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1. Introduction

If an embedded 2-sphere in 4-spaRé has the singular set of the projection in
3-spaceR?® consisting of double points, then the 2-sphere is ambiesibjic to a rib-
bon 2-sphere (see [19]). Similarly, if an embedded toruRfhhas the singular set
of the projection inR® consisting only of double points, then the torus is ambient
isotopic to either a ribbon torus or a torus obtained from mmegtry-spun torus by
m-fusion (see [15]). In this paper we will show a similar thewr for an embedded
Klein bottle in R%. The following is the main results in this paper.

Theorem 1.1. Let F be an embedded Klein bottle R*. If the singular set
I'*(F) of the projection ofF inR® consists only of double pointthen F is ambient
isotopic to either a ribbon Klein bottle or a Klein bottle @lted from a spun Klein
bottle bym -fusion.

Corollary 1.2. Let F be an embedded Klein bottle R*. Suppose that the sin-
gular setI'*(F) of the projection ofF inR® consists of double pointaind every com-
ponent of the singular sel'(F) on F is not homotopic to zero. If the fundamental
group of the complement &f  is isomorphicZe, then F is trivial i.e,, F bounds a
solid Klein bottle inR*.

Let F be an oriented closed surfaceRd. Is F trivial if the fundamental group of
the complement o is isomorphic ©? In the topological category, the question is
affirmatively soloved when if it is a 2-sphere (see [3]). Ire tAL or smooth category,
this is an open question, it is affirmatively soloved when 1 @f the following:

(i) F is a 1-fusion ribbon 2-knot ([8]).

(i) Fis a 2-sphere with four critical points ([11]).

(iii) Fis a symmetry-spun torus ([17]).

(iv) F is a torus whose singular set on the torus consists ohbjigjoint simple closed
curves with non-homotopic to zero in the torus ([15]).

All homology groups are taken with coefficients #y and all submanifolds are
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assumed to be locally flat, thourghout in this papar. We willrkvin the PL category,
thourghout in this papar. LeR" be then -dimensional Euclidean space. Moreover, we
regard 3-spac®® as the subseR® x {0} of R

The paper is organized as follows. In Section 2, we define boribsurface, and
a Klein bottle obtained from a spun Klein bottle by -fusion. $ection 3, we study
certain types of 2-complexes iR3. In Section 4, we define diagrams for embedded
surfaces. In Section 5, we consider spun Klein bottleRfn In Section 6, we prove
the main theorem.

AckNnowLEDGEMENT. | would like to thank Akio Kawauchi and Kazuo Habiro for
useful comments and advice.

2. Preliminaries and definitions

In this section, we define am -fusion, a ribbon surface, angum Klein bottle.

Let F be a closed surface. A map froM R? is a generic mapif for at
every pointx of F , there exists a regular neigborha¥d fok ( )Rf such that
(N, f(F) N N) is homeomorphic to B3, Z;), (B3, Z1 U Z5), (B3, Z1 U Z> U Z3) or
(B3, the cone on a figure 8), wher®® is the unit 3-ball inR3, Z; is the intersec-
tion of B® and x,x, -plane {1, 2, 3} = {i, j, k}). If (N, f(F) N N) is homeomorphic to
(B3, the cone on a figure 8), then the poifitx ( ) is calletiranch point The point
is also known as “Whitney’s umbrella” or “a pinch point”. A ipb x € f(F) is called
a double pointif f~%(x) consists of two points, and &iple pointif f~(x) consists
of three points.

Let F be an embedded surface R, and let p be the projection defined by
p(x1, x2, X3, x4) = (x1, x2, x3). If p|F is a generic map, then we associate the subset
F* = p(F), and we denote by *(F) the set of all double points, triple points and
branch points. And puf' £ ) 1(I'*(F))N F. In this paper we assume thatF is
a generic map.

An oriented closed surface iR* is said to betrivial if it is the boundary of
the disjoint union of handlebodies iR*. Note that the boundary of a handlebody is
unique up to ambient isotopies &* (see [5]). An embedded Klein bottle iR* is
said to betrivial if it is the boundary of a solid Klein bottle ifR* Here the solid
Klein bottle is homemorphic to the 3-manifold by attachiBg x {0} and B2 x {1}
from B? x [0, 1] via the mapg £, 0) ={x, 1), whereB? is the unit 2-ball. In other
word, the trivial Klein bottle is ambient isotopic to the age with projection inR3
as illustrated in Fig. 1.

Let G be an embedded closed surfaceRfy 7 = [0, 1], B? the unit 2-ball. An
embedded surfac€ iR* is asurface obtained from G by -fusidhthere exists a
collection of embeddingg; B? x I — R* i =1, 2 ..., m, satisfying the following
three conditions:

(i) The images of any two maps; h; are disjoint for any distincy. ,
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Fig. 1.

(i) hi(B?x I)NG =h;(B?x OI) for all i.
(i) F= (G\ U (hi(B?x 1)) U (U2 hi(0B? x I)).
An embedded surface ifiR* is a ribbon surfaceif it is obtained from a trivial
2-spheres byn -fusion.

Next, we define a spun Klein bottle iR*. For § € [0,2r], let R} =
{(x, ycos#, ysind, z) | y > 0}, and

Bo={(x,y,0,2)| x*+(y — 2*+z* < 1}.

