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Introduction

The theory of ind-affine varieties was first introduced by Shafarevich, who then
employed it to elucidate the structure of the automorphism group of the affine space.
(see [3], [4].) More recently we made certain revisions on the theory and applied it
to study the Jacobian Problem on the endomorphisms of the complex affine space.
(see [2].)

Since these pieces of work appeared, there has not been much progress made.
This state may be due, in part, to the fact that the basic theory of these ind-affine or
pro-affine objects as presented by us was stillad hocand was rather rudimentary. So,
we have embarked on building a theory of pro-affine algebras and ind-affine schemes
anew and from the ground up. The outcome of our effort is the contents of the present
paper. As we worked on the material we encountered a number ofsubtle examples,
as shown in the main text below. It would seem that these examples perhaps suggest
richness and mystery that this theory holds.

We mention a piece of specific result we have of our theory: Theset of all mor-
phisms of an affine variety over a field to another may be identified with the

-rational point set of an appropriately constructed ind-affine scheme over . This
was proven using the theory of Gröbner bases over , and is expected to be published
in the near future along with certain related results about automorphisms of the affine
space.

1. Pro-affine algebras

1.1. Definitions and Notations. Throughout we work over a ground field of
any characteristic. A commutative topological -algebra issaid to be apro-affine
algebra if
1. is completeand separated.
2. A base of open neighborhoods of 0 is given by a family ofcountably manyideals
⊆ .
Let {a : ∈ N} be a countable base referred to just above. Here, as elsewhere
throughout the present paper,N represents the set of allnonnegativeintegers. We may,
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and shall always, assume thata ⊇ a whenever ≤ . The condition 1 then implies
that

(1)
⋂

∈N

a = {0} and ≃ lim
←
∈N ( )

where, for each ∈ N, := /a is a discrete -algebra, with all mapsµ : →
−1 being surjective. Conversely, a -algebra given as the limit of acountable, sur-

jective inverse system ofdiscrete -algebras in the form of (1) is evidently pro-affine
in our sense.

One recognizes then that a pro-affine -algebra as above is thesame thing as
a “filtered commutative -algebra which is complete and separated” in the sense of
Northcott [5, Chap. 9].

Proposition 1.1.1. Let and be pro-affine algebras. Then, the product ×
and the complete tensor product

∧⊗ are both pro-affine -algebras.

Proof seems hardly necessary. If{a : ∈ N} and {b : ∈ N} are bases of open
neighborhoods of 0 for and , respectively, then one adopts for × the ideals

{a × b : ∈ N} as a base of open neighborhoods of 0. As for
∧
⊗ , take the

ideals {a ⊗ + ⊗ b : ∈ N} as a base of open neighborhoods of⊗ , and
then take its completion.

A pro-affine algebra is said to bealgebraic over , or -algebraic, if can
be represented as in (1) whereall /a are finitely generated over .

Let , be pro-affine -algebras. Amorphism of to is defined to be a
continuous -algebra mapφ : → . Suppose that and are represented as =
lim←( /a ), = lim←( /b ), respectively. Then, the morphismφ : → gives rise
to a commutative diagram

(2)

φ−−−−→
π

y
yπ

/a −−−−→
φ

/b

standing valid for each given ∈ N and for some corresponding = ( )∈ N for
which φ(a ) ⊆ b . Here, π and π denote the canonical residue-class maps, and

φ ( + a )
def.
= φ( ) + b for all ∈ .
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NOTATIONS. Let us fix some notations we shall be using throughout this paper:

(a) Let = lim←( ) be a pro-affine algebra, where we have put :=/a as be-
fore. The canonical surjective maps→ and → for ≤ shall be denoted
as follows:

(3) π : −→ ; µ : −→

with Ker(π ) = a , andµ = Id . We abbreviateµ −1 as µ .

(b) As a rule, for anysubset ⊆ or any element ∈ , we denoteπ ( ) by
and π ( ) by . (A notable exception isπ ( ) = /a which we denote by

and not by .) When no fear of confusion is present, we often skip the left suffix
and simply write for , so that = (· · · ← −1 ← ← · · · ) is expressed as
(· · · ← ← ← · · · ). A sequenceσ := (· · · ← −1 ← ← · · · ) with ∈ for all
∈ N represents an element of and thusσ ∈ if and only if µ ( ) = −1 for all

, in which case we shall sayσ is coherent.

In the notations above, it is then clear that theclosure of may be identified
with lim←( ). Thus, ⊆ is closed if and only if every coherent sequenceǫ =
(· · · ← ← · · · ) belongs to as soon as all ∈ for ∈ N.

Proposition 1.1.2. The group of units ( ) of a pro-affine algebra is closed.

Proof. Let = (· · · ← −1 ← ← · · · ) ∈ ( ). For each there is a unique
∈ with · = 1 . Then, := (· · · ← −1← ← · · · ) is clearly coherent and

satisfies · = 1 so that ∈ ( ).

