Hattori, A. and Masuda, M.
Osaka J. Math.
40 (2003), 1-68

THEORY OF MULTI-FANS
Akio HATTORI and Mkiya MASUDA
(Received May 1, 2001)

1. Introduction

The purpose of the present paper is to develop a theory ofi-fank which is
an outgrowth of our study initiated in the work [27] on the adggy of torus mani-
folds (the precise definition will be given later). A mulasf is a combinatorial object
generalizing the notion of a fan in algebraic geometry. Guwaoty is combinatorial by
nature but it is built so as to keep a close connection withttip@logy of torus man-
ifolds.

It is known that there is a one-to-one correspondence betwadc varieties and
fans. A toric variety is a normal complex algebraic varietlyy dmensionn with a
(C*)"-action having a dense orbit. The dense orbit is unique aachdrphic to C*)",
and other orbits have smaller dimensions. The fan assdciaith the toric variety is
a collection of cones iR" with apex at the origin. To each orbit there corresponds a
cone of dimension equal to the codimension of the orbit. Timesorigin is the cone
corresponding to the dense orbit, one-dimensional congesmond to maximal singu-
lar orbits and so on. The important point is the fact that thigimal toric variety can
be reconstructed from the associated fan, and algebro-afeionproperties of the toric
variety can be described in terms of combinatorial data efaksociated fan.

If one restricts the action of(Q*)" to the usual torug =%)", one can still find
the fan, because the orbit types of the action of the totalgr@*)" can be detected
by the isotropy types of the action of the subgrofip . Take elecisubgroupS of
T which appears as an isotropy subgroup of the action. Theh eagnected compo-
nent of the closure of the set of those points whose isotrgfpg®up equalsS is a
T-invariant submanifold of real codimension 2, and contananique C*)" orbit of
complex codimension 1. We shall call such a submanifold aagteristic submani-
fold. If M4, ..., M, are characteristic submanifolds such tdt N --- N M; is non-
empty, then the submanifolgif; N --- N M, contains a unique(*)"-orbit of complex
codimensionk . This suggests the following definition of ®manifolds and associ-
ated multi-fans.

Let M be an oriented closed manifold of dimensiom 2 with ancaffe action
of ann dimensional torug with non-empty fixed point 8&f . A ebhsconnected,
codimension two submanifold o#  will be called charactéeist it is a connected
component of the fixed point set of a certain circle subgréupf Toand if it con-
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tains at least ond’ -fixed point. The manifald together withrefgred orientation
of each characteristic submanifold will be called a torusificdd. The multi-fan asso-
ciated with the torus manifoldZ involves cones in the Lie blgeL (I") of T, with
apex at the origin. IfM; is a characteristic submanifold &hd this circle subgroup
of T which pointwise fixesM; , thers; together with the orientatioh M; deter-
mines an elemeni; of Hordit, 7"), and hence a one dimensional cone in the vector
space Hom§}, 7) ® R canonically identified with. T ). IfM,,, ..., M, are character-
istic submanifolds such that their intersection contaih$¢east oneT -fixed point, and
if v;,,...,v;, are the corresponding elements in HSM(T), then thek -dimensional
cone spanned by;,,...,v;, lies in the multi-fan associated wit/ . It should be
noted that the intersection of characteristic submanifetday not be connected in con-
trast with the case of toric manifolds where the interseci® always connected. For
example, the intersection of a family af characteristic mabifolds is a finite set
consisting of 7 -fixed points. These data are also incorpdratethe definition of the
associated multi-fan in Section 2.

One of the differences between a fan and a multi-fan is thhtlewcones in a fan
intersect only at their faces and their union covers the esga@ ) just once without
overlap for complete toric varieties, it happens that th@mrof cones in a multi-fan
coversL (") with overlap for torus manifolds. Also the same tirfah corresponds to
different torus manifolds. Nevertheless it turns out thmpartant topological invariants
of a torus manifold can be described in terms of the assatismglti-fan. In fact it is
furthermore possible to develop an abstract theory of Afiaifts and to define various
“topological” invariants of a multi-fan in such a way thathen the multi-fan is asso-
ciated with a torus manifold, they coincide with the ordin@opological invariants of
the manifold. For example, the “multiplicity of overlap”,hich we call the degree of
the multi-fan, equals the Todd genus for a unitary torus foshi(unitary toric mani-
fold in the terminology in [27]; the precise definition willebgiven in Section 9).

Another feature of the theory of toric varieties is the cep@ndence between am-
ple line bundles over a complete toric variety and conveytppes. From a topolog-
ical point of view this can be explained in the following wdyet (M, w) be a com-
pact symplectic manifold with a Hamiltoniafi -action, and Ye: M — L(T)* be an
associated moment map. Then it is well-known ([1], [16])ttHee imageP of¥ is
a convex polytope. Moreover, if the de Rham cohomology clafss is an integral
class, then the polytop® is a lattice polytope up to traiwslatin L (7' J* identified
with R”. Delzant [9] showed that the original symplectic manifoled,() is equiv-
ariantly symplectomorphic to a complete non-singularctoarariety and the formw is
transformed into the first Chern form of an ample line bundle verathe toric vari-
ety. It is known that the number of lattice points i is equalthe Riemann-Roch
number

/ eCl(L)T( M)
M
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where7 is the Todd class oM , see e.g. [11]. This sort of phenomenaos gemer-
alized to “presymplectic” toric manifolds by Karshon andifian [22], then to Spih
toric manifolds by Grossbherg and Karshon [12] and also tdampitoric manifolds by
the second-named author [27] in the form which relates thévagant index of the
line bundleL regarded as an elementiof M () to the Duistermaakidan measure
of the moment map associated with . In these extended case®im w may be
degenerate or the line bundle may not be ample, and conggqulee image of the
moment map may not be convex any longer. This leads us to demsiore general
figures which we call multi-polytopes. A multi-polytope ispamir of a multi-fan and
an arrangement of affine hyperplanes inT . A similar notion was introduced by
Karshon and Tolman [22] and also by Khovanskii and Pukhligghj for ordinary fans
under the name twisted polytope and virtual polytope respeyg. We shall develop a
combinatorial theory of multi-polytopes as well; we defiree tDuistermaat-Heckman
measure and the equivariant index in a purely combinatéaigiion for multi-fans and
multi-polytopes, and generalize the above results in thebtoatorial context. Also we
shall introduce a combinatorial counterpart of a moment mvajch can be used to in-
terpret the combinatorial Duistermaat-Heckman measure.

In carrying out the above program, the use of equivariantdiogy and cohomol-
ogy plays an important role. First note that the group H®m{) can be canonically
identified with the equivariant integral homology groéf(BT), and hence the vector
spacelL T ) withHy(BT, R). In this way we regard vectorg in a multi-fan as lying
in Hp(BT, R). On the other hand a characteristic submaniftdd with a fieednta-
tion determines a cohomology clagsin HZ(M), the equivariant Poincaré dual of;
These cohomology classes are fundamental for describiaditst Chern class of an
equivariant line bundle oved . This fact enables us to aas®@ multi-polytope and
a generalization of the Duistermaat-Heckman measure witkcaivariant line bundle.
To aT -line bundleL whose equivariant first Chern class hasdhe £ (L) =" ¢;&;,
we associate an arrangement of affine hyperplanes H3(BT;R) = L(T)* defined

by
F,={u € H¥BT;R) | (u,vi) =¢;}.

This arrangement defines the multi-polytope associatel thi¢ line bundleL . More-
over it is possible to define the equivariant cohomology obmglete simplicial multi-
fan and extend the results to such abstract multi-fans ant-palytopes.

If vy,...,v;, are primitive vectors generating an -dimensional cone @érthulti-
fan associated with a torus manifold, then they form a basidam(S?, 7). However,
in the definition of abstract multi-fans, this condition istrpostulated. From this point
of view, it is natural to deal with torus orbifolds besidesu® manifolds. This can be
achieved without much change technically. More importaetlery complete simplicial
multi-fan (the precise definition will be given later) can temalized as a multi-fan as-
sociated with a torus orbifold in dimensions greater tharin2dimensions 1 and 2,
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realizable multi-fans are characterized.

Concerning the realization problem we are not sure at thimem whether every
non-singular complete simplicial multi-fan is realized tag multi-fan associated with
a torus manifold. In any case it should be noticed that a nfiaftimay correspond to
more than one torus manifolds unlike the case of toric vieset

We now explain the contents of each section. In Section 2 we gi definition
of a multi-fan and introduce certain related notions. Thenpleteness of multi-fans
is most important. It is a generalization of the notion of pbateness of fans. But the
definition takes a somewhat sophisticated form. Sectiondi®ted to thel, -genus of
a complete multi-fan. It is defined in such a way that, whenrthati-fan is associated
with a unitary torus manifoldy , it coincides with tHg, -genusM. In Lemma 3.1
we exhibit an equality which is an analogue of the relatiobween’ -vectors ang® -
vectors in combinatorics (see e.g. [32]), and which, we hgbeds more insight on
that relation.

In Sections 4 and 5 the notion of a multi-polytope and the @agsed Duistermaat-
Heckman function are defined. As explained above, a muliitppe is a pairP =
(A, F) of an n-dimensional complete multi-fan  and an arrangemértyperplanes
F = {F} in H*BT;R) with the same index set as the set of 1-dimensional cones
in A. It is called simple if the multi-fanA is simplicial. The Bermaat-Heckman
function DHp associated with a simple multi-polytog@ is a locally constant integer-
valued function with bounded support defined on the comptenoé the hyperplanes
{F;}. The wall crossing formula (Lemma 5.3) which describes tifeer@nce of the
values of the function on adjacent components is importantéter use. In Section 6
another locally constant function on the complement of tigpenplanes{F;} in a
multi-polytope P, called the winding number, is introduced. It satisfies al wadssing
formula entirely similar to the Duistermaat-Heckman fumct When the multi-fanA
is associated with a torus manifold or a torus orbifafd  anthédre is an equivariant
complex line bundleL. oveM , then there is a simple multi-pmhg ? naturally as-
sociated withL , and the winding number WNs closely related to the moment map
of L. In fact it can be regarded as the density function of thest@umaat-Heckman
measure associated with the moment map. Theorem 6.6, the thedrem in Section
6, states that the Duistermaat-Heckman function and thelimgnnumber coincide for
any simple multi-polytope.

Section 7 is devoted to a generalization of the Ehrhart motyial to multi-
polytopes. If P is a convex lattice polytope anduif denotes the multiplied polytope
by a positive integer, then the number of lattice point§v P) contained invP is
developed as a polynomial im . It is called the Ehrhart polynomial o . The gener-
alization to multi-polytopes is straightforward and prdjes similar to that of the or-
dinary Ehrhart polynomial hold (Theorem 7.2).7 is a simple lattice multi-polytope,
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then the associated Ehrhart polynomi@lP) is defined by

{wP)= ) DH,p.(),

u€H?(BT;Z)

where P, denotes a multi-polytope obtained fro® by a small enlargement.
Lemma 7.3 is crucial for the proof of Theorem 7.2 and for theerlalevelopment of
the theory. Its corollary, Corollary 7.4, gives a localipat formula for the Laurent
polynomial 3 . 257z DHp. (u)t" regarded as a character 6f . It can be considered
as a combinatorial generalization of Theorem 11.1. It reduof” when evaluated at
the identity. Using this fact, in Section 8, a cohomologit@mula expressing®? in
terms of the “Todd class” of the multi-fan and the first “Cheriass” of the multi-
polytope is given in Theorem 8.5. The formula can be thought® a generaliza-
tion of the formula expressing the number of lattice poimtsai convex lattice poly-
tope by the Riemann-Roch number of the corresponding anmeeblundle. The argu-
ment is completely combinatorial. We define the equivarestiomology H;(A) of a
multi-fan A which is a module oveH*(BT), the index map (Gysin homomorphism)
m: Hi(A) — H*~2'(BT), the cohomologyH*(A) of A and finally the evaluation on
the “fundamental class”. As a corollary a generalizationKbbvanskii-Pukhlikov for-
mula ([25]) for simple lattice multi-polytopes is given irh&orem 8.7.

In Section 9 it is shown how to associate a multi-fan with ausomanifold. It is
also shown that the associated multi-fan is complete. TimeSgction 10, thel}, -genus
of a general torus manifold is defined and is proved to comaidth the T, -genus of
the associated multi-fan in Theorem 10.1. As a corollary ranfda for the signature
of a torus manifold is given. In the same spirit the definitiminthe equivariant index
of a line bundle over a general torus manifold is given in Bacill using a localiza-
tion formula which holds in the case of unitary torus mamifol The main theorem of
this section, Theorem 11.1, gives a formula describing ¢uativariant index using the
winding number. It generalizes the results of [22], [12] d@d] as indicated before.
Results of Section 5 and 6 are crucially used here.

In Section 12 necessary changes to deal with torus orbifatdsexplained briefly.
One of the remarkable points is that the torus action and thé&otd structure are
closely related to each other for a torus orbifold as is érplh in Lemma 12.3. In
the last section the realization problem is dealt with. Megsults of the section are
Theorems 13.1, 13.2 and 13.3.

2. Multi-fans

In [27], we introduced the notion of a unitary toric manifpldshich contains a
compact non-singular toric variety as an example, and &socwith it a combina-
torial object called a multi-fan, which is a more generalimtthan a complete non-
singular fan. In this section, we define a multi-fan in a camaborial way and in full
generality. The reader will find that our notion of a multifés a complete general-
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ization of a fan. We also define the completeness and nonmdsirity of a multi-fan,
which generalize the corresponding notion of a fan. To ds, thie begin with review-
ing the definition of a fan.

Let N be a lattice of rank , which is isomorphic . We denote the real vector
spaceN ®R by Nr. A subsets of Ny is called astrongly convex rational polyhedral
cone (with apex at the origin) if there exits a finite number of \@stvs, ..., v, in
N such that

o={rvi+t---+ryv, | €Randr, >0 for all i}

andoN(—o) = {0}. Here “rational” means that it is generated by vectors inl#itce

N, and “strong” convexity means that it contains no line tigtouhe origin. We will
often call a strongly convex rational polyhedral coneNfn simply aconein N. The
dimension dinv of a coneo is the dimension of the linear space spanned by vectors
in o. A subsetr of ¢ is called aface of ¢ if there is a linear function Ng — R
such that/ takes nonnegative valuesomndr =/~1(0)No. A cone is regarded as a
face of itself, while others are callgutoper faces.

Derinimion. A fan A in N is a set of a finite number of strongly convex rational
polyhedral cones inVg such that
(1) Each face of a cone i is also a conedn ;
(2) The intersection of two cones in is a face of each.

DeriniTion. A fan A is said to becompleteif the union of cones inA covers
the entire spacéVg.

