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1. Introduction

Modules for loop algebrag ® C[#%, ..., ] and their universal central exten-
sions have been extensively investigated whegre is a finitgesional simple Lie
algebra. The universal central extensions are affine Liebalgs in the casd =1
and called toroidal Lie algebras in the cage> 1 [1]. Affine Lie algebras and their
g-analogues have been well studied and found applicatiorseveral areas. Compared
with these algebras, the investigations of the representdheory of toroidal Lie al-
gebras are still under way, though much progress was madefenences [1], [2], [3],
[4], to name a few, and thely -analogues were applied in [&], [7] and [8].

Among modules for these Lie algebras we are interested egiiable modules.
In the cased = 1 (with the scaling element), in [9] and [10]educible integrable
modules with finite dimensional weight spaces were classified, when the central
element acts trivially, they were shown to be isomorphicaopl modules of the tensor
product of some modules depending on continuous parametdleeir irreducible sub-
modules. They -analogue of this problem was investigatedLid. [In the casel = 2,
integrable modules were studied in [4] where some of therabelements act non-
trivially. For d > 2 these modules were considered in [3] and references therei

In this paper we consider a loop algebra with the algebra afrdmst polynomi-
als replaced by a quantum torus [12]. For gengric= C* let C,[x*1, y*1] be the
C algebra of the Laurent polynomials in the two variablesy , isBdhg yx = pxy.
We shall denote this algebra Ig},. Let gi>(C,) be the Lie algebra of & 2 matrices
with entries inC, with the usual commutator. We consider the Lie algeldséC,) =
[gl2(C)), gl2(Cp)]. Lie algebras of this kind appeared in the study of someeredked
affin Lie algebras in [13] and when taking tlge =1 limit of theagtum toroidal al-
gebras in [5]. Representations of these Lie algebras wersidered in [14] and those
of their central extensions were studied in [15], [16] and][ih terms of vertex opera-
tors. The main result of this paper is the classification ¢édgnable irreducible highest
weight modules forsi>(Cp). Our line of thought and result are similar to those in [9]
and [10] but more complex.

This paper is organized as follows. In Section 2, after gjvihe necessary defini-
tions, we state our result for the classification of intetgalreducible highest weight
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modules fors/>(C,). The outline of the proof of this is given in Section 3 and the
technical details are proven in Sections 4 and 5.

2. Main result

2.1. The Lie algebrasl,(Cp). Fixing a nonzero complex numbgr  which is
not a root of unity, letC, be theC algebra defined by generatars?!, y*! and rela-
tions

¥ Fl=1, yFLYFr =1 yx = pxy.
We consider the Lie algebrd = si»(C,) := [gl2(C,), gl2(C,)]. Set0 = (0, 0). Fork =
(k,1) €22, m=(m,n) € Z?\ {0} andi =1, 2, define the following elements 6f
ek = E1x'y',  fi = Eaix'y', h=En—E»n (m)=E;x"y"
Then these elements form a basis/Ofand satisfy the relations

e, fn] = { p"ei(k +m) - P ea(k + m) if k+m #0,
p"h if kKt+m=0,

[e, em] = 0 = [fi, fm],

(A, e] = 2ex, [h, fil = —2fc, [h,e(M)]=0,

[e1(K), em] = p"exem,  [€2(K), em] = —p" exsm,

[e1(K), fm] = =p"™ ficem,  [€2(K), fim] = P ficem,

A nlm _ nk € H ]
[ei(k), €;(m)] = {5,,(17 po Jalerm) :]; Eiz z(())

wherek = (k, 1) andm = (m, n).
Set

N-=EPCf. N.=@DCe
2

H=H;, Ho=Ch, Hi=EPCea(m) (=1 2)
i=0 m#0

ThenN,, H; and’H are subalgebras and the Lie algelgtas the direct sum of these
subalgebras:

L:N7®H®N+-

Note that {H;, H,;] =0 (i # j) butH is not commutative. Set

H' =Che P Cal(0,).

170
i=1,2
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Then this is a maximal commutative subalgebra.

2.2. Main result. In this paper we call alC module V highest weighif there
exists 0% v € V such that

V=U(Lw, Nw=0 uveCv (VucH).

We call such a vector a highest weight vector. Anmodule V is said to bente-
grable if it admits a weight space decomposition with respectkto

VZ@VQ, Vo={veV|hv=av}
acC

and
(em)u=0 and (F)Mu=0 (M >1)

for anyu € V and anym € Z2.

The main result of this paper is the classification of intbigarreducible highest
weight £ modules. To describe the result, we introduce some notation

Let D be a linear map oi€[z*!] such thatDz™ =p”z" f € Z) and let the
E;; denote the matrix units acting d@?. Fora € C*, let V(a) denote theZ module
C?[z*1](= C? ® C[z*1]) on which £ acts as

ek =a'E1Z"D!',  fu =d'Enz"D', h=En— Eop,
e,-(m) =ad"E;;7" D" (i =1 2)

and letV?(a) signify the £ module C?[z*] on which £ acts as

ek =ad'EppD'z™*,  fu=d'EnD'z™*, h=Ep— Ezn,

ei(M) = —a"EppD"z ™™, ep(M) = —a"E1 D"z ™.

For each Young tableal® let; denote the corresponding Youngmgyrizer,
ie.,

cr= Y Y signE)or € C[S,]

oeC(T) TeR(T)

wherer is|T|, the number of boxes of , anR T( ) amd T ( ) are the subgroups of
S, preserving the entries in each row and column7of , respégtive

In this paper we shall neither consider a partition of 0 n& é&mpty tableau. For
each partition\ fix a tableauT, of shape). For a partition\, a nonzero complex
numbera and =1, 2, set

Ui@) = e, V(@)™
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wherer =|\| and the symmetric groug, acts on the tensor produét’ a ¢") by per-
muting the factors. Since the action 6fon V' (@)?" commutes with that of,, Ui (a)
is an £ module. Letp? = {p™ | m € Z}. For a nonnegative integer , partitions
A1, ..., A, and nonzero complex numbess, ..., a, such thata;/a; ¢ p% (i # ), set

Uhon (@, o @) = UL (@) @ - @ UL (@) (=1, 2)

where in the casee = 0 the right hand side should be understeatheatrivial £
module C.

Theorem 1. SetU =Uj, , (a1,....a,)QUZ, (b1, ..., by). The submodule
of U generated by the weight spaék.,, has a unique irreducible quotientvhich we
denote byVx, . xp..opwa (@1, .., ani b1, ..., by). Then
(1) An £ module is integrableirreducible and highest weight if and only if it is iso-
morphic to one of the/x, . ... p. (@1, ... an; b1, ..., D).

(2) The £ modules

.....

. li /AN !
Vit dipiaseopon (@1, - @i b1, oo by) @nd Vyy N it u;ﬂ,(al,---,anu 1r--+s Do)

are isomorphic if and only i’ =n, m’ =m and there exist € S, and 7 € S,, such
that

:7(1') =\, az/r(i)/ai € PZ’ LL/T(,-) =My b;(j)/bj € PZ

forl<i<mnandl<j<m.

Remark 1. SinceU in the theorem admits a weight space decomposititim w
respect to the commutative subalgeBts so does
V)\l ..... Ay e om (al’ <o Qny blv ceey bm)-

3. Proof of Theorem 1

In this section we shall prove Theorem 1, leaving the tedirdetails to later sec-
tions. First we introduce some notation. For a subalgdbra £ ahd a complex num-
ber «, set

UK)y ={u € UK) |[h,u]l = au}.

