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0. Introduction

Let W be an open Riemann surface with the Green function \éinein m -sheeted
(1 < m < oo0) unlimited covering surface oW . Denote by = 7y the projection
of W onto W. Consider the Kuramochi compactificatioi* (resp. W*) of W
(resp. W). Denote byA =AY (respA = AV) the Kuramochi boundary oW
(resp.W). We also denote byv; = AY (resp.Aq = AY) the set of all minimal points
in A (resp.A). It is known thatm naturally has a unique continuous extensioh
to W* (see [7, 2) in Proposition 2.1]). Faf € A, we setA;(¢) = (7)) N As.
Denote byv(¢) = vy(¢) the cardinal number ofA;(¢). Let HD(W) (resp.HD(W)) be
the set of harmonic functions with finite Dirichlet integgadn W (resp.W). Suppose
that HD(W) contains a non-constant element in the sequel HE¥tW)or = {hom: h €
HD(W)}. It is easily seen thatD(W)or C HD(W). Then, we give necessary and suf-
ficient conditions for the property th&tD(W) = HD(W)ox in terms of the Kuramochi
compactification as follows.

Main Theorem. The following three conditions are equivalent
(i) HD(W)=HD(W)o T;
(i) for all ¢ € A1 except possibly for a full-polar subset of;, v(¢) = 1;
(iii) for almost every, € A; with respect to the harmonic measy (z € W) on A,

v(Q) =1.

By [7] we know that 1< v(¢) < m. According to the above theorem the property
that HD(W) = HD(W) o 7 is a necessary and sufficient condition to minimize) for
almost every( € A; with respect to the harmonic measyt€ (z € W) on A. Thus
we are interested in a necessary and sufficient condition agimmze v(¢), that is,
v(¢) = m for almost every( € A; with respect to the harmonic measy& (z € W)
on A. We shall give a sufficient condition for the condition tthd¢) = m for almost
every( € A; with respect to the harmonic measur¥ (z € W) on A in the case that
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W is the unit disc. Consider the unit dige  as the base surfac# ofet D be an
m-sheeted unlimited covering surface bf  with the projectignand {z,} the set of
the projection of branch points ab. It is well-known that the Kuramochi compact-
ification D* of D is homeomorphic to the closur of D in C with respect to the
Euclidean topology and that?  consists of only minimal poiats! is homeomorphic
to the boundan®D in C with respect to the Euclidean topology. Recall the follagvin
condition ¢) which is considered in [5]

1
w 2 og{i/a Ty <

Then, the following holds.

Proposition. Suppose thafz,} satisfies the conditioft). Then for almost every
¢'% € 9D with respect to the harmonic measyw (z € D) on 9D, v(e'’) =m.

We organize this article as follows. After preliminari€dl), we give the relation
for potential theoretic notions between the base surfadeitancovering surface i§2.
Main Theorem and Proposition are proved§® and §4, respectively. Finally, in case
that W € Owp \ Og, we give necessary and sufficient conditions foran -sheeted
unlimited covering surface® of W to belong to the same class 5.

1. Preliminaries

In this section we prepare some notations, definitions, anthias from potential
theory.

1.1. Let R be an open Riemann surface with the Green functién, Kz
a closed parametric disc or a disjoint union of finitely manhgsed parametric discs
in R, andRy =R\ K. Set

S(R) = {s: s is a non-negative superharmonic function B,
H(R) = {h: h is harmonic onR},

HP.(R) = {h € H(R): h > 0 on R},

there existh; € HP.(R) (j = 1, 2) such tha}

HP(R) = {h SHR): T

HP+(Ro) = {v € HP+(Rp): lim v(z) = O for everyn € 8K},
z—n

H'P(RO) - {U c H(Ro) there EX|StUj S HP+(R0) (,] = l’ 2) such tha} .

vV=v1— V2 ON Ry

For everyh € HP.(R), denote byH/[ the generalized Dirichlet solution of
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on Ry in the sense of Perron-Wiener-Brelot (cf. [2, pp. 20—-21pattis,
H[(z) = inf {u(z): u € S(Ro), liminf u(z) > h(n) for all n € 8K} .
z—n

For a generah € HP(R), taking h; € HP.(R) (j = 1, 2) with h =hy — h, On R,
we defineH,° = H° — H. It is well-known that the mapping — H,” is ad-
ditive, that is, for anyh, i’ € HP.(R), HYS,, = H° + H[® on Ro. From additivity
of the mappingh — HhR0 it is easily seen thai'—IhR0 does not depend on the choice
of h; € HP+(R) (j =1, 2) such tha#: ##3+h, on R. Note that, for every: € HP(R),
H® € HP(Ro) and h — H* € HP(Ro).