A cone is calledsimplicial if it is generated by linearly independent vectors. If
the generating vectors can be taken as a part of a basi of n tlieecone is called
non-singular

DeriniTion. A fan A is said to besimplicial (resp.non-singulaj if every cone in
A is simplicial (resp. non-singular).

The basic theory of toric varieties tells us that a fan is cletep(resp. simplicial
or non-singular) if and only if the corresponding toric edyi is compact (resp. an orb-
ifold or non-singular).

For eacht € A, we defineN™ to be the quotient lattice oN by the sublattice
generated (as a group) by N; so the rank ofN™ is n—dim7. We consider cones in
A that containr as a face, and project them oN7)g. These projected cones form a
fan in N7, which we denote byA, and call theprojected fanwith respect tor. The
dimensions of the projected cones decrease byrdifthe completeness, simpliciality
and non-singularity ofA are inherited 4, for any 7.
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We now generalize these notions of a fan. Let be as before.otBehy
Cone(V ) the set of all cones iV . An ordinary fan is a subset afig(®@). The set
Cone(V ) has a (strict) partial ordering defined by:7 < o if and only if 7 is a
proper face ofs. The cone{0} consisting of the origin is the unique minimum el-
ement in Cone{ ). On the other hand, Bt be a partially orddirgte set with a
unigue minimum element. We denote the (strict) partial ordeby < and the mini-
mum element by. An example ofX used later is an abstract simplicial set with a
empty set added as a member, which we calbagmented simplicial setn this case
the partial ordering is defined by the inclusion relation éimel empty set is the unique
minimum element which may be considered as—d)tsimplex. Suppose that there is
a map

C: X — Cone(V)

such that

(1) C()={0};

2 f1<Jforl,Jex, thenC ()< C(J);

(3) For anyJ € ¥ the mapC restricted o/ € X | I < J} is an isomorphism of
ordered sets ont§x € Cone(V )| x < C(J)}.

For an integer such thatQ m < n, we set

M :={I € £ |dimC()=m}.

One can easily check that™ does not depend o6 . When is an augmented sim-
plicial set, I € = belongs tox™ if and only if the cardinality|/| of I is m, namely
I is an (n — 1)-simplex. Therefore, even £ is not an augmented simgilliset, we
use the notation/| for m whenl € .

The imageC E ) is a finite set of cones M . We may think of a palr¢ s) a
a set of cones inV  labeled by the ordered Bet . Cones in an oydiaa intersect
only at their faces, but cones i@ ( ) may overlap, even the seome may appear
repeatedly with different labels. The paiE(C ) is almost wha call a multi-fan,
but we incorporate a pair of weight functions on cone<irE ( }haf highest dimen-
sionn =rankV . More precisely, we consider two functions

wi: 2(”) — Zzo.

We assume thatv*(7) > 0 or w—(I) > O for everyl € =™, These two functions
have its origin from geometry. In fact i# is a torus manifolfl dimension 2 and
if M, ..., M; are characteristic submanifolds such that their inteiseatontains at
least oneT -fixed point, then the intersectidfy (s M;, consists of a finite number
of T-fixed points. At each fixed poinp € M; the tangent space, has two orienta-
tions; one is endowed by the orientation &  and the other sofr@m the intersec-
tion of the oriented submanifold®;, . Denoting the ratio of the above two orientations
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by ¢, we define the numbew™(7) to be the number of pointp € M; with ¢, = +1
and similarly forw (7). More detailed explanation will be given in Section 9.

Derinimion.  We call a tripleA = £, C, w®) a multi-fan in N. We define the
dimension of A to be the rank oV  (or the dimension /éf).

Since an ordinary fam\ iV is a subset of CaMe( ), one can view @& anulti-
fan by takingx =A ,C = the inclusion mapy* = 1, andw™ = 0. In a similar way
as in the case of ordinary fans, we say that a multi-fan 35, w?®) is simpli-
cial (resp.non-singulaj if every cone inC & ) is simplicial (resp. non-singular). The
following lemma is easy.

Lemma 2.1. A multi-fan A = (X, C, w?®) is simplicial if and only ifX is iso-
morphic to an augmented simplicial set as partially ordessds.

The definition of completeness of a multi-fan is rather caogted. A naive
definition of the completeness would be that the union of soimeC (X) covers the
entire spaceVg. But it turns out that this is not a right definition if we look enulti-
fans associated with unitary torus manifolds, see SectiohltBough the two weighted
functionsw® are incorporated in the definition of a multi-fan, only théfefience

— + —
w.=—w —w

matters in this paper except Section 13. We shall introdbeefdllowing intermediate
notion of pre-completeness at first. A vectore Ny will be called generic ifu does
not lie on any linear subspace spanned by a con€ B ( ) of dei@sress tham .
For a generic vector we set, ) w(l), where the sum is understood to be
zero if there is no suchl

DerinimioN.  We call a multi-fanA = &, C, wt) of dimensionn pre-completeif
=™ #( and the integet/, is independent of the choice of generic veetoWe call
this integer thedegreeof A and denote it by deg( ).

Remark. For an ordinary fan, pre-completeness is the same as ctanpss.

To define the completeness for a multi-fan , we need to definejeqted multi-
fan with respect to an element @ . We do it as follows. For e&ch X, we set

Tx={JeT|K<J}

It inherits the partial ordering front , anf  is the unique miom element inXx .
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v4

U1

Fig. 1.

A map
Ck: Tx — Cone(v¢®))

sendingJ € Xk to the coneC ( ) projected onVC(K)); satisfies the three properties
above required folC . We define two functions

w2 w0 L7,

to be the restrictions ofv® to Eﬁ’;_”{'). The triple Ax = €k, Cx, wg™) is a multi-
fan in N, and this is the desiregrojected multi-farwith respect tok € . When
A is an ordinary fan, this definition agrees with the previoug.o

DerinTioN. A pre-complete multi-fanA =X, C, w®) is said to becompleteif
the projected multi-fam g is pre-complete for akye X.

Remark. A multi-fan A is complete if and only if the projected multasi A, is
pre-complete for any € -1, The argument is as follows. The pre-completeness
of A; for J € =1 implies thatd, :ZUEC(I) w(l) remains unchanged whan gets
across the codimension one cofie/ ( ), which means the prelemness ofA . Since
K171 is contained inx®~Y for any K € X, the pre-completeness af,  for any
J € 201 also implies the pre-completeness &f  for akiye .

ExavpLE 2.2. Here is an example of a complete non-singular multidadegree
two. Let vy, ..., vs be integral vectors shown in Fig. 1, where the dots denotedat
points.

The vectors are rotating around the origin twice in countetavise. We take

Z={¢, {1}, ... {5}, {1, 2. {2, 3}, {3, 4}, {4, 5}, {5, 1}},
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V2

Vg vy

U3 Us

Fig. 2.
defineC :~ — Cone(V ) by

C({i}) = the cone spanned by ,
C({i,i +1}) = the cone spanned by ang.,

wherei = 1...,5 and 6 is understood to be 1, and také such thatw = 1 on
every two dimensional cone. Thef ¥ (C, w*) is a complete non-singular two-
dimensional multi-fan with deg{ ) = 2.

ExampLE 2.3. Here is an example of a complete multi-fan “with fold4’et
v1, ..., vs be vectors shown in Fig. 2.
We take the sam& and as in Example 2.2 and takesuch that

w({3,4)=-1 and w(i,i+1})=1 fori #3.

ThenA =&, C, w?) is a complete two-dimensional multi-fan with deég( ) = 1.
A similar example can be constructed for a number of vecters.., vy (d > 3)
by defining

w({i,i +1}) =1 if v; and v;4; are rotating in counterclockwise,
w({i,i +1}) =—1 if v; and v;+; are rotating in clockwise,

whered + 1 is understood to be 1. The degree deg( ) is the motatimber of the
vectorsuy, ..., vy around the origin in counterclockwise and may not be one.

ExampLE 2.4. Here is an example of a multi-fan which is pre-complaté rtoot
complete. Letvs, ..., vs be vectors shown in Fig. 3.
We take

Z={¢. {1}, ..., {5}, {1, 2}, {2, 3}, {3, 1}, {4, 5}},
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V2 = Us

V1 = V4

v3

Fig. 3.
defineC :X — Cone(V ) as in Example 2.2, and take* such that
w({1,2)=2 w({2,3)=1 w({3, 1) =1 w({4,5)=-1

Then A = (&, C, w¥) is a two-dimensional multi-fan which is pre-complete (i,
deg(A) = 1) but not complete because the projected multi4qp for i # 3 is not
pre-complete.

So far, we treatedational cones that are generated by vectors in the lathice
But, most of the notions introduced above make sense ever iaow cones gener-
ated by vectors inVg which may not be inN . In fact, the notion of non-singularity
requires the latticev , but others do not. Therefore, one &dimel a multi-fan and its
completeness and simpliciality in this extended categaryall. The reader will find
that the arguments developed in Sections 3 through 6 workifmextended category.

3. Ty-genus of a multi-fan

A unitary torus manifoldM determines a complete non-singutalti-fan. (This
will be discussed and extended to torus manifolds in Sec®i9gnOn the other hand,
the T, -genus (also calleq,-genus) for unitary manifolds introduced by Hirzebruch
in his famous book [20] is defined faW . Its characteristic powgeries is given by
x(1+ye @)K /(1 — e~(@9)X), It is a polynomial in one variable of degree (at most)
(1/2)dimM . The Kosniowski formula about th&, -genus for unitaf+manifolds
(see [18], [23]) and the results in [27] imply that ti® -geraisM should be de-
scribed in terms of the multi-fan associated wih . In thist®a (and in Section 10)
we give the explicit description. In fact, our argument ithest more general. We think
of the T, -genus ofM as a polynomial invariant of the associatedti#an which is
complete and non-singular. It turns out that the polynonmehriant can be defined not
only for the multi-fans associated with unitary torus malug but also for all com-
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plete simplicial multi-fans.

Since the latticeN is unnecessary from now until the end oti@e®, we shall
denote the vector space, in which cones sit,lby  insteatofLet A = (T, C, w¥)
be a complete simplicial multi-fan defined ah . By Lemma 2.1 may assume that
¥ is an augmented simplicial set, say, consisting of subsetsla..,d} and =@ =
{{1}, ..., {d}} whered is the number of elements ¥V, For eachi =1...,d, let
v; denote a nonzero vector in the one-dimensional a@ng }).(Choose a generic vec-
torv e V. LetI € ™. Sincev; ’s { € I) are linearly independenyy  has a unique
expressiony _,, a;v; with real numbersy; ’'s. The coefficients 's are all nonzero be-
causev is generic. We set

w(l) =t{i € I'|a; > 0}.
This depends on although is not recorded in the notatig).

DeriniTion.  For an integely  with X g < n, we define

he(A):= > w(l) and ¢, (A):= Y degg)

wu(l)=q Kex@

Note thath, A ) = degd ) =o(A), ande, (A )'s are independent of . &K is a com-
plete simplicial multi-fan such that dety( ) = 1 and/ () = 1 fol &ale ™ (e.g.
this is the case ifA is a complete simplicial ordinary fangrideghx ) equals 1 for
all K € ¥ and hencee, & ) agrees with the number of cones of dimengion en th
multi-fan.

The following lemma reminds us of the relation between theectors and the
f-vectors for simplicial sets studied in combinatorics (F&#)).

Lemma 3.1. » hy(A)(s +1) =) e, ,(A)s" wheres is an indeterminate.
q=0 m=0

Proof. The lemma is equivalent to the following equality:

@) >Son@)(1) =eulo),

qg=m
It follows from the definition ofs, A ) that

n

(3.2) Lhs. of (3.1) " <;’1) 3 w().

q=m w1)=q

On the other hand, we shall rewritg,_,,(A). It follows from the definition of
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degAk ) that

deg(ak ) = > w (J)

JexUMDg s vgeCk ()

wherevg denotes the projection imagewf on the quotient vespgace ofV by the
subspaceVy spanned by the cafiek ( ). Note that lie€gnJ () if ang ibni
lies in C(J U K) modulo Vg, and thatwg { ) =w LU K) by definition. Therefore,
writing J U K as !, the equality above turns into

deg(tx ) =3 w(1).
1

where/ runs over elements B such thatk ¢ I andv € C(I) modulo Vi . Putting
this in the defining equation of,_,,(A), we have

(3.3) en-m(A) =Y w(l),
K,I

where the sum is taken over elemeikisc £~ and/ € £ such thatk c I/ and
v € C(I) modulo Vg . Fix1 € @ with u(I) = ¢, and observe how many times
appears in the above sum. It is equal to the numbek af £~ such thatk c I
andv € C(I) modulo Vi . But the number of suck  {§). To see this, we note that
u(l) = g means that{i € I | a; > 0} = g by definition, wherev =)_._, a;v;, and
that the condition thabv € C(I/) modulo Vi is equivalent to saying tha  contains
the complement of the sdt € 7 | a; > O} in I. Therefore, any suclk is obtained as
the complement of a subset §f € 7 | a; > 0} with cardinalitym , so that the number
of suchkK is (31) This together with (3.2) and (3.3) proves the equality X3.1 U

Corollary 3.2.
(1) h,(A)s are independent of the choice of the generic veator
(2) hf] (A) = hn—fI(A) for any q-

Proof. (1) This immediately follows from Lemma 3.1 becaugeA)’§ are inde-
pendent ofv .

(2) If we take —v instead ofv , thenu(7) turns inton — u(I), so thath, & ) turns
into i,_,(A). Sinceh, (A )'s are independent of as shown in (1) above, thivgs
hg(A) = hy_q(A). U

When A is associated with a unitary torus manifaid , the -gesfus/ turns
out to be given byzgzo hg(A)(—=y)4. (This will be discussed in Section 10 later.) Mo-
tivated by this observation,
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DeriniTion.  For a complete simplicial multi-falx  , we define

T,[A] = ) hy(A)(—y)

q=0
and call it theT-genusof A. Note thatTo[A] = ho(A) = h,(A) = deg@ ).

Lemma 3.1 can be restated as

Corollary 3.3. Let A be a complete simplicial multi-fan. Then

T,[A]= ) en m(A)(—1—y)".

m=0
4. Multi-polytopes

A convex polytopeP inV* = Hom(V, R) is the convex hull of a finite set of
points in V*. It is the intersection of a finite number of half spacesVih separated
by affine hyperplanes, so there are a finite number of nonzectoksvy, ..., vy in V
and real numbersy, ..., ¢; such that

P={uecV"|{u,v) <c forall i},

where ( , ) denotes the natural pairing betwe&f and v . (Warning: In this paper,
we takev; to be “outward normal” to the corresponding facepPof nt@oy to the
usual convention in algebraic geometry, cf. e.g. [29].) Toavex polytopeP can be
recovered from the daté(v;,c;) | i = 1,...,d}. But, a more general figure lik@
shaded in Fig. 4 cannot be determined by the ddta ¢;) | i = 1,...,d}. We need
to prescribe the vertices a@ , in other words, which pairsinéd/; 's are presumed
to intersect. For instance, if four pointgN iy, I, N3, I3N 4 andly NIy are presumed
to be vertices (and the others suchl/as /4 are not), then we can find the figui@
in Fig. 4. But, if different four pointdy Nia, 14N 1y, I[NNIz andizniy are presumed to
be vertices, then we obtain a figur# shaded in Fig. 4.

