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1. Introduction

The purpose of the present paper is to study the interfacelamgty of three di-
mensional Maxwell and Stokes systems. To our knowledgesaanuch regards have
been taken in this topic, but actually the solenoidal coeomifprovides the regularity
across interface to a specified component of the unknowrordietid.

Let @ c R® be a bounded domain with Lipschitz bounda, and M c R® be
a C? hypersurface cutting2 transversally. Then, it holds that

MNQ#D
(D) Q=Q:U(Q@NM)uQ_ (disjoint union)

with the open subset®. of Q. First, we take the Maxwell system in magnetostatics,

VxB=J .
(2) V-BZO} n Qy,

where B = B1(x), B(x), B3(x)) and J = (/(x), J?(x), J3(x)) stand for the three di-
mensional vector fields, indicating the magnetic field anal tittal current density, re-
spectively. Here and hencefortr, =7 (01, -, 05) denotes the gradient operator ard
and- are the outer and the inner productsRA, so thatV x and V- are the operations
of the rotation and the divergence, respectively.

In the context of magnetoencephalography, Suzuki, Watanahd Shimogawara
[2] studied the case when the interface is given by the baynd@® of a smooth
bounded domainD < RS3. Namely, from the properties of the layer potential, it
showed that ifJ is piecewise continuous &%\ 9D and system (2) has a solution
B € C(R®)*NCYR3\ oD) for Q_ =D andQ, =R%\ D, then

[V(n-B)]>- =0 on 9D

follows, regardless with the continuity of acro8®. Here,n denotes the outer unit
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normal vector todD, [A]T = A, — A_, and

A+(8) = lim  A(x), A_(©= Ilim A(x)
x—&, x€ER3\D x—& xeD

for ¢ € 9D. In this paper we study its local version, that is, the caserehthe

bounded domairf2 is given with the interfagdd N 2 as in (1).

To state the result, we take preliminaries on function spaitem Girault and
Raviart [1]. Namely, letb c R® be a bounded domain with Lipschitz boundaiy
andn be the unit normal vector @D. For p € [1, o], L?(D) denotes the standard
L” space onD provided with the north- ||, ), and the Sobolev space™ D( ) is
defined by

H"(D) = {u € L¥D) | 9*u € LA(D) for |a| <m}

for a positive integern , wher@* = 9710720 for the multi-indexa = (aa, az, as).
Given o € (0, 1), we say that: € H™*°(D) if u € H™(D) and

o _ Ao 2
[ [T 0O )y <
pJo fx )l

for any a in |a] = m andn = 3. The spacéf® I'( ) is defined similarly with = 2
through the local chart of , wheree [0,1] andT" C 0D is a relatively open con-

nected set. Then, we sét—*(T") = H(T")’, where H§(I'") denotes the closure iH* I'( )

of the space composed of Lipschitz continuous functiond onith ompact supports.

Thus, we haveH§(I') = H*(T') if ' C 0D is a closed surface, and in particular, it
holds thatH2(9D) = H}'*(@D). We also put

H(div, D) = {u € LAD)® |V -u € LXD)}
and
H(rot, D) = {u € LAD)® | V x u € L¥D)*} .

Then, anyv € H(div, D) admits the tracen - v|,, € H~Y?(@D), and Green's
formula

((U, V(P))D + (v v, (p)D = <I’l v, <)O>8D

holds for ¢ € HY(D). Here and henceforth,-,(), and ((,-)), denote L?(D)
and L2(D)* inner products, respectively, and,-),, the duality pairing between
H-Y2(0D) and HY2(0D) = H}'*(OD). Let us note here that the standard trace the-
orem guarantees|,,, € HY2(9D) for ¢ € HY(D). Similarly, anyv € H(rot, D)
admits the tracer x v|,,, € H~-Y?(0D)3, and the Stokes formula

(Vxv,w), = ((v,V xw)), ={(nxv,w))y,
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holds for w € HY(D)3? where ((-,-)),, denotes the duality pairing between
H~Y2(0D)® and HY?(OD)q.