Then By is the 3-ball inR3, and the union ofR3 for all § € [0,2x] is R*. Let
ro: Bo — Bp be thed-rotation map through the axis (0, 2 Q)[—1, 1] for 6 € [0, 2x].
An embedded Klein bottle? ilR* is called aspun Klein bottleif there exist an in-
tegera and a knoK in the 3-baB, as shown in Fig. 2 (1) such that

(i) K intersects two points to the axis,(Q 2 Q)[—1, 1],

(i) r-(K)=K, and

(i) F= {(x,ycost, ysing, z) | (x,y,0,z) € rsa/2)0(K), 0 € [0, 27]}.

We denote it byKI? K ). In particular, ik is a connected sum —#{ of a knot
L as shown in Fig. 2 (2), thelK!* K( ) is called simple spun Klein bottle, where
—L is the knot with the reverse orientation &f . The symiiol in.Fig(2) is the
1-string tangle so that the tangle sum bf and the trivial karig the knotL . In
particular, a Klein bottle obtained from a split union of &ital 2-spheres and a spun
Klein bottle by m -fusion is simply called &lein bottle obtained from a spun Klein
bottle bym -fusion

RemaArk 2.1. (1) LetKI® L #EL)) be a simple spun Klein bottle. Then, the fun-
damental group of the complement &1 L ( -#()) is isomorphic tor(S3\ L)/(m? =
1) wherem is a meridian curve df  (see [18]).
(2) The Klein bottleK/* € ) is ambient isotopic t&[**?(K) (cf. [17]).
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Fig. 2. The center of each figure s -axis.

Fl FQ
Fig. 3.

3. 2-complexes in R

3.1. Embedded Klein bottles in B. Let F be an embedded Klein bottle in
R% such thatp|F is a generic map. In this section, we assume thatF) consists
only of double points. First, we consider the singular BeF ¢n)F. Letc; =0 x I,
c2=/2)x I, ¢ =i/2n+1)x TU2n+1-i)/(2n+1)x I, andd; =1 x j/(2n)
wherei =3...,2nandj =1,2...,2n— 1. LetT1 =c1UcaU---Uc,/ ~, Ta =
diUdyU--- Udy,—1/ ~ where~ is the relation onl x I with (0,¢) ~ (1,¢) and
(t,0) ~ (L —1¢,1) for all t € I. Then each of"; and ', is a union of disjoint simple
closed curves on a Klein bottle (see Fig. 3). Note thatconsists of anodd number
of disjoint simple closed curves.

Lemma 3.1 ([16, Lemma 1.4]). Let F be a Klein bottle inR* such thatI'*(F)
consists only of double points. LEt  be the union of the compisnofI’ (F) each of
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which is not homotopic to zero iR . Then the péit, F) is homeomorphic t¢I'1, F)
or (T, F).

3.2. Certain types of 2-complexes in R In this subsection, we define certain
types of 2-complexes iR3. For 6 € [0, 27], let R = {(x, ycosf, ysinf) | y > 0},
and

FOZ{(x’y’O)|x2+(y_2)2Sl}‘

Then By is the 2-ball inR3, and the union ofR3 for all € [0, 2r] is R®. Let
79: Bo — Bo be thef-rotation map through the point (0, 2 0) fér € [0, 2x]. Let
a be a 1-complex inBy such that each vertex is a vertex of degree four or three. A
2-complexK inR?® is called a 2complex obtained froma if there exist integers ¢
with ¢ # 0 such that

(i) If « intersects the point (0,2 0), then the point (0 2 0) is the wedE degree
four andc = 2.

(i) 72r/c() = o, @nd

(iiiy K= {(x, ycost, ysinb) | (x,y,0) € 7 /p0(), 0 € [0, 27]},

We denote the 2-compleX  bw(b, c), and the above 1-complex is called a
c-symmetricl-complex

ExampLE 3.2. (i) Let oy be the 2-symmetric 1-complex inBy as shown
in Fig. 4 (1) such that the vertex of; is the point (0 2 0). Then ib is an odd
integer (resp. even integer), then the 2-complexd, 2) is an immersed Klein bottle
(resp. torus) inR3,

(i) Let c be an integer withc # 0, anda; the c-symmetric 1-complex iBo as shown

in Fig. 4 () such thaty; does not intersect the point,(0, 2 0) for =2, 3. Then is
the number of vertices af;, and then the 2-complex; (b, ¢) is immersed tori for any
integers .
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Lemma 3.3. Let a be ac-symmetricl-complex and a(b, ¢) a 2-complex inR®
obtained froma.
(1) Let C be a component df(«(b, ¢)). Then a regular neighborhood of im(b, ¢)
is two immersed annyliwo immersed Mobius bands. Moreoyé#nere is at most one
regular neighborhood consisting of two immersed Mobiuadsa
(2) RemovingS(«a(b, ¢)), we obtain open annuli.
Here S(a(b, ¢)) is the set of all point whose neighborhooddfb, ¢) is the intersection
of two sheets o x [0, 1], whereY is the cone on three points.

Proof. (1) If ¢ = 2, if b is odd, and ifa intersects the point (0,2 0) iBo,
then we have the component with, (Q 2 0) $ha(#, ¢)) whose regular neighborhood
in (b, ¢) consists of two immersed Mobius bands. Conversely, sucomponent can
be obtained only as above, which yields the result.