The data of whether two lines arig are presumed to intersesfuss/alent to
the data of whether the corresponding vectors  apd span a tortee former
(resp. latter) example above, resulting cones are fourdiw@nsional ones shown in
Fig. 5 (1) (resp. (2)). Needless to sdy, is ‘perpendicularthte half line spanned by
V;.

A polytope gives rise to a multi-fan in this way. One notest thaconvex polytope
gives rise to a complete fan. Taking this observation intocoant, we reverse a gear.
We start with a complete multi-fal =3 C, w*). Let HP(V*) be the set of all
affine hyperplanes irv*.
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Fig. 4.

U3 U3

(1) (2)

Fig. 5.

DerNITioN.  Let A = (2, C, w*) be a complete multi-fan and lef: =@ —
HP(V*) be a map such that the affine hyperplafié/) is ‘perpendicular’ to the half
line C(I) for eachl € £W, i.e., an element irC I( ) takes a constantB(/). We call
a pair (A, F) a multi-polytopeand denote it byP. The dimension of a multi-polytope
P is defined to be the dimension of the multi-fan . We say that #tispalytope P
is simpleif A is simplicial.

Remark. The completeness assumption far  is not needed for the tiefirof
multi-polytopes. We incorporated it because most of ouwnltesdepend on that as-
sumption. Similar notions were introduced by Karshon-Tain{22] and Khovanskii-
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Pukhlikov [25] whenA is an ordinary fan. They use the termiggl twisted polytope
and virtual polytoperespectively. The notion of multi-polytopes is a direct geatiza-
tion of that of twisted polytopes. The relation between uaft polytopes and multi-
polytopes is clarified by [28].

ExampLE 4.1. A convex polytope determines a complete fan togethér am ar-
rangement of affine hyperplanes containing the facets ofptblgtope (as explained
above), so it uniquely determines a multi-polytope.

ExampLE 4.2. Associated with the multi-fan in Example 2.2, one oigathe ar-
rangement of lines drawn in Fig. 6 with a suitable choice &f thapF. The pentagon
shown up in Fig. 6 produces the same arrangement of lines ande viewed as a
multi-polytope as explained in Example 4.1 above, but th®se multi-polytopes are
different because the underlying multi-fans are differemte is a multi-fan of degree
two while the other is an ordinary fan. The reader will find arsthaped figure in the
former multi-polytope.

F({1p)
F({3}h)
F({4
FU2)) \ ({4}
F({5h)

Fig. 6.

5. Duistermaat-Heckman functions

A multi-polytope P = (A, F) defines an arrangement of affine hyperplaned’in
In this section, we associate witR a function onV* minus the affine hyperplanes
when P is simple. This function is locally constant and Guillenhierman-Sternberg
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formula ([14], [15]) tells us that it agrees with the densitynction of a Duistermaat-
Heckman measure wheR arises from a moment map.

Hereafter our multi-polytopeP is assumed to be simple, so that the multi-fan
A = (T, C,w?) is complete and simplicial unless otherwise stated. Asteefwe may
assume that.  consists of subsets{af...,d} and =® = {{1},...,{d}}, and de-
note byv; a nonzero vector in the one-dimensional c6ng& })( To simplify notation,
we denoteF({i}) by F; and set

F ::ﬂF,- for I € .
iel

F; is an affine space of dimension—|I|. In particular, if|I| =n (i.e., I € ™), then
F; is a point, denoted by,

Supposel € ™. Then the set{v; | i € I} forms a basis ofV . Denote its dual
basis of V* by {u! |i € I}, i.e., (u!,v;) =6;; wheres;; denotes the Kronecker delta.
Take a generic vectos € V. Then (u!,v) #0 for all I € ™ andi € I. Set
u! if (u

L

I
(1) = (—1)HlEll >0 gng @”::{ ,-1,v> >0

—ul if (uf,v) <O.

We denote byC*(1)* the cone inV* spanned byu! s (i € I) with apex atu; , and
by ¢; its characteristic function.

Derinimion.  We define a function DH on V*\Uf.l:lF,- by

DHp := ) (—1)'w(l)és

1exm

and call it theDuistermaat-Heckman functioassociated withP.

Remark. Apparently, the function DH is defined on the whole spacé* and
depends on the choice of the generic veatoe V, but we will see in Lemma 5.4
below that it is independent of oW *\ |J F;. This is the reason why we restricted
the domain of the function t&*\ | F;.

For the moment, we shall see the independence of wherPdini.

ExavpLe 5.1. Suppose di? = 1. We identify V withR, so thatV* is also
identified withR. Let E be the subset ofl,...,d} such thati € E if and only if
C({i}) is the half line consisting of nonnegative real numberseTthe completeness
of A means that

(5.1) S w(iip) = 3 w({i}) = degr )

i€E i¢E
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Take a nonzero vectar . Sindé* is identified withR, each affine hyperplang; is
nothing but a real number. Suppose that is toward the pesitikection. Then

. -1 ific E
i) =
-2 1) {1 ifi ¢ E

and the support of the characteristic functiop, is the half line given by
{u eR| F; <u}.
Therefore

(5.3) DHp)= Y (—w{i)+ Y w({i})

i€E s.t. Fi<u i¢E s.t. Fi<u

for u € R\ U F;. If u is sufficiently small, then the sum above is empty; so izéso.
If uis sufficiently large, then the sum is also zero by (5.1)nkee the support of the
function DHp is bounded.

Now, suppose that is toward the negative direction. Theh){} above is mul-
tiplied by —1 and the inequality< above turns inta>. Therefore

(5.4) DHr)= > w({iD+ > (—w{i}).

i€E s.t. u<F; i¢E st u<F;

It follows that

rhs. of (5.3)-rh.s. of (5.4) = > w({i}) +>_ w({i}).

i€E i¢E

which is zero by (5.1). This shows that the function PHs independent ob when
dimP = 1.

ExampLE 5.2. For the star-shaped multi-polytope in Example 4.2,-Dtdkes 2
on the pentagon, 1 on the five triangles adjacent to the pemtagd O on other (un-
bounded) regions. The check is left to the reader.

Assumen = dimA > 1. For each{i} € =W, the projected multi-fanAy;, =
(Ziy: Cpys wﬁi}), which we abbreviate aa; =, C;, wl.i), is defined on the quo-
tient vector spaceV /V; of V by the one-dimensional subspaée spanneduvby
Since A is complete and simplicial, sods . We identify the dsgdce ¥ /V;)* with

V*)i ={u e v*| {(u,v) =0}

in a natural way. We choose an elemghte F; arbitrarily and translate?; ontoV/(*);
by —fi. If {i,j} € @, thenF; intersects; and their intersection will be translated
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Fig. 7.

into (V*); by — f;. This observation leads us to consider the map
Fit Zy — HP((V*):)

sending{j} € = to F, N F; translated by—f;. The pairP; = (A;, F;) is a multi-
polytope in (/Vi)* = (V*);.

Let / € ™ such thati € 1. Since (uh,vi) = &, ul for j # i is an element
of (V*);, which we also regard as an element &f/{;)* through the isomorphism
(V/v))* = (v*);. We denote the projection image of the generic elemert V on
V/Vi by v. Then we havév, u’) = (v, u%) for j #i, whereu! at the left-hand side
is viewed as an element oV (V;)* while the one at the right-hand side is viewed as
an element of (*);. Since (v, u%) = (v,u}) #0 for j #i, we usev  to define DHl

Lemma 5.3 (Wall crossing formula.). Let F be one ofF; 's. Leu, and ug be
elements inV*\UleF,- such that the segment from, to ug intersects the wallF
transversely atu, and does not intersect any othér # F. Then

DHp(ua) — DHp(ug) = Y | signup — uq, vi) DHp, (1 — £).

iiF;=F

Proof. For simplicity we assume that there is only ane suét ) = F. We
may assume thafug — u,, v;) is positive without loss of generality. The situation is
as in Fig. 7.

It follows from the definition of DH> that the difference between DHu,) and
DHp(up) arises from the cone€™(I)*'s for I € ©™ such thati € I and (u;,v) <
{(u, v). In fact, one sees that

DHp(ua) + ) sign(uf, v)(=1) w(1)¢; (1) = DHp ()
1
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where I runs over the elements as above. Since(sign)(—1) = —(-1)'\{"} and
w(I) = w;(I\{i}), the equality above turns into

DHp(ua) — DHp(ug) = Y (1) M w,(1\{i})¢: ().
1

Here ¢;(11) may be viewed as the value atof the characteristic function of the cones
in F; with apexu; spanned byu§ *s (j € 1,j #i). This shows that the right-hand
side at the equality above agrees with Pt — f;), proving the lemma. U

Lemma 5.4. The support of the functioH» is bounded and the function is
independent of the choice of the generic elemeatV.

Proof. Induction on the dimension of simple multi-polytspP. We have ob-
served the lemma in Example 5.1 when dim= 1. Suppose dif? = n > 1
and suppose that the lemma is true for simple multi-polysop€ dimensionn — 1.
Then the support of D is bounded by the induction assumption. This together
with Lemma 5.3 implies that Di takes the same constant on unbounded regions in
V*\ U F;. On the other hand, it follows from the definition of RHthat DHp van-
ishes on a half spactl, fu e V* | (u,v) <r} for a sufficiently small real number
r, because for eaclhh € ™ the coneC*(I)* is contained in the complement @i,
if ris sufficiently small. Therefore the constant which PHakes on the unbounded
regions inV*\ |J F; is zero, proving the former assertion in the lemma.

As for the latter assertion in the lemma, it follows from tmeluction assumption
that the right-hand side of the wall crossing formula in Leanm3 is independent of
v, and we have seen above that Pianishes on unbounded regions regardless of the
choice ofv . Thus, it follows from Lemma 5.3 that RHis independent ok on any
regions of V*\ |J F;. U

6. Winding numbers

We continue to assume that our multi-polytofe = (A, F) is simple and that
¥ is an augmented simplicial set consisting of subset§1of..,d}. In this section,
we associate another locally constant functionioh, | F; with P from a topological
viewpoint, and show that it agrees with the Duistermaatirean function defined in
Section 5.

Choose an orientation oV  and fix it. We define an orientation Jon=
{i1,..., i,y € =™ as follows. If an ordered basigf, ..., v;) gives the chosen ori-
entation onV , then we say that the oriented simplgx.. ., i,) has a positive orien-
tation, and otherwise a negative orientation. We define

) = (i1, -y in) if (i1,...,i,) has a positive orientation,
' — (i1, -y in) if {(i1,...,i,) has a negative orientation.
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The completeness ah  (equivalently, the pre-completenégheoprojected multi-fan
A, for any J € (=) implies that

> w)(n)

Iex®

is a cycle in the chain complex of the simplicial sEt . In fattte converse also
holds, i.e., the completeness af is equivalentig ., w(I)(I) being a cycle. We
denote by A ] the homology class that the cycle define#/in,(Z). Actually [A] lies
in the reduced homology{,_1(X), see Example 6.3 discussed later.

Let S be the realization of the first barycentric subdivisioh 3. For eachi €
{1,...,d}, we denote bys; the union of simplicies § which contain thetesefi},
and by S; the intersectiofi),, S; for I € X. Note thatds; can be identified with
the realization of the first barycentric subdivision Bf , whe; is the augmented
simplicial set of the projected multi-fann; =(, C;, w,.i).

The projected multi-fanA; is defined oWi/V; whereV; is the one-dimensional
subspace spanned hy . We origntV; as follows: if an ordered basig;( v, ...,
v;,_,) defines the given orientation on , then we givgV; the orientation deter-
mined by ¢j,...,v;_,), and otherwise give the opposite orientaiton. Then [ ] is

defined inH,_(X;) = H,_2(S)).

Lemma 6.1. [A] maps to[A;] through the composition of maps

excision

Hy_1(2) = H,-1(8) “ H,_a(S. S\Int ;) <=2 H, (S, 08;) = H,—2(9S),
where. is the inclusion.

Proof. Through:., and the inverse of the excision isomorphism, the cycle
Yoreseo wI)(I) maps 0 cxwmw(I)(I). We express(I) as (i, ji,..., ja-1)
wheree = +1 or —1 and define an oriented: (— 2)-simplex (I\{i}) in El.("’l) by
€{(j1, ..., ju—1). It follows that

a< > w(1)<1>> = > wd)(I\{i}).
ielex® ielrex®

Here w () = w; (\{i}) by the definition ofw; , and € I € = if and only of
I\{i} € Zf”’l). Therefore, the right-hand side above reduce$ 19 e wi(J){(J),
that is [A; ] in H,_2(dS)). O

The following lemma will be used later several times.

Lemma 6.2. Let X andY be topological spaces with subspacgscC X and

Y; C Y for eachi € X, For I € X, we setX; :=,., X; and ¥; :=(,, ¥;. If
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1) X =UL X,

(2) X,’s for I € =@ are disjoint and

(3) Y, is nonempty and contractible for any non-empty ket %,

then there is a continuous map: X — Y sending the stratunX; td; for each
I € ¥, and such a map is unique up to homotopy preserving the stetoins.

Proof. Existence We will constructey inductively using decending induction on
[1]. If |1 = n, then we mapX, to any point i, . Thus is defined onlJ, -, X;
with the image in{J;,-, Y;. Let k be a nonnegative integer less than  and= .
Suppose that) is defined onJ,; >, X, With the image in{J ;> ¥s. Then

Vi XN (U\J\2k+1xf) —¥n <U|J|2k+l YJ) cY

extends to a continuous map froky, Yo  becalise is contracfibles ¢ is de-
fined onlJ,; >, X; with the image in(J,;>, ¥;. This completes the induction step, so
that we obtain the desired map defined onX .