Now, to discuss the interface regularity of the solutiBn e tMaxwell sys-
tem (2), we take that

'y =0Q+NM

with 9221 being the boundary of2... This means thal', andI'_ coincide as sets, but
they are regarded as the parts of the boundarieQ.ofand 2_, respectively. Hence-
forth, n denotes the outer unit normal vectorlia so that—n is the outer unit normal
vector tol',. Henceforth,C? extension of the vector field defined dh MNQ is
always taken ta2 . Furthermore, given a functianx ( ) @n, we set

[A]. =4, — A_ on T,
where A+ (§) = lim,_¢ ccq, A(x) for £ € T' are usually taken in the sense of traces
toI'..

Suppose thaB and are ib?(Q2+)® and satisfy (2). This means that those re-
lations hold piecewisely if21 in the sense of distribution®’(2.), that is,

/B-VxC:/ J-C and /B-V<p:0
Qi Q4 Q4

for any C € C5°(+)% and ¢ € C§°(R+). Unless otherwise stated, those vector fields
B € L%(Q4) and J € L?(R.)3 are identified with the elements ih?(Q)3.

Relation (2) forB € L?(Q+)% and J € L?(Q.)® implies thatB € H(rot, Q1) N
H(div, 1), which assures the well-definedness of

nxBl., e HY3ry)?®  and  n- Bl € HYA(TIy),

and henceB|., € H~Y/(I';)? follows. Furthermore,

(3) [nxB"=0 and k-B]" =0
if and only if
(4) VxB=Jel?Q)?® and V- -B=0¢clL¥S)

as distributions inQ2 , respectively. If both relations of (8)e satisfied, them <
H} ()2 follows, becauseB € H}.(R)% is equivalentto B] = 0onTl forB €
H(2+)3. This fact is also obtained by Corollary 1.2.10 of [1],

(5) H(rot, Q)N H(div, Q) C Higo(Q),
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as (4) for B € L?(Q)® implies B € HL.(R)3.
Our first result is stated as follows. Let us note again that findd on M is
extended to a2 vector field inQ, andz - B € HL(Q) follows from B € HY(Q).

Theorem 1. If B ¢ HYQ)® and J € H(rot, Q) satisfy (2), then it holds that
n-B € H(Q).

In the above theoremB solves (2) f0  as a distribution, bexdtus assumed
to be in H(Q)3. That is,

/B-VxC:/J-C and /B-Vgo:O
Q Q Q

hold for anyC € C§°(R)® and ¢ € C§°(R). On the other hand/ € H(rot Q) be-
longs toJ € H(rot, Q) if and only if [z x J]* =0 onT'. If this condition is satisfied
furthermore, then it holds that

—~AB =V xJ e L¥Q)®

(as distributions inQ ), becaus€ x B = J € H(rot, Q) andV - B = 0 € L?(Q)® are
valid similarly in . Then,B € H2.(2)? is obtained from the elliptic regularity. Thus,
Theorem 1 says, in contrast, that evemik J has an interface ot  #1 N Q, the
normal componeniz - B of B gains the regularity in one rank. It is not difficult to
suspect that the solenoidal conditidn- B = 0 in Q plays an essential role in such a
regularity.

In this connection, it may be worth noting that the assunmptid Theorem 1 does
not permit the interface ta - J. In fact, equation (2) holds i®2 as we have seen, and
therefore,

V-J=V-(VxB)=0

follows there. This implies/ € H(div, Q), and hence we have:f J]* =0 onT in
particular.
Theorem 1 can be applicable to the stationary Stokes system;
—Av+Vp=f .
(6) V.p= 0} n Qi

and the stationary Navier-Stokes system;

@ —Av+(v-V)v+Vp:f} n QL

V-v=0

wherev = ¢*(x), v?(x), v3(x)) denotes the velocity of fluidp # x( ) the pressure, and
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f(x) = (f(x), f3(x), f3(x)) the external force. We have the following theorem, where
w =V x v indicates the vorticity of fluid.

Theorem 2. If v € H(Q1)3 p € HYQ4), and f € H(rot, Q) satisfy (6)
or (7) and if w =V x v is in H}(Q)3, then it holds that: - w € H2.(S).

We note thatv € H3(Q4)3 impliesw =V x v € HY(Q4)3, and hence the assump-
tion w € HY(R)2 means ¢]* =0 onT. It is equivalent to saying that =V x v €
H()® as a distribution in2 , witv regarded as an elementfi($2)3.