We define a mapping®  fromilP(R) to HP(Ro) by the following.

T*(h) = hlg, — Hy® (h € HP(R)).

Next we give the definition of a mappin§® HP(Ro) — HP(R) as follows. First, for
everyv € HP+(Rp), we define a mapping® by

SR()(z) = inf{s(z): s € S(R), s > v on Ro}.

Then, we note that, fov € HP+(Ro), S¥(v) € HP.(R) by the well-known Perron-
Wiener-Brelot method, and have the following.

Lemma 1.1. The mappingS® is additivethat is, for anyv; € HP+(Ro) (j =
1, 2), SR 1tv)= SR(vl) + SR(UQ) on R.

Proof. Letv; ( = 1 2) be elements dfP.(Ro). Since, for everys; € S(R)
with s; > v; on Ry (j = 1, 2), s1+s2 € S(R) and sy + 52 > v1 + v2 On Ry, from
the definition of S¥ it is easily seen that® vy(+ vp) < S®(vy) + S®(v2) on R.

To see the inverse inequality takes S(R) with s > v; + v, on Rp. To prove that
SR(vy+v2) > SR(v1) + SR (v2) on R it is sufficient to prove that — S®(v1) > v, on Ry
becauses — S%(v1) € S(R). Set

Vo = v2 0N Ry
2 0 onK °

Then, V, is a non-negative continuous subharmonic functionfon .&éreV, € S(R)
ands — V, > v; on Ry, by the definition ofS® ;) we find thats — V, > S%(v;1) on R.
Therefore we have the desired result. U

For a generab € HP(Ro), takingv; € HP+(Ro) (j = 1, 2) withv =v1—v2 on Ry,
we defineS® ¢ ) =S¥ {1) — S®(v2) on R. From Lemma 1.1 it is easily seen th&t v ()
does not depend on the choicewf j ( =1 2). Then, we have thewfiolp
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Lemma 1.2. If v € HP(Ro), then SE(v) — v = Hs’f?(v) on Ro.

Proof. We may assume € HP+(Ro). Since S¥ ¢ )> v on Ry, S¥@) —v >

R
HS,?(U) on Ry. Set

v+ Hsjf?(v) on Ry’

B { SE(v) on K
S g
Then,s € S(R) ([2, Hilfssatz 1.2]) ands > v on Ry. Thereforev +HSR,?(U) > SR(v)
on Rp.
Corollary 1.1. TR(SE(v)) =v for v € HP(Ry).

Proof. By the above lemma, we hat® S¥(v ( ))S$2 v ()HE

Sk = U on Rp.

g

Lemma 1.3. SR(TR(h)) =h for h € HP(R).

Proof. We may assumgc HP.(R). Obviously i > TR(h), so thath > SR(TR(h))
on R. Set

_[h onk
Ph - Ro .
H,® on Ro

By [2, Satz 4.5] and [2, Satz 4.8, is a Green potential®n s ¥ S(R) and
s > TR(h) on Ry, thens > h — H,f" on Rg, and henceP, > h — s on R. Since
P, is a Green potential andl — s is subharmonic onR , it follows that —s < O
([2, Satz 4.6]). Hencé: < s and thush < SR(T®(h)). O

By Corollary 1.1 and Lemma 1.3, we have

Corollary 1.2 ([3]). TZ* is a bijective mapping from H®R) onto HP(Ro).

Set

HD(R) = {h € H(R): // | gradh|?dxdy < +oo};
R

HD(Rp) = {h € HD(Rp): lim h(z) = O for everyn € aK}.
z—n

Lemma 1.4. H, € HD(Ro) for any h € HP(R).

Proof. We may assume € HP,(R). ConsiderP, as in the proof of Lemma 1.3.
Since the associated measureRyf  is supported by the comgtagKson which# is
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bounded, it has finite energy, so thl=1‘t,R0 has finite Dirichlet integral ([2, Satz 7.2]).
O

Corollary 1.3. TZ® is a bijective mapping from H®R) onto HD(Ry).
Proof. We know (e.g., [2, p. 83]) thaiD(R) C HP(R). Thus by Corollary 1.2,

it suffices to show tha® HD(R)) = HD(Ro). Lemma 1.4 impliesT® HD(R)) C
HD(Ro). On the other hand, ib € HD(Ry), then SR ¢ ) € HD(R) by Lemmas 2.1

and 1.4. Hence, in view of Corollary 1.2, E*® S{ v ( §) T*(HD(R)). O
1.2. In this subsection we shortly recall the notion of the Kurahiccompact-
ification.