UniquenessWe construct a homotopy? X x [0, 1] — Y of given two mapsyg
and 1 in the lemma. The argument is almost same as above. Since nisactible,
H can be defined OUm:n X x [0, 1] with Um:n Y; as the image. Let be as above
and [7| = k. Suppose that/ is defined otJ(; >4.q Xs) x [0, 1] with the image in
U1 Ys and thatH agrees withh, on (J|;>eq Xs) x {t} for t = 0,1. Then a
map

HU’[/)0U¢1: (X[ n (U|J|2k+1XJ)) X [O, 1] UX; x {0} UXr x {1}
—(Yrn (U|J|2k+1 Y))UuY,uY=Y;
extends to a continuous map froy x [0, 1] to Y, becauseyY; is contractible. Thus

H is defined on U\Ile X;) x [0, 1] with the image i“Umzk Y;. This completes the
induction step, so that we obtain the desired homotaipy  difimeX %[O, 1]. O

Lemma 6.2 can be applied with & X; & Y, ¥ andY; =F;. It follows
that the multi-polytopeP associates a continuous map

d
lIl:S—>UF,-CV*
i=1

sendingS; toF; for eac € X by Lemma 6.2, andl induces a homomorphism
lll* . I:‘Infl(S) = I:‘I",]_(Z) - ~,1,1(V*\{M})

for eachu € V*\|JF;. SuchW¥ was first introduced in [17] and plays the role of
a moment map. The orientation oW chosen at the beginning isf géction in-
duces an orientation o¥* in a natural way. This determines a fundamental class
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in H,(V*,V*\{u}) and hence inH, 1(V*\{u}) through 9: H,(V*, V*\{u}) =
H,_1(v*\{u}). We denote the fundamental classfh_1(V*\{u}) by [V*\{u}].

DeriniTion.  For eachu € V*\ | F;, we define an integer Whu) by

WL ([A]) = WNp(u)[V*\{u}]

and call it thewinding numberof the multi-polytopeP = (A, F) aroundu .

Remark. The function WNs is independent of the choice of an orientation Won
because if the orientation oW is reversed, than [ ] avid\[«}] are multiplied by
—1 simultaneously. Moreover, it is locally constant and saes on unbounded regions
separated by; 's, which immediately follows from the defontiof WNp.

We will see in Theorem 6.6 below that WIN= DHp. For the moment, we shall
check this coincidence when difh= 1.

ExavpLe 6.3. We use the notation in Example 5.1. We identify  wRh so
that V* is also identified withR. ThenV andV* have standard orientations, and since
v; gives the orientation or¥/ if and only if € E, the cycle which definesA ] is
given by

d
Yo wlin) + Y w{iN=) == > (~nTw{ih)
i€E i¢E i=1
where (1)} is the same as in (5.2). Sinae  is complefe:_, (—1){w({i}) = 0
so [A] actually lies inHo(X) = Ho(S) and one can rewrite the cycle above as

d

S ED P h) - ()

i=1
for any j € {1,...,d}. SinceS; ={i} and ¥ {i}) = F;, WNp(u) = O unlessu is
between the minimum value and the maximum value{#f, ..., F,;}. Supposex is
between them and takg such thiat  is the maximum. Then one sasis that

WNp(u) = Y (-1 w({i}).
Fi<u
This together with (5.3) shows that WIN= DHp when dimpP = 1.
We will show that WN satisfies the same wall crossing formdaraLemma 5.3.

For that, we first state a lemma which expresses the windimgbeu as a sum of lo-
cal winding numbers so to speak. Assume @m> 1. We orientF; in such a way
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that the juxtaposition of a normal vector #¢ , whose evatmbnv; is positive, and
the orientation onF; agrees with the prescribed orientatiorVd. By Lemma 6.2,W
maps a pair §;, 9S;) into a pair F;, F;\{u}) for any p € F\(F; N (Ujezfl) Fj). If
we identify F; with (V*); through the translation by f; as before, then the may
restricted to0S; agrees with the map (up to homotopy) constructed from thetimul
polytopeP; = (A;, F;). It follows that

(6.1) W.([A]) = WNop, (1 — fi)[Fi\{p}].

Let u € V*\|J F;. We choose a generic rag  starting fram  with directipre
V*, so that the intersectiof; "R is one point for each if it is nonempty. We denote
the point ;; N R by R;.

Lemma 6.4. WNp(u)= Y sign(y, vi)WNp, (R — f;).
iFiNR# ¢

Proof. Consider the following commutative diagram:

H, 1(S) — n—1(575\U,-|nt5i)<@ @D Hi-1(S:, 0S:) % @, Hi-2(0S:)

w. | v w.| w.|

a(V N Hiea(V \{uh, VAR) = @, Hoa(F AR D@, Hia(FA(R)

where i runs over the indices of; ’'s which intersekt . The eldnmex] €
H,_1(S) maps tod,[A] € @, H,_»(dS;) through the upper horizontal sequence by
Lemma 6.1 and down téD, WNp, (R; — fi)[Fi\{R:}] by (6.1).

Now we trace the lower horizontal sequence from the righth® left. Through
the inverse ofd, [F;\{R;}] maps to the fundamental clas$;][ F;\{R;}], and further
maps to sigty, v;)[V*\{u}] € H,_1(V*\{u}), where the sign arises from the choice
of the orientation onF; . These together with the commutatieit the diagram above
show that

W.(A) = D sign(y, vi)WNp, (R — f)[V*\{u}].

i:FiNR#Z ¢
On the other handW, ([A]) = WNp()[V*\{u}] by definition. The lemma follows by
comparing these two equalities. O

Lemma 6.5. The wall crossing formula as ihemma 5.3holds for WN instead
of DH.

Proof. Subtract the equality in Lemma 6.4 for s from that foru =u,.
Since one can takeg to beug — u,, the lemma follows. Ol
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Theorem 6.6. DHp = WNp for any simple multi-polytopéP.

Proof. The equality is established in Example 6.3 when Himrx 1. Suppose
dimP =n > 1 and suppose that the equality holds for simple multi-ppgs of di-
mensionn — 1. Both DH» and WN»> are locally constant, satisfy the same wall cross-
ing formula (Lemma 5.3, Lemma 6.5) and BH= WNp, by induction assumption.
Therefore, it suffices to see that RHand WNy> agree on one region. But we know
that they vanish on unbounded regions (Lemma 5.4 and therkeafi@r the definition
of WNp), hence they agree on the whole domain. This completes thection step,
proving the theorem. U

7. Ehrhart polynomials

Let P be a convex lattice polytope of dimensian Wi, where “lattice polytope”
means that each vertex &f lies in the lattivé = Hom(V, Z) of V* = Hom(V, R).
For a positive integer, let vP := {vu | u € P}. It is again a convex lattice polytope
in V*. We denote byi(vP) (resp.t(vP°)) the number of lattice points inP (resp. in
the interior of v P). The lattice N* determines a volume element 6 by requiring
that the volume of the unit cube determined by a basigvéfis 1. Thus the volume
of P, denoted by volP ), is defined. The following theorem is etiown.

Theorem 7.1 (see [11], [29] for example.).Let P be ann -dimensional convex
lattice polytope.
(1) #(vP) and §(vP°) are polynomials inv of degreen .
(2) 4(vP°) = (-1)'f(—vP), where (—v P) denotes the polynomigi(vP) with v re-
placed by—wv.
(3) The coefficient of” in f(vP) is vol(P) and the constant term (v P) is 1.

The fan A associated wit® may not be simplicial, but if we suioid A, then
we can always take a simplicial fan that is compatible with n.this section, we
show that the theorem above holds fosimplelattice multi-polytopeP = (A, F). For
that, we need to defing(P) and §(P°). This is done as follows. Let; i( =1..,d)
be a primitive integral vector in the half lin€ {i(). In our convention,v; is cho-
sen “outward “normal” to the fac&({i}) whenP arises from a convex polytope. We
slightly move F7({i}) in the direction ofv; (resp—uv;) for eachi , so that we obtain
a mapF, (resp.F_.): =@ — HP(V*). We denote the multi-polytopesA( F) and
(A, F_) by P. and P_ respectively. Since the affine hyperplangs ({i})’s miss the
lattice N*, the functions Dhb, and WNp, are defined onv*.
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Derinimion.  We define

4(P):= ) DHp.(w)= Y WNp,(u),

ueN* ueN*

4(P°):= ) DHp_ (u)= ) WNp_(u).

ueN* ueN*

WhenP arises from a convex polytope , BH=WNp, (resp. DH>_ = WNp_)
takes 1 onu inP (resp. in the interior af ) and O otherwise. Tweee 1(P) (resp.
4(P°)) agrees with the number of lattice points i (resp. in therior of P) in this
case.

Denote the volume element ov* by dV*, and define the volume vdR) of P

by

vol(P) ::/ DHp dV* = WNp dV*™,
* V*
When P arises from a (convex) polytop2 , vBlf agrees with the actual volume of
P, but otherwise it can be zero or negative.
For a (not necessarily positive) integer we denote 4, vF) by vP, where

WA ={ue V| (u,v)=ve}
when F({i}) = {u € V*| (u, v;) = ¢;} for a constant; .

Theorem 7.2. LetP = (A, F) be a simple lattice multi-polytope of dimensien
(1) g(vP) and t(vP°) are polynomials inv of degree(at mosj n.
(2) g(wP°) = (—1)'4(—vP) for any integerv.
(3) The coefficient of” in #(vP) is vol(P) and the constant term itvP) is degA )
(see Section Zor degA ))

In order to prove this theorem, we need some notations andhemde Basic ideas
in the following arguments are in [4] and [5]. Ldt € £, Although the integral
vectors{v; | i € I} are not necessarily a basis of the lattie , they are linearly
independent. Therefore, the sublattidg of generated;by i 's () is of the
same rank asv , henc®¥ /N, is a finite group. Needless to sak,/N; is trivial for
any I € ™ if Ais non-singular. Forx € N = Hom(N;,Z) D N* andg € N/Ny,
we define

(7.1) x1(u, g) := exp(2rv/—1{u, Vg))

wherev, € N is a representative of . The right-hand side does not depenth®
choice of the representativg, , and(x, ) (resp.x( , g)) is a homomorphism from
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N/N; (resp.N;) to C*. Note thaty;(u, ): N/N; — C* is trivial if and only if u €
N*. It follows that

(7.2) S )= {IN/NII if ue N*,

NN, 0 otherwise.

Lemma 7.3. For each/ € =™ let u; be the corresponding vertex &f and let
{u!l |'i € 1} be the dual basis ofv; | i € I} as in Section 5. Therfor v € N such
that (u!, v) is a nonzero integer for any € = andi € I, we have

w(f)z - >

E N = DHp (M)Z(u,v>
—{(u! +

1€X® IN/NI| SEN/N; [lie, (@ = xi(uf. 8)z ) uEN*

as functions of; € C.
Proof. The Maclaurin expansion of/@l — az™™) (a € C*, m € Z) is given by

{—a‘lz’" —a =% — ... if m>0

l+az " +a%z 2" +... if m <O.

Taking this into account, we expand the sum

1
Sy = 7
Z H,‘e[(l_XI(u,'Ia g)Z—(M,-~U>)

8EN/N;

into Maclaurin series and get

=30 GO T Catd g2 )

gEN/N; i€l {b;}
= 3 U Sl Yo e,
gEN/N,; {b;} icl

where the summatiod _,, , runs over the collection of sucfb; | i € I, b; € Z} that
(7.3) b; > 1 for i with (u],v) >0 andb; < 0 for i with (u,v) <0,

(see Section 5 for<{1)"). Since

N/N. if >, biul € N*,
> (-t =

8EN/N; icl otherwise,

by (7.2), the Maclaurin expansion of the left-hand side & #guality in Lemma 7.3
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has the form

3 ( 3 (—1)’w(1)¢>9(u)> 2

ueN* \Jexm

where

() = 1 fu=u +3,.,bul, b's are as in (7.3) and_,_, biu! € N*,
! 0 otherwise.

One easily checks thaE,eE(,,)(—1)’w(1)¢’,(u) agrees with DHb, (u), proving the
lemma. ]

Proof of Theorem 7.2. We shall prove (2) first. It suffices tover #(P°) =
(=1y"8(="P). Sincei(P°) = >_,cn- WNp_(u) by definition, it suffices to prove that

(7.4) WNp_ (1) = (—1)"WN_p),(u) for anyu € N*.

Let ¥p»_ and ¥_p), be the maps introduced in Section 6 which are associated with
multi-polytopesP_ and (P). respectively. We note thabp_ and —¥_p), consid-
ered as maps fron§ t&*\{u} for u € N* are homotopic. Since the multiplication
by —1 on V* sends the fundamental clas8*\{—u}] to (—1)"[V*\{u}], we obtain
(7.4).

We shall prove (1). Because of (2), it suffices to prove (1) ffierP). We apply
Lemma 7.3 tovP in place of P (so thatu; is replaced byu;), and approacly to
1 in the equality. Since the right-hand side approadife®), it suffices to show that
the left-hand side approaches a polynomialinf degree at most . Whegp e N/N;
is the identity elementy;(u!, g) = 1. Therefore, the term in the summaEgeN/N[
in the left-hand side has a pole at = 1 of degree exaectly when thesidentity
element, and of degree at most otherwise. Thus the left-sBated of the equality in
Lemma 7.3 applied teP can be written as

S resm 2Ry (2)
1-2"f(2)

where s, ¢) andf £ ) are polynomials in ang (¥ 0. Then the repeated use of
L'Hospital's Theorem implies that whepn approaches 1, thatlof the above rational
function is a polynomial inv of degree at most

Finally we prove (3). Since

wP)= Y DHum.w)= Y DHp,().

u€EH?(BT) u€EHA(BT)/v



THEORY OF MULTI-FANS 29

it follows from the definition of definite integral that

n
u€H?%(BT)/v

lim iﬂﬁ(zﬂ?): lim = > DHR(u):/ DHp dV* = vol(P),
v—00 UV n—o00 *
proving that the coefficient of” in #(vP) is vol(P).

We apply Lemma 7.3 to®, that isvP with v = 0. Then thex; in the lemma
is zero, and Dhdp), () = WNep),(#) = 0 unlessu = 0 because the origin is the only
vertex of 0P so that the vertices of @), are very close to the origin. Thus the right-
hand side of the equality in the lemma applied t8 & a constant, say , which is
nothing but the constant term i{vP). Now we approachy tec. Then the equality
reduces to

Z w(l)=c

velC(I)

because(u!,v) > 0 for all i € 1 if and only if v = > icraivi wWith ¢; > 0 for all
i € I, and the latter is equivalent to saying that belongs to theeco(/ ) spanned
by v;’s (i € I). Sincezvecm w(l) = deg( ) by definition, the constant term §(vP),
that isc, agrees with deg( ). O

Let N be the lattice ofN;; generated by alk! 's for € ™ andi € 1. If A'is
non-singular, therV; = N*. The group ringC[N[] is an integral domain, and it has
a basist* 4 € NX) as a complex vector space with multiplication determingdthe
addition in N}:

’ ’
u ' utu
-t =t .