In the above theorem, system of equations is supposed topietgwisely inQ24,
andv, Vv, p, and f may have interfaces dh M N Q. Neverthless, it says that the
normal component: - w of vorticity w gains the regularity in one rank itJ]- = 0
holds onT" =Q N M for w =V x v € HY(Q+).

On the other hand, all components ©fgain the interface regularity, it p f
are free from the interface, so thatif ¢ H?(Q)3, p € HY(RQ), and f € H(rot, Q)
hold in (6), thenw € H2.(R2)® follows. In fact, in this case system (6) holds @&
and hence

VxVp=0¢c L), and —Aw=Vx feL¥Q)

follow in turn as distributions in2 . Then, the elliptic requity guarantees fow <
HY()® to be inw € HZ(Q) from the last inclusion.

The interface regularity ofp , the pressure of fluid, followisnigarly from the
standard regularity. Namely, if € H2(Q)3, p € HY(Q), and f € H(div, Q) satisfy (6),
then it follows thatp € H2.(). In fact, then we have

Vp=Av+f and V-v=0
in @ (as distributions again), and hence
Ap=V-fcL¥RQ)

follows similarly. Thus, we obtairp € H2.(Q2) from the elliptic regularity.

Those standard regularities are valid even to (7), becauséf?(Q)® implies v €
L>(Q)% and 0v/0x; € LYR)® for j = 1, 2, 3 by Sobolev’s imbedding theorem, and
therefore, ¢ - V)v € H(2)2 follows from

0 ov ov 2

- . = — . +v-V— LA(R).

o, (v-Vv) ox; Vuv+v Vaxj € L)
In other words, even in (7)y € H*(Q), p € HX), and f € H(rot, Q) imply v €
HE.(Q)% andv € H*(RQ), p € HY(Q), and f € H(div, Q) imply p € H2(Q).

We confirm again that, in contrast with those standard resliheorem 2 assures
the interface regularity gain in one rank far- w, only from the piecewise regularity
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of the data. This is actually the case even for the velocdgliitas the following theo-
rem shows, wher&€? extension ofr is taken t® . See the remark after the following
theorem concerning the non-standard interface reguléityp.

Theorem 3. If M c R%®is C® andv € H%Q)® p € H?*Q:), and f €
HY(Q24)® satisfy(6) or (7), then it holds thatr - v € HZ.(S).

The corresponding standard regularity to the above thedgesbvious, so that €
H*(Q)3, p € HX(Q), and f € HY(Q)® imply v € H3.(Q) in (6) or (7).

In this theorem, similarly to the previous one, (6) or (7) slo®t hold inQ2 as a
system, becausp € H(Q) is not required in spite ob € H?(Q). However, if we
add f € H(div, ) in (6) to the assumptions of Theorem 3, then

.
} =0 on r

®) [8—”

on
follows from
Vp=f+Av in Q4

becuaser € H3(Q)® andn - v € H3(Q) imply n - Av € HL(Q). The same fact holds
similarly to (7), as ¢ - V)v € HYQ)® holds byv € H?(Q)3. Later, we shall show
that (8) is valid under the assumptions of Theorem 2 gnd H (div, €2).

Relation (8) impliesV-(Vp) € L2(Q) if Vp € HY(Q4)3 is regarded as an element
in L?(22)3. However, in constrast with the standard case describeorddtheorem 3,
this does not meamp € L2(Q2) becausep € H?(Q-) itself may have the interface,
and Vp € L3(Q) does not hold inQ when the distributional derivative is taken
p € L¥Q) in Q.

This paper is composed of three sections. In Section 2, admynk is provided.
Then, Theorems 1, 2, 3 are proven in Section 3. Those thedhaxes component-wise
versions and Sections 4 are devoted to that topic. The firaioseis the concluding
remark.

2. Key lemma

In this section, we are concentrated on the Maxwell systelra@ show the fol-
lowing lemma. It is a fundamental tool for the proof of theose

Lemma 2.1. If B € L2(Q4)® and J € H(rot, Q) satisfy(2), then

V(n-B)|, € H Y3(y)
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is well-defined and it holds that
{((V(n- B),C))~ = {{(V-n)B,C))~
9) =((B,(n-V)C))" —((nx B,V xC)H* —(n-B,V-C)"

for any C € C§°(Q)%, where ((, )T =((, ), = ((, N .