(2) From the condition (ii) of the definition of symmetric broplexes, we can
show (2). O

From Lemma 3.3, we have the following remark:

RemaArk 3.4. (1) Let b, ¢ be integers witv # 0, and o a c-symmetric
1-complex in Bo. If a(b,c) is an immersed Klein bottle, theh is odd, = 2 and
there exists a knoK  iBy with (KI~Y/2(K))* = a(b, 2).

(2) Let K be a knot inBp satisfying (i) and (ii) in the definition of spun Klein bot-
tles. Then for any integex , the projectiok i K (* ) R® is the 2-complex obtained

from p(K), i.e., KI*“ K )Y = p(K)(2a +1, 2).

Derinimion 3.5.  Let ay be the 2-symmetric 1-complex as shown in Fig. 4 (1)
with a1 C Bg. Then there exist two 2-ball®;, D, in By such thatD; N D, is the
point (0, 2 0) anday = D; U dD,. For an intege , the 3-compleX, is defined by

Xp ={(x, ycost, ysind) | (x, y, 0) € 7(2p+1/230(D1U D), 0 € [0, 27] }.
Note that the closure of one component Rf \ {ai(b,2)} is X,. Let ST be the
unit 1-sphere. Then, the 1-sphe is identified with [Q Z]/0 ~ 27. We have
a natural embedding) of the solid torusBy x S* in R® defined by (x, y,6) =
(x, ycosf, ysinf). Let g: Box St — R3 be an embedding. Theg ¢ (1(X})) is also a
3-complex inR3. We call it acoiled solid torus Let a be ac -symmetric 1-complex.
Then we also calg ¢~ *(a(b, ¢))) a 2-complex obtained from for any integerb .

Let F be an embedded surface Rf such that
(KO) F is the disjoint union of one Klein bottle and tori, or tloésjoint union of tori,
(K1) T*(F) consists only of double points, and
(K2) each component of K ) is not homotopic to zeroAn , dndis connected.
From Lemma 3.1, we have the following lemma.
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Lemma 3.6. Let F be as above. Then we have the following.
(1) F*\ T'*(F) consists of open annuli.
(2) Let C be a component df*(F), and N(C) a regular neighborhood o® irR®.
Then N(C) N F* consists of two immersed annuli or two immersed Mobius vand

A curve C is anA-curveif N(C)NF* is two immersed annuli, and is ai-curve
if N(C) N F* is two immersed Mobius bands.

In the case of classical knots, any knot diagramRifh can be considered in the
2-sphere. Because, by ambient isotopies the bounded re§igd\ {a knot projection
can be changed. Similarly, without loss of generality we mampsider that the projec-
tion of knotted surfaces is in the 3-sphef& Here, we consider the 3-sphefé as a
one point compactification oR3. We discuss about a 2-complex which is the projec-
tion into R® of an embedded surface R* satisfying (K0), (K1) and (K2). Note that
the above 2-complex is called a 2-complex consisting of &ring14]. From now on,
we assume that such a projection is in the 3-spkf€rén this section.

Lemma 3.7 ([16, Lemma 2.1]). Let F be an embedded Klein bottle R* such
that I'*(F) consists only of one simple closed cyraed each component @f(F) has
a Mobius band neighborhood. Then there exists an odd intégend an embedding
g: Box S* — §° such thatF* can be moved to th&-complexg(v)~*(a1(b, 2))) by an
ambient isotopy of3, where o is the 2-symmetricl-complex as shown ifig. 4 (1)

3.3. Good solid tori sequences.Let F be an embedded surface Rf satisfy-
ing the conditions (KO), (K1) and (K2). TheR*(F) consists only of A-curves and at
most one M-curve. LeWy, Vs, ..., Vi be solid tori inS3, and¥ = {Vy, V, ..., Vi}.
We say thatl is a solid tori sequence for™ if U satisfies the following two condi-
tions:

(i) oV. c F* for all i.

(i) If i #j, thenV;NV; =0V;NAV; is one simple closed curve, an annulus or empty.
Let X be a coiled solid torus, an® as above. We say th& U {X} is an almost
solid tori sequence for* if LU {X} satisfies the above conditions (i), (ii), and

(iii) the intersection ofX ands®\ X is contained inF*, and

(iv) X nV; is one simple closed curve, an annulus or empty for all

ExampLE 3.8. Let az be ac-symmetric 1-complex as shown in Fig. 4 (3), and
let D1, D, be 2-balls inBy such thatD; ¢ D, andaz = 9D, UdD,. For an integetb
with (b, c) = 1, let W; ={(x, ycosf, ysinf) | (x, y,0) € 7 /00(Di), 0 € [0, 27]}. Then
W1, W, are the solid tori inS® with Wy ¢ W, and O0W; U OW, = az(b, ¢). We see
that {W,} is a solid tori sequence for the 2-complax(b, c). Let V, = §3\ W,. Then
V, is a solid torus,0W1 U 0V2 = az(b, ¢), and Wi N Vo = OW1 N OV, is one simple
closed curve, say. . The s¢W,, V,} is a solid tori sequence fars(a, b). Let N be a
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(1) (2)
Fig. 5. (1) the 2-complexX: (2) the 2-complexKs.

regular neighborhood of 83, Note that if L is not a trivial knot, the; U V,UN
is not a solid torus. Becaus#/; U Vo, U N is homeomorphic to the complement of an
open regular neighborhood df

Let F be an embedded surface Rf satisfying (K0), (K1) and (K2). Lety =
{V1, Vo, ..., Vi} be a solid tori sequence for the 2-compléX. Let ¢; be a compo-
nent of I'*(F) with ¢; C 0V;. Let n be the minimal number of intersection points of
¢; and a meridian disk of the solid tord§ . For the solid tokas  wénegn (V;) as
follows:

n if n>1,
n(V;)=¢ 0 if n=0,V; is non-standard,
o if n=0, V; is standard.