EXAMPLE 1.1-A (cf. [2, (1.1), p. 482]). For each ∈ N, let [ ] :=
[ 1 . . . ] if > 0, and [0] := . Define µ : [ ] → [ −1] by setting

µ ( ) := for all 1≤ ≤ − 1, andµ ( ) := 0. Denote

[∞] := lim
←

( [ ] )

and call it the pro-affine polynomial algebra(over ). This algebra may be character-
ized as the set of those formal power-series on1 . . . . . . which become poly-
nomials when reducedmodulo all but finitely many ′s.

1.2. The ideals in a pro-affine algebra.

Proposition 1.2.1. Let h be a closed ideal in = lim←( ). Then,

/h ≃ lim
←

( )/ lim
←

( h) ≃ lim
←

( / h)
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[This implies that /h is a pro-affine algebra for any closed idealh.]
Proof. Sinceh is closed,h ≃ lim←( h) and all maps h → −1h are surjective.

So, in the diagram

0 −−−−→ h −−−−→ −−−−→ / h −−−−→ 0
y

y
y

0 −−−−→ −1h −−−−→ −1 −−−−→ −1/ −1h −−−−→ 0

all vertical maps are surjective. One now applies the functor lim← to this diagram,
remembering the Mittag-Leffler condition which holds here.

EXAMPLE 1.2-B. In the same notations as in Ex. 1.1-A, define an ideal⊂ [ ]

by := 〈 | 1 ≤ < ≤ 〉, so geometrically the locus of is the union of all
coordinate axes in the affine -spaceA over . Let := [ ]/ = [ 1 . . . ].
Consider the exact sequence

0−→ −→ [ ] −→ −→ 0

and take the lim← of this sequence on all ∈ N. Since, for all ,µ : [ ] → [ −1]

causes asurjection of to −1, there results a surjective -map [∞] → :=
lim← , and its kernel := lim← gives an example of aclosed idealin [∞] . [In
the subsequent will be viewed as the coordinate algebraO( ) of the closed sub-
scheme of all coordinate axes in the ind-affine spaceA∞.]

EXAMPLE 1.2-C. In Example 1.2-B replace each by′ := 〈 1 · · · 〉, whose
locus inA is then the union of all coordinate hyperplanes inA . Since the surjections
µ : [ ] → [ −1] all causezero maps of ′ into ′

−1, the Mittag-Leffler condtion is
trivially satisfied, and ′ := lim← = {0} (which is a closed ideal in [∞]). It
follows that [∞] ≃ lim← ( [ ]/ ′). [So, the union of all coordinate hyperplanes in
A as →∞, is isomorphic to the whole ind-affine spaceA∞.]

Proposition 1.2.2. For any maximal idealm ⊂ , the following conditions are
equivalent to one another:
(i) m is closed;
(ii) For some , π (m) = m $ ;
(iii) For some , a ⊆ m;
(iv) For some , m = π−1(some maximal ideal in );
(v) m is open.

Proof. (i)⇒ (ii) : If m = for all , then (1← · · · ← 1← · · · ) ∈ m = m, so
that m = .

(ii) ⇒ (iii) : Let m ⊂ for a particular . Then,m must be a maximal ideal in
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, andπ−1( m) = m + a = m, so a ⊆ m.
The implications (iii)⇒ (iv) ⇒ (v)⇒ (i) are obvious.

The same argument as used in (i)⇒ (ii) above shows the following:

Corollary 1.2.3. Every closed proper ideal in a pro-affine algebra is con-
tained in a closed maximal ideal.

Proposition 1.2.4. For any prime idealp ⊂ , the following conditions are
equivalent to one another:
1. p is open;
2. For some , p = π−1( p);
3. For some and a prime idealq ⊂ , p = π−1(q ).

The proof of this obvious proposition is omitted.
Note that, in view of the two preceding propositions, theopen prime(resp.open

maximal) ideals of a pro-affine algebra are precisely the inverse images of theprime
(resp.maximal) ideals of the ’s for any ∈ N.

Proposition 1.2.5. Let a be a finitely generated proper ideal in a pro-affine al-
gebra . Then, there exists an open maximal idealm such thata ⊆ a ⊆ m.

We first prove the following key lemma due to N. Mohan Kumar:

Lemma 1.2.6 (N. Mohan Kumar). Let a = 〈 1 . . . 〉 be a finitely-generated
ideal, and leta be its closure. For any ∈ , if ∈ a then 2 ∈ a.