Then

UH)=U(H)o and U (V) =D UNL)za.

n=0
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If Vis a highest weightC module with highest weight vectar and o (a € C),
then

V= @ Va72na Voszn = U(N*)7211U(H)U'

n>0

Let W be an irreducibléf module on whichz acts as a scalarand set
MW)=U(L) ®up) W

where W is regarded as 8. := H + N, module by lettingV,W = 0. SinceM ¥ )~
UWN_) ® W as vector spaces, we get

MW) =D MW)a—zr, M(W)azs = UN-)—20 @ W.
n>0

So, noting thatW is irreducible, we find that tllemodule M W ) has a unique max-
imal submoduleN , which intersectd W(,, }» W trivially. We setV W )=M W )Y N.
Let w be a nonzero vector i and the image ol in V(W). Then we can
identify W with the H submoduleV ¥ ) = U(H)v.

Define W to be the set of irreduciblé{ modules generated by a nonzero vector
w such that

(3.1) uw € Cw (Vu € H').

Note thath acts on afi{ module in}V as a scalar. Suppose thét € W and that
w € W is a nonzero vector satisfying the above condition. Let terbe image of
l® w in V(W). ThenV W) is an irreducible highest weiglit module with highest
weight vectorv . Note that any highest weight vectorlof ( ) isadted in this way.

Proposition 1. (1) An £ module V is irreducible and highest weight if and
only if there existsW € W such thatV ~ V(W).
(2) For W, W eWwW, V(W) ~ V(W) if and only if W ~ W',

Proof. (1) The ‘if part’ has just been proved before the psijian. We show
the ‘only if’ part. Suppose thaV is an irreducible highestgi¢ module with highest
weight vectorv . SetW =U H)v. Then we can easily see thdit ¢ W andV ~
V(W).

(2) Follows from the definition and the fadt W(, ) W as’H modules. ]

The argument used above fof W( ) is quite standard. See [9] 3htbf similar
constructions in the case of loop algebras.

By the standard theory ofl>(C), we can see that for an integrable highest weight
L module V with highest weight vectar there exists a nonnegaititeger N such
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that

N
V= @ Vn_2i and v ¢ V.
i=0
For a nonnegative integey  180{(N) denote the set of pairs of an integrable highest
weight £ module V and its highest weight vector satisfying the abowvedition.
The following lemma was proved for one variable loop algshra[9, Lemma 4.4].
The proof in our case is essentially the same.

Lemma 1. Let V be a highest weight module with highest weight vectar
such thathv = Nv for some nonnegative integ&f . Then
(1) Vv is integrable if and only iffp,., - -- fm,v = 0 for any m; € Z? (¥i).
(2) If V is irreducible then it is integrable if and only if

€k, *** Ckyay fmyay - fmv =0
for any k;, m; € Z2 (Vi).
Set A = U(H1) and B = U(H>). Note thatA and B commute with each other. Let

a(k) = ex(k) and b k) = —ez(k) for k # 0. Define A%(u) = 32,50 Aasatt” € Allul]
and Af () = Y, 50 Aau” € Bllull by .

Aj(u) _ exp<— Z a(O,i:I:l') u;) and A%(u) = exp <_ Z Mu) 7

i>0 i>0

respectively.
Lemma 2. For (V,v) € ZH(N) define formal power seriesi(u) by
Ai(u)v = )\i(u)v

and A%(u) similarly. Then there exist nonnegative integers and andzam com-

plex numbersz, ..., a,, b1, ..., bs such thatr +s =N,
(3.2) M) =]](1-au) and A5@w)=]](1-6).
i=1 i=1

To prove this lemma, we need the following result [18]. LLet tbhe loop algebra
of type slo, slo(C) ® C[t,t71], and set fork € Z

e =Enp@t*, fi=Ex®t*, h=(En— Ex) @t
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Define A*(u) € U(L)[[u]] by
h
AT @) = Z Aq,u" = exp (— Z %uk> .
n>0 k>0

An L module is said to be integrable if it admits a weight spaeeothpositoin with
respect tohg and thee, and thefi, act on it locally nilpotently.

Lemma 3 (Proposition 1.1, [18]). Let V be an integrableL module and a
vector in V such that,v = 0 for any & andhv = Nv for a nonnegative integeN
Then

1
AvA (v =u A" (—) v.
u
In particular, this implies

A,v=0 (n|>N) and AyA_yv=v.

Proof of Lemma 2. For an integet , set

AE(u;m) = exp (‘ > pra(, ill:) +50 £) ui)

i>0
so that
AE(u;m) = Af‘(pi’"u)Aé(u).

For eachm the subalgebra @f generated by the elements,,; and f,,;, ( € Z) is
isomorphic toL and for this subalgebra

hi = p*™a(0, k) +b(0. k) fork #0
and hp = h. Applying Lemma 3 to these subalgebras, we find that for atggerm
- i > = Ny* p_m + E
)\(m)/\A<p’")/\B(u) " )\A( u )/\B<u)
where \(m) is a nonzero complex number. From this we get the assertion O
For nonnegative integers and we [EH(r, s) denote the subset &fFH(r + s)

consisting of the elements for which (3.2) holds for somezeoo complex numbers
ai, ..., a,, bl,...,bs.
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For a nonnegative integer M > 1 andk; = (ki,;) € Z? (1 < i < M), define

Ahy(K, ..., ky) € A and B}, ka, ..., ky) € B by the recurrence relations
ak) if k#0,
3.3 Al(k) =
(2:3) 1) {r if k=0,
Aly(Ka, oo Kyr) = AL(Kan) Ay 1K, - Kar—1)
M-1
(3.9 = MR AY a(Kes KK K1) (M 2)
i=1
and
b(k) if k #0,
3.5 Bi(k) =
(3:5) i) {r if k=0,

Bk, ..., ky) = Bi(kKu) By _1(K1, . ., Kpr—1)

M-1
(3.6) =Y P By gk Kt K K1) (M= 2),
i=1

respectively. In the cas#/ =0 we séf =B} =1.
The following lemma easily follows from Lemmas 7 and 15 in tBec 4.

Lemma 4. The elementst),(k1, ..., ky) and Bj, (K1, ..., ki) are symmetric in
the variablesky, ..., ky,.

For the study ofZ’H(r, s) we need the following two lemmas, the proofs of which
will be given in Section 5. Lek> denote the projection from

U(L)o=UH) & D UW-)-2U(H)U Nz

n>1
to U(H) ForM > 1 andk,‘ = (k,‘,l,‘), m; = (m,-,n,-) S Z2 (1 <i < M), set
Fy(Ke, oo Kas My, oo, M) = (e - ey Sy o fn)-

For a nonnegative integer let  denote the left idealiof{) genereted by the ele-
menth — r. Sinceh — r commutes withU T), J, is an ideal.

Lemma 5. For nonnegative integers and the following hold in the quotient
algebra U(H)/ Jy+s:

Fu(Ke, ..., Kysmy, ..., my)

b
— § : § : pE‘&:llo(fa)'"fa+Z[a:1’<o(j,3)”jﬁ

c€8y 1UJ={1.....M}
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X AL Ko(i) * Mg, o Koy + M) By (Ko() + My -0 Koy +My,).