Let z and¢ be points of Ry. Denote byge(z) = g?"(z) the Green function orRg
with pole at¢. A function N @, &) = N®(z,£) on Rg x Rg is called the Kuramochi
kernel if it has the following properties:

(i) z+— N(z,&) — ge(z) is harmonic onRq for every pointé € R;

(i) for every pointn € 0K, lim,_, N(z,§) =0;

(i) if K; is a compact subset ok  witlk; D K, and ¢ a point of K} \ K,
then, for every connected compone@t Bf\ K, and for every pointz € G,
[N €)dwl(C) = N(z,€), where K} is the interior of K; in R and w¢ is the
full-harmonic measure at with respect @ ; see [2, p. 158]7rf¢r the definition
of the full-harmonic measure.

We remark that the Kuramochi kernel has symmetric propehigt is, N ¢, &) =
N(&, z) for (z,&) € Ro X Ro.

Set N¢(z) = N?"(z) = N®(z, &) and call it the Kuramochi function oy with
pole at{. Define Ne = 0 on K. ThenN, is a continuous function oR . Séf =
{Ne(): € € Ro} UC§°(R). It is well-known that there exists a compactificati®
of R satisfying the following conditions:

(i) each f € K has a continuous extensioft to R*;

(ii) the functions f* (f € K) separate the points ag*.

Set AR = R* \ R. We call R* (resp. A®) theKuramochi compactificatiorof R
(resp. theKuramochi boundaryof R). We note thatR* does not depend on the choice
of K, that is, if R*' is the Kuramochi compactification @  which is constructed by
using another closed parametric disc (or a disjoint uniora dinite number of closed
parametric discsX’ then the identity mapping of R onto itself is extended to be
a homeomorphism oR* onto R*'. For a point¢( € AR, we define the Kuramochi
function N¢ = NfO with pole at{ by limg;s¢—.¢c Ne. Then we remark thatve is

a non-negative full-superharmonic function &g (see [2, p. 159]) which is harmonic
on Ry, and thatRy U AR is metrizable by the following distancé -, () = d®Y2"(, -)
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(which we call the Kuramochi distance):

dEn=> 5

n=1

N&(pn) . Nn(pn)
1+Ne(pn) 1+ Ny(pa)|’

where {p,}25 is a sequence iRy such that{p,}'2j is dense inRy with respect to
the usual topology.

DeriniTion 1.1, Let ¢ be a point of AR . Then, we call a minimal point if
NgR0 = h1+h on R with positive full-superharmonic functions;  oRg implies that
eachh; is proportional tav/®.

NfO (¢ € AR) is said to be aminimal Kuramochi functiorwith pole at( if ¢ is
a minimal point. We call the set of all minimal points a&f®  theinimal Kuramochi
boundaryof R which is denoted byAX. We refer for the details of the Kuramochi
compactification to [2], [8], [11] etc.

1.3. In this subsection we shall study some properties of fulkpsets. Set
A = AR, We begin with the definition of full-polar sets (see [2, {i&8—-189]).

DeriniTion 1.2. A subsetE ofRp U A is said to befull-polar if there exists
a positive full-superharmonic function 0oRg such that lim_,¢ s(z) = +oo for every
point £ € E.

Remark. In the above definition, under the condition tiat  is a sub$es, we
may suppose that the abave has a finite Dirichlet integralsatidfies lim_., s(z) =0
for everyn € 0K.

Denote byA, =AR the set of all regular points of  with respect to Etiechlet
problem onA (cf. [2, p. 93]). Sen,.1 = A% = A, N A1 (A1 = Af). The next propo-
sition holds.

Proposition 1.1 (cf. [2, Satz 16.4 and Folgesatz 17.26])The setsA \ A; and
A\ A1 are full-polar.

Let f be a generalized real valued function an  which is rea@uwith respect
to the Dirichlet problem on the Kuramochi compactificati®f of R, and denote by
H} the generalized Dirichlet solution of oR in the sense of étefViener-Brelot
(cf. [2, pp. 85-86]), that is,

_ u is superharmonic and bounded bellow @n
Hj(z) = inf qu(z): and Iiﬁm icnfu(g) > f(¢) forall ¢e A
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We denote byuX the harmonic measure oA relative 40 £) and R, so that
HiQ)= [ FQ .
A

We recall that a subsef ok is a null set with respecyfoif for any ¢ > 0
there is an open subs&@ & such th@t> E and puf(0) < ¢, or, equivalently,
there exists aG;s-set E’ such thatE C E’ and uX(E’) = 0.

Lemma 1.5. Any full-polar subset ofA is a null set with respecty§ for every
zZ € R.