Proof. The proof goes by induction on the number of generators . First, take
any ∈ and let ∈ 〈 〉 = lim←( · ). Write

= ( 0 ← 1 ← · · · ← ← · · · ) ∈ for all ∈ N

where the coherence condition

(4) µ ( )− −1 = µ ( · )− −1 · −1 = (µ ( )− −1) · −1 = 0

is satisfied. Then,η
def.
= ( 2

0 ← 2
1 ← · · · ← 2 ← · · · ) is coherent, as one sees

from (4) that

µ ( 2 · )− 2
−1 · −1 = (µ ( )2 − 2

−1) −1

= (µ ( ) + −1)(µ ( )− −1) −1 = 0

So η ∈ . It follows that 2 = η ∈ 〈 〉 ⊆ .
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Turning now to the next induction step, we let∈ 〈 1 . . . 〉. Set ′ def.
= /〈 1〉,

and consider its ideal〈 ′2 . . . ′ 〉, where ′
2 . . . ′ denote the canonical images of

2 . . . , respectively, in ′. Let ′ := -mod〈 1〉 ∈ 〈 ′2 . . . ′ 〉. By induction hy-
pothesis, ′2

−1 ∈ 〈 ′2 . . . ′ 〉. This implies that one can write2 −1
= 1 + 2, where

1 ∈ 〈 1〉 and 2 ∈ 〈 2 . . . 〉

But we saw just above that1 ∈ 〈 1〉 gives 2
1 ∈ 〈 1〉. Therefore,

2 = ( 1 + 2)2 = 2
1 + 2 1 2 + 2

2 ∈ 〈 1〉 + 〈 2 . . . 〉

and we find 2 ∈ 〈 1 2 . . . 〉, as desired.

Proof of Proposition 1.2.5. now follows immediately from this lemma. Indeed,
if a finitely-generated ideala is such thata = , then 1∈ a, which implies 1 = 12 ∈ a

for some . So, ifa is proper, thena is proper; and one now applies Cor. 1.2.3.

REMARK. Proposition 1.2.5 fails to hold for idealsnot finitely generated, as will
be shown in§3 below (see Ex. 3-G). Also note that a finitely generated ideal need not
be closed. In fact, even a principal ideal can be non-closed,as the following example
shows:

EXAMPLE 1.2-D (N. Mohan Kumar). Let [2] := [ ] be a polynomial ring
in and , and for each ∈ N let := [2]/〈 +1〉 = [ ], with , standing
for the canonical images of , , respectively, in . Let our pro-affine algebra be
lim← . Consider

ζ := ( ← (1 + )← (1 + + 2)← (1 + + 2 + 3)← · · · )

Clearly, ζ ∈ 〈 〉. However,ζ /∈ 〈 〉. To see this, assumeζ ∈ 〈 〉, and writeζ = η for
someη ∈ . Then,η has to equal

(1 + 1( )← 1 + + 2
2( )← 1 + + 2 + 3

3( )← · · · )

where 1( ), 2( ), 3( ) . . . are polynomials in only. Now let, for each ∈ N,
: → /〈 〉 ≃ [ ] be the canonical mod- map. Then,

:= lim
←

: lim
←

= −→ [ ]

should mapη to a polynomial in [ ] of a certain degree, say of degree . Since
(η) = +1(1 + + · · · + +1 + +2

+2( )) = 1 + +· · · + +1 + +2
+2( ) ∈ [ ] is

of degree at least + 1, there results a contradiction.
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1.3. The radicals and Nullstellensatz. The radical R( ) and the nilradical
N( ) of a pro-affine algebra are defined as follows:

(5) N( ) =
⋂

∀p

p and R( ) =
⋂

∀m

m

where thep’s and them’s range overall open primeand all open maximalideals,
respectively.

Given an ideala ⊆ , the radical of a is defined as

(6) N(a)
def.
=
⋂

∀p⊇a

p

with p again ranging overall open primeideals containinga.
As done in [2], for a pro-affine algebra = lim← we define two kinds of its

reductions relative to the radicals:

(7) red
def.
= /N( ) and RED

def.
= lim
←

(( )RED) = lim
←

(( )red)

where ( )RED := /N( ) = ( )red is the usual residue-class ringmodulo the nil-
radical of . is said to bereducedor strongly reduced, respectively, if = red

or = RED. One may define likewise two more radicals using the Jacobsonrad-
icals R( )’s and R( )’s, and these were actually what we dealt with in [2, (1.2),
(1.3), pp. 483–484]. Just the same, the following counterpart of [2, Prop. (1.2),loc.
cit.] stands valid, and we state it without proof:

Theorem 1.3.1. For the canonical mapρ : = lim←( ) −→ RED, we have
(a) Ker(ρ) = N( );
(b) The sequence0 −→ N( ) −→ −→ RED is exact withIm(ρ) dense in RED;
(c) N( ) = { ∈ : lim →∞ = 0} = topologically nilpotent elements of .

REMARKS. 1. We note that, even in the special context of the theorem above,
the exactness of the sequence in (b) at the right-most end fails in general, orρ is
not surjective as a rule. Counter-examples are offered in Section 3 below (see Exam-
ples 3-E and 3-F). This point bears critically on the Jacobian Problem (cf. [2, (5.3),
(5.4), pp. 497–498]).
2. Since N( ) is a closed ideal⊂ , we deduce from Prop. 1.2.1 that, whereas
ρ : → lim←( /N( )) may not be surjective, the map → lim←( / N( )) is
surjective.

