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0. Introduction

In 1970 S. Kobayashi [21] posed the following problem: Isritet that the com-
plement of a generic hypersurface of degeee> e(n) in Pg. is hyperbolic for some
numbere ( )? Is this true foe n( ) =2 + 1? Later Green [15] for = 2 &uaiden-
berg [35] for arbitraryn proved that faf < 2n such complements contaiti* and so
are not hyperbolic.

In this paper we study the case of complements of smooth sun/@2 where,
for d > 4 this problem is equivalent to the nonexistence of noneamstntire curves
by Brody Reparametrization Lemma [4]. When the curve hasyn@mponents, this
problem had been studied by many authors, see [12, 13] fom#plete bibliography
and the study of the case of three components (see also taet reork [2]). In the
smooth case, the first example of hyperbolic complement wastoucted by Azukawa
and Suzuki in [1] (for even degre¢ > 30), then Zaidenberg in [36] showed that ex-
amples exist for alkd > 5.

The first positive answer to this problem (fer = 2) was giverthie work of Siu
and Yeung [32] though the bound they obtain is quite high.ifTheethod is rather
involved and consists of an explicit construction of sples@cond order differential
operators on an associated surfacePf ramified overPZ. This was done by an im-
itation of the construction of holomorphic 1-forms on Riemasurfaces and a clever
reduction of the problem to a resolution of linear systemisoSe operators are such
that their pullbacks by the lifting of every entire curve rhwanishes identically. This
follows from an Ahlfors-Schwarz type result.

In [10], after studying the compact analogue of the abovgembare and proving
that a generic suface of degreée> 21 in P2 is hyperbolic, Demailly and the au-
thor, using the same covering trick, obtained the bound & &r complementary of
curves inP2 (see also [25]). This is made by using the whole force of Déymijet
bundles introduced in [8] and a result of McQuillan on holopiéc foliations [24].

In this paper, we obtain the bound 15 for the complement ofrg generic curve
of degreed inPZ. Here, the terminology “very generic’ refers to complenseof
countable unions of proper algebraic subsets of the paeanspiace. Our main theo-
rem is the following
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Main Theorem. The complement of a very generic curve B3 is hyperbolic
and hyperbolically imbedded for all degreds> 15.

We follow almost the same strategy as in [10] with the differe that we use
an analogous logarithmic package introduced in [11], whittnoduces some addi-
tionnal technical complications. Dethloff and Lu’s jet lolles are a compactification a
la Demailly of Noguchi's logarithmic jet bundles introdutén [29]. Using Riemann-
Roch and a refined study of the base loci associated to thodmuielles, we reduce
the problem to the study of holomorphic foliations on logigel type surfaces. We
prove that such foliations do not admit a parabolic Zartirse leaf. We generalize,
in particular, McQuillan’s result [24] on Green-Griffith®mjecture to log-general type
surfaces withc > ¢,. This logarithmic point of view permits the observation that
McQuillan’s refined tautological inequlity is actually amsy consequence of a loga-
rithmic tautological inequality obtained by [34] and prdvén the same way as the
simple non-logarithmic one (see also [7]).

The paper is organized as follows: In Section 1 we first rettadl main definitions
and results in [11]. Then we introduce the 2-jet threshold dég-general type surface
(X, C). We consider the case when the Picard grouf isnd we construct, with some
conditions on log-Chern classes and the 2-jet threshol@yified coverX on X such
that every entire curve in the complemexit, C could be lifted as a leaf of a holomor-
phic foliation on X (in this paper, we always identify a map frof and its image).
The last part of this section is devoted to estimating thet2hreshold in the case of
(P2, C) whereC a generic smooth plane curve.

In Section 2 we study foliations on log-general type surfaes in [24]. The
method we adopt is paralell to Brunella’s work [6]. We obt#wat these foliations do
not have a Zariski dense parbolic leaf.

The author would like to thank warmly Professors Marco Btianelean-Pierre
Demailly and Gerd Dethloff for interesting remarks and ssgjmpns.

1. Logarithmic Demalilly jet bundles

1.1. Background material. Here we will consider a logarithmic generalization
of Demailly’s invariant jets introduced in [8], this is doiby Dethloff and Lu in [11].

Let X be ann -dimensional complex manifold with a normal cnogsilivisor D .
According to litaka [20], the logarithmic cotangent shd—éﬁ = Ty (log D) is defined
to be the locally free sheaf locally generated By and the logarithmic differentials
ds;/s;, wheres; =0 is a local equation for the -th local irreduciblenpmnents of
D. Its dual the logarithmic tangent sheaf is the sheaf of gesfngector fields tangent
to D, denoted byl x = Tx(— log D).

Recall from [17] that thek -jet bundld,X is defined as the set afivadence
classes of holomorphic mapg C,0) — (X, x), with the equivalence relatioff ~
g if and only if they have the same Taylor expansions of order sdme local
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coordinate system ofX near. We denote the equivalence clasg b¥ ji.(f).
In [29], Noguchi generalized this object to the logarithnsituation as follows. Let
w € HOU, T¥) be a holomorphic section over an open subSetC X. For a germ
of a holomorphic mapf iU we puf*w = Z(t)dt. Then we have a well defined
holomorphic mapping

&1 KXy = C 5 () = (Z29(0))o< j<k—1-

Now we say that a holomorphic sectiene H°(U, J; X) is a logarithmick -jet field
if the mapwos|y: V — Ck is holomorphic for allw € HO(V, Ty) and for all open
subsetV ofU . The set of logarithmic -jet fields over open suhsétX defines a
subsheaf of/; X called the logarithmic -jet bundle &f,(® ), whicle denote by
JiX, and this subsheaf is the sheaf of sections of a holomorpie fiundle.