Here I = {il,...,ia}, i1 < -+ < igandJ = {jl,...,jh}, J1 < -+ < jp in the
summand.

Lemma 6. For (V,v) € ZH(r, s),
Ay, .. kes)v =0 and BSy(Ke, ... Kesg)v=0
for any k; € Z2 (Vi).

Admitting the above two lemmas for a while, we can prove thiéofdng propo-
sition.

Proposition 2. An irreducible highest weigh module V' with highest weight
vectorv is integrable if and only if there exist nonnegatingegersr ands such that
hv = (r +s)v and

Ara(Ke oo Ka)v =0 and  Bly(Ky ..., Kud)v =0
for any k; € Z2 (Vi).

Proof. If V is integrable, thenW, v & ZH(r, s) for some nonnegative integers
ands by Lemma 2. Hence the ‘only if’ part follows from Lemma 6or@ersely if
the conditions in the proposition hold, then

Ay(ke, ... ky)v=0 and Bl (K,....,Ky)v=0

for M >r+1, M' > s+1 andk; € Z? (Vi) by the recurrence relations (3.4) and (3.6).
Hence, by Lemma 5,

Fr+s+1(kla ey kr+s+1; my, ..., mr+s+1)v =0

for any k;, m; € Z? (Vi). Therefore the ‘i’ part follows from part (2) of Lemma 1.
O

For nonnegative integers and , l&f, and I be the left ideals of4 and
B generated by the elements$/, (K1, ..., K1) (ki € Z2 Vi) and the elements
BS, (K1, ..., K1) (ki € Z2, Vi), respectively. Let furthei”* be the left ideal of H)
generated by'’y, I and J,4.

Proposition 3. (1) The left idealsl’;, Ij; and I"* are ideals of4, B and U(H),
respectively.



304 K. Mkl

(2) setA” = A/Iy, B® =B/I; and U(H)** = U(H)/1"*. Then the mapd” @ B* —
U(H)* (@ ® b+ ab) is an isomorphism o€ algebras where: denotes the image of
ain A" for a € A, and b and ab are defined similarly.

The proof of this proposition will be given in Section 4.4,

Proposition 4. Suppose thatW € W. Then the irreducible highest weight
module V(W) is integrable if and only if there exist nonnegative integerands such
that the U(H) module structure oW  induces @&(H)~* module structure oW .

Proof. Letv be a highest weight vector & W( ). Then, by Propmsit3 (1),
I™* annihilatesW ~ U(H)v if and only if I™*v = 0. Hence we get the claim by
Proposition 2. ]

By Propositions 1, 3 and 4, the classification of integrabteducible highest
weight £ modules is reduced to that ¢ modules inW, the U (H) module struc-
tures on which inducd/ H)"*(~ A" ® B*) module structures for some nonnegative
integersr and . The answer for the latter problem is given enftilowing theorem.

Fora € C* let N(a) denote theH module C[z*'] on which H acts as

a(k,l)=a'z*D', bk, 1)=0, h=1
and let N?(a) signify the % module C[z*] on which H acts as
a(k,1)=0, bk, 1)=d'D'z7* h=1
Fora € C* and a partition\ set
Ni(@) = e, N'(@)® (=1, 2)

wherer =|A|. For a nonnegative integer , partitions, ..., A, and nonzero complex
numbersay, . .., a, such thate; /a; ¢ p* (i #j), set

N;\l )\”(al,...,a,l)=N§\1(a1)®---®N§\’I(an) i=1 2

where in the caseae = 0 the right hand side should be understsatheatrivial H
module C.

Theorem 2. (1) Letr ands be nonnegative integers. At module W is in
W and the U(H) module structure on it induces &(H)™* module structure if and
only if it is isomorphic to one of th&Vi | (a1.....an) @ NZ, (b1, ..., bn) with
oAl =r and 3 [pif =s.

.....
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(2) The’H modules

Ny
Ny

2
A, (a1, ...,a,)® Nﬂl ..... . (b1, ...,b,) and
vt a) @ NE LB by)

.....

Tyeens

i
1res

are isomorphic if and only if2’ =n, m’ =m and there exist € S, and 7 € S,, such
that

o) =N Ggy/ai € P, ey = 1> by /by € p*

forl<i<mnandl<j<m.

The proof of this theorem will be given in Section 4.5.

Now we can give the

Proof of Theorem 1. SeW &) , (a1.....a)®NZ , (b1,...,bs). Then
we can and do identiffWw  withU,.,, as H modules andW € W by Theorem 2.
Let us denote the submodule 6f generatedlhy,, by U’. By considering theC
module homomorphissM W )& HQup)W — U (u®@w — uw), we find thaty’ is
isomorphic to a quotient oM W ). Therefo&’ has a uniqgue maximal submodule
andU’/N ~ V(W). So the claim follows from Propositions 1 and 4 and TheoZm

U

.....

4. Proofs of Proposition 3 and Theorem 2

In this section we shall prove Proposition 3 and Theorem 2.
4.1. The algebra A".

Lemma 7. (1) The A}, (ky, ..., Kky) are symmetric in the variablek, ... Kky,.
(2) The A},(ky, ..., ky) satisfy the following

(i) ALK, .. Kag) =A% g(Ka, - K1) AL (Kay)
M—-1
= P AL (KKK Kga).

i1
(ii) Aly(Ke, .o Ky—1,0) =(r + 1= M)A}, _1(Kg, ..., Kyr—1).

Proof. (1) We show the claim by induction om4 . Suppose that the

Ay (Ke, ..., ky) are symmetric forM < n. Then by the definitionA], K, ..., Ky)
is symmetric in the variableky, ..., k,—1. So it is sufficient to show that it is also
symmetic in the variablek,_; andk,. Substituting (3.4) forM == — 1 into the right
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hand side of (3.4) fox = , we get

A:;(kla LRI ] kn—27 kl‘l,—lv kn) - A;(kla L] kn,—Z’ klla kn—l)
= [Al(kn), Ar(kn-1)] A, _o(Ka, .- Kn2)

n—2
— (pht = phikn) (Z Pl AT s+ Ky 1+ K Ky 2)
i=1

+ A/,;—l(klv ey kn72’ knfl + kﬂ))
=0.

This completes the proof.

(2) Part (ii) is immediate from (3.4) We shall show (i). Let denoteA’, K1, ..., Ku)

defined by (3.3) and the recurrence relation in part (i) €adt of (3.4)) by
A"y (Kq, ..., Ka). Suppose that”), (K1, ..., Ky) = A}, (K1, ..., Kar) for M < n. Since
Al (K1, ..., k,) is symmetric in the variablek,...,k, by part (1), the following
holds:

An(ka, ..o k) = ALK AL (Ko, - k) = P AL (Ko, K1, K K,)

n—1
- Z PllkiA;,l(kz, oo ki tke k”),
i=2

We rewrite the right hand side of the above equality by stigig the relation in (i)
for M = n — 1 into the first term and the summand of the last sum. By rawgiti
the right hand side of (i) fodr == by making use of (3.4) simijarive find that
ATk, ..., ky) = ALKy, ..., k). ]

Recall that for a nonnegative integer/’, is the left ideal of.A generated by the
elementsA’, (K, ..., K,+1) (ki € Z?, Vi). Fix a total order< on Z2.