Here, a standard solid torus means a regular neighborhoadtifial knot in S3. We
would like to distinguish standard and non-standard salid tet 71, 7>, T be tori in
$% such that

e T bounds a standard solid toris

oy, ILCV,

e T, N T is a simple closed curve far =1, 2,

e 71 bounds the complement of an open regular neighborhood oéfailtiknot in
V, and

e 7> bounds a solid toru¥, in V so thatV, has a 2-ballD inV withDNV, =0D.
See Fig. 5. For the toru%y, there exists a solid toru¥s with 0V3 = T1. Let K; =
T;UT for i =1, 2. Then{V} is a solid tori sequence fak; witlk; C V andn (V) =
0, and{V3} is a solid torus sequence fd¢; with n(V3) = co. However, K; is not a
2-complexa(b, ¢) obtained from any symmetric 1-complex If an embedded torus in
R* has such a projectiok; into %, then by an ambient isotopy &&* we can assume
that its projection inS® is K,. Let W =$3\ V. Note thatK, has a solid tori sequence
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Fig. 6.

0 = {V,, W} with K, C U3, n(V2) =1 andn W ) = 1. By Proposition 3.18, we see
that K, is a 2-complex obtained from some symmetric 1-complex. ia fraper we
discuss about immersed Klein bottles. It is not importanbl@dgorus V. withn (v ) =0
or n(V) = oc.

We construct the grapty 1) obtained by a solid tori sequen@ as follows. The
vertices are in one to one correspondence with the solid{tgs}, and the edges are
in one to one correspondence with the $& NV, # 0}. If V,N'V; # 0, then we
connect the vertices { ) and V( ) by the edgge

Derinimion 3.9. Let F be an embedded surface R satisfying (K0), (K1) and
(K2), and ¥ = {V1, Vo, ..., V4 } a solid tori sequence for the 2-compléX‘. A solid
tori sequencel is good if U satisfies the following four conditions:

(i) G(®V) is a connected tree.

(i) If Bis an annulus withB C F* and if (UU)N B = dB, thendB C 9V; for some
i. Namely, for any annulu8 iF* with 0B N (UY) = 0B, the boundary ofB imot
contained indifferenttwo solid tori.

(i) There exists a vertew W) of G() such that ifV; # V4 thenn (V;) = 1.

(iv) If i Zj, thenV; NV; is either one simple closed curve or empty.

The vertexv ¥1) is called thespecial vertex

ExavpLe 3.10. We give not good solid tori sequences as follows. Met thige
1-complex in By as shown in Fig. 6, and leD;, D,, D3, D4 be the closures of the
bounded components d\ M as shown in Fig. 6. We naturally embed the 2-complex
M x ST C By x S in S® via 1.

(i) The solid tori sequencél; = {D; x S, D, x §%, D3 x §*} is not a good solid tori

for M x S, becauseG ) is a circle.

(i) Let A be the closure of a component & \ D, U D,. Then A is an arc i) Ds.

The solid tori sequenc®, = {D; x §*, D, x §*} is not a good solid tori sequence for
M x S, because there exists the annulisc S* with (0A x SY) N (OD; x S*) # () for
i=1, 2.

(iii) Let L, as(b,c), W1, V2 be as in Example 3.8. Suppose tlbatc , are integers with
b >1andc > 1. Then the knotL wraps times in the longitudinal directionVsf,

and thenL wraps times in the longitudinal direction W&f. Moreover,n 1) = b
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andn (2) =c. Sinceb > 1 andc > 1, {Wy, V,} is not a good solid tori sequence for
as(b, ).

However, there exist good solid tori sequen@sand 20 for M x S* and as(b, ¢),
respectively, such thaiz(b, c¢) C (UY) and M x St C (U2D). In the case of\f x S?,

let D =D1U DU D3U Dy, thenW = {D x §*} is a desired solid tori sequence. In the
case ofas(b, ¢), since V, is a standard solid torugy 83\ V, is a solid torus with
Wy C W. Hence,20 = {W} is a desired solid tori sequence.

For a coiled solid torusX , we define X( )= 2. For an almost soliil $equence
0, we construct the grapty ) in a similar way as above.

Derinimion 3.11. LetF be an embedded surfaceRf satisfying (K0), (K1) and
(K2). Let X be a coiled solid torus, arfd = {X, Vi, V>, ..., V;} an almost solid tori
sequence fo*. An almost solid tori sequenc® is good if U satisfies the following
four conditions:

(i) G(2V) is a connected tree.

(i) If Bis an annulus withB C F* and if (UY)N B = dB, thendB C JV; for some
iordB C XN Se\X.

(ii) »(V;) = 1 for all solid tori V;.

(iv) If i Zj, thenV;NV; and X NV; are one simple closed curve or empty.

The vertexv K ) is called thepecial vertex

Let U = {Vi, ..., Vi} be a (almost) solid tori sequence. W N V; is one simple
closed curve, letV;; be a regular neighborhoodVof V; in S3. If V; NV, =0, let
N;; = 0. If V,nV; is an annulus, letV;; F; NV;. Then we say that(Y) U (UN;;)
is a shapeof .