In [11], Dethloff and Lu constructed a more geometricalljevent k—jet bundles
(in the same way as done in [8] for the non-logarithmic casetdnsidering a suitable
“quotient” of this bundleJ, X by the action of the groufs; containing all germs of
k-jets biholomorphisms of(f, 0), that is, the group of germs of biholomorphic maps

tl—><p(t)=a1t+a2t2+---+aktk, a1€C*, a;€C, j>2

As a generalization of Demailly’s directed jets to the ldtpmic context, Dethloff and
Lu defined a log-directed manifold to be the tripl&,(D, V ) whéfe aitiolomor-
phic subbundle ofT x of rankr. To the log-directed manifoldX( D,V ), one asso-
ciates inductively a sequence of directed manifoldg, (D, Vi) as follows. Starting
with (Xo, Do, Vo) = (X, D, V), one puts inductivelyX; = P(V;_1) with its natural
projection; to X;_1 (Where P () stands for the projectivized bundle of lines in the
vector bundleV ), whereD,  =r;(Dy—1) and Vi, is the subbundle of; (—log Dy)
defined at any pointx, [ J¥ X, v € Vi_1., by

Vi (e.ll) = {f € Tz, (e (- 109 Dx) 5 (i), £ €C- U},

with C-v C Vp1x C Tyk—l,x(— log Dy—1) .
We denote byOy (—1) the tautological line subbundle afV;_1, such that

Oz, (=D.pp =C- v,
for all (x, [v]) € X; = P(Vi_1). By definition, the bundle/; fits in an exact sequence
0— Tyk/yk—l — Vi &5 Oyk(—l) — 0.

and the Euler exact sequence ®Bf r, , vields

0— O, — T Vi1 ® O%,(1) — Tz, x. ., — 0.
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From these sequences, we infer
rankV, =rankVy,_, =--- =rankV =r, dimX; =n+k(r — 1).
We let
Th,j = Tj+1 O+ O Tg_1 0O Tk ZY/( —>Yj,

be the natural projection.
The canonical injectior0y, (—1) — m;V,—1 and the exact sequence

(me—1),
0— Tyk—l/yk—Z — Vi1 — OYk—l(_l) —0

yield a canonical line bundle morphism

(ke k—2)* o(mr—1),

Oyk(—l) — 7T;: Oyk_l(—l)

which admits precisely the hyperplane section  P=Tx (, %, ,) C Xi = P(Vi_1)
as its zero divisor. Hence we fin@% (—1) =7} O,  (-1) ® O(-T%) and using the
notation Oyk (a1, ag) = ﬂ-ZOYk_l(al) & Oyk (a2),

Oyk (—l, l) >~ O(Fk)

is associated with an effective divisor .

For simplicity let us consider the case T and letf :A, — X \ D be a non-
constant trajectory tangent t§ . Theh  lifts to a well defined anique trajectory
fig: A — Xi \ D of X; tangent toV, . Moreover, the derivati\ﬁk_ll gives rise to
a section

f‘[//<—l]: TA, — f‘[Z] OYL(—].)

With any sectiono of Ox (m), m > 0, on any open setkfé(U), U cC X\ D, we can
associate a holomorphic differential operat@r  of order ingcon k -jets of germs
of curves f : C, 0) — U tangent toV , by putting

O(N)() = o(fi () - fe_yy()®" € C.

From [8], this correspondence is, in fact, bijective. To sé®t happen with logarith-
mic jets recall the following characterization of log-jefferentials in [11]:

Proposition 1.1.1 ([11]). A holomorphic functonQ on/;X|y; on some con-
nected open subséf C X which satisfies

(+) OUi(f 0 9) = ¢'(0y" Qi (f)) Vik(f) € SX|y and V¢ € G
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over some open subsgt  Of\ D defines a holomorphic section 6, (m) over U,
and vice versa.

From the definition of7; X, one can deduce that tike -th derivative of the functin
logs; (f) is holomorphic on/, X over thej -th local component dd  wherse is de-
fined. Using this, and the fact that holomorphic functionisggng (x) for all ¢ €
C* C Gy are homogenous polynomials of degige , we obtain

Proposition 1.1.2. The direct image(m,0).Ox, (m) coincides with the sheaf
O(Ek,mT*X) of degreem logarithmic jet differentiglshat is the locally free sheaf
locally generated by all polynomial operators in the detivas of orderl, 2 ...,k
of f and of thelogs;(f)s invariant under arbitrary reparametrizatiora germ of op-
erator Q € H(U, Ei,T x) is given by a holomorphic functio® of X|y charac-
terized by the condition thafor every germf inX \ D and every germp of k-jet
biolomorphisms ofC, 0),

O(fop)=¢"™ O(f) 0.

A basic result from [11] relying on the Ahlfors-Schwarz lemyris the following,
for the 1-jet case see [28] and [23].

Theorem 1.1.3([11]). If (X, D) has ak -jet metrich; (i.e. a singular metric in
the sens of Demailly 0@ (—1)) with negative curvaturgalong Vi), then every en-
tire curve f: C — X \ D is such thatfiy(C) C %,,, whereX,, denotes the singular
set ofhy .