The quotient field ofC[N}] will be denoted byC(N}). It containsC[N]. Eachv €

N such that(u!, v) is an integer for anyl € =™ andi € I determines a map from
C[N] to a Laurent polynomial ringC[z, z~*] sendings* toz®*). This map extends
to a map fromC(N}) to C(z), the field of rational functions in . Since Lemma 7.3
holds for any suchy thatu!, v) # 0, we obtain

Corollary 7.4. Let the notation be the same as liemma 7.3.Then

U)(I)t“l 1 = u *
2 NN 2 TGl g 2, O €

Iexm gEN/N; ueN*

as elements irlC(N}). In particular, if the multi-fanA is non-singular, thev; = N*
and

w(l)tul = u
2 e, (- ) > DHp, ().

1exm UuEN*
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For a later use, we shall rewritg;(u!, g). Consider a homomorphism: R —
Ng mappinga = (a1, ..., as) € R? to Y, a;v; € Ng. For I € ™, we define

G, :={acR’|n@ec N anda; =0 forj ¢ I}

and defineG,; to be the projection image Gf on R¢/Z<. Sincev; 's ( € I) are lin-
early independent and belong % Gy is a finite subgrouR6fZ? andn restricted
to G induces an isomorphism

nr - G[EN/N].

Note thatn;([a]) = [}, aiv;] where [ ] denotes the equivalence class.
On the other hand, for =1..,d, let

pi Rd/Zd — C*
be a homomorphism defined hy([a]) = exp(2rv/—1a;).
Lemma 7.5. For[a] € G; C RY/Z¢ andi € I, we havep;([a]) = x;(u!, n/([a])).

Proof. Sincen;([a]) = [>_,; aivi] and (ul, > ier Givi) = a;, it follows from the
definition (7.1) of x; that x;(u!, n;([a])) = exp(2rv/—1a;), which is equal top;([a])
by definition. O

Since G, is isomorphic tav/N;, Corollary 7.4 can be restated as follows.

Corollary 7.6. Let the notation be as above. Then

w(l) 1 B ) *
Z |G 1] Z e, @ pi(g)e ) = Z DHp, (u)t"* € C[N*]

1exm g€G; ueEN*

as elements irC(Ny).

8. Cohomological formula for g(P)

Motivated by the geometrical observation which will be e¥péd in subsequent
sections 9 and 11, we define the “(equivariant) cohomolodya @omplete simplicial
multi-fan and the “(equivariant) first Chern class” of a nvpiblytope. We then define
an index map “in cohomology” and establish a “cohomologif@imula” describing
#(P) for a lattice multi-polytope. This cohomological formulka a counterpart in com-
binatorics to the Hirzebruch-Riemann-Roch formula agple a complexT -line bun-
dle over a torus manifold. As an application of the cohomwmiagformula, we show
that the Khovanskii-Pukhlikov formula for a simple latticenvex polytope ([21], [25],
[6], [71, [13], [4], [B]) can be generalized to a simple |lati multi-polytope.
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Let T be a compact torus of dimensian = rank and letBT be the classifying
space ofl' . TherH,(BT) is canonically isomorphic to Homs¢, 7), the group consist-
ing of homomorphisms frons! to 7. In fact, a homomorphisny S§' — T induces
a continuous ma@Bf BS* — BT and once we fix a generater of H>(BSY) ¥ Z,
(Bf)««a defines an element off,(BT). The correspondenc¢ — (Bf).« is known
to be an isomorphism from Hoii{, 7) to H»(BT). In the following we assume
N = Ho(BT) and identify it with Hom@?, 7). Then N* = H?(BT) is identified with
Hom(T, $%) and the group ringC[N*] can be identified with the representation ring
R(T) of T.

Let A = (T, C, w®) be a complete simplicial multi-fan itN . Lat; € Hy(BT)
be a unique primitive vector it {(}) for eachi =1...,d as before. Motivated by
the description of the equivariant cohomology of a compamrt-singular toric variety
(see Proposition 9.2 in the next section), we deflii(A) to be the face ring of the
augmented simplicial se |, i.e.,

H7(A) :=Z[x1, ..., x4]/(x; | I ¢ Z),

wherex; =[];.,x and the degree of; is two, and call;(A) the equivariant co-
homologyof A. We also define a homomorphisnt: H3(BT) — HZ(A) by

d
(8.1) ™ (u) = Z(u, ;) Xi,
i=1

where( , ) denotes the natural pairing between cohomology and homolbgxtends
to an algebra homomorphistH*(BT) — H;(A), which we also denote by*. One
can think of H;(A) as a module (or more generally an algebra) ade€(B7) through
T*.

In the following we will mainly work with @Q coefficients but the argument will
work with Z coefficients when the multi-fams  is non-singular. Any homaptosm
f: A — B between additive groups induces a homomorphisthh@ Q — B ® Q (or

A ®R — B ®R), which we also denote by

Lemma 8.1. Any element inf/;(A)®Q can be written in the forn)_, 7" (a)xs
with a; € H*(BT; Q) (not necessarily uniquelyin other words, H;(A) ® Q is gen-
erated byx; 's(J € £) as an H*(BT; Q)-module.

Proof. LetZ denote a finite set which consists of elements{in...,d} taken
with multiplicity, i.e., elements in{1,...,d} may appear inZ repeatedly. Seks :=
[[,c7 xi and denote byl the subset of/1, ..., d} consisting of elements appearing in
Z. It follows from the definition thatH;(A) is additively generated byz’s such that
ZTex, soit suffices to prove the lemma for sugh. We shall prove it by induction
on [Z] = |Z| — |Z|.
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If [Z] =0, thenZ = 7€ X, s0xzis obviously of the form in the lemma in this
case. SupposeZ] > 1. Then there is am € Z which appears irZ at least twice. Set
J =7\{i}. ThenJ =7 € £ and [7] = [Z] — 1. Multiplying the both sides at (8.1)
by x7, we obtain

T W)xg = (w, vi)xz + > (U, V)X 704
i

for any u € H*BT;Q). We choosex such thau, v;) = 1 and (u,v;) = 0 for all
Jj € J different fromi . (Suchu exists becauge; | j € J} is a subset of a basis of
Ng.) Then the equality above reduces to

xr =7 (u)xg — Z (u, vi)X 701k} -
k#Zi kg T

Here [7 U {k}] = [J1(=[Z] — 1) for k ¢ J, so the right-hand side above are of the
form in the lemma by the induction assumption, showing tlwaisstz. This completes
the induction step and proves the lemma. U

ForI € =@, let {u! | i € I} be the dual basis ofv; | i € I} as before. We
define a ring homomorphisny : H;(A) ® Q — H*(BT; Q) by

. ul if i €1,
L,(x,-)={

0 otherwise.

This map is well-defined becausg fdr¢ X, which is zero inH;(A) ® Q, maps
to zero through.

Lemma 8.2. The composition] o 7* is the identity map. In particulat; is an
H*(BT;Q)-module map.

Proof. Bothz* and :; are ring homomorphisms an#*(BT) is a polynomial
ring generated by elements H2(BT), so it suffices to check the lemma d#?(BT).
Let u € H3(BT). It follows from the definitions ofr* and .} that

d d
(7om)w)=1; <Z<u, v,->x,-> = Z(u, vidul,
i=1 i=1

which agrees withy  because:! | i € 1} is the dual basis ofv; | i € I}. Sinceu is
arbitrary, this proves that; o 7* is the identity onH?(BT). ]

A multi-polytope P = (A, F) is associated with real numbers 's by

F{i)={uc€ HZ(BT;]R) | (u,vi) =ci}s
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and these numbers determine an elemgifP) := Zf’:lc,-x,- of H2(A)® R, which we
call the equivariant first Chern clasef P. This gives a bijective correspondence be-
tween the set of multi-polytopes defined dn  aH@(A) ® R. Note that:}(cl (P))
agrees with the vertex; )., F({i}), see Section 5. WheaA is non-singuldt,
is a lattice multi-polytope if and only if the; ’'s are all intexg, but otherwise the
“if” part does not hold, in other words, an element Hf2(A) is not necessarily re-
alized as the equivariant first Chern class of a lattice npatytope. However, there is
a nonzero integem such thatx  for anye H2(A) is realized as the equivariant
first Chern class of a lattice multi-polytope becald® N;|;(x)’s lie in H(BT).

We setH**(BT;Q) = H;’ZO HY(BT;Q). It is a formal power series ring.

Lemma 8.3. For any J € X, the element

(D[ (™ — 1) 1
Z |G1| g;[ H,’e1(1_pi(g)e_“’!)

in the quotient field ofH **(BT; Q) actually belongs toH**(BT; Q).

1€xm)

Proof. Since]‘[jej(e’“f — 1) is a linear combination of [, x "% = e" 2rex
for K € &, it suffices to show that

my ok Xk
82 w(I)[I(e € ) H** BT, .
©a 2 Ter T A A e < AT

As remarked abovep ), . x; is realized as the equivariant first Chern class of a
lattice multi-polytope, so it follows from Corollary 7.6 dh

w(/ tb;((mzxk) 1 .
P D 7 € CIV) = ROD).
1exm ! ¢€Gy Hiel(l_pi(g)t ‘)

The Chern characte€[N*] = R(T) — H**(BT;Q) mappingt* toe" extends to a
map fromC[N] and it further extends to a map between the quotient fieldadiBg
the element above by this extended Chern character, weno{8&d). U

Let S be the multiplicative set consisting of nonzero homagers elements of
positive degree inH*(BT;Q). Since H*(BT;Q) is a polynomial ring, it can be
thought of as a subring of the localized risg*H*(BT; Q). We define the index map

m: Hi(A)® Q — ST*H*(BT; Q)
“in cohomology” b

mx)= > i)

1exm |G1| HiEI ull
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(cf. [2, (3.8)]). This map decreases degrees hy 2 , and i$/&BT; Q)-module map
by Lemma 8.2.

Lemma 8.4. The image ofr lies in H*(BT; Q).

Proof. Sincem is an H*(BT; Q)-module map, it suffices to check the lemma for
elementsy;, 's {( € X) by Lemma 8.1. We distinguish two cases.

Case 1. The case wher&/| =n, i.e.,J € ™. In this case

ou! if 1=1J,
txy) = {H’EI “ !

0 otherwise.

Therefore

o D) ) o
) 1222’1) G 1[I Ties uj |Gyl < HABT; Q)

Case 2. The case wher¢J| < n. In this case we will show that(x;) = O.
Sincep;(g) = 1 for anyi € I if and only if g is the identity, and

11 (1 — e*”f') = (H u,’) (1 + higher degree term)
iel iel
I (™ = 1) =mlx, (1 + higher degree term)

jeJ
the term of lowest degree in Lemma 8.3 (up to a nonzero congtaitiple) is

w(l)ej(xy)

Jexm |G1| Hiel ulI ’
that is, m(x;), and Lemma 8.3 tells us that it is an elementif(BT; Q). This means
that m(x;) = 0 because the degree of(x;) is equal to 2/| —2n < 0. O

Now, motivated by the description of the cohomology ring oft@mpact non-
singular toric variety (see p. 106 in [11]), we defid&*(A) to be the quotient ring
of H}(A) by the ideal generated by*(H?(BT)), in other words,

H*(A) = Z[)Cl, e, xd]/Ql,
where®l is the ideal generated by all

(1) x; forI ¢ %,
(2) S (u, vi)x; for u € N.
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Sincem is an H*(BT; Q)-module map and?*(BT;Q)/(H?(BT;Q)) is isomorphic to
HO(BT;Q) =Q, m induces a homomorphism

AJNM®@HQ

where only elements of degree 2 Hi*(A) ® Q survive through the may, .
Remember thaG; is a finite subgroup Rf /Z¢. We denote byG, the union of
G over all I € =™, Sincep; is defined onR?/Z?, p;(g) makes sense fog € G,.
It follows from the definition ofG; andp; that if g € G, thenp;(g) =1 fori ¢ I.
We define theequivariant Todd clasg 7 (A) of the complete simplicial multi-fan
A by

= Y

€ H7"(A) ® Q,

g i Lo (g)E"‘
and theTodd class7 (A) of A by
T(A) = e H™(A) ® Q,
(8):= ZH p,(g)e)r (ReQ

g€Gy i=1

wherex; denotes the imagexpfe H;(A) in H*(A) (cf. [5]). We also define théirst
Chern classc1(P) of a multi-polytopeP defined onA to be the image ef (P) €
HZ(A)®@R in H3(A) ® R.

Theorem 8.5. If P is a simple lattice multi-polytopethen [, e 7T (A) = 4(P).

Proof. We shall computer;(e<: ()77 (A)). For that, we need to se€ (77 (A)).
Let g € Ga. If g ¢ Gy, then there is an ¢ I such thatp;(g) #1; so

ﬁ(rr;%&:z)zo

for suchi because the Maclaurin expansiontof(1— p;(g)e ) has no constant term
and 3 (x;) = 0. Therefore, only elements iG;  contribute 477 (A)). Now sup-
poseg € G;. Thenp;(g) =1 fori ¢ I, so

ﬁ(fr;%&:z)=1

for suchi because the Maclaurin expansioncof(1— p;(g)e ™) has the constant term
1 and:;(x;) = 0. Finally, sincec}(x;) =u! for i € I, we thus have

G@ =Y [[—

gEGlIEI _pl(g)e

—ul”
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This together with the definition of, and Corollary 7.6 shows that
d X,
APYTT(A)) = 1 (P) Z H i
m(e (A)) =m (e 1—pi(g)e™ )

g€eGy i=1

w([)eL?(CI(P))

1
2 [Tc,(X— pi(g)e™)

ezt Gl g€G;
= Z DHp, (u)e".
uEH?(BT)
This implies that
[e@T@)= 3 DHpw =P 0
A u€ H2(BT)

Remark. The argument developed above in this section is purely auatdrial,
but it is possible to take a topological approach. Namelgoeaisted with a com-
plete simplicial multi-fanA , one can construct a torus spaf,e with H;(Ma; Q) =
Hf(A) ® Q (see [8]). It is not necessarily a manifold but has a funddaleclass
so that the equivariant Gysin homomorphism: H;(Ma; Q) = Hf(A) @ Q —
H;*Z"(pt;Q) = H*~2(BT;Q), that is, the index map, can be defined.

As an application of the theorem above, we shall show thatvihskii-Pukhlikov
formula, which relates a certain variation of the volume ofimple convex lattice
polytope to the number of lattice points in it, can be geneedl to simple multi-
polytopes. We begin with

Lemma 8.6.
— 1 n o— c1(P)
Vvol(P)=— | ci(P)" = | e*
n! Ja A
for a simple multi-polytopeP.
Proof. The latter equality is obvious because only elemaiftglegree 2 in
H*(A) ® R survive through the ma[fA. We shall prove the former equality.