Proof. LetE be a full-polar subset &k . By Definition 1.2 and riésnark there
exists a positive full-superharmonic function @y such that lim_ u(z) = +oo for
every point¢ € E, lim._, u(z) = 0 for everyn € 0K, andu has a finite Dirichlet
integral. Set

_[0onkK
uOﬂRO.

Then U is a Dirichlet function in the sense of [2]. By the Royd@éecomposition
([2, Satz 7.6]) we find that/ is uniquely represented as the sfiran elementry
of HD(R) and a Dirichlet potentiaPy, o . By [2, Hilfssatz 7.7] thesed Green po-
tential oy on R such thai Py| < ¢y on R and hence, there is an element hF ¢yt
of S(R) such thats > U on R. SetE’ = {{ € A: lim,_cu(z) = +oo}. Then, E’ is
a Gs-set containingt  ands > Hy , for any e > 0, wherex is the defining func-
tion of E’. HenceHy , =0, which means that is null with respect t& for every
Z E€R. ]

1.4. In this subsection we give a definition of thinness. et A% and
A1 = AR

Derinimion 1.3 (cf. [2, p. 206]). Let¢ be a point of A andE a closed subset
of R. We say thatE ighin at ¢ if there exists a polar subs&f @&  satisfying one
of the following conditions:

i) ¢ does not belong to the closure EIf N) of E\ N in R*;
i) ¢ belongs to CIE\ N) and there exists a non-negative full-superharmonic fanct
s on Ry such that

liminf s(z) > s(0),
Z2(E(ENR)\N)—¢ ) ©

where we refer to [2, p. 177] for the definition of the valug) 6f s at (.

This fact means that, for every closed subget RofE , s thig #&and only
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if EN Rg is thin at(.
Let ¢ be a point of A; and p a positive number. SeB,({) = {z € RoU A:
dRYA(z, ¢) < p}. From the definition of thinness we see thg\ B,(¢) is thin at(¢.

2. Relation between potential theoretic notions on coveri surfaces and po-
tential theoretic notions on base surfaces

Let W, W, =, W*, W*, =*, A = A", A = AW, A, = AV, &, = AV, HD(W),
and HD(W) be as in Introduction. Lek %y, be a closed parametric diséin et. S
Wo =W\ K and Wo = W\ 771(K). Let g¢ = g (resp.g; = gg%) be the Green
function on Wy (resp. Wp) with pole até € W (resp.f~ € Wo). First, the following
lemma gives us a relation between full-polar sets on baskmand full-polar sets
on its covering surfaces.

Lemma 2.1([7, Lemma 2.3]). Let E be a subset opUA. ThenE is full-polar
if and only if (7*)~Y(E) is full-polar.

By [10, Lemma 3.1] and [2, Satz 4.8] we have the following.

Lemma 2.2. Leth be an element of HW). Then

Wo — Wo
H,> =H°om

on W.

SetHD(W) o = {homx: h € HD(W)} and HD(Wo) o 7 = {h o 7 h € HD(Wo)}.
SinceW is a finit~ely sheeted cgvering surface Bf HD(W)on (resp. HD(Wp)on) is
contained inHD(W) (resp.HD(Wy)). From the above lemma the next lemma follows.

Lemma 2.3. HD(W)=HD(W) o 7 if and only if HD(Wo) = HD(Wo) o .

Proof. LetT =TV (resp.T =T'" ) be the mapping froD(W) (resp.HD(W))
onto HD(Wo) (resp. HD(Wp)) as in§1.1. We first remark that

() T(HD(W) o ) = T(HD(W)) o .

For, taking anyh € HD(W), by Corollary 1.3 and Lemma 2.2 and by the fact that
HD(W) C HP(W), we have

T(/’loﬂ'):hOﬂ'—HWO

hom

:ho7T—HhW°o7T:(h—HhWO)Oﬂ:T(h)Oﬂ

on Wo.
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Suppose thaHD(W) = HD(W) o 7. By Corollary 1.3 and ) we have
HD(Wo) = T(HD(W)) = T(HD(W) o 1) = T(HD(W)) o 7 = HD(W) o .
Conversely suppose thatD(Wy) = HD(Wo)or. By Corollary 1.3 and) we have
HD(W) = T~YHD(Wo)) = T~ X HD(Wo) o ) = T ~HT(HD(W)) o 7) = HD(W) o . O

We recall the functionalsp and ) defined in [7, Definition 2.1]. Let} be an ex-
tended real-valued function oW. Set, forz € W,

Pl =Y m@FE)
@)=

and

YIf1(2) = min{ ) (2) = 2},

wherem ) is the multiplicity ofz™ byr. It is easily seen that, for any superharmonic

function s on W, ©[5] and ¢[s] are superharmonic functions oW, and that, for any

harmonic functions on W, <p[h] is a harmonic function orW (cf. [7, Lemma 2. 2])
Denote byA, =AY (respA, AW) the set of all regular points oA (resp\)

with respect to the Dirichlet problem oW  (resi). SetA,1 = A,NA; (resp. A,l =

A, N A7). We say that a non- negat|ve harmonic function (réspon Wo (resp. Wo)

is quaS| bounded o, (resp. Wo) if there is a monotone increasing sequerés }

(resp. {h"}) of non- negatwe bounded harmonic functions such thay lim, s, = &

(resp. lim,—+s0 b, = h) On Wy (resp. Wo). The following characterization of regular

boundary points is useful.