Theorem 1.3.1 and the Jacobson-radical version of it [2, (1.2), p. 483] coincide
with each other in the -algebraic case as seen just below:
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Theorem 1.3.2 (Nullstellensatz). If a pro-affine -algebra is algebraic over
, then R(A) = N(A).

Proof. In view of Props. 1.2.2 & 1.2.4, the remarks followingthese two and the
algebraicity, we have

R( ) =
⋂

∈N

π−1(R( )) =
⋂

∈N

π−1(N( )) = N( )

where the traditional NullstellensatzR( ) = N( ) has been applied.

2. Ind-affine schemes and ind-affine varieties

2.1. The spectra of pro-affine algebras and their topology. For any pro-affine
algebra , define itsprime spectrumSp( ) and maximal spectrumSpm( ), respec-
tively, as

(8)

{
Sp( ) = the set of allopen, primeideals⊂ and

Spm( ) = the set of allopen, maximalideals⊂

Then, in view of Prop. 1.2.2,Spm( ) is the same as the set of allclosed max-
imal ideals. Let us now introduce topology onSp( ) and Spm( ) by extending
Zariski topology: Theclosedsets⊆ Sp( ) are, by definition, those subsets ofSp( )
in the form of

( )
def.
= {p ∈ Sp( ) : p ⊇ } for some set ⊆

Likewise, the closed sets⊆ Spm( ) are defined to be precisely the ( )’s where

( )
def.
= ( ) ∩Spm( ).

The following proposition which should require no proofs shows that the preced-
ing definition of the topologies onSp( ) and onSpm( ) is valid:

Proposition 2.1.1. (i) Let a := 〈 〉, the ideal generated by , and let N(a) be
the radical ofa. Then,

(a) = ( ) = (N (a))

(ii) (0) = Sp( ) (1) = ∅.
(iii) Given a family{ : ∈ } of subsets of , we have

(⋃

∈

)
=
⋂

∈

( )

(iv) For ideals b and c, (b ∩ c) = (bc) = (b)∪ (c).
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Next we define, for each ∈ , the basic open set ( ) ⊆ Sp( ):

( )
def.
= ( ) = { p ∈ Sp( ) : /∈ p }

Proposition 2.1.2. Let , , α (α ∈ ) be elements of . Then,
(i) ( ) ∩ ( ) = ( · ).
(ii)

⋃
α∈ ( α) = (〈 α : α ∈ 〉) .

(iii) ( ) = ∅ ⇐⇒ ∈ N( ) ⇐⇒ is topologically nilpotent.
(iv) ( ) = Sp( ) ⇐⇒ is a unit.
(v) ( ) ⊆ ( ) ⇐⇒ ∈ N(〈 〉).

Proof. Parts (i), (ii), (iii) immediately follow from relevant definitions. As for
(iv), if /∈ any open prime, then by Prop. 1.2.5〈 〉 must equal the unit ideal〈1〉.
Therefore, must be a unit.

As for part (v), ( )⊆ ( ) ⇔ ∀p ∈ Sp( ) [ ∈ p ⇒ ∈ p], clearly, and this
last condition is equivalent toN(〈 〉) ⊆ N(〈 〉), or ∈ N(〈 〉).

REMARK. Proposition 2.1.2 goes to show that the ( )’s for all∈ form a
base of open sets in our topology onSp( ), just as in the more traditional theory of
affine schemes. Note, however, that in our theory here the open sets ( )’s arenot
quasi-compactin general. This is due to the existence of infinitely-generated proper
ideals whose closures are the unit ideal〈1〉. See Ex. 3-G in§3 below.

2.2. Localization in pro-affine algebras and structure sheaves of ind-affine
schemes. Let be amultiplicatively closed setin a pro-affine algebra . It will be
assumed always that 1∈ and 0 /∈ = lim←( ) for such an . The localization
−1 can be defined in the standard manner, and this -algebra naturally inherits its

uniform topology from . We shall adopt the completion of−1 as our definition of
. Namely,

DEFINITION. For and as above, the localization of by is defined to
be

def
= lim
←

( −1 )

Clearly, ≃ , so one may assume from the beginning that is closed. For useful

examples of one may mention ( )
def
= { | ∈ N } where is not topologically

nilpotent, and the complement− p of an open prime idealp. In these instances, we
shall denote ( ), −p by , p, respectively.