Proof. As is described in introduction, it follows from (2pn&B, J € L3(Q+)®
that B € H(rot Qi), nx B|., € H Y4T'1)3, B € H(div,Qx+), and n- B, €
H~Y(T'1). It also holds by (5) thaB € H.(Q+)°.

Now, in use ofJ € H(rot, 2.), we have

nxJ|p, =nx(VxB), € H™Y(rL)3,

FurthermoreV - B =0 in Q. implies —AB =V x J € L?(Q4)3, and hence

OB —
Tn = (0 VBl € HTVATL)?

is well-defined forB € HL.(2+)® by Corollary 1.2.6 of [1]. Thus, through the (distri-
butional) identity

(10) (-V)B+nx(VxB)=V(n-B)—(V-n)B,
valid for n € CX(Q) and B € L2(Q)3, it follows that
V(n-B)|p, € H Y*(I'1)>.
Henceforth, we set

2 9B C

VB®VC = _—
© 8xj 8)(]

i,j=1

for B = (B, B4 B3 andC = (1, C2 C3) € Cg°(RQ)3. Then, it holds that
(11) / VB®VC =—{{(n-V)B,C))* —((AB, C))q.
Q

In fact, becausern is the outer unit normal vector tby, Green'’s formula, described
in the previous section, guarantees that

o5

(VB',VC)q, = — < o

,c’> —(AB', C'q,
s
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for i =1, 2, 3. This implies (11).

Here, equality (10) is applied to the first term of the righnd side of (11).

have

—{(n-V)B.C)T = ((nx (Vx B),C))" —{(V(n-B),C))"
+(((V-n)B,C))" .

Since—V x (V x B) = AB holds inQ., the Stokes formula now gives that

{(n > (V x B), O))~
=—((Vx(VxB),C)),+((VxB,VxC(),
= ((AB,C))o+ (VX B,V x ).

Those relations are summarized as
(((V-m)B.C))Z ~ ((V(n-B),C)"
(12) :/QVB®VC—((V><B,V><C))Q.
On the other hand, we have
/QVB ®VC=—((B,(n-V)C))" — ((B,AC)),,
similarly to (11). Combining this with (12), we obtain

((V(n-B),C)" = ((V-n)B,C)"
(13) = ((B,(n-V)C))_ +((B, AC)), + ((V x B,V x (),
Now, we take the Helmholtz decomposition 6f . We put
(14) C =Co+Vp,
where p is a scalar field defined @  satisfying
—Ap=V-C in Q
ap

E:n-C(:O) on 022.

First, we havep € C*(Q) andV x Co =V x C € C$°(Q)3. This implies that
((Vx B,V xC)),=((VxB,V xCo)),.
On the other hand, we hawep =V .C € C§°(2) and hence

((B,AC)),, = ((B, ACo+V(Ap))),,

We
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= ((B. ACo)), — (V- B, Ap)a+(n- B, Ap)~
= ((B, ACo)), — (n- B,V - c).

Finally, we have forL =V x Co € C$°(RQ)® that ACo= -V x L by V- Co=0 in Q
and hence

((B, ACo)), = —((B.V x L)),
~((Vx B, L), — ((nx B, L))"

~((V x B,V x Co)), — ({n x B,V x Co))"..

Those relations are summarized as

((B.AC)),+ ((V x B,V x (C)),
= ((B, ACy)) o+ ((V x B,V x Co)), — (n- B,V -C)"
=—((nxB,VxC) —(n-B,V-C)
=—((nxB,VxC) —(n-B,V-C)".

Therefore, (9) follows from (13). The proof is complete. [l

3. Proof of Theorems
First, we give the following.
Proof of Theorem 1. SinceB[*]=0 on T, we have by making use of (9) that
((V(n-B),C)" =0
for any C € {C§°(Q)}2 by (9). This implies that
(15) [V(n-B)]~=0 on T.

On the other hand, we havB € Hl.(Q)® and —AB = V x J € L?Q4). Hence
A(n - B) € L?(Q4) follows in Q4 as distributions. Combining this with (15), we get
A(n-B) € L) with n- B € H(R), and the elliptic regularity guarantees thatB <
H ().