Step 1. If P is a lattice multi-polytope, then Theorem 8.5 appliedutB for
any integerv implies

/ e PIT(A) = (wP).
A

We compare the coefficients of at the both sides above. Sineg(vP) = vci(P), the
coefficient of " at the left-hand side is (&!) [, c1(P)", while the one at the right-
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hand side is volP) by Theorem 7.2 (3). Therefore the lemma is proven for acktti
multi-polytope P.

STEP 2. If P is rational, by which we mean that there is a nonzero integer
such thatmP is a lattice multi-polytope, then val(P) = (1/n!) [, ci(mP)" by Step 1.
Since volmP) = m" vol(P) and c1(mP) = mc1(P), the lemma is proven for a rational
multi-polytope P.

Step 3. The functions volj and fA c1(-)" are defined on the vector space
HZ(A) ® R through the equivariant first Chern class, and they are olsijocontin-
uous. By Step 2 they agree on all rational multi-polytopesctvifiorm a dense subset
of the vector space, so they must agree on the entire vecamedpy continuity. This
completes the proof of the lemma. ]

Multi-polytopes defined onA  form a vector space isomorphicHA(A) ® R
through the equivariant first Chern class, and Lemma 8.6 iémpithat the volume
function is a homogeneous polynomial function of degree fdat, if one writes
P) = Zj’zl cix;, then vol(P) is a homogeneous polynomial i, ..., c; of degree
n.

For h = (h1,...,hs) € RY, we denote byP, a multi-polytope withc! (P,) =
Z;’zl(c,- +h;)x;. Sinceci(Py) = Z,‘.’zl(c,- +h;)x; , Lemma 8.6 applied t®, implies that
vol(Py) is a polynomial inky, ..., h; (of total degreen ). We define thEodd operator
as follows:

0 < 9/om,
! (_> . Z H—L,
oh ¢€Ga i=1 1— pi(g)e—9/0h

Although the Todd operator is of infinite order, its operation vol(P,) converges
because vof@,) is a polynomial inh,...,h,;. The following theorem extends the
Khovanskii-Pukhlikov formula to simple lattice multi-pabpes.

Theorem 8.7. If P is a simple lattice multi-polytope, then

T <8%) VoI(Py) =0 = 4(P).

Proof. An elementary computation shows that
X;

8/81/11 (cit+hi)x;
e P e—
1—pi(g)e™

1= pi(g)e=0/om

— CiXi

|/1,':0 -e€

Therefore, it follows from Lemma 8.6 and Theorem 8.5 that

0] 0 0
7 () volo=T () [ o= [ T (7)o
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d
:/ > 10 O BYEL el g
Ao i T pi(g)e ,

d
— CiXi Xi
o

g€eGy i=1

= [ 1) =1p)
A
proving the theorem. O

Remark. One can reformulate the Khovanskii-Pukhlikov formula aBofvs. As
remarked above, the volume function vol is a polynomialcin. .., c;, SO One can
apply the Todd operatof (0/0c) (with the variablesc =dj, ..., ;) instead ofh =
(ha, ..., hy)) to the volume function vol and evaluate at a simple lattindti-polytope
P. The same argument as in the proof of Theorem 8.7 shows thatvthluated value
agrees withi(P).

9. Multi-fan of a torus manifold

In this section we introduce the notion of a torus manifoldl @ssociate a com-
plete non-singular multi-fan with it. A compact non-singuloric variety provides an
example of a torus manifold, but the class of torus manifaéddenuch wider than that
of compact non-singular toric varieties, (apparently, reveder than that of unitary
toric manifolds introduced in [27]). The basic theory ofitovarieties says that there
is a one-to-one correspondence between compact non-ainguic varieties and com-
plete non-singular fans. This correspondence is extendeohé direction, namely from
torus manifolds to complete non-singular multi-fans. Bug usual way to associate a
fan with a toric variety (see [11, Section 2.3]) does not warkour extended cate-
gory. However, when a toric variety is compact and non-deguhe corresponding
(complete and non-singular) fan can be reproduced usinga@ant cohomology and
this argument works even for torus manifolds. The idea iemtsdly same as in [27].

We begin with the definition of a torus manifold. An elemegtaepresentation
theory of a torus group tells us that if am -dimensional tof§%™" acts effectively
and smoothly on a connected smooth manifold of dimension 2h non-empty fixed
point set, thenn < n and the dimension of the fixed point set is at most 2(m).
We are interested in an extreme cagse n= . Mt be a closed, dednexnooth
manifold of dimension 2 with an effective smooth action of ;aidimensional torus
group T = )" such that the fixed point sé/”  is non-empty. Therd is necessar-
ily isolated. A closed, connected, codimension two subfohiof M is called char-
acteristicif it is a connected component of the set fixed pointwise by rage circle
subgroup of7 and contains at least ofie -fixed point. Site rspest, there are
only finitely many characteristic submanifolds. We dendtent by M; ¢( =1...,d).
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They are orientable i is orientable.

DeriniTion.  Let M be a closed, connected, oriented, smooth manifsid of di
mension 2 with an effective smooth action of an -dimensidoals group7” with
non-empty fixed point seM” M will be calledtarus manifoldif a prefered orien-
tation is given for each characteristic submanifalg

A toric variety X (of dimensiom ) is a normal complex algebraariety of com-
plex dimensionz with an effective algebraic action &*§* having a dense orbit. If
X is compact and non-singular, theh  with the restricted actib7T (c (C*)") pro-
vides an example of a torus manifold of dimension 2 . In thisegcaharacteristic sub-
manifolds are €*)"-invariant divisors. They have canonical orientationscei they are
complex manifolds. Similarly, when a torus manifold is gupéd with a7 -invariant
unitary structure, characteristic submanifolds have narab orientations. With these
orientations of characteristic submanifolds, the torusifodd will be called aunitary
torus manifold(also called a unitary toric manifold in [27]).

ExavpLe 9.1. A complex projective spacgéP” with an action of C*)" given by

[ZO, Ty o v vy Zn] — [ZO, 81715 - - gn,zn]v

where ko, 21, .- -, z4] € CP" and (g, .. ., g») € (C*)", is a compact non-singular toric
variety. This with the restricted” -action is a torus mardfeind there are + 1 char-
acteristic submanifolds, that are respectively defined;byO feri =0, 1,...,n.

There are many torus manifolds which do not arise from compao-singular
toric varieties, see [8], [27], [30].

Henceforth M will denote a torus manifold of dimension 2 . Lete M7T.
Since MT is isolated, the tangentidl -representatig/ of M at p has no triv-
ial factor, so it decomposes into the direct sumnof irredeciteal two-dimensional
T-representations. This implies that there are exaetly addtaristic submanifolds
which containp . In fact, an irreducible factor i, M corresponds to the normal di-
rection to a characteristic submanifold gt . We set

T
(M) = IC{l,...,d}’ <ﬂM,-> Z¢

iel

We add an empty set t& M ) as a member, so fhiat/ ( ) becomes an rtegme
simplicial set. The observation above implies that the icatdy of an element in
2 (M) is at mostn and there is an elementihM () with cardinatity

The augmented simplicial s&t M( ) is closely related to thg siructure of the
equivariant cohomologyH; (M) of M with integer coefficients. Let us explain this



40 A. HATTORI AND M. MASUDA

briefly. SinceM; andM are oriented closéd -manifolds and thenoemsion of M;
is two, the inclusion map frond; tad/ induces a Gysin homomonrphig;(M;) —
H;*2(M) in equivariant cohomology which raises dgrees by two (@83 for exam-
ple). Denote by¢; € H2(M) the image of the identity element iH2(M;). We may
think of & as the Poincaré dual off; (considered as a cycleMin ) in edaivar
cohomology. If the orientation oM  a¥f; is reversed, thgrturns into —¢;.

We take a polynomial ring[x1, ..., x4] in d-variables and consider a map

¢! Lxa, ..., xq] — Hy (M)

which sendsy; tcf;. This map is often surjective. Here is a case.

Proposition 9.2 ([27], Proposition 3.4.). Suppose that{*(M) is generated by el-
ements inH2(M) as a ring (this is the case when is a compact non-singular toric
variety). Then the mapy is surjective and the kernel is the ideal generated by mono-
mials [];., x; for all subsets/ C {1,...,d} such that/ ¢ X(M). In other words
H} (M) is isomorphic to the face ringor Stanley-Reisner rifgof X(M).

The equivariant cohomology?;(M) has a finer structure than the ring struc-
ture. The mapr collapsing M to a point induces a homomorphist: H; (pt) =
H*(BT) — Hj(M), so that Hf(M) can be viewed as an algebra ov&r*(BT)
through 7*. This algebra structure ovei *(BT) cannot be determined b M ) and
contains more information on the torus manifald . To see tlyelaa structure, it
is enough to see the image &f?(BT) by =* becauseH*(BT) is a polynomial ring
generated by elements iH2(BT).

Lemma 9.3 ([27], Lemma 1.5.). For eachi € {1,...,d} there exists a unique
elementv; € Ho(BT) such that

d
@)= (u,v)§  modulo H*(BT)-torsions
i=1
for any u € H?(BT), where( , ) denotes the usual pairing between cohomology and
homology.

Proof. The proof is given in [27], but we shall give a simpleoqir for the
reader's convenience whev  is as in Proposition 9.2. SkigeV) is additively gen-
erated by¢;’s, one can express

d

W) =Y v

i=1

with a unique integew; i ) depending en for each . We view: ( ) asretion of



THEORY OF MULTI-FANS 41

u € H?(BT). Since it is linear, it defines an element  of HA#(BT), Z) = H»(BT)
such thatv; ¢ ) u, v;). U

Note. A geometrical interpretation of the vectors  will be givenSection 12.

In order to introduce a multi-fan, we adopi,(BT) as the latticeN and identify
H>(BT;R) with the vector spac&/g = N ® R. Then we define a map

C(M): (M) — Cone(V )

by sending/ € X(M) to the cone inHy(BT;R) spanned byv; 'si(€ I) (and the
empty set to{0}).

Finally we shall define a pair of weight functions on maximahes of dimen-
sion n. Remember that a characteristic submanifeld is a atadecomponent of
the set fixed pointwise by a certain circle subgroup, $ay 7 oft turns out that7;
agrees with the circle subgroup determinedwhye H»>(BT) through the natural identi-
fication Ho(BT) = Hom(St, T) ([27], Lemma 1.10). Therefora/, Flic; M is fixed
pointwise by a subtorug; generated By 's fof I.

Lemma 9.4 ([27], Lemma 1.7.). Supposel € Z(M)™. Then the se{v; | i € I}
forms a basis offf,(BT), so thatM; is a subset of/” and the cotgM)(I) is of
dimensionn .

A fixed point p € M” belongs toM; for somd € £, and the tangent space
T,M at p € M; naturally decomposes into

oM = @(TPM/T[,M,').
iel
The orientations or andf; determine an orientationrpi /7, M; for eachi , and
then an orientation on, M through the above isomorphism. On the other hand/
has a given orientation sincf  is oriented. These two ofi@mns on7,M may dis-
agree. We define the sigy), at p to be +1 or—1 according as the two orientations
agree or disagree, and set

w(M)*(I) := the number of{p € M, | ¢, = +1},
w(M)~(I) := the number of{p € M; | ¢, = —1}.

Note thatw ¢/ ¥(I) =1 andw (/ Y (1) = 0 for all I € =™ if M is a compact non-
singular toric variety.

Derinimion.  We call the tripleA ¢ ) ==& M )C M )w M F) the multi-fan of
M.
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A characteristic submanifold aff; is a connected componen¥gfiM; for some
j containing aT’ -fixed point. We give it the orientation indudeaim those onM; and
M;. With these orientations equippedy; , on whigliT; acts effectively, is consid-
ered as a torus manifold. #f; N M; is connected for any € E(M)fl) (this is the
case whenM is a compact non-singular toric variety), thennthdti-fan A (M;) of
M; agrees with the projected multi-fan M(; ) with respect{id € =(M)Y. They
are different otherwise but there is a natural surjectivg fmfam X (M;) toX (M ).

Similarly, a connected component éfxy  fd& € X(M) containing aT -fixed
point is considered as a torus manifold, andMg( ) agrees Withf (if )Mg and
My N M; are connected for alf € (M), but otherwise they are different although
there is a natural surjective map from Mg ) O M(x ) , wheeM( ) is ag-a
mented simplicial set obtained from the union of the siniplicets associated with
the connected components dfx

The multi-fanA (1 ) is non-singular by Lemma 9.4. We shall shbattit is com-
plete.

Lemma 9.5. A(M) is complete.

Proof. As we remarked in Section 2 after the definition of tbenpleteness of a
multi-fan, it suffices to prove the pre-completenessAof [ ) day J € (M),
Choose a generic vectar frolN  Ha(BT). The sign (1)} for i € (M)W is
defined as in Section 5 with respect to the projection image oh the quotient lattice
of N by the sublattice generated lay M( J)(O)V. The pre-completeness af M(, ) is
equivalent to the equality:

> (1w, ({ih) =0,

{iYesn)P

which we will verify in the following. Since|J| = n — 1, a connected component of
M, containing aT -fixed point is a 2-dimensional sphere on wtiith = T/T; acts
effectively. We denote those connected componentsly. They are torus manifolds
equipped with the orientations discussed before this len8irece S2 has two7T’/ -fixed
points, £ 2)® consists of two elements, denoted by, corresponding to tha@”’ -
fixed points. One easily checks that the multi-fAnS2) of S? is complete, which is
equivalent to the equality:

(9.1) 1) w(S2) () + (-1)* w(S3)(a-) = 0.