Proposition 2.1 ([2, Satz 17.24 and Satz 17.25])The following conditions for
¢ € Ay are equivalent
(i) ¢ (resp.{) is a regular point ofA (resp. A);
(ii) the Kuramochi functionV, (resp. N;) is quasi-bounded oo (resp. Wo);
(iii) im . ¢ ge(z) = O (resp. lim:_;gz(Z) = 0) for some (equivalently every point
€ € Wo (resp.€ € Wo).

Lemma 2.4.
(™) HA)NAL=A,

Proof. First suppose that € (7*)"X(A,1) N Ay. Setting¢ = 7*(¢), we find that
¢ € A.1. Hence, by Proposition 2., is quasi-bounded oi¥,. From this fact it is
easily seen thailV; o 7 is quasi-bounded oi¥. On the other hand, by [7, Proposi-
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tion 2.1], we have
0 < Nz() < (¢[Ng] 0 m)(F) = (N o 7)),

for every 7 € Wo By [2, Satz 2. 1]Nc is also qua5| -bounded oi,. By Proposi-
tion 2.1 we haveg € A,l, and hencer*) " 1(A,1) N A1 C A, 1.

Next supposé& € A,.1. From [7 Theorem 1] it is easily seen that 7*(() € As.
By [7, Proposition 2.1]N¢(z) = [NC](z) for every z € Wy. By Proposition 2. 1NC is
quasi-bounded oW, and henceN; = ‘F’[Nc] is quasi bounded orWo. From Propo-
sition 2.1 it follows that¢ € A,1. ThenA,1 C (7*)"%(A,1) N A;. This completes
the proof. U

For the harmonic measures the next lemma holds.
Lemma 2.5. Let E be a Borel subset ok, and 7 a point of W. Then
1 (E) = pf (7*)H(E)).

Proof. Consider the generalized Dirichlet solutiéf], (resp. H. X( - 1(J) of the
defining functionyz (resp. x(:-)-yg)) of E (resp. @)~ YE)) on W (resp.W) in the
sense of Perron-Wiener-Brelot. ife S(W) satisfies liminf_.s(¢) > 1 for all ¢ € E,
thens o m € S(W) satisfies liminf_s(s o 7)(§) > 1 for all ¢ € (x*)"Y(E). Hence
by definition

Hy, (w@) = Hy . .,

(2).

Conversely ifs e S(W) satisfies liminf_;5(¢) > 1 for all ¢ € (7*)"Y(E), then
Y[s] € S(W) satisfies liminf_.¢ y[5](£) > 1 for all { € E. Hence we have

Hy @) <o [H L, @y <m; |, 6.
Hence
@) = H L Q).
Therefore we have the desired result. U

From the above lemma we easily obtain the following.

Lemma 2.6. Let E be a subset oA and a point & . Thé&nh s a null set
with respect tou! if and only if (7*)~X(E) is a null set with respect el for every
z € 7 Y(2).
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3. Proof of Main Theorem

31 Letw, W, m W, Wr, 1t A =AY, A =AY, A =AY, and A, =
AY be as in Introduction. For a pointt of Aj, setAi(¢) = Ar N (7*)~%(¢) and let
v(¢) be the cardinal number ok(¢). First we characterize(¢) by thinness. LetM,
be the class of open connected subsdts Wof suchwhatM is thin at¢. For
M € M, denote byn ¥ )= (M) the number of connected componentsrof(M).
Then, in [7] we presented the following.

Theorem 3.1. Let ¢ be a point ofA;. Then

v(Q) = wmax n(M).

Let K = Ky be a closed parametric disc i . Séy = W \ K and Wo =
W\ 7~}(K). We prepare the next lemma to prove Main theorem.