More precisely, becaus¥(n - B)|Fi e H~Y2(r.)q satisfies (15), Green’s formula
now gives that

/ A(n - B)Ypdx = /(n -B)AY dx
Q Q
for any ¢ € C5°(2). This means that foif € L?(Q2) defined by

[ A@ B, o
F=Y am B, ine
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it follows that A - B) = f € L?(Q) in Q (as distributions). The proof is complete.
U

Now, we study the Stokes system (6);

—Av+Vp=f .
v-v:o} in Q.

We give the following.

Proof of Theorem 2 to (6). Recall thate H?(Q+)3, Vp € L¥(Q+)%, and f €
H(rot, Q) satisfy (6), and thaty =V x v is in H}(Q)%. Then, we have

Vxw=J .
(16) V-UJZO} In Q.

for
J=f—VpeL¥Q).

Here, we haveV x J =V x f € L?(Q4+)3, and hence/ € H(rot, Q) follows. Then,
Theorem 2 for (6) is a direct consequence of Theorem 1. [l

Under the assumption of Theorem 2, relation (16) holds witke H(Q)® and
J = f—Vp € H(rot, Q4). As is noticed in introduction, this implies:[ J]© = 0
on I' as a compatibility condition. Thereforéap/an}i = 0 onT is obtained if
f € H(div, Q) is imposed furthermore. Namely, relation (8) holdsthwihe well-
definedness obp/on € H~Y?'y) under the assumptions of Theorem 2 afide
H(div, Q). The same fact is true for (7), from the proof of this dhem to that case.

Proof of Theorem 3 to (6). Recall thatc H3(Q)3, Vp € HY(Q+)3, and f €
HY(Q.)? satisfy (6). Then, we have

v X (ﬂ) = a_w
ij an .
(17) P n Q:t
ij
for j =1, 2, 3, wherev =V x v.
Now, we shall show that
ow

(18) —— € H(rot, Q).
axj
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In fact, if this is the case, then Theorem 1 applied to (17)rgoiees thatn -
(0v/0x,) € H2,(R), and then, the desired conclusion; v € H2.(2) follows.

For this purpose, first, we note that=V x v € H(Q)3 holds byv € H?(Q)3,
which implies thatow/dx; € L?(2)3. On the other hand, from (6) we have

Ow 0
V x (a—xj) —8—xj(v><tl.))

0 0 .
——8—xjAU—8—xj(f—vp) n Qi
and henceV x (0w/dx;) € L*(Q+)3 holds by f € H(Q4)® and p € H*(Q4). This
means (18), and thus the proof is complete. ]

As is noticed in the above proof, relation (17) holds forc H?(Q) and w =
V x v € HYQ). Then, we havedw/dx; € H(div, Q) similarly to J € H(rot, Q)
for (2), and [ - &u/axj]i = 0 follows onT together with the well-definedness of
n-0w/ox; € H-Y2(L)3. Thus, if M is C, v € H3(Q)?, andw = V x v, then it
holds that V(n - w)]* =0 onT with V(n-w) € H- Y1),

This section is concluded by the study of the Navier-Stokestesn (7);

—Av+(@-Vv+Vp=f .
V.v=0 in Q.

Proof of Theorem 2 to (7). System (7) is identified with (6)fif s replaced by
f — (v- V)v. Therefore, we have only to show that the condition

(29) F=f—(-V)ve H(rot, Q1)

follows from the assumption for this theorem to prove.
In fact, we havev € H(Q+)® c L>°(Q+)® and hence - V)v € L?(24)3 holds.
Furthermore 9v/0x; € HY(Q4)® C L*(Q4)® implies that

0 ov ov 2 3
o) ((v-V)) o, Vv +v v@xj € L4(Ry)

Those relations guarantee that- ¥)v € H'(22.)3, and (19) follows from the assump-
tion to f. U

Proof of Theorem 3 to (7). Similarly, we have only to show that

9 2 3

N . LA(2

5, (0 V)v) € L)

holds for j = 1, 2, 3. However, this follows actually from theopf of the previous
theorem, and the proof is complete. ]
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4. Component-wise Regularity

In this section, we suppose thatt is flat.