Lemma 3.12 ([15, Lemma 3.4]). Let {V1, V,} be a solid tori sequence. L&t
be a shape ofyJ.
(1) If Vis a solid torus thenn(Vy) = 1 or n(V,) = 1.
(2) If V is not a solid torus thenn(Vh) > 1, n(V2) > 1, and Vi, V, are standard
solid tori in 3.
Here a standard solid torus means a regular neighborhood afvaal knot in 3.

Lemma 3.13. Let {V1}, {V,} be solid tori sequences such th& C Vi, and
0V1NoV; is one simple closed curve or an annulusr(#,) is not equal to0, 1, and
o0, then 9V, U0V, can be moved &-complex obtained from one &ig. 7 (1), (3)by
an ambient isotopy o3. HenceV; can be moved td, by an ambient isotopy af®.

Proof. In the case thalV1NdV; is an annulus, by [12, Lemma 2.1] the annulus
B = IntVy N oV, is parallel to a boundary annulus #V,. The annulusB is decom-
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(1) (2) (3)
Fig. 7. Cutting a meridian disk.

posedV; into two solid tori V, and V, \ V5. Note that cutting a meridian disk dfs,
then we have Fig. 7 (1) which is the intersection of the maridilisk andoV,. Since
n(Vo) #0, 1,00, V; can be moved td/, by an ambient isotopy o$°.

In the case thabVyNoV, is one simple closed curv€ , |&f be a regular neigh-
borhood ofC inV;. Let K =(0VLUOVo) \ N UIntVyNIN. Then, the solid tori se-
quence{V1\ N, V»,\ N} for K satisfies the above condition. Cutting a meridian disk
of V1, then we have Fig. 7 (2) or (3) which is the intersection of itheridian disk and
oV, If OV, N OVy is a longitude curve o, i.e., n (V) = 1, then we see Fig. 7 (2).
We have thatV, can be moved td/; by an ambient isotopy of° if and only if we
see Fig. 7 (3). Since W) # 0, 1, 00, V1 can be moved td/> by an ambient isotopy
of §3. O

RemArRk 3.14. Let F be an embedded Klein bottle Rf satisfying (K1) and
(K2). Let T be a good almost solid tori sequence fBr, C the M-curve in the
coiled solid torusX . LetN be a regular neighborhood ®f Sf X’ = X U N,
K = (F*\ N)U (ON N 9X’). Then X' is a solid torus, ' = {X'} U (T \ {X}) is
a good solid tori sequence fa&&  with X() = 2.

Lemma 3.15. Let F be an embedded surface satisfy{®), (K1) and (K2). Let
U be a good (almost) solid tori sequence fBi such thatn(Vi) = 2, wherev(V1) is
the special vertex. Le€ be an A-curve G, and V a shape off. ThenV is a
coiled solid torus ify is almost and V is a solid torus otherwise. MoreoveiC] =
+2 € Hi(V).

Proof. In the case of a solid tori sequence, we showed in [&fprha 7.5]. So,
we may assume thali is almost. By Remark 3.149 can be changed a solid tori
sequence. Given thay is a regular neighborhood of the Mecim&®, we haveV U
N is a solid torus, andd ]=2 ¢ H;(V UN) = Hy(V). This and Lemma 3.13 imply
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that V can be moved to the coiled solid tors hby an ambient isotopy of°.
O

Lemma 3.16. Let F be an embedded surface satisfy{i®), (K1) and (K2). Let
U be a good(almos} solid tori sequence fo* with UU 2 F*, andn(Vy) = 2, where
v(V1) is the special vertex. Thethere exists a solid toru¥  such tha¥ ¢ F* and
oV N (UY) is a simple closed curve or an annujug(V) = 2 if V contains V;, and
n(V) = 1 otherwise. Moreoverif the M-curve is a trivial knot inS%, then there exists
a coiled solid torusX withX N (S3\ X) C F* such thatX can be moved to the
3-complexX, for some integesr of an ambient isotopySdf where X, is the set in
Definition 3.5 In paticular, if » = 0 or —1, then we can take a solid torug  with
n(V) =1

Proof. By Remark 3.14, it suffices to prove for a solid tori segce. Lety =
{V1,...,Vi} be a good solid tori sequence. Sinc& 7 F*, by the definition of
good, there exists a torus or an annulBs, Fih such that

one simple closed curye B is a torus,

BN UY) = { BNV = B, if Bis an annulus.

By the solid torus theorem in [10], there exists a solid towusvith B C 0V C F*.
We see thabV N (UD) is a simple closed curve or an annulus. et  be a component
of T*(F) in oV N (UY).

Case 1. V containsVi.

Let W ={V; € U | V; C V}. ThenZ’ is a good solid tori sequence fdr*.
By Lemma 3.15, a shap®’ of U’ is a solid torus andv; C V’. By [C] = +2 €
Hi(V') and Lemma 3.13, we can show th#t can be moved toV by an ambient
isotopy of §3. This impliesn ¢ ) = 2.

Case 2. 'V does not contairV.

Let W ={V, € U | Vi ¢ V}, then' is a good solid tori sequence fdr*.
By Lemma 3.15, a shap®’ of ¥’ is a solid torus. Sinc&/' NV =9V ' NaV is a
simple closed curve or an annulus, by Lemma 342 ( )=¥or asdsrd. IfV
is standard, then this case can be proved in a similar way &® Qaby replacingV
by §3\ V. If n(V) =1, then there is nothing to do.