As discussed before this lemma, we have a natural mapx(M,;) — X(M);,.
Note that if ;(c.) = {i} wheree stands for + or—, then (1)* = (-1){}. On the
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other hand, we have

wM),({iD= Y w(SA)a).

mi(ae)={i}
Therefore
S C0Pwn), (i) = > (— 1 w(SE) (),
{irez(n® o
which vanishes by (9.1), proving the lemma. O

We make a remark on orientations at this point. Choose amtatien on7T and
fix it. It induces an orientation orHy(BT;R), so that A M )]e H,_1(2(M)) is de-
fined. If the orientation orf’” oM is reversed, theR M ( )] turn®ir[A(M)]. But
we have

Lemma 9.6. [A(M)] does not depend on the orientations dh S.
Proof. Recall that the cycle which definea p( )] EIGE(M)(”) w(M)(I){I). We

reverse the orientation on; . Obviously, M( 1)( ) af) remain unchanged unless

i € I. Suppose € I. Then, since the orientation onM /7,M; is reversedw X “XI)

and w M Y (I) will be interchanged, so thab M I)( ) turns intew(M)(I). As for

(I, & turns into —¢; as remarked before and hence so does by Lemma 9.3. Thus,

(I turns into—(I) if i € I. After all, w(M)(I)(I) does not depend on the orientations

on M;'s for any I € £(M)™, O

Remember that there is a canonical isomorphism Harsit) ~ H?(BT). We de-
note by+“ the element in Horfi( S*) corresponding tax € H?(BT). Elements of
Hom(T, 1) are complex one-dimensional representationsof  and tleesergte the
representation ringR 7{ ) off  which is identified with the groupgr of H2(BT).
Since ¢; is the image of 1€ HY(M;) by the equivariant Gysin map fromy;  tof
its restriction to a7’ -fixed poinp inM; , denoted lgy|,, gives the equivariant Euler
class of theT -representatiany M /7, M;; so 7,M /7,M; =t%1». On the other hand, the
equality in Lemma 9.3 restricted tp  shows tHgt|, | i € I} is the dual basis of
{vi | i € I}, s0¢&], is independent of the choice of € M; and &|, = u! in the
notation of Section 7. Therefore we have

1

-— u;

M =@
iel

as aT -representation wheneverc M;.
The elementst’'s (i = 1,...,d) generateHZ(M) additively modulo H*(BT)-
torsions ([27, Lemma 3.2]) and the torsion elements vanisenawrestricted to the fixed



44 A. HATTORI AND M. MASUDA

point setM” becauseéf;(M") is a free H*(BT)-module. Since the restrictiog |,
(p € M;) depends on only , we shall denote the restriction of an eigie H2(M)
to a point inM; by¢|,;. Note that

I H .
92) &l = { tiel

0 otherwise.
Lemma 9.7. For any ¢ € HZ(M),

> w(M)(I)tsh
—u!
1€X(M)® HiEI(l —r )

is an element ofR(T) when M is a torus manifold.

Proof. Since¢;’s generate H2(M) additively modulo H*(BT)-torsions, £ =
Z,‘.’zlc,-f,- modulo H*(BT)-torsions with some integers; ’'s. We define a map:
Z(M)® — HP(H?(BT;R)) by

Fe({i}) ={u € H%(BT;R) | (u,vi) =¢;i}.

The pair A M) F¢) is a lattice multi-polytope, and,., Fe({i}) = &|; for I €
=(M)™ which follows from (9.2). SinceA M ) is non-singular by Lemma4 Sand
complete by Lemma 9.5, the lemma follows from Corollary 7pplaed to the multi-

polytope A M ) F). O

10. Ty-genus of a torus manifold

When M is a unitary torus manifold, the localization formult the 7, -genus
T,[M] of M tells us that

_ Hie](l"')’tiu"’)
(10.1) TyM]= M) =
' 1;):('1)11) [Lic,(—17")

and this is actually a polynomial in  with constant coeffitgenAs is well known,
To[M] agrees with the Todd genus d@f  arfd[M] agrees with the signature aff
see [20]. TheT, -genus is a genus for unitary manifolds and itoisdefined for gen-
eral torus manifolds. But the right-hand side of (10.1) nsakense even for a torus
manifold, and we take it as the definition of tlig -gerfusM [ ]Mf d akefine the
Todd genus ofM to bdp[M]. Note that the signature o/ is already defined for a
torus manifoldM becausas/ is an oriented closed manifold, &atl it agrees with
T1[M] which follows from the Atiyah-SingefG -signature theorem
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Theorem 10.1. Let M be a torus manifold of dimensidn. Then

T,[M] = T AMI= ) enm(AM))(=1 - y)".

m=0

(see Section 3for e,(A(M)).) In particular, the Todd genuslp[M] of M equals
deg®)

Proof. Look at the expansion of the right-hand side of (1@vith respect toy .
It follows from (9.2) and Lemma 9.7 that all coefficients ofwers of y in (10.1) are
elements ofR 1 ). Take a generic vector H,(BT) and evaluate the right-hand side
of (10.1) onv . Then we get the following polynomial in  whoseeffiwients are Lau-
rent polynomials inz :

. (1+ —(uj.v)
(10.2) Z w(M)(I)HIEI( ny( : >)
0] [Lie,(@—z= )

It is easily seen that (10.2) approaches to a polynomiat in th wonstant coefficents
if z tends either to O or ta. This means that (10.2) itself is a polynomial with con-
stant coefficients. Since is generic, this implies that{)LGthat is7), [M ], is actually

a polynomial with constant coefficients equal to (10.2). A,hky lettingz tend to O,
we obtain

T[M= > wM)(I)(—yy"D,
1ex®
where u(1) = #{i € I | (u!,v) > 0}. This u(/) agrees with theu() in Section 3
because{u! | i € 1} is the dual basis ofv; | i € I}. HenceT, M ] =T, [A M )],
proving the former equality in the theorem. The latter fatofrom Corollary 3.3.
As noted in the definition off, 4 ] in Section 3p[A(M)] = deg(A (M )). Since
To[M] = To[A(M)], the last statement in the theorem follows. [l

Corollary 10.2. The signatureSign(M ) of a torus manifoldM is given by
Sign(1) = "(=2)"en—m(A(M)).
m=0

If T[M] =1 and w(M)(I) = 1 for all I € X(M)®, then e,(A(M)) agrees with the
number of cones of dimensign  (M).

Proof. Since Sign¥/ ) equalgi[M], the former statement follows from Theo-
rem 10.1. The latter statement is noted in the definitior, 00\ ¥ Hection 3. ]
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Remark. If M is a compact non-singular toric variety, theh M[ ] = 1 and
w(M)(I) = 1 for all I € =(M)™, and the formula above is already known in that
case ([29, Theorem 3.12 (3)]).

11. Equivariant index of a torus manifold

If M is a unitary torus manifold, then the mapcollapsingM to a point induces,
in equivariant K-theory, the equivariant Gysin homomospi

m: Kr(M) — Kr(pt) = R(T).

If E is a complexT -vector bundle ove , then(E) equals the index of a Dirac
operator twisted byE . It is sometimes called the equivarRemann-Roch number.
The Todd genus oM is equal ta(1).

Let L be a complext’ -line bundle over a unitary torus manifédd inc& (L)
is an element ofR T ), one can express

(11.1) mL)= Y mp(u)"

uEHA(BT)

with integersm; { ) which are zero for all but finitely many elemteer . In this section
we describe the multiplicityn, « ) of* in terms of the (shiftedpoment map associ-
ated with L whenM is a torus manifold. For that, we need to defirf¢) when M
is a torus manifold. This is done as follows. Whe&h is a unitamys manifold, the
localization formula applied tar, (L) tells us that

(M)(1)tr Dl
(11.2) m(L) = w—:
1e§4)w> [Lie,(@—171)

wherec! (L) € H2(M) denotes the equivariant first Chern classiof . (Note thab)l:
is nothing but the complex one-dimensiorfal -represematiotained by restrictind.
to a point in M; .) The right-hand side of (11.2) is an elementRof’) by Lemma 9.7
wheneverM is a torus manifold although may not be defined. Thus we defing(L)
as the right-hand side of (11.2) whé#i  is a torus manifold, tueeh definen, ) as
before using (11.1).

In the following, we will make the following assumption on @ras manifoldM |,
which is satisfied for compact non-singular toric varietigith restricted7 -actionsall
isotropy subgroups oM are subtori @ and each connected coemt fixed point-
wise by a subtorus contains at least ofie -fixed pdliten the uniorU,‘.lz1 M; is the
set of points with nontrivial isotropy subgroups, and itldals from the slice theorem
that the orbit space/ /T is a compact connected smooth manifold of dimension
with |J, M;/T as boundary (after the corners are rounded).

We make a further remark on orientations. The orbit spo& is orientable (see
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[27], Lemma 6.7) and we orient it in such a way that the origowaon 7 followed by
that of M /T agrees with that of¥ times—(1)*"~/2, This determines a fundamen-
tal class inH, ¢//T,0(M/T)) and hence inH,_1(0(M/T)), denoted by §(M /T)],
through the boundary homomorphism fraly M (T, 0(M/T)) to H,_1(0(M/T)).

Since HZ(M) is additively generated by;'s (i = 1,...,d) modulo H*(BT)-
torsions,ci (L) = >~ ¢;& modulo H*(BT)-torsions with some integers 's. Associated
with L, there is defined the moment map, M — H?(BT;R) = L(T)*. It maps
M; into an affine hyperplandu ¢ H?(BT;R) | (u,v;) = ¢;} for eachi (see [27],
Lemma 6.5). We slightly shiftb; so that the shifted m&p mapsM; into

Fidih = {“ € H(BT;R) | (u,vi) =c¢; + %}

for eachi . In fact,®) is defined as follows. LeK be a complgx -line bundle over
M with cI(K) = —Zf:l &. SuchK exists ([19]). Wheds is a compact non-singular
toric variety, K is the canonical line bundle &f . Using the nemmnmap®x M —
H?(BT;R) associated withk , we define

1
(I)IL =9, — E(DK

The moment map®; andy are equivariant, the -action on thettafé@BT; R)
being trivial; so®) induces a map

@' : M/T — H¥BT;R).

The shifted affine hyperplaneg; ({i})'s miss the Iatti_ceHZ(BT). Since 9(M /T) =
U;(M;/T) and ®} mapsM;/T to F,({i}) for eachi ,®} induces a homomorphism

(1)t Hys(O(M/T)) — Hu—a(HX(BT;R)\{u})
for each lattice poinu € H?(BT). We define
d; (u) ;= the mapping degree otﬁ(b)*

where the orientation o®?(BT;R) is determined by that of . Our main theorem in
this section is the following.

Theorem 11.1. Let M be a torus manifold. Them,; =d; on H%(BT).

Remark. This theorem was first established by Karshon-Tolman [2BemwM
is a compact non-singular toric variety, and then extendedspirf manifolds with
torus actions by Grossberg-Karshon [12] and to a unitarystananifold by the sec-
ond named author [27]. The family of torus manifolds cordaihese manifolds.
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Let S(M) be the realization of the first barycentric subdivisiof (M) and let
S(M); be the union of simplicies i§ A ) which contain the vertéiX as in Sec-
tion 6. SinceS M ) =(),c, S(M); is contractible for any non-empty sét<c (M)
and o(M/T) = Uf’:l(M,-/T), it follows from Lemma 6.2 that there is a continuous
map

pu: O(MT) — S(M)

sending(;c,(M;/T) to S(M),; for eachl € X(M), and that such a map is unique
up to homotopy preserving the stratifications, where thatiftrations ond(M/T) and
S(M) mean subspaces),., d(M;/T) and S (M ) indexed by elements 's iB M( ).

If the orientation onT oM is reversed, thed(} /T)] and [A (M )] will be mul-
tiplied by —1 simultaneously; so the following lemma makes sense.

Lemma 11.2. py, ([0(M/T)]) = [A(M)].

Proof. We prove the lemma by induction on the dimension = MD).
Whenn =1,M isS? with a nontrivial smoothS*-action. In this case, it is not difficult
to check the lemma, which we leave to the reader.

Assume that: > 1. Since a characteristic submanifold &f is a connected com-
ponent ofM; N M; for somej and such is uniquely determined by the charadterist
submanifold ofM; , there is a natural map: £(M;) — X(M);. This map is an iso-
morphism if M; N M; is connected for any , but otherwise it is only surjective. As
we did in Lemma 6.1, we identify the realization & M(; ) wit{S(M);). One sees
that

(11.3) m(AMID = Y~ wM)(I\{i}) € Hy2(0(S(M),)) = Hy—2(Z(M),).

ielex(m)m

Since M; is itself a torus manifold, the spac@&V;/T) and S (M; ) have stratifi-
cations like forM , and hence we have a map : 9(M;/T) — S(M;) preserving the
stratifications. By the induction assumption

(11.4) pm, ([O(M; /T)]) = [AM))] € Hy—1(S(M))) = H,—1(Z(M)).

On the other handd(S(M);) has a stratification induced fror§ M( ) and each
stratum is contractible. Sincg,, restricted tod(M;/T) is a map fromd(M;/T) to
J(S(M);) preserving the stratifications and so7so py, as well, they are homotopic
preserving the stratifications by Lemma 6.2. Therefore, aeetthe following commu-
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tative diagram:

injective

anl(a(M/T)) — @,‘ anl(Mi/Tv B(M,/T)) ; @,‘ anZ(a(Mi/T))

pM*l l EBm*pM,-*l

Hy o(S(M)) 0 @y H, o (S(M);, (S(M),)) —=— @D, Ha_2(A(S(M),)

where the left horizontal maps are natural ones. Tracingugher horizontal sequence
from the left to the right, (M /T)] € H,_1(0(M/T)) maps toép,[0(M;/T)], and
down t0 3~ c/cxunm wM)UI)I\{i}) € @, Hi—2(9(S(M);)) by (11.3) and (11.4),
while [A(M)] € H,—1(S(M)) maps through the lower horizontal sequence to the same
element as observed in Lemma 6.1. Since the horizontal segaebove are injective,
the lemma follows. O

Proof of Theorem 11.1. By Lemma 6.2 we have a nfap/ (—)H?(BT;R)
associated with the multi-polytop®; := (A(M), F;). We denote the map by;. The
composition ) o py is a map fromo(M/T) to H*(BT;R) sendingn;e;(M;/T) to
Nic; Fr{i}) for any I € (M), and so ist’L as well. ThereforeW; op) and d_>’L are
homotopic preserving the stratifications by Lemma 6.2. ltofes from Lemma 11.2
that

d} (u) = the mapping degree of®X,), : H,_1(d(M /T)) — H,_1(H*(BT;R)\{u})
= the mapping degree ofl(] o py). : H,_1(d(M/T)) — H,_1(H*(BT;R)\{u})
= the mapping degree ofif}). : H,_1(S(M)) — H,_1(H*(BT;R)\{u})
=WNp, (1) = DHp, (u) = DH(p,), (u).

This together with Corollary 7.4 and the definition of, (i.€11.1) and (11.2))
proves the theorem. O

12. Torus orbifolds

The aim of this section is to give the definition of a torus fwki and provide its
basic properties for generalizing the results of Sectidhardd 11. We first recall basic
definitions concerning orbifolds. We refer to [31], [24] dtQ] for details. The refer-
ence [26] will be also useful; it deals with torus actions gmplectic orbifolds. If M
is an orbifold of dimensiom , then there is a famifyU,, V,, H,, p.)} of orbifold
charts, where{U,,} is an open covering oM V, is ann -dimensional manifoldH,,
is a finite group acting orv,, and p, : V, — U, is a map which induces a home-
omorphism fromV,/H, onto U,. If U, and Ug intersect each other, then the charts
(Ua, Vo, Ha, po) and Ug, Vg, Hg, pg) satisfy suitable compatibility conditions. Such
a family {(Ua, Va, Ha, po)} is called an orbifold atlas. For any point ¥ , there
exists a special type of orbifold chaU{, V., Hy, p, ) with the properattp*(x)
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is a single pointx”e V.. The isomorphism class of the grou, is uniquely deter-
mined byx and is called the isotropy group of . The ordertiyf  ,ofieth byd, , is
called the multiplicity of the pointt . Such an orbifold chavill be called a reduced
orbifold chart. WhenM is connected, the minimum of the miittipes is called the
multiplicity of the orbifold M and is denoted by M ). The st € M | d, =d(M)}

is open and dense iM . It is a manifold. This set is called thecjpal stratum of
the orbifold M . We havel M ) =1 if and only if the actions of all tletropy groups
are effective.