Proposition 2.2.1. Let , ∈ , := ( ), := ( ), and let , be as
just above. Let ( ) := and ( ) := . Then,
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(i) If = , then ( ) ≃ ( ). (Thus ( ) depends only on , not on .)
(ii) If ⊆ , then there is a canonical homomorphism of pro-affine -algebras
ρ : ( ) −→ ( ), which depends only on and .(The ρ will be called the
restriction homomorphism from to .)
(iii) Let , be as above and = ( ) for ∈ . If ⊇ ⊇ , we have

ρ = Id ( ) ρ ◦ ρ = ρ

Proof. (ii) Assume ⊆ , or ( ) ⊆ ( ). So, by Props. 1.2.2 & 1.2.4, ∈
N(〈 〉) =

⋂
∈N
π−1(the radical of〈 〉 in ). This means that, for every∈ N, there

is an such that ∈ 〈 〉 ⊆ . So, for each there is an element ∈ such
that

(9) ( ) = ·

Now let ∈ ( ) = = lim← (( )−1 ). Write as a coherent sequence =
(· · · ← −1/( −1 ) −1 ← /( ) ← · · · ). Defineρ ( ) to be equal to (· · · ← ′ ←
· · · ), where

(10) ′ def.
= · /( )

If another pair ( ′ ′) is chosen to make (9) stand, as ( )
′

= ′ · , then ′ in (10)
will have to be replaced by′′ = · ′ /( )

′

. But one can check out easily that
′ = ′′ inside ( )−1 . So, ρ ( ) is well-definedprovided that ′ := (· · · ← ′

−1 ←
′ ← · · · ) given by (10) just above is coherent.

Let us now check the coherence of′. Since is given coherent, one knows

(11) [( −1 ) −1 − ( −1 ) −1µ ( )] · ( −1 )some power= 0

and one need to verify

(12) [ −1( −1) −1( −1 ) − (
−1 ) −1 −1µ ( )µ ( ) ] · ( −1 )some power= 0

Applying µ to both sides of (9) and then raising them to the -th power, oneobtains

−1 = µ ( ) ( −1 ) ; also, (9) for := − 1 gives (−1 ) −1 = −1 · −1 . Sub-
stituting the right-hand sides of these two equalities for the appropriate terms inside
the “[ ]” of (12), we find the said contents of [ ] to be

−1
−1

−1 µ ( ) ( −1 ) − −1

−1 ( −1 ) −1µ ( )µ ( )

= −1

−1 µ ( ) [ −1( −1 ) − ( −1 ) −1µ ( )](13)

The expression inside the “[ ]” of (13) equals that of (11) and, consequently, gets
killed by some power of−1 . It follows that either side of (13) will be killed by
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some power of−1 because (−1 ) −1 = −1 · −1 . The proof of (ii) will be com-
plete after (iii) and then (i) are established below.

(iii) That ρ = Id ( ) is clear in view of the preceding reasoning. As for the tran-
sitivity, we have

∀ ∈ N ∃ ∃ ∈ N : ( ) = · and ( ) = · with ∈

It follows that, for each , ( ) = · holds, which implies that the composition
ρ ◦ ρ maps = (· · · ← /( ) ← · · · ) ∈ to

ρ ◦ ρ ( ) = (· · · ← /( ) ← · · · )

On the other hand, the relations ( ) = · for all ∈ N corresponding to ⊆
indicatesρ ( ) = (· · · ← /( ) ← · · · ). We already saw above that such

coherent sequences are the same in . Therefore,ρ ◦ ρ = ρ .
(i) If = or ( ) = ( ), we have mapsρ : ( )→ ( ) andρ : ( )→

( ). As we just saw,ρ ◦ρ = ρ = Id ( ), and likewise forρ ◦ρ . Hence ( )≃
( ). With (i) proven now, the proof of (ii) is complete.

It follows from Prop. 2.2.1 that the assignments = ( )7→ ( ) = and
[ = ( ) → = ( )] 7→ ρ produce apresheafA of pro-affine -algebras on
the baseB = { ( ) : ∈ } of open sets of the topological spaceSp( ). (see [1,
Chap. 0,§3.2, p. 25ff.] .)

Proposition 2.2.2. Let A be a pro-affine algebra, and let A be the presheaf over
the baseB of open sets onSp( ) introduced just above. Let = ( ) ∈ B be any
basic open set, and let =

⋃
λ∈ λ be a covering of with each λ = ( λ),

λ ∈ . Suppose given for eachκ ∈ an element κ ∈ A( κ) such thatρ λ

λν
( λ) =

ρ ν

λν
( ν) for any λ, ν ∈ , where λν denotes λ ∩ ν . Then, there is one and only

one ∈ A( ) such thatρ
κ
( ) = κ for all κ ∈ .

Proof. The proof is based on the well-established fact that the proposition holds
true in case of the affine schemes. (cf. [1, Th. (1.3.7), p. 86].)