Proposition 5. (1) The left ideal/’; is an ideal of A.
(2) SetA” = A/Iy and let—: A — A" be the canonical map. For > 1 the C
algebra homomorphism’: A" — C;,X” defined by

d)r(aq(7 i )) :Z 1®i-1 ® xkyl ® 1®r—i
i=1
is injective. B
() A°~C (ak, 1)~ 0)and A" =B, . - CA/(ki, ..., k) forr > 1

Proof. From (3.4) and part (i) of Lemma 7 (2) we get

Aly_q(Ke, - Ky—1) AT (k)



INTEGRABLE MODULES FORslo(C,[xE1, y=1]) 307
= Ai(ka) Ay 1K, - Kyr—1)

M—-1
+ ) (M — PR AL (ke KK Ka).
i=1

Since A is generated by thel)(k), part (1) follows from the above equality far =
r+2.

Next we show the case > 1 of parts (2) and (3), the proof of the case =0
being similar. Let

X= > CAlKy....k)CA

k1= =K,

By part (ii) of Lemma 7 (2),A7 @,...,0)=r!. So 1€ X. Hence, to prove thatl” =
X, it is sufficient to show thai is preserved by left multipticm by thea ¥). Since
Al(ky, ..., k,) is symmetric in the variablek;, ..., k. by Lemma 7 (1), this can be
checked, using (3.4) and the fadf, (K. ..., K1) = 0.

Let p: A — C;,@’ be the C algebra homomorphism determined bya(k,[)) =
Yoo xkyl wherex; =Pt @x @197 andy; is defined similarly. Then since

k1 .
Zlgi vy <1 HAi xJy, if M<r

B Ky, ..., Ky)) = ooy distinet + =L _
0 if M >r,

this induces &C algebra homomorphism’: A" — C$". Let v = x*y! for k = (k1) €
Z?. Then

¢ (ALKL . K) = D Vg @0 @ Ve

€S,
Since the vectorsy form a basis ofC,, we can see that the vectobé(X:(kl, )
(kg =< --- =2 k,) are linearly independent. This proves that the sum on thiet fiand
side of X is direct and that” is injective. ]

Corollary 1. In A" the following hold
Aan=0 for|n|>r and Aa,As—n=Asrn for0<n<r

Proof. The claim follows from the following equality.
¢ (M%) = ](1 - yu). 0

i=1

Compare this corollary with Lemma 3.
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RemarRk 2. An A" module is an. A (or H;) module which the elements
Al (kg ..., k,) annihilate.

Letting 1 = (0, 1), set
: (—1y" A”(il ..... +1) if n>0,
+n =
1 if n=0.
Note thatIT, is independent of

Lemma 8. In A the following hold.

n—1

(L. il 9 ZA k+i)Mip-1-5 forr>0andn > 1.

(n —
(2) I, = A.A,n for any n.

@ (-

Proof. (1) The assertion can be easily proven by inductiom,ouasing (3.4) and
Lemma 7 (1).
(2) Lettingk =41 in (1), we get

n

nlly, = — Za(O, :ti)nj:(",,')
i=1

for any n > 1. This can be rewritten as
d d a(0, :tt)
- My,u"=—— MMy,u").
du Z Hnll du (; ) <HZ>O = )

Noting that thell, and the (@ ) are elements of the commutatigebabU '), we
find that

Zninu —exp( Za(o ), ) O

n>0 i>1

Remark 3. Noting Lemma 5, we can see that Lemma 8 was essentiallyegrov
for one variable loop algebras in [9] and [18].

Lemma 9. In A" the following hold.
D ALKy, ... ky)=0 for M >r+1

2) > Ah(ke . Ky1 Ky £ i)y =0 for M > 1.
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Proof. (1) Follows from the fac#!,;(K1, ..., k.+1) =0 and (3.4).
(2) From Lemma 8 (1) forn * +1 and part (1), we get

> Ak £ iDTe; ) = 0.
i=0

Hence the claim is proved by induction dd , using part (i) ofrinea 7 (2). U

Lemma 10. Let A: A — A ® A be theC algebra homomorphism defined by
a(k) — a(k) ® 1 + 1® a(k). Then with the notation ofemma 5

A(A K, ki) = D> ALKy, oK) @ AY(K, - Ky

for any nonnegative integers and
Proof. The claim is proved by induction af . ]

Corollary 2. Let V and W be and” module and an4® module respectively.
ThenV @ W is endowed with a4"* module structure viaA .

Proof. By Remark 2 it is sufficient to show that the elements
A(ATE,(Ke, ..., Ky4541)) annihilate V. @ W. This can be easily checked, using

r+s+1

the lemma and part (1) of Lemma 9. U

Remark 4. V @ W in Corollary 2 is nothing but the tensor product module if
regarded as aft{; module.

4.2. A" modules. In this subsection, we study modules and4” modules. We
shall endow the tensor product of modules with an4 module structure viaA and
consider the tensor product od” modules £ > 0) as in Corollary 2. By Proposi-
tion 5 (3), A° ~ C. So an.4° module is nothing but & vector space. Therefore we
assume that > 1 until just before Theorem 3. In the following, far € A we shall
denote the image of itd" simply by x.

SetHj = @170&1(0,1). We call anA (or A") moduleV a weight module if the
following holds:

V=P V.. Vi={veV|uv=fp foranyu e Hi}.
femy*

We shall call the above decomposition a weight space decsitigpo and a nonzero
vector in each weight space a weight vector.
For a finite sequenc& =, ..., a,) of nonzero complex numbers, defing €
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(HY)" by
fx(@©,1) =3 "a; (I #0).
i=1

In the following we need the following simple fact.

Lemma 11. fx = fy- if and only if X coincides withX’ as sets with repetitions
allowed.

Fora = (a1,...,a,) € (C*) let J"(a) be the left ideal ofA" generated by the
elementsa (0 } Pi(a) (I #0) whereP, & =>";_,al. SetM" @) = A" /J"(a).

Proposition 6. Suppose thaW is aml” module generated by a weight vector
Then
(1) w is isomorphic to a quotient o#"(a) for somea € (C*)".
(2) If W is further irreducible then W is isomorphic to a quotient @ff"(a) for some
a € (C*) such that theg; are distinct.

To prove this proposition, we need the following lemma.

Lemma 12. Leta=(a,...,a,) € (C*)" and set

00--- 00 (-1y~'E,.(a)
10--- 00 (1Y 2E,_1(a)
R _ 1y —3
= @a e = | 01 00 C
00---10 —Exa)
00---01  Ea)

where E;(a) is the i -th elementary symmetric polynomial in the variahlgs. .., a,.
Suppose that is a vector in ad” module satisfying:(0, /)v = P, (@)v for any/ # 0.
Then the following hold fod <! <r, k,n € Z and M > 1:

Aly(Ke, ..o Ky—1, (k,n + D))o = ZAfw(kl, ceo, Kay—a, (kD)) (T(@)")ir-
i=1

Proof. FixingM ,k; (1< j <M —1)andk, set
u = Ay (K, -, K-, (K, D).
By Lemma 8 (2)

M, = (—1Y'E, @v
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for n > 0. Hence Lemma 9 (2) gives

,
Uiy = Z up+i—1T(8)ir

i=1

for any integer/ . From this we obtain

(pe1y - ooy Unsr) = (U1, ..., u,)T(@)"

for any intgern . The claim follows from this. ]

Proof of Proposition 6. (1) By Corollary 1

Z A.A.inunv = ﬁ(l - a,'ilu)v
1

n>0 i=

for some nonzero complex numbets ..., a,. This impliesa (0/ ) =P, §v for [ Z0
with a=(as, ..., a,). This proves the claim.