Moreover, we assume thdJ is a good almost solid tori sequence and the
M-curve is a trivial knot inS%. Then there exists a 2-complek C F* such that
K is a projection of an embedded Klein bottle satisfying (KhdgK2), K contains
only one M-curve and no A-curve. By Lemma 3.7, there existso#ed solid torus
X. Since the M-curve is a trivial knot, we can easily prove tiatcan be moved
to the 3-complexX, for somé of an ambient isotopy $f Suppose thab = 0
or —1. In the case of» ¥ ) = 1, there is nothing to do. Suppas€ ( ) = 2. Le
U ={V, €U |V, Cc V} and letV’ be a shape off’. ThenV’ C V, V' NIV is an
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annulus or a simple closed curve, aid is the coiled solid torus by Lemma 3.13. So
we may assumé&’’ = X,. Since the M-curve is a trivial knoty is a standard solid
torus. LetW =$%\ V. Sinceb =0 or—1, a simple closed curve @V’ N aV is ho-
mologous to+2/ + m € H1(0V), wherem is a meridian curve of [, is a preferred
longitude of V . This impliess W )=1, and¥ is a desired solid torus ]

Proposition 3.17. Let F be an embedded surface satisfy(K®), (K1) and (K2).
Then there exists a gog@lmos} solid tori sequenceéd for F* with UG O F*. More-
over, suppose that the M-curve if* is a trivial knot in $3, and suppose that there
exists a good almost solid tori sequen{®} for F* such thatX can be moved to
the 3-complexesX, or X_; of an ambient isotopy a$3. Then we can take thal is
almost.

Proof. We only prove for the case th&t" contains an M-curve. There exists a
good almost solid tori sequendeX} for F* such thatX is maximal, i.eX is not
contained in another coiled solid torus. We prove by inductbn the number of the
components ofF* \ T*(F) in a good (almost) solid tori sequence. L%t be a good
(almost) solid tori sequence faF*. If UU p F*, then by Lemma 3.16 there exists
a solid torusV satisfying the condition in Lemma 3.16. By LemB116, there exists
only one solid torusV; € U such that (°0)NoJV = V; NIV is an annulus or a simple
closed curve. LetV = V UV, if V; N AV is an annulus, letV = V otherwise. Since
n(V;) =1, V is a solid torus. We have a good solid tori sequefite {(V,eD |V, ¢
V}U{V} for F* with UJ C UU. In particular, if the M-curve is trivial, and if the
coiled solid torusX € U can be moved to the 3-compleX& or X_; of an ambient
isotopy of §%, by Lemma 3.16, them W ) = 1, ar¥ contains the coiled solid torus
X. Inductively, this completes the proof of Proposition 3.17 O

Proposition 3.18. Let F be an embedded surface satisfy(K®), (K1) and (K2).
Let ¥ be a good(almos} solid tori sequence foF* with UU D> F*, n(V1) # 0 and
n(V1) # oo, wherewv(Vy) is the special vertex. TheR* can be moved to &-complex
obtained by ac -symmetiré-complex by an ambient isotopy 8%, whereb = n(V4),
(b, ¢) = 1. In particular, if U is almost thenb = 2.

Proof. In the case thdf*(F) consists only A-curves, we showed in [14, Propo-
sition 7.15].

Assume thatl'*(F) contains one M-curve. Le€C be the M-curvay, a regular
neighborhood ofC inS3, V = V4 UN and K = (F*\ N) U (ON N dV). By Re-
mark 3.14, ¥\{V1})u{V} is a good solid tori sequence f& . Since it is true for the
case of only A-curves, we see th&t  is a 2-complex obtainech some symmetric
1-complex. HenceF* is also a 2-complex obtained from some symmetric 1-complex.

U
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4. Spun Klein bottles

Proposition 4.1. Let F be an embedded Klein bottle Rf such thatl"*(F) con-
sists only of double pointand each component df(F) is not homotopic to zero in
m1(F). Then F* is the projection intoR® of a spun Klein bottle inR*. In particular,
F is ambient isotopic to aimple spun Klein bottle inR*.

Proof. By [16, Remark 1.5], the number of componentd’of ( )visne Hence,
by Lemma 3.1, { ¥ )F ) is homeomorphic td'{, F). We see thatl'*(F) consists
only of A-curves and one M-curve. By Proposition 3.17, thexésts a good (almost)
solid tori sequencég for F* with F* C U2Q. By Proposition 3.18 and Remark 3.4,
there exists a spun Klein bottl&/* K( ) iR* such thatF is ambient isotopic to
KI“(K).

If @ #0 anda # —1, by Remark 2.1 (2), then we may assume that = O-ar
and the M-curve ofF* is a trivial knot. Applying Proposition 3.18 again, we olbtai
good almostsolid tori sequenc&j for F* with F* c UY. HenceF is simple. [

5. Diagrams for embedded surfaces

For an embedded surface, we define a ‘diagramRth In classical knots, it is
convenient to represent by a diagram, i.e., an immersecealoarve in the plane that
has crossing information indicated at its double points.dagram’ for an embedded
surface is like a diagram of classical knots.

Let ¢ : F — RS be an immersion of a closed surfage  (possibly disconnected,
non-orientable) such that the singular setgohas only transverse double points; each
component of its is a circle. Such a circle is calle@rassing circle A diagram D is
an immersion of a union of 2-spheres and a Klein bottle with aakmat each crossing
circle satisfying the two conditions:

() For any crossing circleC , leN be a regular neighborhood”dh R3. Then NN
Im D consists of two annuli or two Mobius bands, say, A».