Lemma 3.1. Let ¢ € A; and A4(¢) = {Ci,.... G}, (@ < m). Then there
exist sequence$§ W {8 such thata(E®) = - = 2(9) (n = 1,2 ...) and

||mn~>+oo£n _Cj (= ’~'~’Q)-

Proof. By Theorem 3.1 there is a subreglm wf  such WatM is thin atg
andn— 1(M) consists ofq componentMl, .. M We may assume that ea(Wi\M
is thin atCJ ~Seth(gj) ={Ze WoUA: d(z CJ) <pt(p>0,j=1....q) where
(-, )= dWoUA( ) is the Kuramochi distance oW, U A. Then, by the definition of
thinness eacPW\(Mj me((j)) is also thin atCJ. By the same method as in the proof
of Theorem 3.1 (cf. [7, Main Theorem]), we can show that thisre subregionM,
of W such thatM, Cc M, W\M is thin at¢, and7~1(M,) consists of; components
My1, ..., M,, with M, ; € M; 0 B,((;) =1 ...,q).

Let {p,} be a monotone decreasing sequence of positive real numbeverging
to 0. We can choose sequencfs} and {E,Sj)} (j =1,...,q) such that¢, € M,
and &) e 7=3&,) N (M; N B,,((;)) (G = 1.....q). Then the sequence&’’} have
the required property. U

3.2. Let g¢ = gg“‘) (resp.g; = g5 O) be the Green function ofi, (resp. Wo)
with pole até € Wy (resp.& € Wo) Denote byA, =AY (respA, AW) the
set of all regular points ofA (resm) with respect to the Dirichlet problem oW
(resp. W). SetA,1=A,NA;1 (resp. A,1=A,NA;). Denote byN¢ = NWO (resp. N&
NYV") the Kuramochi function or, (resp. Wo) with pole até € Wy (resp.g € Wo).

We obtain the following theorem which implies Main theorem.
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Theorem 3.2. The following conditions are equivalent
() HD(W)=HD(W)om;
(i) for everyC e A1, v(()=1
(i) for all ¢ € A1 except possibly for a full-polar subset of;, v(¢) =1
(iv) for almost every € A; with respect to the harmonic measy’ (z € W) on A,

v =1

Proof. (i)== (ii): Suppose that (i) holds. By Lemma 2.3 we find th4b(W) =
HD(W) o 7 if and only if HD(Wo) = HD(Wo) o 7. Fix £ € Wo and set¢ = (d). It
is well-known thatN5 — & € HD(WO) (cf 2, p. 160]) By assumption there exists
a functiong € HD(Wp) such thatNE = gon on Wo. We have, for every € Wy,

Ne(2) —ge() = Y m(@) (Ne(®) — 8(3) =m - g(2),

zem—(z)

wherem ) is the multlpI|C|ty ofz™ byr, and henceNE(z) gg(z) = (1/m)(N5 —gg)o
(%) holds for everyz"e W, and for everyé € Wy with ¢ = 7(¢). Thus(§) = m(£')
implies Ng(z) 8:(@) = Ng,(z) 8z(2) for everyZ e Wo.

Fix ¢ € A1 and 7 € Wo. By Lemma 2.4 we note thaAl(C) c A By
Proposition 2.1 and the symmetry of the Green function, fay g € A0,
lim¢_ ¢ 8¢(2) = 0. Suppose thaf’ is another point ofA;(¢). By Lemma 3.1 there exist
sequenceq¢,} and {&€} with 7(&,) = 7(€) (n = 1,2...) such that lim_+o0 & = C
and lim,_+o0 gn = C’ Then we have

Jim(Ng, () - 2¢,(2) = lim_(Ng () - 8¢,()
and henceVg(z) = Nz (3). Thus¢ = {'. This showsw(¢) = 1. Therefore (ii) follows.

(ii) = (iii): Suppose that (i) holds. By Proposition 1.1, for &l € A; except
possibly for a full-polar subsei; \ A, 1 of Ay, v({) =1

(iif) = (iv): Suppose that (iii) holds. By Lemma 1.5, for almost gver € A;
with respect to the harmonic measyr® (z € W) on A, v(¢) =

(iv) = (i): Suppose that (|v) holds. Let € HD(W). By [2, H|Ifssatz 16.1], there
exists a Borel functiom* on A such thati(z) = fh*duw By assumption, Proposi-
tion 1.1 and Lemma 1.5 the s&& & € A: (€ A\ Ajorv(¢) > 2} is a null
set. Then there exists @s-set Ns (C A) such thatNs D N and /LZV(N(;) = 0. Since
v(¢) = 1 for every( € A\ Ns, by [7, Corollary 2.2], we find that the inverse image
(7*)~(¢) of ¢ by n* consists of just one minimal point. Then

h*((m) 7)) for ¢ € A\ N5

h(C)—{ for ¢ € Ns

is well-defined. We give the following claim:
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CLam. h* is a Borel measurable function o