An important case where the previous theorem applies is viihere are some in-
tegersk ,m > 0 and an ample line bundl@ aX  such that

HO(Xy, Oz, (m) @ (m0)* A7) ~ HOX, ExuT x ® A7Y)

has nonzero sections,, ..., oy. Then, we can construct/a -metric of negative curva-
ture, singular on their base locu& C X,.

By definition, a line bundle. idig if there exists an ample divisot oK  such
that L®" @ O(—A) admits a nontrivial global section whem is large (then ¢hare
lot of sections, namely:°(X, L™ @ O(—A)) > m" with n = dim X).

As a consequence, Theorem 1.1.3 can be applied wihgifl) is big or its re-
striction on some subvariety is big (see Theorem 4.3 in [11])

In view of studying the degeneration of entire curve drawneowmariety of log-
general type and of Theorem 1.1.3, it is especially intergsto compute the stable



474 J. B GouL

base loci of the global sections of log-jet differentialsattis, the intersections

_k = m Ek,m C Yk
m>0

of the base lociB,, of all line bundlesOx, (m) @ m; oO(—A), where the intersections
are in fact independent of the ample divisér ovér . We &ll  itké tautologi-
cal stable base locus.

RemaArk 1.1.4. The 1-jet case was studied in [23]. Using RiemannkhRd®],
we prove that if &, D ) is a nonsingular surface of log-genergletyith logarithmic
Chern classes? > ¢, then there is a lot of log-symmetric differentials, i.e. ti@mus in
E1.T" = S"TY, and the base locuB; is 2-dimentionnal. Unfortunately, the “order 1”
techniques are insufficient to deal with complement of simawnirve C of degreel in
P2, because in this case

C2=(d —3)?<CTp=(d*—3d +3)
Lemma 1.4.1 below shows in fact that®(X, S"T%) = 0 for all m > 0.

1.2. Base locus of logarithmic 2-jet differentials. From now on, we suppose
that (X, D) is a nonsingular minimal surface of log-general tyip@ with Ky := Kx ®
O(D) big and nef) and we study the base lods in X,. As in the non-logarithmic
case, the bundle of log-jet differentials of order 2 has thiéodving filtration

G Eznly= P " ¥Ty® Xy
0<j<m/3

This filtration consists of writing an invariant polynomiklg-differential operator out-
side D as

JOEESY ST aa (DU ALY

0<j<m/3  «a€eN?, |a|=m—3j

where

f=W ). () =D A= AR - A

On a component oD , sai, given in local coordinate by; = 0 we replace only
/f1 by log f1 in this expression. A calculation based on the above fittratf Ez,mT;
and Riemann-Roch yields

m4

X(X, E2nTy) = 525134 — 9e2) + 0 ().
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On the other hand,
H*(X, EnTx @ O(~A)) = HY(X, Kx ® E2nTx ® O(4))

by Serre duality. From the filtration abov&y ® (E2.,.T x) ® O(A) admits a filtration
with graded pieces

S"SITy @ Ky ' @ Ky © O(A).

Recall now thatTy is semi-stable (see [22] and [33]) so by Bogomolov’s vamighi
theorem [3], we havé?(X, SPTx ®?§q) =0, p —2¢ > 0. This implies that

W2 (X, E2onTy © O(—A)) =0
for m large. Consequently we get the following

Theorem 1.2.1. If (X, D) is an algebraic surface of general type ald an am-
ple line bundle overX, then

m4
>

0 il o
h (Xa EZ,mTX ® O( A)) - 648

(13¢ — 9¢2) — O(m®).
In particular: If 13¢2 — 9%, > 0, then B, # X,.

In the special case wheki [B? and D =C is a smooth plane curve of degite
we take A =Op2(1). Then we haver; = (3 — d)h andc, = (d? — 3d + 3%? where
h = C]_(Opz(l)), h2 = 1, thus

4
X(EonTy ® O(—A)) = (4d2 — 51d + 90)6%8 +0(md).

A straightforward computation shows that the leading coieffit 4d> — 51d + 90 is
positive if d > 11. Thus, we obtain

Corollary 1.2.2. For every smooth curve of degrek > 11 the associated log-
surface(P?, C) has its 2-jets base locusB, # X».

RemaArk 1.2.3. As a consequence of the calculus above and with théopee
condition on Chern classes, every holomorphic entire cufvento X \ D could be
lifted in X, and its image is contained in an irreducible comporént BgfWe have
to distinguish three cases
(@) m2.1(Z) = X1, then Z is three dimensional and called horizontal, in thisecthe
2-jet lifting of f is a leaf of a foliation by curves o& . In fache lifting of f is
tangent to7; N V> which defines a distribution of lines on a Zariski open sulofeZ
which is obviously integrable.
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(b) m.0o(Z) = X and we are not in case (a), then our cure  could be liftecK{o
as a leaf of foliation by curves on the surfake mz1(Z) (defined by the distribution
Ty N 'Vy)

(c) The image off is algebraically degenerate.

The difficulty, in the case (a), is to study (singular) fdbat by curves on a va-
riety of dimension bigger than two. Actually, we have no mrable model with re-
ducible foliated singularities in this case currently ($msvever [26]). So the next step
is to show that with a slightly stronger condition on Cherasses, in the case of
(P?, C), we only have to consider foliations on surfaces.