(i) One of A;, A, is marked either by ‘a’ (for ‘above’) or by ‘b’ (for ‘below’).
We define that there is a mark ‘a’ oA;  if and only if there is a mdrkon A;
i 7))

We usually place a mark ‘a’ or ‘b’ on only ong; . A surfacge with naa’
(resp. ‘b’) is called ara-tube(resp. ab-tubg. We define the associated embedded sur-
face Lp of a diagramD by the following properties.

() p(Lp)=ImD, wherep :R*=R3x R — R3 is the projection ontdR3.
(i) LpN(R®x {0})=(mD\ Int(a-tubes inD ))x {0}, and L C R x [0, c0).
These conditions determine an embedded surface up to anibitopy.

The mark ‘a’ and ‘b’ are used in [6] and [7]. Yajima [19] uses a@mow. Giller [4,

p. 629] uses ‘+' for our ‘a’. Carter and Saito [2, 3] define a ko surface diagram.
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Fig. 8. Type € 1) move.

5.1. 1-handles for diagrams. In this subsection, we define a 1-handle for a di-
agram.

Let D be a diagram. Let; B> x1 — R3 i =1, 2...,m, be a collection of
embeddings with mutually disjoint images such that

hi(B> x I)NIm D = h;(B® x {0, 11, ..., t;,, 1})

for somet;,, t,, ..., t;, With 0 < #;, < t;, < --- < t;, < 1, whereB? is a 2-ball and
1 =[0, 1]. Define the immersed surfade ¥, h; to be

<|mD \ Lth,-(BZ x 81)) U (Ohi(aBz x 1)) .
i=1 i=1

We call the embedding; -handle on the diagranD, and the diagram withD +
> i, h; adiagram obtained fromD by attachinfrhandles For a 1-handler; , we call
the disksh; B2 x 0) andh; B2 x 1), attaching disksthe diskiz; B> x 1), 0<t <1, a
cocoreof h;, and the ardi; X x I), x € Int B2, a core see [7, Fig. 1].

5.2. Local moves. Local moves between diagrams are defined in [7]. They do
not change the ambient isotopy classes of associated ewmdbexinifaces of diagrams.
Now, we define three of them.

(€21) Moving a 1-handle through a sheet as shown in Fig. 8, whgre, € {a, b}
and

_ _Jca if C1 = C2,
BT%T \eitheraorb ifer #eco
This move adds two crossing circles. (cf. Fig. 4 in [19])
(22) Sliding a 1-handle through a sheet as shown in Fig. 9, &her= ¢, €
{a, b}. This move adds one crossing circle.
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Fig. 9. Type € 2) move.
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UU

n

Lo : P Vo HE
LN h1.': ‘ \hy !t ; [ hptq+1 .o hpigsr
Seaae . RSt [ '

hps - - hpag
Fig. 10. Type £2 6) move.

(€26) Pulling out a 2-sphere with 1-handles across a sheet asnsin Fig. 10,
where S is a 2-sphere bounding a 3-b&ll , and <1< p+gq +r, are 1-handles
such that
(i) hi1,...,h, are passing through ,

(i) hp+1, ..., hpeg are attached of  whose one attaching disks arg in

(iii) the pair (B, BN (%Y «i)), whereq; is a core ofh; , is a trivial tangle, meaning
that it is homeomorphic to the paiD@, {x1, ..., xp+,}) x [0, 1], wherex; are interior
points of the 2-ballD?, and
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hp
J \ hy h,,
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DGO

hp+1 hyiq ; J U \

p+1 p+q

1

Fig. 11. Type  6) move.

(V) ¢, c}, d € {a b}, where 1<i < p+gq, 1< j<p.

The following move is a generalization of the mow@ ( 6).

(£26) Pulling out a 2-spheres across a sheet as shown in Fig. 11,ewhds
bounding a 3-balB , an&; , £i < p+gq, are 1-handles such that
(i) ha,...,hp+, are passing through or are attached$n , and
(i) de{a b}.
(cf. Lemma 4.6 in [19])

A diagram D iswith good position if it is obtained by attaching 1-handles from
2-spheresSy, ..., S,, and an immersed Klein bottl&  iR® such that
() K is the projection of an embedded Klein bottle R? satisfying (K1) and (K2),
and
(i) there exist disjoint 3-ballsBy, ..., B,+1 in R® with S; C IntB; and K C Int B,,+1.
Observe that an associated surface as above is a Klein loditééned from a spun
Klein bottle by m -fusion. Also, a diagram obtained by attahil-handles from only
2-spheresSy, ..., S, is called a diagram with good position. Observe that an &ssoc
ated surface of its diagram is a ribbon surface.

Proposition 5.1. Any diagram can be transformed into a diagram with good po-
sition by a sequence of movéR1), (©22) and (Q26)'.

Proof. First of all, we show that any diagram can be transéarnnto a dia-
gram by attaching 1-handles from disjoint 2-sphere®Ri or a diagram by attaching
1-handles from disjoint 2-spheres and the projection of unsilein bottle. LetD be
a diagram obtained from a diagrafy by attaching 1-handless, ..., h,, where Dg
is the image of an immersion of a surfaée . LRtDy) be the components in the
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singular set ofDy in R® such that one of the preimage bounds a diskFin . We use
induction on the number of the componentsRnDy), sayn .