It is clearly enough to prove the proposition in case =Sp( ) and A( ) = .
Assume so and write = lim← , = Spec( ). For eachλ ∈ and each ∈ N,
write λ = (· · · ← λ ← · · · ) and let

(14) λ := {π−1( ) : ∈ and λ /∈ } = π−1( ( λ))

where ( λ) is the basic open set in = Spec . We then have two types of open
coverings for eachλ and each , i. e.:

(15) λ =
⋃

∈N

λ and =
⋃

λ∈

( λ)
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[Uniqueness] Let ′, ′′ ∈ = A( ) be such thatρ
κ
( ′) = κ, ρ

κ
( ′′) = κ for all

κ ∈ . So, one may write ′ = (· · · ← ′ ← · · · ) and ′′ = (· · · ← ′′ ← · · · ), with
′ ∈ , ′′ ∈ for each . Now, sinceρ

κ
( ′) = ρ

κ
( ′′) for all κ, these agree

on κ for all in the first covering of (15), or (ρ
κ
( ′)) = (ρ

κ
( ′′)). This means

that ′ and ′′ agree on each piece (κ) of the second covering of (15) for each
κ. It follows that ′ = ′′ on for each , because of the fact pointed out at the
beginning of the proof. Therefore, we have′ = ′′.
[Existence] We are locally givenκ on κ for all κ such that λ and ν agree on λ∩
ν whenever the intersection is nonempty. The data will then induce, at each finite

level , the data of{ ( κ) : κ ∈ } locally on each open piece (κ) of the covering
=
⋃
λ∈ ( λ). We can patch up the local data of (κ)’s on the affine scheme

so as to obtain ∈ . What remains to be checked out is that (· · · ← ← +1 ←
· · · ) is coherently defined. So, let′ := µ +1( +1), and we will show that = ′. Now,
denote the restriction map of to (κ) by ρ κ. We have thusρ κ : −→ ( ) κ.
By construction,ρ κ( ) = ( κ) and ρ +1 κ( +1) = +1( κ). It follows that

(16) ρ κ( ′) = ρ κ(µ +1( +1)) = µ′+1(ρ +1 κ( +1)) = µ′+1( +1( κ)) = ( κ)

with µ′+1 : ( κ) +1 → ( κ) standing for the map induced byµ +1 : +1 → . It
is now shown thatρ κ( ) = ρ κ( ′) for all κ ∈ . Once again one draws upon the
uniqueness in the affine-scheme case to conclude that =′.

We now extend the presheafA to a presheaf over the topological spaceSp( )

by defining, for any open set ⊆ Sp( ), A( )
def.
= lim←A( ) where the lim← is

taken over allbasic ’s for which = ( ) ⊆ [1, chap. 0-3.2, pp. 25ff]. The
extended presheaf will be denoted byA, too. The next theorem follows immediately
from Prop. 2.2.2. (cf. [1,loc. cit.].)

Theorem 2.2.3. The presheafA is a sheaf.

From here on, the topological spaceSp( ) endowed with the sheafA as above
will be referred to as theind-affine scheme associated withand will be denoted by
X . A is then, by definition, thestructure sheaf ofX . In conformity with standard
practice in scheme theory we shall also writeA = O( ). Similarly, the topological
spaceSpm( ) together with the sheaf induced on it fromA is called theind-affine
variety associated with , and this variety will be denoted byV .

We next address the issue of stalks of the sheafA. Let X be an ind-affine
scheme, with = lim← . Let p be a point onX , and let := the filter of all
basic open sets containing the pointp, so = { ( α) : p ∈ ( α)}. Let us write

α := ( ) α for all ∈ N and all α for which ( α) ∈ . We then have the fol-
lowing commutative diagram in which all horizontal arrows represent surjections and
vertical ones are restrictions occurring whenever (α) ⊇ ( β), each column thus
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forming a direct system:

(17) ??y ??y ??y
· · · ←−−−−− −1 α ←−−−−− α ←−−−−− · · · · · · ←−−−−− lim← α??y ??y ??y
· · · ←−−−−− −1 β ←−−−−− β ←−−−−− · · · · · · ←−−−−− lim← β??y ??y ??y

· · ·??y ??y ??y
· · lim→ α(lim← α)??y ??y ??y

· · · ←−−−−− lim→ γ −1 γ ←−−−−− lim→ γ γ ←−−−−− · · · · · · ←−−−−− lim← (lim→ γ γ )

In the diagram (17) one should recognize that lim← α = α = A( ( α)),
and lim→ γ γ = ( ) p. So, the map on the lower right corner of (17) amounts

to lim→ α(A( ( α)) = lim→ α α −→ lim← (( ) p), and gets induced as fol-
lows: (i) First, for eachα there is a map α → lim→ γ γ for all with appro-
priate commutativity of arrow paths; (ii) as a consequence there is a map α →
lim← (lim→ λ λ) = lim← (( ) p); and finally (iii) the desired map lim→ γ γ →
lim← (( ) p) again because of the appropriate commutativity.