(2) Fora=(as,---.,a,) let n(a) denote the number of pairg, ( ) such that j and
a; = a;. We shall prove the claim by showing thatW is isomorphicat@uotient of
M"(a) with n(a) > 0, thenW is isomorphic to a quotient af” b)(with n(b) < n(a)
(1)

Noting M’ (as(y, - - -, as(r)) = M" (&) for any o € S,, assume that

~ ni n; n;

A= (01, QL ey Qi ey Oy ey Oy ey Q)
where thea; are distinct and:;, > 1 for someip. Noting that the characteristic poly-
nomial of the matrix?” ) is [[;,,(x—a:)", let K denote the generalized eigenspace
of T'(a) corresponding to the eigenvalug,, i.e.,

(4.1) K ={feC |(T(a) — a;,)" f = O}.

Let v € W be the image of 14" &) under the canonical homomorphiskf” a)  W.
Thenv # 0. Settingu k,1 ) =a k,1 y , let

W (k) = spany {Zu(k,l)fz \ f="(fr.... i) € K}

=1

for k € Z. For a while admitting that there exists a nonzero intégerchghatW ¢ )#
0 andp* # o;/a; for 1 < i, j <, we shall prove {). By the relations among the k)X
and Lemma 12 we get

(@(0,n) = Pu(@)u(k, 1) = (P = Du(k,n +1) = (" = 1) _ulk, i) (T(@")u

i=1
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for 1< <randn # 0. Hencea (On }» P,(a) preservesW K ). Sef, =u( (@ 2
P.(3) |wg /(p*™ — 1) for n # 0. Then g, — ol )" = 0 by (4.1). Noting this and the
fact that thed, commute with each other, we can see that thestsexz u € W(k)
such thatd,u =aju for any n # 0. This implies thata (On i) =P, lu for n # 0O
whereb is the sequence obtained froaby replacing onen;, by p*a;,. SinceW is
irreducible, this provest].

Now we shall show the fact assumed above. &etenote the sequence obtained
from a by deleting all thew;,’s and setm = — n;,. Letting

n,'ofl

1 —1 hr m / / / r
g ="(g<i<r ='(0,..., 0, (-1)"E, (@), ..., E2(a), —Ea1(&), 1) € C,

set

r

(k) =) gialk,1).

=1

Then after a little calculation we find thate K and that

[V(k). v(=K)]v = $(p“)v

where ¢(x) is a nonzero Laurent polynomial in  depending an(Explicitly ¢(x) =
n;oa,?:ioh(l)(h(l/x) — h(x)) with h(x) = x"o [],,; (xai, — o;)".) Noting y(+k)v €
W(+£k), we can see from this that(p¥) = 0 if W(+k) = 0. Thereforew ¥ )# 0
for an infinite number ok . This completes the proof. U

Fora € C* let N(a) = C[z*] be the A module on whicha K) acts as
alk,l)=ad'z*D'.

As is easily shown, thed module structure oV a( ) induces at module structure.
Fora=(a1,...,a,) € (C*) setN" @) = N(a1) ® -- - ® N(a,). By Corollary 2 we can
regard N” @) as an.A” module. We shall identifyN" &) with C[z2, ..., zF] via the
correspondence® ! ® z ® 197 « z;.

Proposition 7. If the nonzero complex numbets  are distinttien M"(a) ~
N (@).

Proof. Letv = 1+J" & € M'(a). Clearly there exists a homomorphism
w: M"(a) — N’"(a) determined byp(v) = 1. We shall show that this map is an iso-
morphism.

Set

uk, ... k) = A(Ke, ... K)o,
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Then by Proposition 5 (3) and Lemma 12

(4.2) M@= > Culk....k)

ky....kr €2

where k; = (k;,[;). Rewriting A” K1, ...,Kk,)a(0,n)v by making use of part (i) of
Lemma 7 (2), Lemma 9 (1) and Lemma 12, we obtain

r

(4.3) Py@u Ky, ... k) = > ulka, ... ki+nl, . k)
i=1
=3 ulke o (ki D) KT @
i=1 =1

forn #0 and 1</, ...,I, <r. Let S be the inverse of the matrix:l.j( 19i,j<r SO that
S~T(a)s = diag@s, . . ., a,).
For 1</q4,...,1, <r set

wky, k)= > u(Ke, LKD) Sy Sy,

I<r

wherek! = (k;,[!). Then from (4.3) we get
(P,l(a) — Za}j)w(kl, ...,k,)=0 foranyn #0
=1
for 1<1,...,I, <r. Since theq; are distinct, this implies
w(ki, ...,k )=0 wunless{ly,.... .} ={1,2...,r}.

So from (4.2) we obtain

M@= > Cw((ky, 1), (kz,2), ..., (k7).

Now it is sufficient to show that the vectorg(w((k1, 1), (k2,2), ..., (k.,1)))
(k; € Z, Vi) form a basis ofN” ). Using Lemma 9 (1) and Lemma 10, we find that

pluk, - k) = Y AT(Ko@)1® - ® Al(Ko())L

geS,

Z Hz’;(i)af;(,.).

c€eS, i=1
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Hence we geto(w((k1, 1), (k2,2), ..., (k-, 7)) = z’f .-zl This completes the proof.
O

Now we summarize the well known results on the represemmtaf the general
linear group. See, for example, [19].

Lemma 13. Let V = C" for n > 1 and setW; = ¢;V®/Tl for a Young
tableauT .
(1) If the depth ofT < n, then Wy is an irreducibleGL(V) (and g/(V)) module and
if the depth ofT" > n, then W, = 0.
(2) Wr ~ Wy if and only if T andT’ are of the same shape.
(3) Let f =diagf,...,x,) € GL(V) and T of shape\ and depth< n. Then

trw, f=Sa(x1,...,xn)

where Sy(x1, ..., x,) is the Schur symmetric polynomial corresponding to theipart
tion \.
(4) The GL(V) module V®" admits an irreducible decomposition

ver =@
T
where the sum is taken over standard tabledux with boxes apth& n.

For a positive integer and a subseét Dflet 7,(X) be the set of nonincreasing
sequences of elements &af . For

r Is

m=(mq,...,mq,...,mg,...,my) € L(X) (m1>--->my)

we let p (M) signify a partition ofr obtained by reordering(. .., ry). For a Young
tableauT we denote the shape Bf by 7T ( ). Let &ig, be the Kostka numbers
and let M(x1, ..., x,) denote the monomial symmetric polynomial corresponding t
the partition\. Part (3) of Lemma 13 implies the following corollary.

Corollary 3. Let vq,...,v, be the canonical basis oV = C". For a Young
tableauT withr boxes and depthn andm e I.({1, 2 ...,n}) set

Wirm=Wr N Z Cop, @ - @ v,
(k1....k)ES,m
Then
Wr = @ Wrm and  dimWrm = Koy pm)-

mel({1,2...,n})
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Proof. The first claim is immediate. For a partitionsuch that/ §) <n

SAL - Xa) =Y KoMy (x, - x)
I

and for a partitiony of r such thatl ) <n

M (x1, ..., x,) = Z Xy * X, -

m=(my,...omp)EL({1,2...,n})
p(m)=p

Therefore we find by the first claim and part (3) of Lemma 13 that

Z dim WT,m-xml X, = Z Ksh(T) p(m)Xmy *** Xm,

where the sums are taken over = (mi,...,m,) € I,({1,2 ...,n}). The second
claim follows from this. |

For a Young tableaur and a nonzero complex number , Meta () =
crN'(a, ...,a) wherer =|T|. For a positive integer , la§7, denote the set of stan-
dard tableaux withr boxes.