1.3. Existence of the multi-foliation. Our aim now is to study the restriction
of the tautological line bundle on 2-jets on a 3-dimentidninarizontal componenZ

of B,. Let us first make the following useful definition (as in [10])

DerniTion 1.3.1. Let , D) be a nonsingular projective variety of log-gex
type. We define thé& -jet log-threshoj of (X, D) to be the infimum

0 = inf 0, € R,
m>0

where 6y, is the smallest rational numbeym such that there is a non zero section
in HO(X, E;.,Tx ® O(t Kx)) (assuming that K x is an integral divisors € Q).
In the case when the Picard group equédlsve have a more clear idea about the

jet log-threshold. Recall that;, is the effective divisor inX, associated tdx, (-1, 1).
Then we have

Lemma 1.3.2. Let (X, D) be a nonsingular surface of log-general type with
Pic(X) =Z. Suppose thaf; > 0 and 6, < 0. Then

B,CZ,=ZUTy,
where Z is an irreducible component arid, is the set of zeros of a sectian in
H%(X3, O%,(mo) ® O(to Kx)), with to < 0 in Z Moreovet in the caseB; = Z,, we
have 6, = t9/mo.
Proof. Asf, <0 we have a nontrivial section
s€ HY(X, E2,Txy®O(tKy), m>0 tecQ and <0,

Let uy = 73 ,0%,(1) anduz = Og,(1), then its zero divisor

Zs=muz+tm; oKy in Pic(X»),
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Let Z, = " p;Z; be the decomposition o, in irreducible components. From the
equality Pic{,) = Pic(X)® Zu1 ® Zu, and the assumption P&( 3 Z, we find

y =
Zj ~ayjurtazuztt; 7T2’OKx,

for suitable integers:y j, az; € Z and rational numbers; € Q. We can prove that
(see Lemma 3.3 in [10]), a&; is effective, we must have one efftflowing three
disjoint cases:

o (a1,j,a2;)=(0,0) andZ; € 73 ,Pic(X), ; > 0;

o (a1,j,a2;)=(—1,1), thenZ; containg’s, so Z; =I'; and?; =0;

°a ;> 2612,1' >0 andmj =ayjtaz; > 0.

We can supposey/mo = mint;/m; then 1y is clearly negative. Now we have

az,o 70 becausd); > 0 and thenZ, gives a section

o€ HO(Yz, Ox,(mo) @ m3 oO(toK x))

(we use the identityOx, (a1, a2) = Ox,(a1 + a2) ® Ox,(—a1l'2)). Then, by definition,
we obtain B, C Z, and we have equality if and only i# is the unique irreducible
section witht < 0. Ast;/m; < t/m we conclude, in this case thé = to/mo. U

As a generalization to the log-case of the main theorem of yi® have the fol-
lowing

Theorem 1.3.3. Let (X, D) be a nonsingular surface of log-general type with
Pic(X) =Z. Suppose thaf, < 0 and that the log-Chern numbers &f  satisfy

(13 + 120,5)¢3 > 9.

Then every Zariski-dense holomorphic mgp C — X \ D is a leaf of an algebraic
multi-foliation on X .

Proof. If 61 <0, thenB; # X; and we conclude by a direct application of The-
orem 1.1.3. (where the foliation is defined by the intersgcwf V; and the tangent
space of the irreducible component Bf which contains the lifting off to 1-jets) so
we suppose thaf; > 0. As 6, < 0, we haveB, # X, and the discussion made in
Remark 1.2.3. shows that we have to consider only the casa wieelifting of f to
2-jets is contained in a horizontal irreducible divisgr  X». By Lemma 1.3.2 we
have

Z ~auqt+azust IOWE,o?X in PiC(Yz), o€ Q, <0, aytaz =mo,

whereto/mq = 6, Our aim now is to prove that the restriction of the tautoladitne
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bundle toZ is big. First, we have the following intersectiaqualities

4 _ 3. _-2 - 2.2 _ = 3_-2 o 4 _p= =2
ui =0, wujup=c{—7ca, ufu5=cz, wuw;=cg—3c2, u,=5c,—7cy,

uf-F=0, u%uz-F=—El-F, ulu%-F=0, u%-F=O,

where F is any divisor in Pi¢( .)
Using this table, we obtain easily

(2u1 + u2)3 -Z = m0(13E§ - 952) + 121‘05%,
moreover, we havey/mo = 62, and hence
(2u1 +u2)® - Z = mo((13 + 1202) ¢2 — 9¢5) > 0.

As in [10] Proposition 3.4., we conclude that the restricti©Ox, (1), is big. Conse-
quently, by Theorem 1.1.3, every nonconstant entire cufveC — X is such that
fiz1(C) is contained in the base locus 6k, () ® 73 (O(—A)|2 for [ large. This base
locus is at most 2-dimensional, and projects onto a propgebahic subvarietyy
of X;. Thereforefi;;(C) is contained inY , and the Theorem is proved. O

1.4. Complement of curves inP2. In this section we will consider the case
(P?, C) where C is a plane curve of degree . We will estimate the astmti2-jet
log-threshold. We start with a vanishing theorem of log-syatric differentials (similar
of that of Sakai [30]).

Lemma 1.4.1. Let C be a smooth curve of degree 1, m a nonnegative in-
teger andk € Z. Then

HO(P?, §"Tp ® O(k))=0 for all &k < min(m — 1, d — 3).