We now come to study the map . In order to describe its kernel, we need to
introduce the notion ofelements infinitely near0 in the ring lim→ α(lim← α) and,
before that, a newad hocnotation: If ∈ α then [ ] denotes the equivalence class
represented by in the direct limit lim→ γ γ = ( ) p. Likewise, if (· · · ← −1 γ ←

γ ← · · · ) ∈ lim← γ = A( γ ), then [· · · ← −1 γ ← γ ← · · · ] is to mean
the corresponding equivalence class∈ lim→ α(lim← α) = lim→ αA( ( α)). Now,
let

(18) := [· · · ← −1 α ← α ← · · · ] ∈ lim
→ α

(lim
←

α) = lim
→ α

A( ( α))

We shall say that isinfinitely near 0 if ∀ α∃β = β( α) ≥ α such that α 7→
β = 0 under the restriction map due to the inclusion (β ) ⊆ ( α). The termi-

nology is appropriate because, for such , [α] = [0] for every , yet may not be
0.

It is easy to see that the set of all elements of := lim→ α(lim← α) =
lim→ α(A( ( α)) that are infinitely near 0 form an ideal of the ring .
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Theorem 2.2.4. (a) Let be as just above. Then, the kernel of the map
: → lim← ( ) p is the ideal of all elements infinitely near 0 in .

(b) The image of is everywhere dense inlim← ( ) p.

Proof. (a) If ( ) = 0 for as in (18), that means (· · · ← [ −1 α] ← [ α] ←
· · · ) = (· · · ← 0 ← 0 ← · · · ) inside lim← (( ) p), or ∀ , [ α] = 0. So, is
infinitely near 0. The converse clearly holds also.
(b) Given η = (· · · ← [ −1 α −1 ] ← [ α ] ← · · · ) ∈ lim← (( ) p), write η =
(· · · ← −1 ← ← · · · ) with each ∈ ( ) p. For an arbitrary high > 0, let

:= α ∈ α . Clearly, one can complete to an element

= (· · · ← −1← ← +1← · · · ) ∈ lim
←

α

such that

[ 0] = [ 0 α0] [ 1] = [ 1 α1] . . . [ −1] = [ −1 α −1] [ ] = [ α ]

So, [ ] := [· · · ← −1 ← ← +1 ← · · · ] ∈ is such that ([ ]) andη agree
with each other up to the -th place from the left. Since was arbitrary, this shows
the density of the image of .

In view of Th. 2.2.4, we define thelocal ring of a point p on an ind-affine
schemeX , = lim← , to be lim← ( ) p. It is a pro-affine -algebra, and a
surjective inverse limit of local rings of the more traditional type.

3. Comments and Examples

(A) The reduction red and thestrong reduction RED (see§1.3-(7) above):
In [2] we raised the question as to whether or notred = RED for the types of

pro-affine algebras of interest to us, and we indicated how this issue bears upon the
Jacobian Problem (cf. [2, (1.3), p. 484, and (5.4), p. 498]).As expected, this question
is easily answered in the negative, as follows:

EXAMPLE 3-E. For all ∈ N consider the same algebras as occurred in [2,
Ex. (1.4), p. 484] but with different connecting mapsµ . Namely, let

:= [ 1 · · · −1 +1]/〈 2
+1〉 = [ 1 . . . −1 τ +1]

and defineµ : −→ −1 by stipulating

µ ( ) := for < ; µ ( ) := τ ; µ (τ +1) := τ · 1
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Then, in the exact sequence

(19) 0−→ 〈τ +1〉 −→ −→ [ 1 . . . ] −→ 0

for all > 0, the Mittag-Leffler condition fails to hold, so that the sequence

(20) 0−→ N( ) −→ −→ RED −→ 0 where RED = [[∞]]

obtained by applying lim← to (19), is expected to be nonexact on the right.
We can actually exhibit where the map→ RED fails to be surjective. In fact,

let

:= 1 + · · · + −1 + for all ∈ N

and consider := (1 ← · · · ← −1 ← ← · · · ) ∈ RED. Suppose that there existed
some ∈ such that = (1 ← · · · ← ← · · · ) 7→ ∈ RED. Then, for each
∈ N, it must hold that = +τ +1 · = −1 + + τ +1 · for a suitable ∈
[ 1 . . . −1 ]. On the other hand,µ ( ) = −1, or

(21) −1 + τ + τ · 1 · ( 1 · · · −1 τ )

= −1 + τ + τ · 1 · ( 1 · · · −1 0)

= −1 + τ · −1

which implies that

(22) −1 = 1 + 1 · ( 1 · · · −1 0) for all ∈ N

Using this last equation recursively, one would get

(23) 1( 1) = 1 + 1 · 2( 1 0)

= 1 + 1(1 + 1 · 3( 1 0 0)) = 1 + 1 + 2
1 · 3( 1 0 0)

= · · · = 1 + 2
1 + · · · + −1

1 · ( 1 0 . . . 0) = · · · (ad infin.)

This lends an arbitrarily high 1-degree to the polynomial1( 1), an absurdity.