Proof of the claim. By the definition 06 s-set there exist a sequen®, } of
open subsets oh  witlVs = ﬂ;;’j O,. SetF, =A\O,. ThenF, is a closed subset of
A and A =NsU (U2 F,) with N5 0 (23 F») = 0. In order to prove this claim we
shall show that for each € R the setE, = {¢ € A: h*({) < a} is Borel measurable.
Since E, = ANEq = (NsNEq)U(UZ(F, N Ey)), by the fact thatVsnE, = N5 or 0,
it is sufficient to show tha#,NE,, is Borel measurable. SincE, C A\ Ns, the inverse
image (*)~%(¢) consists of just one minimal point for evety € F,. Thenz* is a
bijection of F, = (r*)~1(F,) onto F,. SinceF, is compact andr* is continuous on
F,, 7|z is a homeomorphism. Henck, N E, = 7*(F, N E,) is Borel measurable,
where E, = {C € A: h*({) < a}. The claim is proved. O

By the above claimz* is a Borel function onA . Then
h(z) = / h*dul

is a harmonic function i . By Proposition 1.1, and Lemmas 2.5 and 2.6,

W= [ Fand = [ o dn = [ b duly = (hom)O).
A ' A\(m*)=L(N) ' A\N '
It is easily seen that has a finite Dirichlet integral. Therefwe have (i). [l

4. In the case thatW is the unit disc

Throughout this section we shall consider the case Wiat dsuthit discD =
{zeC:lz| <1}. Let W=D, A=AP, A; = AP, andv be as in Introduction.

4.1.  In this subsection we seby = {z € C:r < |z] < 1} (0 < r < 1).
We know that the Kuramochi compactificatidn* of D is homeomorphic to the clo-
sureD = {z € C: |z| < 1} of D in C with respect to the Euclidean topology and
the Kuramochi boundarnynA =A” oD is homeomorphic to the boundary =
{z € C: |z] = 1} of D in C with respect to the Euclidean topology, which consists
of only minimal points. SetDy = {z € C:r < |z| < 1/r}. We note that every
non-negative full-superharmonic function dby is the restriction of a non-negative
superharmonic function o, to Dy which is symmetric with respect t8D and vice
versa (cf. [2, p. 234]). By this note we see that
(i) thinness for the minimal Kuramochi boundary point caifes with thinness in the
usual sense (cf. [7, Lemma 1.4]);

(i) a full-polar subset ofA is identified with a polar subsdt@D (cf. [2, p. 234]).

The next well-known lemma gives a relation between the haimeneasures
{uP:z € D} on A and the linear measure @D.
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Lemma 4.1. The harmonic measurg? (z € D) on A and the linear measure
on 9D are mutually absolutely continuous

The following is an immediate result from Theorem 3.2.

Theorem 4.1. Suppose thaW = D. Then the following conditions are equiva-
lent
() HD(D) = HD(D) o ;
(i) for everye c oD, v(e'?) = 1;
(iii) for all ¢’ € D except possibly for a polar subset 8D, v(e'f) = 1;
(iv) for almost everye!’ ¢ 9D with respect to the harmonic measy’ (z € D) on
oD, v(e'?) =1;
(v) for almost every’® ¢ 9D with respect to the linear measure @D, v(e'?) = 1.

4.2, Our aim of this subsection is to prove Proposition in Intrciihn.

Let {w,} be a sequence withRw,| < 1/3 and 0< Qw, < 1/3 for everyn
(eN). Setl =X 1, (I, = {w € C: Rw = Rw,, |Sw| < Sw,}). Let ¥ > 2 and
By ={weC:|wEiM| <1} SetG =C\ (B_ U B). We denote byge(w) = g (w)
the Green function oG with pole @< G. Then the following lemma holds.

Lemma 4.2. Suppose that, satisfies

+00 1
; log(1/Sw,) < oo

Then I is thin in the usual sense at almost evary [—1/6, 1/6] with respect to the
linear measure orR, where[—1/6,1/6] = {x e R: —1/6 < x < 1/6}.