In particular, for d > 4, (P?, C) is of log-general type and we have the estimate

(d — 3)f1,, > min (1, L)
m
Proof. We consider the natural ramified coveriigc P® over P? associated to
C (if Cis given by P (o, z1, z2) = 0, thenX is defined by% = P(zo, z1, z2)), let L be
the hyperplane section iX over . Then we have an injectivephism (by taking
pullbacks)

HO(P?, §" Qp2(log C)(k)) — HO(X, S"Qx(log L)(k)),

the last group is contained iIH°(X, S"Qyx(m + k)) which vanishes fork <
min(m — 1, d — 3) by Lemma 5.1 in [10].
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Now we haveKp. = Op2(d — 3), consequently, there are no nonzero sections in
HO(P2, S" T3 @ O(tKy2)) unlesst § — 3) > min(m, d — 2), whence the lower bound
for 01,. O

Using the above vanishing lemma we obtain a lower bound on2tjet log-
threshold

Lemma 1.4.2. Let C is a curve of degred > 4 in P2. Suppose that thé@-jet
base locusB;, associated with(X, D) = (P?,C) is of the formZ, = Zg U Iy,
where Zp an irreducible component and, is the set of zeros of a section €
HO(X3, O%,(mo) ® O(to Kx)). Then formo > 6 we have the estimate

0r =0, ,,, > Max _—1'min _t 1 d-2 1
27 Vamo = mo’ 2d—3) 6 2mo(po—1)d—-3) 6)°

where pg = [mo/3].

Proof. Observe that can be considered as a global holomorphic section of the
bundle E,,.,Tx ® O(oK x). By the filtration of E,,, Ty, we have a short exact se-
guence

0— Sng;( - EZ,mOT;( - EZ,mO—BT;( ® O(?X) — 0.

Multiply all terms by O(1K x) and consider the associated sequence in cohomology.
As 1o < 0 and by Lemma 1.4.1, the firgf® group vanishes and we get an injection

H(X, EzmoTx @ O(t0K x)) = H°(X, Ezmg-3Tx ® O((to + 1)K x)).

By assumption omB, we must haveg +1 > 0, this gives the firt part of the estimate.
Let now mg = 3pog + g0, 0 < go < 2 a positive integer. Then there is a (nonlinear)
discriminant mapping

A EzneTy @ O(10K x) — SPo DO 20T @ O((po + 2i0)(po — 1)K x).
In fact, write an element oEz,mT;( in the form

P(f) = Z aj - f/30=Dayi

0<j<p

where thea; is viewed as an element $%~)%T} @ K, and W € K. The dis-
criminant A (P ) is then calculated by interpretiy  as a polyiarin the indetermi-
nate W .
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Applying this to o, we obtain 2py — 1)t + po(po — 1) > (po — 1)(3po + 290) x
01, (po—1)(3po+240) @NM this implies

. 3pot2p, _Po
m = 2mo 1, (po—1)(3po+240) 2mo”
Using Lemma 1.4.1 again we obtain the remainer part of thienate. U

We now turn to the question of the existence of 2-jet diffeds of small degree.
Recall from the filtration of the bundle of 2-jet differeriiathat we have an exact se-
guence

0— SmT;( — EZ,mT;( i} EZ,m—BT;( ®?X — 0.
We have the following “proportionality” lemma.

Lemma 1.4.3. Let (X, D) be a nonsingular surface of log-general type. Then
for all sections

P € HY(X, E»,,, Ty ® Ox(t: Kx))

with m; =3, 4, 5and ¢, € Q, the sectiongy P, — 3, P; associated with3; = ®(P;) can
be considered as a section in

HO(X, §""2=3T 1 @ Ox((1 +11 + 12) K x)),
and it vanishes whefl + 1 + t, < (m1 +ma — 3)01 my+m,—3-

Proof. The section3iP, — (,P; is contained in HO(X, EZ,,,1+,,,2_3T; ®
Ox((1 +1 + ) Ky)), its image by® is zero. Then it can be considered as a section
in HO(X, §"*m2=3T @ Ox((1 +11 +12) Kx)). O

Now we have the following application of the proportiomaliemma.

Lemma 1.4.4. Let C be a generic curve of degree> 7. Then

e (3+¢)/2m

o 73 for m=3, 4, 5,

wheree :=d mod 2

Proof. We consider the curve

Ca={ze'(cp * +azy'sf) +2 +25 =0},
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whereko, k1, ko, > 0 are integers withy " k; = d anda a complex number such that
C, is non singular. We put

— kord—k k1 k — c
S0 — ZOO(ZO 0+ alezzz), Si = Z’(-l, L = 1, 2.

Using Nadel's method [27], we solve the linear system

~. 0 0?
S Thgr=gs-.  0<iji<2
0<k<2 Zk 2i0Zj

and get in this way a homogeneous meromorphic connectioregrfieé—1 on C3. One
can check that this connection descends to a partial pnaesteromorphic connection
V = (T'},) onP? such thatC, is totally geodesic (see [14] and [9]), the polésdivof
the connectionV is given by

B = {z0z122(d 25" + akozit 252) = 0}.

Then, this connection can be seen as a meromorphic conmewti@ .. In fact, if we
take two tangent vector fields and @, , the vector fi®lgh is also tangent to
C, by construction.