Proposition 8. (1) Ny(a) is an irreducible A module.
(2) For a tableauT withr boxes anth € I,(Z) set

Nr.m(a) = Nr(a) N ( > Czk>
keS,m

wherezX = z5 ... 2% for k = (ky, ..., k). Then

Nr(a) = @ N7,m(a)

mel.(Z)
is a weight space decomposition and the dimension of eadjhtvepace is given by
dim Nr.m(a) = Ksn(r) p(m)-

(3) Nr(a)=~ Ny(b) if and only if sh(T) = sh(T") and b/a € p?.

(4) The A moduleN"(a, ..., a) has an irreducible decomposition
N'@,....a)= € Nr(a).
TeST,
Proof. (1) Setr =|T|. Since the action ofd on N" (g, ...,a) commutes with

that of S,, Nr(a) is an.A submodule. Regard thel module N ¢ ) as art{; module
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naturally and letp: H; — End(V @ )) denotes the action 6{,. SetV, =@,. , Cz' C
N(a) for n > 0. Then for eachn there exists a subspacge Haf such that
oK)V, C V, and p(K,)|v, = EndV, (*). Letu (# 0), v € Nr(a). Thenu ,v € V.2’
for somen . SetW,r =rV.2". Sinceo% is a nonzero scalar multiple eof; (See, for
example, [19]), we find that, v € W, r. This implies, by Lemma 13 (1), thatz2 +1
is greater than the depth @f and thig, » is an irreducigle/, ( ) reodbhere-
fore, noting thatN” ¢, ..., a) is the tensor product moduls¥ a ') as an’+; module,
we find by (*) that there exists € A such thatxu =v . This proves the irreducibility
of Ny(a).

(2) By Lemma 11N" §,...,a) = EBmeI,(Z)(ZkES,-m Cz¥) is a weight space decom-
position. The first claim follows from this. We shall show teecond claim. Suppose
thatm = (mq,...,m,) andn > m; > --- > m, > —n for some nonnegative integer
Then with the notation of part (IVr.m(a) = War N (X yesm C2¥). So we are done
by Corollaryd 3.

(3) Letr ands denote the numbers of boxes7in  &rd respectively. Suppose that
Nr(a) = Nr.m(a) and N7/ (b) = @ Nr/ n(b) are isomorphic. Then by considering the
action ofa (Q7) we find that

al zr: pmi = pl zs: p" foranyl #0

i=1 i=1

for somem = (my,...,m,) andn = (ng,...,ns). From this we getr = and =
ap® for some integerk by Lemma 11. Moreover we can see that anyoiggism
Ny(a) — Nyp/(b) maps Nym(a) onto Ny/ v (b) with m’ = (my — k, ..., m, — k). By
comparing the dimensions of these subspaces, we find by Pathdt

Kxh(T)p(m) = Kxh(T’)p(m)

for any m € I.(Z). This implies Ssury(x1, . .., xa) = Ssnary(x1, ..., x,) for any n >
max{depth of T, depth off’} and, hencesh T ) zh T(').

Conversely suppose that T( ) sk T) andb =ap* for some integek . Then
there existsc € S, such thato(T) = T’ and the mapu — o(u)(z1---z,)"% is an
isomorphismN; § }— Ny/(b).

(4) Since Ny ¢ )N VE" = ¢ V@™ with the notation of part (1), we get by parts (1)
and (4) of Lemma 13 folv &, that

Ve = @ Ne@nver

TeST,
for any n > 0. From this, we obtain the claim. ]
Proposition 9. Let a1, ...,a, be nonzero complex numbers such thata; ¢

p-.
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(1) For tableauxTs, ..., T,, Np(a1) ® --- ® Nz, (a,) is an irreducible A module.
(2) Let Npy(a1) ® -+~ @ Ny, (an) and Nyy(b1) ® - - - @ N1y (bw) be A modules as in(1).

Then they are isomorphic if and only #if = n and there exists € S, such that

sh(T ) =sh(T;) and by /a; € p for1<i<n.

(3) Lettingry, ..., r, be positive integersset
r r2 In
N =N""*n(ay, ... a1,az,...,a2,...,08y,...,0,).

The A module N admits an irreducible decomposition

N = @ NTl(Cll)@"'@NT”(a”).
(1. T,)EST ,y x- x ST

m

To prove this proposition, we need the following lemma, vhhis a special case
of [20, Chap. 8, Sect. 7, Theorem 2].

Lemma 14. Let A and B beC algebras. Suppose tha# and  are an irre-
ducible A module and an irreducibl®@ module such tkatdy M ~ C and Endz N ~
C, respectively. The/ ® N is an irreducible A ® B module.

Proof of Proposition 9. (1) For X i < n, letting N; = N7, @;) andN;m =
NTj,m(Clj), setL; =N1® ---® N; and Limy,..mi = Nim; ® -+ @ Nim,. Then by
Lemma 11

.....

L,’ = @ Li,ml.....m;
(My,....m)EL (Z2)X - x 1, (Z)

is a weight space decomposition singg/a; ¢ p* (k # ). Any element of End L;
preserves each weight spatem, .. m, and one of these subspaces is nonzero and fi-
nite dimensional. Therefore if we prove thag is irreducjblee get Endy L; ~ C.

The same argument shows that Bmd; ~ C (1 < j < n).

Now we show the irreducibility of.; by induction oh . Supposattthe claim is
proved up toi — 1. Then, by the discussion in the previous paragraph and laetidn
the A ® A module L;_; ® N; is irreducible. Therefore, to prove the irreducibility of
L;, we have only to show that any submod®é  of themodule L; is a submodule
even if we regardL; as al ® A module viaL; =L;_; ® N;. SinceL; is a weight
module, W admits a weight space decomposition

(M1, s M)ED Z) XX 1, (Z)
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where Wi, ... m_; ® Nim,). For a sequence of integens let m
denote the sequence obtained fromby ordering the entries in nonincreasing order.
Setm; = (m;1,...,m;,). Since @ k, 1 )® 1)Wm,...m C Li—1 ® N;m, and

.....

.....

we can see that both k(! @ 1 and 1® a(k,l) map Wn,,...m, to W for k # 0. This
implies (A ® A)W C W since A is generated by the elemenisk, [ k) # 0).

(2) The ‘if’ part follows from part (3) of Proposition 8. We al show the ‘only if’
part. Letr; ands; be the numbers of boxesTpf  &Fid respectively. By considering
the action ofa (Q/ ) on both modules, we find as in the proof of Bsifpn 8 (3) that
m =n and there exists € S, such that

So(i) =i and bg(i)/ai S pz
for 1 <i < n. Further we can see that

Ksn(rypmy) -+ Ksn(t)pma) = Ksn(r )pme) = Ksn(r? )pm,)

for any (my,...,my) € 1,(Z) x --- x L, (Z). This impliessh (T;(i)) = sh(T;) for 1 <

i <n.