First, we take the Maxwell system (2). As we have seen in Ler2ma in this
caseB € HY(+)% and J € H(rot, Q) imply V(n - B) € H-Y%('1)3. Then, Theo-
rem 1 splits into component-wise versions described in tllewing theorem. In this
connection, we confirm that the traceslig of the first derivatives of any component
of B are also well-defined in this system with € H1(Q4)% and J € H(rot, Q+). In
fact, (- V)B|., € HY*I+)® is well-defined by—AB = V x J € L%Qx)® and
B € HYQ4)® as is indicated in the proof of Lemma 2.1. Ne#t, € H(Q+)® im-
plies B|., € HY('+)? and hence { x V) B|.., € H~Y*'+)% is also well-defined
through the local chart. Those traces are compatible to ties ¢aken in the proof of
Lemma 2.1 and that of the next theorem.

Theorem 4. Suppose that the interfacé is flat, and that B ¢ HY(Q4)3
and J € H(rot, Q) satisfy (2). Then if [n-B]" = 0 on I' it holds that
[(nxV)m-B)]" = 0 on I'. Similarly if [ xB]* = 0 on I' we have
[(n-V)(n-B)]"=0o0nT.

Proof. In this case: is a constant vector and we have

B-n-V)C—nxB-VxC=B-V({n-C)
for C € C§°(R)3. Therefore, equality (9) is reduced to

(20) (V- B),C)" = ((B.V(n- O —(n-B,V-C)

Without loss of generality, we assum&t = {(x1,x2,x3) |x3=0} andn =
7(0,0, 1). Then, if p - B]-. =0 onT we have

ac3\" ac3\ "
BY,—/ ) +(B?% —
< ’ 8x1> < ’ 8x2>
1 2 + 3 +
- 8& + ai’ C3 - 8&’ C3 .
8)61 8)62 _ 8)63 —_
Therefore, it follows from (20) that
oB> \"  JoB® \" _
(Fre) +(5e) =

for any Ct, C? € C§°(Q). This implies [833/8x1}i = [8B3/8x2]i = 0, or equiva-
lently, [(» x V)(n- B)]" =0 onT.

((B.V(n-C))-
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If [n x B]Y =0 onT, equality (20) is reduced to

(V(n-B),C))L = {(B.(n-V)O)L —{n-B,V-C)~

<Bs 8C3> <BS,V-C>i

5°. oct acz
Bxl 8)(2
B3 ’ 833 S\
<<9x1 ¢ >_+<3x1 ¢ >_
This implies [833/8x3}i = 0, or equivalently, [¢ - V)(n- B)]” =0 onI. The proof
is complete. [l

Now, we proceed to the Stokes system (6). We continue to sappltat M is
flat and taken =’ (0 0 1) without loss of generality. The follogipropositions are
obtained by applying Theorem 4 to systems (17) with =3 and, (E&pectively, and
the traces ta . in their conclusions are well-defined il —Y/?(I')® or H~Y/2(I'y).

Proposition 4.1. Assume thatM is flat and systen{6) holds with (n - V)v €
HY(Q41)®, (n-VIw € L2(Q+)%, (n-V)p € HYQ4), and (n - V)f € L3(Q4)3 for
w =V x v. Then the conditions

[(n-V)n-v)]" =0 and [(n-V)n xv)]" =
imply
[(nxV)n-V)n-v)]"=0 and [(n-V)n-v)] =

respectivelyon I'.

Proof. In fact, we have (6) and (17) as distributionsSin. In the latter relation
with j =3, we haveB v/0x3 € HY(R)® and J =0w/0x3 € H(rot, Q) because

ow\ _ 0 )
v x (8—)63) = oMY= (£ V)

holds by the former. Then the assertion is obtained from tegipus theorem. [

Proposition 4.2. Assume thatM is flat and systen{6) holds withw =V x v €
HY(Q4)% and f € H(rot, Q). Then the conditions

[n-(Vxv)]t=0 and [nx(Vxv)]" =
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imply

(nxV)(n-(Vxv)]-=0 and (n-V)(@n-(Vxv)]" =0,
respectivelyon I'.

Proof. We have (16) with/ = — Vp, and the assertion is obtained by Theo-
rem 4 andV x J =V x fin Q. ]

Those propositions assure the extra reguality on the aterfto the tangential
components of the solution, and in particular, the follagviheorems hold.