Consequently, by taking the Wronskian operator

We(f)= "N 13, "=V f,
we get a section
Py € HE; 3Th, @ O(—Kp2) @ O(B) = HE5 5Tp: @ O(11K p2),

wherer; = (3+k1 +k2)/(d —3)— 1. Remark thatp =343 +k, can be taken equal to
any integer in [3d +3].
We takep =[¢ +1)2] (the biggest integer less or equal @ ( #2), so that
1 3+
E+11: Z(T—ES) where e=d mod 2 &€ {0,1}.
The integerp must be at least equal to 3, thus our choice isifednif d > 7. We
claim thatP? has no non trivial section in

HOP?, E T3 @ O(tK p2)), m=my=3, 45

if 1/2+1t < (m—3/2—¢/2)/(d—3). We assume the contrary, so th& <
HO(P2, E5,, T3 ® O(tKp2)), P, #0. Then, form; = 3, my =m andr, = ¢, our choices
imply

m _
L+ +p < o < (ma+mz — 3)01mm; 3,
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asfy, >1/(d—3), forallm =3, 4, 5 andl > 7 (by 1.4.1). By Lemma 1.4.3, we get
a meromorphic connection with logarithmic pole dn assedatith a Wronskian
operator P,/ 32 = P1/1. As P1/f1 is an irreducible fraction with dig; = B, we con-
clude thatB,/31 € HO(P2, S" 3T, ® O((t2 — 1)K p2)) must be holomorphic, hence

>t +(m— 3> "t .
>t +( 31m—3>t 13

On the other hand

, _t<_}+m—3/2—5/2_t +m—3—5
2- 2 d—3 YTTa "3

which yieldes a contradiction. By the Zariski semicontigudf cohomology, the group
HO(P?, E3,,Tp. @ O(K p2))
vanishes for a generic curni@  of degrée> 7, unless

1,1-@+)/2m

> _
- 2m d—3

t
m
this yields the estimate. O

As a corollary we obtain the main result of this first part.

Theorem 1.4.5. Every non algebraically degenerate holomorphic entire rnirap
the complement of a generic curve of degiez 15 in P? is a leaf of a multi-foliation
on P2,

Proof. LetC be a genenic curve of degrde> 15 in P2. If B, is not as in
Lemma 1.4.2, then we are done (we have two independent isgGtiso suppose that
B, = Z UT, (with the notations of Lemma 1.4.2). iy = 3, 4, 5, 6, 7 (we have
clearly mp > 3) we apply 1.4.4 and 1.4.2 to get the estimate on the 2-jeskiuid

— (3—¢) 1

> 7
b2 2 6(d—3) 6

wheree =d mod 2. According to this estimate,
(13 + 1D,)¢2 — 96, > (d — 3)(2d — 27 — 2¢) — 27

this is positive whend > 15 and we can apply Lemma 1.3.2 to obtain the statement.
Whenmg > 8 we apply the estimate in Lemma 1.4.2, we obtén> -1/8. It

is easy to verify that (13- 3/2)cs — 9¢, = (d — 3)(2 & — 34, 5)— 27 is positive for

d > 15 and we can again apply Lemma 1.3.2. ]
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2. Entire leaves of foliations on log-general type surfaces

In this part we will generalize the main result in [24], we Widllow basically the
strategy in [6] with a little improvement due to the “convemée” of the logarithmic
formalism.

2.1. Singularities of foliations on surfaces. Let X be a compact complex sur-
face. Recall from [18] that we have a bijective correspordebetween a holomorphic
foliation F on the surfaceX with isolated singularities and a locallye fseibsheaf of
the tangent sheaf af  denotd. In this case we have an exact sequence of sheaves

O—>T]:—>Tx—>N]:.Iz—>O,

where Nz is called the normal bundle of the foliation ard an ideal sufgud on
the singularity setZ ofF.

The elements ofZ are the points where local vector fields defidt vanish.
Suppose thatF is given around a singular point by a vector fiald , then we note
by A1 and X\, the eigenvalues of the linear part of and we make the follgwin

DeriniTion 2.1.1.  The singularityp is called reduced if the linear pdw)(p) is
nonzero (say\, # 0) and the quotienf = A1/, is not a positive rational number.

A reduced singularity ap is called nondegeneratesif, # 0 and a saddle-node
otherwise. The importance of those singularities comesn filwe following well-known
theorem

Theorem 2.1.2([31]). There exist a sequence of blow-upsf( — X such that
the foliation o*F has only reduced singularities.

Now let D be a normal crossing divisor o, we say that the fiolatF defines
a logarithmic foliation on X, D ) ifF is tangent to each component Bf . The sheaf
injection from Tr <— Tx factors to a sheaf injection

0— Tr — Tx(— |Og D) — N]:(—D).Iz/ — 0,

where Z’ is the set of logarithmic singularities of which is obviously contained in
Z. The bundleNx(—D) will be called the logarithmic normal bundle ¢f, and de-
noted byN £.

To a logarithmic foliation , D) we associate a (singular) surfa&ein the 1-jet
logarithmic spaceX;, called the logarithmic graph ofA, D), which consists of the
adherence of the liftings of all leaves or equivalently thewbup of X along the ideal
Iz/.

When F has only reduced singularities, andf is a nondegeneragulkirity in
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7', then the surfac& is smooth aroung and isomorphic around’(p) to the blow
up of X atp. In the casep is a saddle node of multiplicity (i.ee fhst terms of
v in local coordinates are 8(9z) + w?(9/dw)), then X has a singular point of type
Ay_1 (i.e., it is given in local coordinates by = ).

We finish this section by the following useful natural forul

OY1|}~( =71(TF) ® O(Z dpEp>,

peEZ’

whered, is the multiplicity ofp andt, the fibre=1(p).