Proof. We show that the balayagfeé‘ = Gl}éx of g, relative to/ onG is not
equal tog, . We refer to [1] for informations of balayage. If weoye

1/6
/ R;,_‘_ (x)dx < +oo,
-1/6

then ieé_‘_(x) < +oo for almost everyx € [—1/6, 1/6] with respect to the linear mea-
sure onR and henceRé‘ # g, for almost everyx € [—1/6, 1/6] with respect to the
linear measure oR. SetF, ={w € C: |w — Rw,| < Sw,}. Let ¢, be a continuous
superharmonic function o such that

() en(w)=1onkF,;

(i) 0 <pu(w)<lonG\Fy;

(iii) ¢, is harmonic inG \ F,;

(iv) ¢n(w) =0 ondG.
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Then we have the following

ERw, (w)

min )
CeOF, gnw, (€)

on(w) <

for all w € G. We compare the Green function with log(i — (J). It is easily seen
that there exist positive constanig and ¢, such that

c1log < gx(w) < c2log

_1 _1

|lw — x| |lw — x|

for all x € [-1/6,1/6] andw € {w € C: |[Rw| < 1/3, |Sw| < 1/3}. By the fact that
R (w) = HZ V" (w) for everyw € G \ 1, and maximum principle, we have

16 1/6 +oo
/ R;X(x) dx S/ ZRI” (x)dx

—-1/6 n=1
1/6 1
< c2log —————u(x) dx
; /1/6 |x - §an|
+oo 1/6 l
< Z/ o |Og -g%w,, (x) dx
n=1 71/6 |x - §}%u)n| wrgér):” gmwn (w)
1/6 1 2 1
< lo - d
- ,;/1/6 (cz e a%wn|> mincrlog(1/w —Fw,))
2 1/6 2
— | dx
Z |Og(1/dwn) /1/6 < |x — n|>
< +0o0.
This completes the proof. [l

Proof of Proposition in Introduction. We may assume that @z,}. Fix ¢ €
A. ThenTy(z) = iM(e'® — z)/(e® +z) mapsD conformally onto the upper half plane
H with Ty(e'?) = 0 and 7yp(0) =i M, whereM > 0. ThenD is anm -sheeted unlimited
covering surface oH with the projection mappindy o © and {w, = Ts(z,)} is the
set of the projection of branch points. We choadde > 2) so thatB_ = {w € C:
|lw —iM| < 1} does not contain the projection of branch points. Set

S:{wEC: |3‘Ew|§%, |Sw|<%}
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and

+00 {w € C: Rw = Rw,, |Sw| < Sw,}, if Sw, <
r=\Jn| =
n=1 {w € C: Rw = Rw,, |Sw| > Sw,}, if Sw, >

Wik Wik

We denoteH \ I’ by Q. SinceQ is a simply connected subregionHbfwithout
the set of the projection of branch pointdy e 7)~%(2) consists of justn connected
components. Thus, by [7, Main Theorem] we find thatHif\ & = H N [’ is thin
at x € R, then V(Tgl(x)) = m. To prove the statement of this proposition it is suffi-
cient to prove thaH N I’ is thin in the usual sense at almost evarye R with re-
spect to the linear measure &hbecause thinness for the minimal Kuramochi bound-
ary point coincides with thinness in the usual sense. To lsisewte set/; =, 45 1,
and J2 = U,, ¢s 1+ Since thinness for the minimal Kuramochi boundary poinin€o
cides with thinness in the usual sense, by i) of Definition, W8 find thatJ; is thin

in the usual sense at evekye [—1/6, 1/6]. Since the conditionff implies

1
Z log(1/Sw,) < oo,

wy €S

by Lemma 4.2, we find that/; is thin in the usual sense at almost every ¢
[-1/6, 1/6] with respect to the linear measure d® Hence, we conclude that
HnN 1 = JiUJ; is thin in the usual sense at almost evarye [—1/6, 1/6] with
respect to the linear measure & Therefore, since the Mobius transformati@p is
chosen arbitrarily, we have shown that for almost eveéfyc 9D with respect to the
linear measure o@D, v(e'?) = m. O

5. Remark

We have proved Main theorem under the assumption tHBYW) contains
a non-constant element, or equivaleny ¢ Oyp. In this section we give some nec-
essary and sufficient conditions fov < Onp under the condition thaW € Opp.
We say thatW belongs t@g if the Green function does not existtonwWe .know
that A is a full-polar set if and only iW € Og (see [2, p. 189]). It is well-known
that W € Og implies W € Oup. By [2, Folgesatz 16.1] and [2, Folgesatz 16.7],
W € Owp \ Og if and only if A; = A} is the union of a singleton and a null set
with respect to the harmonic measure An . Then the followergnha is easily ob-
tained.

Lemma 5.1. (1) The following conditions are equivalent
(i) WeOg;
(i) W e Og;



KURAMOCHI BOUNDARY AND HARMONIC FUNCTIONS 293

(iii) A is a full-polar set
(iv) A is a full-polar set
(2) Suppose thaW € Owp \ Og. Then the following conditions are equivalent.
() HD(W) consists of only constant functigns
(iy W e Owp \ Og;
(iii) for the only one minimal poin{ € A with the harmonic measurg! (¢) = 1
(zew), v()=1.
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