Theorem 5. Let M be flat and assume that € H?(Q4)3, p € HY(Q4), and
f € L?(Q4)? satisfy the Stokes syste(@). Assume furthermore that (n - V)p €
HYQ4), f € H(rot, Q4), and (n - V) f € L?(Q.+) hold true. Thenif the conditions

[nxv]Z =0 and [(n-V)Yn-v]" =[r-(Vxv)]-=0

are satisfied orT", it holds that n x v|,. € HY/*(T")>.

Proof. In fact, all requirements of piecewise regularity Rropositions 4.1
and 4.2 are satisfied, and therefore, from the assumptia@sscthe interface regularity
we have

[(n x V)(n - V) - 0)] = [(n x V) (n- (V xv))]" =0
on I'. Without loss of generality, we continue to take
M = {(x1, x2, x3) | x3 =0} and »=(Q0Q1

Let

—8_1)1-{-8_02 and h —8_1)2_8_01
&= 8)61 8)62 _8)61 8)62.

Then, we havegs =0v3/0x3=—(n-V)(n-v) and hence

follows from [(n x V)(n - V)(n - v)]" = 0. On the other hand, we have n=(V x v)
and hence
oh on

il 1
8x1’ 8)(2 < I‘[|0C(Q)
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follows from [(n x V) (n - (V x v))]" = 0. Those relations imply

2 2
O (PP

a_xl B 8_)52 - 8x12 axzz
and
dg Oh _ [ O? 52 2 1
oxs Oy (—8x12 + O V7 € Hipe($2).
Therefore,
—t — X € H, r
<8x12 szz) (nv) P )
holds.
1/2

oc (I3 from the assumption, and hence

()2 is obtained by the elliptic regularity. The proof is complet
O

On the other hand, we have x v|. € H,
5/2

nxvlp € Hgg

Theorem 6. Supposesimilarly, that M is flat, that v € H?(Q4)3, p € HY(Q4),
and f € L%(Q4) satisfy the Stokes systef@), and that(n - V)p € HY(Qy), f €
H(rot, Q.), and (n - V) f € L?(Q+) hold true. Thenif the conditions

[(n-V)nxv)]- =[nx(Vxv)].=0
are satisfied orT", it holds that (n - V)(n x v)|. € HZ(T)®.

Proof. Under the same notations as in the proof of the previborem, we
have 0g/dxs, Oh/0x3 € HL.(R) in this case by Proposition 4.2 and Theorem 5. This
implies

98
8)(3

Oh

1/2
, e H (),
r 8)(3 ! ( )

ocC
r

and hence

2 2 2 2 1
(ag ah) :(8 +8)8v erl/Z(F)

8)(18)(3 B 8)(28)(3 r 8x12 8)622 8_)63 r e

and

2 2 2 2 2
< 0 8 0“h ) - ( 0 + 0 ) ov c I_[Igcl/z(r)
r

Ox20x3  Ox10x3 r Ox12  Ox? Ox3
follows. On the other hand, we have

v

9
r 8)63

ot

1/2
s € Hg/X(T)

r
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by [(n- V)(n x v)]* = 0 onT, and hencen(- V)(n x v)|. € H/XT')? follows from

the elliptic regularity. The proof is complete. [l

The Navier-Stokes system (7) is treated similarly. Actyathis system is reduced
to (6) with f replaced byf — (v-V)v. Then, the nonlinear termy(V)v is in H1(Q.)
in the case ofv € H?(Q2)3. Thus, we get the following theorem.

Theorem 7. Theorems 5and 6 hold similarly even to systerfY).

Now, we shall examine the assumptions and conclusions obréhes 5 and 6.
First, assumptions on the piecewise regularity of thoserdms are summarized as

(21) p € HYQy), (n-V)p € HY(Q1),
f e H(rot, Qy), (n-V)f e L3(24)3,

and
(22) v e H¥ Q)3
On the other hand, the assumptions across interface of &imsob and 6 are

37+ 2 17+
Bv} -0 {Bv av} -0

xs Ox1  Ox

23) W' = (2" =0, {
and
L PSR Ay Ty
Ox3| _ Ox3| Oxo  Oxz|_ Oxz3 Ox1|_
respectively. The latter means that