(B) Closed Embedding and Topology of Ind-affine schemes:
Let , be pro-affine algebras, and :=X , := X . A morphism of ind-

affine schemes : → defined by a continuous -mapφ : → is said to be
a closed embeddingif φ is open and surjective. When that is so, through appropriate
representations = lim← , = lim← of and as inverse limits, one may see
to it that φ is induced by surjections → for all ∈ N. One can then say that
the closed embedding → is the direct limit of the closed embeddings →
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for all . The converse is inexact. Namely, ifφ : → comes as the inverse limit
of surjective -maps → for all , φ need not be surjective. In other words, if

: → is induced by closed embeddings→ (∀ ) of finite-dimensional affine
-schemes = Spec( ), = Spec( ), need not be a closed embedding ofind-

affine schemes. This point is illustrated by the following example:

EXAMPLE 3-F (Burt Totaro). Let :=A∞ = X [∞] , so =
⋃∞

=1 with = A .
Define a subscheme =

⋃∞
=1 of inductively, as follows: (a) 1 := 1 = A1.

(b) Having built −1, define to be the union of −1 and a finite set of lines
through the origin in such that every polynomial function on of degree≤
which vanishes on these lines must be 0 altogether on . [Just take enough number
of lines on through the origin and in general position.]

Now consider the morphism : −→ arising as the dual of the natural map,
O( ) := lim← O( ) → O( ) := lim← O( ), where the mapsO( ) → O( ) are
surjections associated with the closed embeddings→ for all . This exhibits
some pathological characters, as shall be seen now.
(a) First, let := Ker(O( ) → O( )). Then, is a homogeneous ideal in[ ]

whose generators may be taken to be forms of degree> . This shows that the ex-
act sequences 0→ → O( ) → O( ) → 0 taken for all ∈ N do not satisfy
the Mittag-Leffler condition, and the non-surjectiveness of O( ) → O( ) is strongly
indicated.
(b) Second, letm , m be the maximal ideals of the origin (0) on , in the rings
O( ), O( ), respectively. Then, for every pair of and with 0< ≤ , the natural
surjection

ψ : O( )/m −→ O( )/m

is also injective because of the make-up of , so thatψ is an isomorphism. It fol-
lows that ψ := lim →∞(ψ ) gives an isomorphismO( )/m( ) ≃ O( )/m( ) for all
> 0. Consequently,m /m(2) ≃ m /m(2) and m

( )/m( +1) ≃ m
( )/m( +1). Since the

point (0) on satisfies the smoothness condition thatŠ (m /m(2)) → m
( )/m( +1) be

an isomorphism for all > 0 (see [2, p. 488]), so does (0) on , or is smooth at
(0).

We can see that this creates a serious problem for the notion of smoothness of
ind-affine varieties, as calling the point (0) a simple pointon goes against our intu-
ition. It appears that the notion of smoothness (or of simplepoint) should be reworked
(see [2, p. 488], [3, p. 187ff]). We will not, however, go intothis issue in this paper.
Turning to the more immediate question on Totaro’s example at hand, we find it im-
possible that the -mapO( ) → O( ) in (a) just above should be surjective, or that
the morphism → should be a closed immersion. For, were this the case, then the
embedding theorem [2, (2.6), p. 488] would imply that is isomorphic to as ind-



PRO-AFFINE ALGEBRAS AND IND-AFFINE SCHEMES 637

affine scheme. It follows that, for every , is a closed subscheme of but →
is not a closed immersion.

(C) Example of a proper ideal whose closure is the unit ideal:
We follow up on Example 1.2-D and Remark that precedes it.

EXAMPLE 3-G. Let

1 := (1← 1 + 1← 1 + 1 + 2← · · · ← 1 + 1 + 2 + · · · + ← · · · )
2 := (1← 1← 1 + 2← 1 + 2 + 3← · · · ← 1 + 2 + · · · + ← · · · )
...

...

:= (1← 1← · · · ← 1← 1 + ← 1 + + +1← · · · )
...

...

be a sequence of elements in[∞] . So, − +1 = (0 ← 0 ← · · · ← 0 ← ←
← · · · ) and − 1 = (0← · · · ← 0 ← ← + +1 ← · · · ). It follows that

lim →∞ = 1 and 〈 1 . . . . . .〉 = 〈1〉. On the other hand,〈 1 . . . . . .〉 $
〈1〉 because no finite linear combination of the ’s can equal 1. To be more specific,
suppose = 1 for an [∞] -linear combination of . . . ( < < · · · < ),
or 〈 . . . 〉 = 〈1〉. Then,〈 1 . . . 〉 = 〈 1 1− 2 . . . −1− 〉 = 〈1〉.
This implies that an [∞]-linear combination of

1 = (1← 1 + 1← · · · ← 1 + 1 + · · · + ← · · · )
1 − 2 = (0← 1← 1← · · · ← 1← · · · )
2 − 3 = (0← 0← 2← · · · ← 2← · · · )

...
...

−1 − = (0← 0← · · · ← −1← −1← · · · )

should produce (1← 1← · · · ← 1← · · · ). Clearly, this is impossible.
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