(8) SinceN =N"(ag,...,a1) ® ---Q N™(a,, ...,a,), we get the direct sum decom-
position in the proposition by Proposition 8 (4). So part ptpves the claim. O

Corollary 4 (of the proof). If a;/a; ¢ p* for anyi # j, then Np(a1) @ -+ ®
Nr,(a,) is a weight module and satisfies

End.A(NH(al) QR NTn (an)) ~ C.
Recalling thatT) is a fixed tableau of shap®, setNy(a) = Nr, (a).

Theorem 3. (1) An A° module W is irreducible if and only iW ~ C on
which a(k) acts asO0.
(2) Suppose thatr > 1. Then W is an irreducibleA” module generated by a
weight vector if and only if there exist a positive integgrnonzero complex numbers
ai,...,a, such thata;/a; ¢ p* for anyi # j and partitions A1, ..., A, such that
[A1] + -+ |\, =r for which

W~ Ny, (a1) ® - - & Ny, (an).

(3) Let Ny, (a1) ® --- ® Ny, (an) and N, (b1) @ -+ ® N, (bn) be A~ modules as in
part (2). Then these two modules are isomorphic if and only: i » and there exists
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o € S, such that
togy =N and by /a; € p* for 1<i <n.

Proof. (1) Follows from the discussion at the beginning a$ tsubsection.
(2) Suppose thaW is an irreduciblé¢” module generated by a weight vector. Then,
by Propositions 6 and 7, we find th&  is isomorphic to a qubtenN’(a) for
somea = (a1,...,a,) € (C*). For (my,...,m,) € Z" ando € S, the map
N'(@) — N'(ao@p™, .-, aorp™) (u — o~ (u)z;™ ---z™) is an isomorphism

rL I'n
of A" modules. Therefore we can assume that (m, .. .,M) with
ai/a; ¢ p* (i # j). Hence we find by Propositions 9 that is isomorphic to one of
the A" modules in the theorem. Since these modules satisfy theitmondor W by
Proposition 9 and Corollary 4, we are done.
(3) Follows from Proposition 9 (2). [l

Remark 5. Since Ky, = 1, the above theorem and Proposition 8 (2) imply that
in the caser > 1 any irreducibleA” module generated by a weight vector is infinite
dimensional.

4.3. The algebraB' and B" modules. The following lemma is immediate.
Lemma 15. (1) There exist aC algebra isomorphism): A — B determined by

Y(a(k) = p~b(K")

wherek = (k,1) #0 and k’ = (=k, I).
(2) This isomorphism satisfies

YA (Ke, ... Ky)) = p~ 250 B (K, . K)y)

for r > 0 and M > 1 and induces an isomorphisgy": A" — B".
(3) ¥(a(0,1))=b(01)for I #0 and ¥(Aa.n.) = A, for anyn.

By this lemma we can see that any irreducilfié module generated by a nonzero
vector v such thath (@ v) € Cv (I # 0) is obtained by regarding an irreducible
A" module generated by a weight vector as /8h module via the isomorphism
(v")"': B — A". Therefore we can obtain the necessary results for the r@géb
and B" modules from the results in the previous two subsections.

4.4. Proof of Proposition 3. SetC = U(Hp). Since’H = Ho & H1 ® H> and
[Hi,H;]=01if i Z j, the mapCRARB — U(H) (c®a®b +— cab) is an isomorphism
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of C algebras. If we identifyy %) with C ® A ® B via this isomorphism, then
I =" AQB+Ce 1, @B+CR AR I}

where 1;* is the ideal ofC generated by the elemeht—r —s. By Proposition 5 and
Lemma 15,7, and I}; are ideals ofA and B, respectively. Thereforé”* is an ideal
of U(H) and

UH)* ~C/It" @ A" @ B*

as C algebras. Sinc€/I1,™ ~ C, we are done. O

4.5. Proof of Theorem 2. In this proof, we writeJ’(a), M’y(a), N;(a) and
N#\(a) for J'(a), M"(a), N"(a) and Nr @), respectively. Sefj(a) = P(J4(a)) and
Mg(a) = B"/Jz(a). The B” module M;(a) is isomorphic toM’,(a) considered as #”
module via (")~ We denoteN’,(a) and N#(a) regarded as3 modules viai)~! by
Nj(a) and NE(a), respectively.

By part (2) of Proposition 3 we can identif” ®5° modules with’Y modules the
U(H) module structures of which indudé HJ-* module structures. Under this iden-
tification an A" ® B* module is endowed with aft{ module structure via the com-
posite mapH — UMH) — UH)”* ~ A @B (h — r+s, ak) — ak) ® 1,
b(k) — 1 ® b(k)) where the second map is the quotient map. For a nonnegatige
gern, tableauxty, ..., T, nonzero complex numbes, ..., a, such thata; /a; ¢ p?

(i #j) andi =A, B, set

Ny plai,...,a,) = Ni(a) ® - ® Ni (ay)

where the right hand side should be understoodam whicha k) or b(k) acts as 0
in the casen = 0. Suppose that |\;| =r and)_ || =s. Then theA” ® B° module

) NA\,....
is identified with the’H module Nil ..... A @ a) ® Nﬁl_m_um(bl,...,b,,,) in the
theorem. Therefore it is sufficient to show, for the proof @fitp(1) of the theorem,
that W is an irreducibled” @ B* module generated by a nonzero vector such that
a(0,l)v € Cvandb(Ql Y € Cv for any! # O (where we identifyA” and 3* with
subalgebras ofA” ® B* naturally) if and only if it is isomorphic to am” ® B* module
of the form ) and, for the proof of part (2), that the” ® 5° module ¢) and the
A" @ B module §') are isomorphic ag{ modules if and only if the conditions in
part (2) of the theorem hold. Herg') stands for ) with n, the )\;, etc., replaced by
n’, the A/, etc.

First we show part (1). Suppose thidt is an irreducitfex3* module satisfying
the above condition. Then as in the proof of Proposition § () Corollary 1 and
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Lemma 15, we find that there exiat= (a1, ...,a,) € (C*) andb = (b1,...,b;) €
(C*)* such thata (0l ) =P, &v andb(Qly =P, b)v for [ # 0. Using the argument
in the proof of Proposition 6 (2), we can assume thatdhe  aedbthare distinct,
respectively. Since/’;(a) ® B* + A" ® J5(b) annihilatesv ,W is a quotient a¥/’,(a) ®
Mj(b), which is isomorphic toN’;(a) ® Ni(b) by Proposition 7 and its counterpart
for B*. So, by using the argument in the proof of Theorem 3, we find Wais a
quotient of

.....

where thea; and thes; are some nonzero complex numbers and the sum is taken
over the standard tablead  aff satisfying} |T;| =r, >_|T/| =s and some other
conditions. By Corollary 4, its counterpart fé&#* and Lemma 14, each component of
the above direct sum is irreducible. Therefore we find, bypBsdion 9 (3) and its
counterpart for3*, that W is isomorphic to apd” ® B°* module of the form (). Since
any A" @ B°* module of the form i) satisfies the condition fow , we get part (1).
Next we show part (2). The ‘if " part follows from Propositich (3) and its coun-
terpart for B*. We show the ‘only if’ part. Suppose that th&" ® B* module §) and
the A~ @ B* module ¢’) are isomorphic ag{ modules. Then they are isomorphic if
regarded both agl modules and a$ modules via the isomorphisiti H) ~ CRARB
in the proof of Proposition 3. From the isomorphism dsmodules we find that
Nﬁl bbbbb n, (@1, ..., a,) = Nt (a3, ....a,) as A modules. So Proposition 9 (3)

TA&.,.,.T/\ > %n
and Remark 5 give the conditions far , the and theq; . The conditions for , the
u; and theb; are obtained similarly by considering the isomaphas3 modules.[]

5. Proof of Lemmas 5 and 6

In this section, to complete the proof of Theorem 1, we proeeninas 5 and 6.
5.1. Proof of Lemma 5.