21* 17t 37t 3%
(24) ovT| _ [ =0, oV
8)63 _ 8)63 _ 8)62 _ 8)61 _
The second relations of (23) and (24) are summarized-asc H%(2). Then, the first
relation of (23) means ¢ H(Q)3, and the rest are equivalent t0= V xv € HY(Q)?
and @ - V)v € HY(Q)3. Namely, we have
(25) v e HY(Q)®, w=V xve H{(Q)3

and

(26) n-ve H*Q), (n-Vve HY(Q)®
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as the regularity assumption across the interface. Howé286) impliesv € H2.(Q),
becauseV - v = 0 and —Av = V x w € L%(Q)® holds in Q. Thus, we replace those
assumptions on the interface regularity, (25) and (26)pkirby v € H?(Q)3.

On the other hand, the conclusions of Theorems 5, 6 assure fov!, v? that

0% O 0% 0% 0%

oy oy oW o0 1
Ox27 Ox10x2" Ox3~ Ox30x1’ Oxz0x2 € Hioe($2).

Thus, we obtain the following.

Theorem 8. Let the interfaceM be flat andv € H?(Q)3, p € HYQ4),
(n-V)p € HY(Q4), f € H(rot, Q4), and (n - V) f € L?Q+)® hold in the Stokes or
the Navier-Stokes systef6), (7), and lety be any tangential component of . Then
(8@1}/8n)2‘ri € HY(I'y) is well-definedand v belongs toH2.(R) if and only if

o\ 1"
(27) [(8—) w]-o
holds onT .

Proof. We shall describe only on the Stokes system (6), Isecabe Navier-
Stokes system (7) is treated similarly. In fact, we have @ith j = 3,

ov ow ov .
vx(a—xs>—a—xs and V(a—x?’)—o n Q,

with Ov/0x3z € HY(Q)3, ow/0x3 € L*(R)3, and

(28) V x (8—‘“) =—A (ﬁ> = i(f —Vp) € L¥(Q+)?
Ox3 Ox3 Ox3

(as distributions) in Q.. This implies dw/0xs € L2(rot, Q1) and therefore,

V(0v;/0x3) € HY2(T1)% is well-defined forj = 1, 2, 3, as is noticed at the be-

gining of §4.

Then, the assumption (27) impliesA(9vy/0x3) € L3(R) as distributions ing
with 9+ /0x3 € HY(2)3, because-A (v /0x3) € L?(+) holds in Q. by (28). There-
fore, 1 € H2(Q) follows from the elliptic regularity. The only if part isbwious, and
the proof is complete. U

Theorem 3 guarantees the interface regularity of the nowoalponent ofv . Be-
cause all assumptions of Theorems 3 and 8 are satisfiedcitH2(Q)3, p € H?(Q),
and f € HY(Q4)3, we get the following.
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Theorem 9. If the interface M is flat andv € H?(Q)3, p € H¥(Qu), f €
HY(Q.)? satisfy the Stokes or the Navier-Stokes syg@m(7), then H3(Q) interface
of v can occur only in the normal direction of tangential compots. Namelyany
second derivative of any componentwof is well-defined as emasit inH ~Y/2(I'y),
and

(29) [(%)2(11 X v)}+ =0 on r

impliesv € H3(Q)3.

The assumptions of Theorem 9 holdsvit H2(Q)*N H3(Q+)® and p € H?(Q4).
Actually, if v € H?(Q)® N H3(Q.)® satisfiesV - v = 0 in Q, then the Stokes sys-
tem (6) arises fopp =0 angt  =Av. Then, we can apply Theorem 9 and obtain the
following.

Theorem 10. If M is flat andv € H?(Q)® N H3(Q.)? satisfiesV - v =0 in Q,
then the condition(29) impliesv € H3(R).

In this connection, it should be noted that the assumptidn$heorems 8 or 9
without (27) or (29) does not induce even the piecewise eegylindicated asv €
H3(Q4+)3. In fact, they assure only € H?(Q)% and —Av € HY(Q4)3, which guar-
antees onlyv € HZ(Q4)3 Thus, theH?3 regularity up tol'y of v is missed with-
out (29).

5. Concluding Remarks

Generizations of Theorems 8, 9, and 10 to the case of the abinferface are
quite inetersting. Actually, they will be regarded as a deurpart or the natural ex-
tension of Theorem 3 and will be studied in the forthcomingera
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