism (H) ≃ C⊗A⊗B
in the proof of Proposition 3. From the isomorphism asA modules we find that

A
λ1 ... λ

( 1 . . . ) ≃ A
λ′

1 ...
λ′

′

( ′
1 . . . ′

′ ) as A modules. So Proposition 9 (3)

and Remark 5 give the conditions for , theλ and the . The conditions for , the
µ and the are obtained similarly by considering the isomorphism asB modules.

5. Proof of Lemmas 5 and 6

In this section, to complete the proof of Theorem 1, we prove Lemmas 5 and 6.

5.1. Proof of Lemma 5.

Lemma 16. The elements (k1 . . . k ; m1 . . . m ) are determined by the
relations

1(k; m) =

{
(k + m) + (k + m) if k + m 6= 0

if k + m = 0
(5.1)

(k1 . . . k ; m1 . . . m )(5.2)

=
∑

=1

1(k ; m ) −1(k1 . . . k̂ . . . k ; m1 . . . m −1)
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−
∑

<

( + ) −1(k1 . . . k̂ . . . k̂ . . . k k + k + m ; m1 . . . m −1)

( ≥ 2)

where = + + and ˆ denotes omission of variables.

Proof. First note that (k1 . . . k ; m1 . . . m ) is symmetric in the variables
k1 . . . k since [ k k ′ ] = 0. Then the claim follows from multiplying the equality

[ k1 · · · k m ] =
∑

=1

k1 · · · k −1 1(k ; m ) k +1 · · · k

=
∑

=1

1(k ; m ) k1 · · · ˆk · · · k

−
∑

<

( + ) k1 · · · k +k +m · · · ˆk · · · k

by m −1 · · · m1 from the right.

Utilizing the above lemma, we can give the

Proof of Lemma 5. With the notation of the lemma set

(k1 . . . k ; m1 . . . m )

=
∑

⊔ ={1 ... }

(k 1 . . . k ; m 1 . . . m ) (k 1 . . . k ; m 1 . . . m )

where

(k1 . . . k ; m1 . . . m ) =
P

α=1 α α (k1 + m1 . . . k + m )

(k1 . . . k ; m1 . . . m ) =
P

β=1 β β (k1 + m1 . . . k + m )

We shall show that the elements

(k1 . . . k ; m1 . . . m ) :=
∑

σ∈S

(kσ(1) . . . kσ( ); m1 . . . m )

satisfy the recurrence relations (5.1) and (5.2) in the quotient algebra (H)/ + .
Eq. (5.1) can be easily checked, using the definitions (3.3) and (3.5). Utilizing the

recurrence relations (3.4) and (3.6), we find that

(k1 . . . k ; m1 . . . m )
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= 1(k ; m ) −1(k1 . . . k −1; m1 . . . m −1)−
∑

⊔ ={1 ... −1}

×
(∑

α=1
α (k 1 . . . k′

α
. . . k ; m 1 . . . m ) (k 1 . . . k ; m 1 . . . m )

+
∑

β=1
β

(k 1 . . . k ; m 1 . . . m ) (k 1 . . . k′
β
. . . k ; m 1 . . . m )

)

where k′ = k + k + m . By symmetrizing the above equation with respect to the
variablesk1 . . . k , we can verify (5.2).

In the next subsection, we need the following corollary of Lemma 5. For ≥ 1,
k = ( ) ∈ Z2 (1≤ ≤ ) and m = ( ) ∈ Z2, set

(k1 . . . k ; m) =
(k1−m . . . k −m; m . . . m)

!

Corollary 5. Let and be nonnegative integers. With the notation ofLemma 5,
the following hold in (H)/ + :

(k1 . . . k ; m)

=
∑

⊔ ={1 ... }

P
α=1 α +

P
β=1 β (k 1 . . . k ) (k 1 . . . k )

5.2. Proof of Lemma 6.

Lemma 17. For ( ) ∈ IH( ) defineλ±A( ) and λ±B ( ) as in Lemma 2. Let
λA and λB be the coefficient of inλ+

A( ) and λ+
B( ), respectively. Then for any

≥ 1 and anyk ∈ Z2 (1≤ ≤ ), the following hold.
(1) (±1 . . . ±1) and (±1 . . . ±1) are nonzero scalar multiples of .
(2)

∑
=0λA − (k1 . . . k −1 k + 1) = 0

(3)
∑

=0 λB − (k1 . . . k −1 k + 1) = 0

Proof. (1) Suppose that

(5.3) λ±A( ) =
∏

=1

(1− ±1 )

where the are nonzero complex numbers. Then, by Lemma 8 (2),

(±1 . . . ±1)
!

= ( 1 · · · )±1

This proves the claim for . The claim for is proved similarly,using Lemma 15.
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(2) By part (1) and part (2-i) of Lemma 7 it is sufficient to prove the case = 1,
i.e.,

∑

=0

λA − 1( + ) = 0

First we consider the case = 0. Eq. (5.3) and the definition of±
A( ) give

λA = (−1) (a) (0≤ ≤ ) and (0 ) = (a) ( 6= 0)

wherea = ( 1 . . . ). So, recalling the definition of 1(k), we find that

∑

=0

λA − 1(0 + ) = 0

for any integer .
Next we shall show the case6= 0. Set = + . From Lemma 1 and Corollary 5

we get

0 = +1(1 . . . 1 k; m)

=
∑

=0

( )(
+ (1 . . . 1) +1− (1 . . . 1 k)

+ ( − + )
+1− (1 . . . 1 k) (1 . . . 1)

)

for any m = ( ) ∈ Z2. Recalling that is not a root of unity, from the coefficients
of ( + ) in the above equation and part (1) of this lemma, we get

+1(1 . . . 1 k) = 0

This result and Lemma 8 give

∑

=0

λA − 1( + ) = (−1) +1(1 . . . 1 k)
!

= 0

(3) The proof is similar to that of part (2).

Lemma 18. Let k = ( ) ∈ Z2 for any . For ( ) ∈ IH( ) the following
hold.
(1) If > +1 + · · · + +1 + (1≤ ≤ + 1), then +1(k1 . . . k +1) = 0.
(2) If < 0 (1≤ ≤ + 1), then +1(k1 . . . k +1) = 0.

Proof. We shall show (1). The proof of (2) is similar. Let0 = {1 . . . +1} and
= + . Setk = (0 1) for + 2≤ ≤ + 1. From Lemma 1 and Corollary 5, we
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get with the notation of Lemma 5

0 = +1(k1 . . . k +1; m)

=
P

∈ 0 +1(k1 . . . k +1) (1 . . . 1)

+
∑

⊔ ={1 ... +1}
6= 0

P
∈ +

P
∈ (k 1 . . . k ) (k 1 . . . k )

for any m = ( ) ∈ Z2. Hence for the proof of the claim, thanks to Lemma 17 (1), it
is sufficient to show that if is a subset of{1 . . . + 1} and 6= 0, then

∑
∈ 6=∑

∈ 0
. This can be easily checked.

Now we can give the

Proof of Lemma 6. By applying parts (2) and (3) of Lemma 17 repeatedly, we
can see that +1(k1 . . . k +1) and +1(k1 . . . k +1) can be written as a linear
combination of the terms in Lemma 18. This proves the claim.

ACKNOWLEDGEMENT. The author thanks the referee for pointing out the refer-
ences [14–17].

Added in proof. After the acceptance of our paper the preprint [21] came to our
attention. In the paper imaginary Verma modules for a central extension of 2(C ) are
studied. Their quantum torusC is more general than that in our paper.
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