Lemma 16. The elementsFy(Ky, ..., Ky;mg, ..., my) are determined by the
relations

mg(k +m) + p*b(k +m) if k+m #0
(5.1) Fu(k: m)= pl (k +m) + p™b(k +m) | 7
p™h if k+m=0,

(5.2) Fu(ky, ..., Kyimg, ..., my)
M
= Z Fa(Ki; M) Fag—a(Kas o Ky oo Ky M, oo, My 1)
i=1
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- Z(qij +qi)Fy—1(Ke, - Ky Ky Ko K K MMy, My )
j<i
(M > 2)

whereg;; = phili*limu*kinu and ~ denotes omission of variables.

Proof. First note thaty, K, ..., Ky; M, ..., my) is symmetric in the variables
K1, ..., Ky since pk, ex/] = 0. Then the claim follows from multiplying the equality

M
[ekl Ty me] = Zekl e ek,‘,lFl(ki; mM)ek,‘+1 C ot Cky
i=1

M
= Z Fl(ki; mM)ek1 .. 'éki ek,
i=1

— Z(q’j + (Iji)ekl e ekj+k,-+mM N ek,‘ e ekM
j<i
by fm,_. - fm, from the right. ]
Utilizing the above lemma, we can give the
Proof of Lemma 5. With the notation of the lemma set
Gu(Ky, ..o, Kysmy, .., myy)
= > ALK KM M) B (K KMy, my,)
where

Al(Ka, ... Kg;my, ..., m,) = pZasilama AT (kg +my, ... K, + M),

Bj(Ky, ..., kpsmyg, ..., my) = PZ’;’:lkﬁnﬁBg(kl +my, ..., Ky +my).
We shall show that the elements

Frp(Ke, . K ma, o ma) =) Gu(Koqs - - Koy Ma, - Mag)
cESY

satisfy the recurrence relations (5.1) and (5.2) in the iqnotalgebrall tt)/J,+s.
Eg. (5.1) can be easily checked, using the definitions (38) (8.5). Utilizing the
recurrence relations (3.4) and (3.6), we find that

Gu(Ky, ..., Karymy, .o, myy)
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= Ga(kprs My)Gpr—a(Ke, ..o Ky My, oo, My 1) — Z
1u={L...M~1}

a
/ . K .
X (Zq,QMA;(k,-l,...,kia,...,k,-”,m,-l,...,m,-“)Bg(kjl,...,kj,,,mjl,...,mj,,)
a=1

b
3 G Al Ky, o Ky My M) By K KM, m,-,,))
B=1

where k! = k; + ky + my. By symmetrizing the above equation with respect to the
variablesksy, ..., ky;, we can verify (5.2). O

In the next subsection, we need the following corollary ofricea 5. ForM > 1,
ki = (kj, ;) € Z? (1<i < M) andm = (m, n) € Z?, set

pYmMEy(ky —m, ... Ky —m;m, ..., m)

Hy(Ka, ..., Ky;m) = i

Corollary 5. Letr ands be nonnegative integers. With the notatioh.&hma 5,
the following hold inU(H)/J,+s:

HM(kl, e, kM, m)

= Y pr el b A, k) Bk K).
uJ={1,...M}

5.2. Proof of Lemma 6.

Lemma 17. For (V,v) € TH(r, s) define % («) and \§(«) as in Lemma 2 Let
A and A\g; be the coefficient ofi’ in\*,(«) and A\j;(u), respectively. Then for any
M > 1 and anyk; € Z? (1< j < M), the following hold.

(1) AL(#1,...,£Dv and B{(£1, ..., £1)v are nonzero scalar multiples af
(2) YoM ar—iAl(Ke, ..., Ky—1, ky +il)v = 0.
(3) E;:O pkMiAB’J,,'B}sW(kl, ey kM,]_, kM + ll)U =0.

Proof. (1) Suppose that
(5.3) M) =] - a )
i=1
where theaq; are nonzero complex numbers. Then, by Lemma 8 (2),

Ar(£1, ..., £1)

v= (a1 a) .
rl

This proves the claim fod. . The claim faB; is proved similansing Lemma 15.
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(2) By part (1) and part (2-i) of Lemma 7 it is sufficient to peothe caseM =1,
ie.,

> AariAik, I +i)p =0,
i=0

First we consider the cage =0. Eq. (5.3) and the definitiomﬁtu) give
An = (-1)'E,(@) (0<n<r) and a(Qly =P @v (I #0)
wherea = (ay, ..., a,). So, recalling the definition of}(k), we find that
> AariAy0.1+ip =0
i=0

for any integerl .
Next we shall show the cage# 0. SetN =r 4+ . From Lemma 1 and Corollary 5
we get

0 = Hy+1(1, ..., 1, k;m)v
N
N .
=y (i ) (p'"”"kA;(l, DBy (L, 1K)
i=0
+ N Ar (1L KB(L, - 1))1)

for any m = (m, n) € Z2. Recalling thatp is not a root of unity, from the coefficients
of p”¢*) in the above equation and part (1) of this lemma, we get

A1 ... 1L Kv=0.

This result and Lemma 8 give

S Aftk, 1+ iy = (—1y Aralho o LK) o LK, =0
i—0 r:
(3) The proof is similar to that of part (2). ]

Lemma 18. Letk; = (k;,[;) € Z? for anyi. For (V,v) € TH(r, s) the following
hold.
(1) f l; >lipa+- -+l +s (1 <i<r+ 1), thenA:ﬂ(kl, cee k,+1)v =0.
(2) If; <0 (1<i<s+1),thenB, (K, ..., Ke1)v=0.

Proof. We shall show (1). The proof of (2) is similar. Let={1,...,r+1} and
N =r+s. Setk; =(0,1) forr +2< j < N +1. From Lemma 1 and Corollary 5, we
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get with the notation of Lemma 5

0= HN+1(|(1, cee, kN+1; m)v
= p"ienli AT (Ke, .. Ke)BI(L, ... Do
Y R e kA, k) B K K )

IuJ={1,....N+1}
171o

for any m = (m, n) € Z2. Hence for the proof of the claim, thanks to Lemma 17 (1), it

is sufficient to show that if is a subset ¢1,..., N+1} and! # Io, then} ;i 7
> ies, li- This can be easily checked. 0

Now we can give the

Proof of Lemma 6. By applying parts (2) and (3) of Lemma 17 atedly, we
can see thatA’,;(ky, ..., K+1)v and B, (K1, ..., Ke1)v can be written as a linear
combination of the terms in Lemma 18. This proves the claim. U

AckNOWLEDGEMENT.  The author thanks the referee for pointing out the refer-
ences [14-17].

Added in proof. After the acceptance of our paper the prégéih] came to our
attention. In the paper imaginary Verma modules for a cémetxgension ofs/>(C,) are
studied. Their quantum toruS, is more general than that in our paper.
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