2.2. The log-tautological inequality and consequences.Recall from [24] that
to a holomorphic curvef € — X, whereX is supposed to be endowed with a Kahler
form w, we can associate a closed positive current in the followiray: for every
2-formn andr > 0 we define

"dt
T.(n) = / — £,
o ! Jpw

where D ¢ ) is the disc of radius . Then we consider the positiveents®, defined
by

®,(n) = % Vn € A%(X).

The family {®,},~o is bounded and we can see easily that there is a closed posi-
tive current® in its adherence. Wheh C)(is not contained in a hypersurfageé , we
prove, using the Lelong-Poincaré formula, thlat  has pa@sitntersection withY . As
a consequence, for such gh , the currént is actually nuriigrieffective.

Remark that this construction is independent from the dsimenof X . Hence, we
can associate a positive curredt, on X; to fi, the lifting of f. Now if we sup-
pose thatf~(D) is finite, we have the following logarithmic tautologicaequality
(see [34] and [26])

Oyl(—l).q)l >0,

As a consequence of this inequality we hangb; = ®. From now on we will suppose
that there is a logarithmic foliatiodF on (X, D) with reduced singularities such that
D is the union of its algebraic leaves afd  is a Zariski densieeel#taf (in this case
f~YD) is finite). Let v(®, p) = [®1].[d,E,], Where d, andE, are defined in the
previous section. We apply the logarithmic tautologicadguality to f1 which gives

™(Tr) ® O(Z d,,E,,).d>1 >0.

peZ’
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As 7,®1 = @, then we obtain

Tr.® > — > v(®, p).
pEeZ’

This last inequality is exactly the refined tautologicaldnality in [24] because
the intersection of algebraic leaves are not countedZin in fact those points are
smooth from the logarithmic point of view. So we have the daiing

Observation 2.2.1. The logarithmic tautological inequality applied to the pie
(X, F, D) implies the refined tautological inequality.

Now we iterate this constructionX( D ) will be replaced by, (D), where D is
the union of all algebraic leaves of the induced foliation Bn(we replaceX by its
desingularization if necessary). The last step is almostgAme as in [24] and [6].
Let (X, F™) be the foliated surface obtained after iterations of thiscpss and
let 7 denotes the canonical morphism frokf” to X© = X. As the singularities
are reduced, we have

FO = () (F).

Suppose (for simplicity) that we start from’ = {p}, only one point, of multiplicity
d,. Then, by construction, there are exactly two poigfsand g5 on F® that can
possibly be logarithmic singularities, one necessarilyrofitiplicity J, while the other
of multiplicity 1. So the log-tautological inequality gise

Tr.® = Trw. @ > (@™, g{) — y(0®, ¢{).

Now we prove thatu(d®, ") tends to zero as tends to infinity, in fact, by
comparing®®™ and @, we obtain the inequality

n—1
0< [P <92~ Y w(@W), ¢
j=0,i=12

Consequently, we obtain
Theorem 2.2.2([24]). LetF a holomorphic foliation(with reduced singularitigs

on a compact surfac& and the current associated to a Zariskise entire leaf.
Then we have the intersection inequality.® > 0.

2.3. Positivity of the log-normal bundle on leaves. Recall first the following
result from [6].
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Theorem 2.3.1([6]). Let F be a holomorphic foliationwith reduced singulari-
ties) on a compact surfac&k and# be an diffuse currérd., with zero Lelong num-
bers exept at a finite set of poihtsSuppose that isF-invariant. Then we have the
intersection inequality

Nx(—D).® > 0, for all invariant divisor D.

The proof of the previous theorem consists of an explicitstaetion of a closed
2-form which represents the Chern classMf(— D). The intersection is computed by
integrating this form along the support @  which is a unionledves. This inte-
gration is concentrated around singularities for whiclucitire and holonomy are well
understood.

Now using this, the generalization of the positivity of thermal bundle on the
current associated with a Zariski dense leaf to the log-tasmmediate from the fol-
lowing

Corollary 2.3.2. Let (F, D) be a holomorphic log-foliation with reduced singu-
larities and @ anF-invariant current such that the support dfyg is contained inD .
Then we have the following intersection inequality for tbgdrithmic normal bundle

Nz.® >0.

Proof. By Theorem 2.3.1, it remains to prove thdt-.®ag > 0. We use the
same observation as in [6]: L&t be a componentbgf, then

N#(-D).C=C.C+Z(C,F)—D.C,

where Z C, F) is the total multiplicity of the singularities ofF along C (cf. [5]
lemme 3). This number is at least equal to the intersection-(C).C, so we obtain
Nz(—D).C > 0. This is true for every component in the supportd®fg, which con-
cludes the proof. O

As a consequence we have the following

Theorem 2.3.3. Let (X, D) be a surface of log-general type with a logarithmic
foliation (F, D), then an entire leaf ofF must be algebraically degenerate.

Proof. By the Seidenberg theorem we can supposefhbais only reduced sin-
gularities. Suppose thaf has a Zariski dense entire leaf. Then, by Theorem 2.2.2 and
Corollary 2.3.2, asky* = Tr ® Nz, we obtain

Kx ® O(D").® <0,
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where D’ is the union ofD and the support @,y Remark that this implies that the
same inequality remains true on the original surface bditoeing up the singularities
(this is will be used in Theorem 2.4.2 below). A8y ® O(D) — Kx ® O(D’), the
latter bundle is big and, hence, has the decomposifiéa+E), whereA is ample and
E is effective. But® is numerically effective, so we obtain aovious contradiction.
U

2.4. Entire leaves on a surface of log general type.In this section we will
generalize the main theorem in [24]. We now need to considiatibns that are not
necessarily logarithmic.