In case ofn =0, i.e.R D) = 0, by Proposition 4.1Dy is disjoint 2-spheres in
R3, or disjoint 2-spheres and the projection of a spun Kleirtieah R3. This implies
the desired result.

Assume it is true for less tham , and the number of the comgsnienR (Do)
is n. Choose the diskE iDy such thatoFE is a component ofR ), and E is a
non-singular disk inRR3. If E intersects a cocore of a 1-handle, perform the 1-handle
by the move 1) in Fig. 8. See the first move in Fig. 12. By the en@@1), two
crossing circles appear, but the number of the componen®(»y) does not change.

If E intersects an attaching disk of a 1-handle, then perfdrent-handle by the move
(22) in Fig. 9. See the second move in Fig. 12. Similarly, we theg the number of

the components iR Ifp) does not change. Hence, we may assume that  does not
intersect 1-handles. A regular neighborhood®f R consists of an annulug  and

a disk E’ containing E . By replacing the annulu$  with two disks, eachwbich

is parallel to E . Then we obtain a diagra®y such thatDg is obtained fromD; by
attaching a 1-handlé such thatoB? x I) = A. Thus, D is obtained fronD; by
attaching 1-handlesy, ..., h,, h. The number of the components & D) is less

than that ofR Do), which yields the result.

Next, we consider a diagram obtained by attaching 1-handles..,h, on
2-spheresSy, ..., S, and immersed Klein bottl& such th& is a 2-complex con-
sisting of annuli. If the 2-spheres ank are contained in thterior of disjoint
3-balls, respectively, then the diagram is a desired diag@therwise, take a 2-sphere,
say S;, such thatS; does not contain any other 2-spher@®inLet B, B; be 3-balls
in R® such that the interior oB  containg 9BNS; =0 for all i, anddB; = S;. If B;
does not containrk , by a sequence of the mae {, tlen we pull outS; from the
2-sphere that contain§; . If not, by a sequence of the m&ve’( tln we pullK ,
and then we pull ouss; from the 2-sphere that contafps . Indelgti we have a di-
agram with good position. Similarly, we can prove for theeca$ a diagram obtained
by attaching 1-handles on 2-spheres. U

The technique in Proposition 5.1 was used in [7] and [19].

6. Proof of the main theorem
From Proposition 5.1, we have:
Theorem 6.1 (Theorem 1.1). Let F be an embedded Klein bottle iR*. If

'*(F) consists of double pointshen F is ambient isotopic to either a ribbon Klein
bottle, or a Klein bottle obtained from a spun Klein bottle /myfusion.
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1-handles

Fig. 12. A transformation for the case thAt intersects oreo@and one attaching
disk.

Lemma 6.2. Let L be a knot inS3. If 71(S%\ L)/(m? = 1) is isomorphic toZ,
then L is trivial.

Proof. LetN be a regular neighborhood bf §3, E = §3\ N, E, the 2-fold
cover, X, the 2-fold branch cover. Then we obtain the following exaafjences:

1 — m1(E2) — m1(E) — Zy -1
ol 1
1 mX) —— m(E)/(m*=1) ——Z; — 1

wherem is a meridian curve of . By the above diagram, we hayé,) = 1. By
the Smith Conjecture [9], ifr1(X2) = 1, then the branch set of, is a trivial knot.
And we can show thal s trivial. ]

Corollary 6.3 (Corollary 1.2). Let F be an embedded Klein bottle R*. Sup-
pose thatl'*(F) consists only of double pointand all components of the singular set
I'(F) are not homotopic to zero imy(F). If 7(R*\ F) is isomorphic toZ,, then F
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is trivial.

Proof. By assumptionF* consists only of A-curves and one M-curve. By Propo-
sition 4.1, F is ambient isotopic to a simple spun Klein bot&?(L#(—L)).
By Lemma 6.2 and Remark 2.1 (2), if the fundamental group @f domplement
of KI1“(L#(—L)) is isomorphic toZ,, then the knotZ is trivial inS% Hence
KI14(L#(—L)) is ambient isotopic to a Klein bottlé’ such thatl'*(F’) consists only
of one simple closed curve. Hend& is a boundary of a solid Klein bottle iR%.
ThereforeF is trivial. ]

6.1. Example of a non-ribbon surface. In [12], [13], and [14], we classified
for an embedded toru¥  whose singular B&{T) consists of at most three disjoint
simple closed curves. The twist spun torus of the trefoil tkh@s the projection into
R® with the singular set consisting three disjoint simple etbcurves. This example
is given in [1] or [14].

Proposition 6.4. The twist spun torug is not a ribbon surface.

Proof. Suppose thaF is a ribbon surface. dét  be a regulamhheitpood of
F in R* Boyle [1] defined theZ,-invariantg for a curvec inON which is homol-
ogous to zero inR*\ N, this is modulo 2 to the intersection number of a surface
with boundaryc inR*4\ N. Then, there exists a unique simple closed cutve on the
boundary of N such thaC is homotopic to zero Rt \ N. We see thayy ¢ ) = 1.
However, a ribbon torus has a cur@ on ON such thatC’ is homotopic to zero in
R4\ N, and g ') = 0. This is a contradiction. Hence;  is not a ribbon surface.

O

Question 6.5. For a trefoil knotL , is the spun Klein bottl& ¢ L( #{)) a non-
ribbon surface?
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