Lemma 2.4.1. Let F be a foliation on a surfac&X with a non-invariant curve
C. Suppose that there is a Zariski-dense entire IgafC — X \ (C \ P), where P is
a finite set of points. Then there exists a sequence of blowsupé — X of points
of f(C) such that if we denote b§ the strict transform ofC andf the lifting to X
of f, the support of an associated currefit to f is disjoint from C . In particular
o.C =0.

Proof. By the Seidenberg theorem, using a sequence of blavXup> X, we
can reduce the singularities ¢f in an open neighbourhood of Cf and suppose that
the leaves of the induced foliatio are smooth in a neighbourhood ¢f the lifting
of f. This is done by blowing up points of C}j which are a singular points of the
foliation. We can also suppose that these leaves are traesve C by blowing up
the tangency points and th&t does not inersect by blowing the intersection points.
Let £ be the leaf containing the image ¢f then asf is Zariski-dense intersects
C on at most one pointq is parametrized byC or C*). Blowing up this point if it
exists, we can suppose thatdoes not intersect’. We will prove that the topological
closure of£, which we denote by , does not inters&ct Remark thatk is a union
of leaves. Letp a point o U K, so there is a leall, in K passing byp . Nowl
accumulates o, and this leaf is trasverse 6. As consequence in a neighbourhood
of p, the number of intersection points df with C is infinite, a contradiction. Finally,
the support of® is contained in this closure so does not interséct ]

As a consequence of Theorem 2.3.3 and the previous lemma vain ahe fol-
lowing generalization of the main theorem of [24].

Theorem 2.4.2. Let X be a surface with a foliatiotF and a divisorD such that
(X, D) is of log-general type. Then every entire curfe C — X \ (D \ P) contained
in a leaf of 7, where P is a finite set of points not contained in the singulauk of
D, is algebraically degenerate.
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Proof. Suppose that we have a Zariski-dense entire curviiced in a leaf of
F. Let D’ C D be the union of noninvariant componentsf . By Lemma 2.hére
exists a sequence of blow-ups such that, if we derotthe surface obtained, b§p
(resp. D’) the strict transform ofp (resp. oP’) and by ® an associated current to
the lifting of f to X, we haved.D’ = 0.

Let D, be the union of all algebraic leaves &f (the foliation obtained onX),
then we have

(K3 + D'+ D,).® = (Kg + D,).®.

As F induces a logarithmic foliation onf((, b,,), using the proof of Theorem 2.3.3 we
obtain (K3 + D,).® < 0, which is equivalent to

(K3 + D'+ D,).® <0.

As & is nef we get a contradiction if we prove that the divigog +D’+D, is big. To
see this, remark that it contains the diviskix + D which is big because we blown up
just smooth points oD . In fact if we denote hythe composition of those blowing-
ups we haveky + D = 7*(Kyx + D). O

Actually, we think that the condition o#® in the previous th&m could be omit-
ted by using a more sophisticated argument. As a consequrtbés theorem we ob-
tain the following

Corollary 2.4.3. Let (X, D) be a log-surface of log-general type such that its
logarithmic Chern classes verifg > ¢,. Then every entire curvef: C —
X\ (D\ P), where P is a finite set of points not contained in the singutauk of
D and such thatf ~1(P) is finite, is algebraically degenerate.

Proof. We apply Riemann-Roch to symmetric powers'gf, the Euler character-
istic is positive with our condition on Chern classes. UsBeyre duality and effective-
ness ofKx 4D , the:? term is bounded by th&® term (as in [23]). As a consequence
we get thatOx(1) is big, and we apply the tautological inequality to getomtcadic-
tion if the lifting of f to X, is not contained inB; (in the caseP is empty we can
alternatively apply Theorem 1.1.3). Then we get a foliatibron a (singular) surface
X in X; which is ramified overx (the foliation is defined by the intetsen of V;
and the tangent space of the irreducible comporemtf B; which contains the lifting
of f to 1-jets). LetD be the divisor onX over D, then K, D) is of log-general type
and f can be lifted inX \ D as a leaf of the foliationF. O
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3. Proof of the Main Theorem

By the results of Theorem 1.4.5, & is a generic plane curveegfreed > 15,
then there is a ramified covef c X, over X =P2 with a foliation F such that every
entire curvef |nIP2\C is such thatf[g (C) is contained inX as a leaf ofF. Morover,
fiz7(C) is contained inX \ C whereC is the (reduced) divisor irX over C .

A log model of (X C) is clealy of log-general type. In fact, recall that given
two log-manifolds &, Dx ) and X, Dy ,) a holomorphic map: X — Y such that
1Dy C Dx (in the geometric sense) is called a log-morphism. Such aphigm
induces (see [20]) a sheaf morphism

W Ty — Ty

If ¢ is dominating, then this morphism is clearly injective. Shwe have a natural
injection of sheaves’*Ky — K.

Now, by Theorem 2.4.2 every entire curye X\ C has algebraically degenerate
lifting in X \ C and hence itself has its image contained in an algebraiceptamve.
Now every algebraic curve i?? intersects a very generic curve of degeee> 5 in at
least 3 point (see [32]). S¢§ is constant &g\ C is hyperbolic and hyperbolically
embedded P2 (see [16]).
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