A map f:M — M’ from an orbifold M into another orbifoldV’ is called
smooth if, near every poinkt imM , there is a homomorphism: H, — H,,
and a p,-equivariant smooth mapf,: V, — V. for suitable orbifold charts
(Uas Vo, Ho, po) for M aroundx and (., V., H., pl,) for M’ around f § ) satisfy-
ing the commutativity relationp/ o f, = fop,. A subsetM of an orbifoldy’ is called
a suborbifold if, for each orbifold char{,, V., H.,, p.) of M', V. = p., (M NU.)
is an H/ -invariant submanifold ofv’. If this is the caseM becomes an orbifold with
orbifold charts U,, V., H., p..) whereU, = M N U/, and the inclusionrM — M’
becomes a smooth map. It may happen #ha ¢ J(M’) (M and M’ are assumed
connected). The integet M | M') =d(M)/d(M’) will be called the relative multiplic-
ity of the pair M, M’).

Orbifold vector bundles are also defined. Typical examplesthe tangent bundle
of an orbifold and the normal bundle of a suborbifold. An éld is orientable if its
tangent bundle is orientable. E — M is an orbifold vector bundle over a connected
orbifold, then the relative multiplicity of the orbifold eor bundleE is defined to be
d(M | E) where M is identified with the zero-section and is consideasca suborb-
ifold of E. If M is a suborbifold of M’ and v is the normal bundle oy inv’, then
d(M | v) equalsd M | M').

Let G be a Lie group. An action oz on an orbifold/ is a smooth map
Y. G x M — M satisfying the usual rule of group action. Suppose tiat I% co
nected. Ifx € M is a fixed point of the action, andU(, V,, H,, p. ) is a reduced
orbifold chart aroundx such thdf, is invariant under the actd G, then there is
a finite covering groupﬁhr of G and an action oG, on V, which covers the action
of G on U,. If G is compact, the fixed point set of the action is a shiold.

Now let M be an oriented, closed orbifold of dimensiom 2 withedfective ac-
tion of ann -dimensional torug” . A connected component of tkedfipoint set by
a circle subgroup is a suborbifold. A suborbifold of this éymrhich has codimension
two and contains at least one fixed point of the -action willch#ed acharacteristic
suborbifold Let M; be a characteristic suborbifold and= M;. We take, as we may, a
reduced orbifold chartl(,, V., H,, p, ) around such that is an open disR3h
and the action ofd, orV, is linear. We denote by the same syribol tathgent
space toV, at the point ~ . (x). Then the vector spacé, decomposes into a di-
rect sumvV;, © V- where V- is tangent top_ (U, N M;), and the vector spacE;,
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represents the fiber direction of the normal bundleVf Mn . Botropy groupH,
acts onV;, .

Lemma 12.1. Let M be an oriented closed orbifold as above amti a char-
acteristic suborbifold. LetS; denote the circle subgroup ahhfixes the points oM;
Then there exists a finite covering gro&p of §; and a lifting of the action of5; to
the action of§,- on V, for any pointx € M;. The lifted action of§,- preservesV;, .

Proof. Tox € M; we correspond the degree of the minimal finite coverig
of §; such that there is a lifting of the action %,. The lifted action necessarily pre-
servesV;, . It is not difficult to see that the correspondencedslly constant. Since
M; is connected the correspondence must be constant. ]

Hereafter we denote by, : §; — S; the minimal finite covering ofS; with the
above propertyS; acts effectively onV, .

An oriented, closed orbifoldy of dimensiom2 with an effeetiaction of a
torus T of dimensiom with non-empty fixed point set” equippethve preferred
orientation of the normal bundle of each characteristicoshiffiold will be called a
torus orbifold if, for each M; and at each point € M;, the action ofH, preserves
the orientation of eaclV;, . Note that choosing an orientatiba eharacteristic sub-
manifold is equivalent to choosing an orientation of its mat bundle. Thus a torus
manifold is a torus orbifold in the above sense. Another glanis a unitary torus
orbifold. A unitary torus orbifold is a torus orbifold suchat V,, is a unitary man-
ifold, the action of H, preserves the unitary structure &f, for each orbifold chart
(Uw, Va, Hy, po) and the action off onM  also preserves the unitary structure of
V!s.

Let M be a torus orbifold. The preferred orientation of thermal bundley; of
M; makes it a complex orbifold line bundle. Then there is a uaigsomorphism
@1 S — 5 such thaty(z) acts by the complex multiplication of on eadh,
We identify S; with S via ¢;. The homomorphisnp;: S = §; — T defines an
elementy; € Hom(S, T) = Ho(BT;Z). We are now ready to define the multi-fan
AM) = (Z(M), C(M), w(M)T) associated with a torus orbifolsf  in an entirely sim-
ilar way to the case of torus manifolds. Specifically

T
(M) = I‘(ﬂM,-) 702,

iel

and C (M ){ ) is the cone inH>(BT;R) with apex at 0 and spanned Hy; | i € I}.
Furthermorew ¥ F(I) = #{x € M; | ¢, = £1} for I € Z(M)™, wheree, is defined
to be the ratio of two orientations at , one which is given bg trientation ofM
and the other by that of the oriented vector space Pz, Vi..
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We set?; =[], Si for 1 € £(M)® and p; = [[,, pi: T; — T. The image of
pr is denoted byT; p,: T; — T, is a finite covering.7; fixes the points aoff; =
Nic; Mi. If 1 € (M)™, thenT; =T . Letx be a fixed point of the action 8f on
M. Then there is a uniqué € =(M)™ such thatr belongs ta/;, . The inclusigh =
S; — T, defines an element; & Hom(s?, 7;) = Ho(B1;;Z), and we havep,.(3;) = v;.

Ve and V., i € I, are compIexT,—moduIes, and the decompositidn.  @,.; Vix

is compatible with the action of;. The effectiveness of th& -action o implies
that 7; effectively acts onV, ; equivalently, it implies thd®; | i € I} is a basis
of Hz(BT,;Z). Since py.: HZ(BTI;Z) — Hy(BT;Z) is injective, thev;, i € I, are
linearly independent inHHy(BT; R).

Lemma 12.2. A(M) is a complete multi-fan.

Proof. The argument is almost similar to the case of torusifiolds. One has
only to observe that the characteristic suborbifolds amir fintersections are torus orb-
ifolds and a 2-dimensional torus orbifold is topologicadly2-sphere acted on by a cir-
cle group with exactly two fixed points. U

Lemma 12.3. Supposed(M) = 1. Let I € £(M)®, and letx be a point in the
principal stratum(as an orbifold of M;. Then the isotropy groupi/, of is isomor-
phic to the kernel ofp,;: T — T.

Proof. Let {U,, V., Hy, p, ) be an orbifold chart around . We may regéid as
ann dimensionall;-module as before. As sucli, is decomposed as a direct sum of
T;-modules

Ve = (EB V,-X) oV

iel

where V' is projected intoM; byp, I, = [Lec; S; can be regarded as embedded in
the general linear group &b, ., Vi.. SinceH, acts on eacl;,  preserving its orienta-
tion, there is a homomorphismi, — 7;. The action ofH, onV’ is trivial. Moreover
the action ofH, onV, is effective becaugeM( ) = 1. It follows that thomomor-
phism above embed#, intfy. Since the kernel op, is equal to the intersection of
7, with the image ofH, , it is isomorphic té{, . Ol

It is known that a closed oriented orbifoltf  of dimensien hhs funda-
mental class ¥ ]¢ H,(M;Z), and that the Poincaré duality holds, i.e., the opera-
tion ¥ = [M]N : HY(M;Q) — H,_,(M;Q) is an isomorphism. Iff M — M’
is a smooth map from an oriented close orbifalf to anotheh su¢, then the
Gysin homomorphismfi: HY(M;Q) — HY""'(M’;Q) is defined to be the com-
postion ¥~ o f, o ¥, wheren’ is the dimension ofM’. If a compact Lie groupG
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acts onM andMm’, and/f is equivariant, then the equivariant Gysin homomarhi
fir HY(M;Q) — HE™ ™™ (M';Q) is also defined.
HenceforthM will be a torus orbifold. For eache ©(M)®), we set

& = (fin(Q) € HY(M;Q),
where f; :M; — M is the inclusion.

Lemma 12.4. Letc!(v;) be the equivariant first Chern class of the normal bun-
dle v;. Then we have

i () = f7(&)-

Proof. We may assume that M( ) = 1. Take an equivariant Thom forifor
the equivariant orbifold bundle; (we refer to [3] for Thom form and Chern form,
cf. also [10]). Letx be a point in the principal stratum &f , afid., V., H,, p,) a
reduced orbifold chart around . The restriction @fto V, is invariant under the ac-
tion of H, and its support is contained in a tubular neighboth® of Vi = p-1(U;),
where U; =U, N M;. Moreover, with respect to the fibering :"W; — V;, we have
|H,|~(7:)«(¢) = 1, where 7). is the integration along the fiber of;."Note that the
fiber is V., and that the action dfl, preserves the orientatio;of The equivariant
Chern class! (1) is the restriction toM; of the cohomology class] [of ¢. Here [p]
is considered as a relative class Bif(W, W \ M;;R) where W is a tubular neighbor-
hood of M; .

On the other hand¢; is the restriction of a cohomology class € HZ(W, W \
M;;R) such that

m.(¥) = 1€ HY(W;R) = HX(M;; R),

wheren: W — M, denotes the projection of the fibration. Note that the fiberrds
Uix = Vi /Hy, where H, acts effectively ofv;, . We have

m([9]) = [He| T (@) ([¢]) = 1 = m(¥).

But 7, is an isomorphism (Thom isomorphism). Hence we ha¥e= ¢, and conse-
quently

i) =19l | Mi =9 | M; = £(&). O

We noticed that, forl € S(M)®™, {v; | i € I} was a basis ofH»(BT;R). Let
{u!} be the dual basis iH%(BT;R). This can be interpreted in the following way.
Let {@i; | i € 1} be the basis oHH?(BT;;Z) dual to {3 | i € I}. We havep’(u!) = ii;,
since p.(;) = v;. We identify H3(BT;;R) with H?(BT;R) by the isomorphisnp;.
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Then H2(BT,;Z) can be considered as embeddedHA(BT; R). With this convention
we haveu! =uj .

Let x € M7 be a fixed point of thel' -action. In the sequel we identiy(x; R)
with H?(BT;R).

Lemma 12.5. Let 7 € T(M)™ and x € M;. Then¢; | x = u! € H*(BT;R) for
iel. If j¢1, then |x=0.

Proof. By Lemma 12.4 we have
&lx=clw|x).
But v; | x viewed asT;-module isV;, . It follows thatcf’(z/,- | x) = i;. Hence
AW | x)=ul.
If j ¢1,thenx ¢ M;. Therefore¢;|x = 0. U
If we consideru! =u; as an element of HofT)(Sf) = H3BT,;7Z), then
Lemmas 12.5 and 12.6 imply that! is nothing but thgmodule V;, . The fol-

lowing Lemma describes the algebra structureHjf(M; R) over H*(BT;R) modulo
H*(BT;R)-torsion as in the case of torus manifolds (Lemma 9.3).

Lemma 12.6. The following equality holds for any € H%(BT;R):

m*w)= Y (u,v)& modulo H*(BT;R)-torsion
iex(M)D

Proof. Letx € M; C MT be a fixed point of thel” -action. We restrict both sides
of the equality in Lemma 12.6 to . On the left hand side we:get n.tla right hand
side the result is

> (u, viu]
i€l

by virtue of Lemma 12.5. But this is equal 0 by the definitiohtbe u!. Thus
both sides coincide after the restriction to eacke M7. Since the restriction homo-
morphism=*: Hj(M;R) — H;(MT;R) is injective moduloH*(BT;R)-torsion, the
equality is confirmed. O

RemarRk. The equality in Lemma 12.6 characterizes the vectors  imgesf the
& as in Lemma 9.3.

We setN =H,(BT;Z) and defineN; forl € ©(M)™ to be the lattice generated
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by thev;, i € I.

Lemma 12.7. Assume that/(M) = 1. Letx € M; with I € £(M)". ThenH, is
isomorphic toKerp,. MoreoverKerp, is isomorphic toN/N;.

Proof. We have already shown thaf, is isomorphic to the keoiep; in
Lemma 12.3. For the second part it suffices to note thiat &pd beamentified
with the fundamental group of  anf,. Therefore the kernel of,; is isomorphic to
N/Nj. |

Remark. Hereafter we identifyH, andV/N; with Kerp;, C T, through the
isomorphisms given in Lemma 12.7. We puyf(u, v) = exp(2ry/—1(u, v)) for u €
H%(BT;;Z) andv € Ho(BT;R). If u is fixed, then the valuey,(u, v) depends only
on the equivalence class of moduly . Hence, if we idenfifywith S via o; as
before and7; with [],, $* via [],., ¢, then the map expHy(BT;R) — T; defined
by exp ) =IT,c, exp(2rv/—1(u!, v)) is a universal covering map and its kernelNs
It induces an isomorphism froril, & /N; onto Kerp,. We shall writex;(u, g) in-
stead ofy,(u, v) for g = exp@) € 7; as in Section 7. Let/ be a one dimensional
T;-module. It defines an elemente Hom(7, SY) = H2(BT;;Z). Then the action of
g € T; onV is given by the complex multiplication by, (x, g).

Suppose thatM is a unitary torus orbifold such thlaps ( ) = 1. Lete &
T-invariant complex line bundle ovel . By using a hermitiammection of M and
a hermitian connection of. , a Dirac operator twisted by isrd=fias in the case
of torus manifolds. Its index is & -module. It is called theliggriant Riemann-Roch
number with coefficient inL , and is denoted R’ M(L ¢€)R(T). It can be ex-
pressed by the fixed point formula due to Vergne [33]; cf. d1§0]. The formula
is particularly simple when all the fixed points are isolatéidis convenient to write
down the image ofRRT ¥, L ) by chR T( }» H**(BT;R); the result is

Lemma 12.8. Let¢ =cI(L) be the equivariant Chern class &f . Then

eblx
ch(RR'(M,L)) = 3 %" sz(ﬁlf,g) _
xeMT | Hs | gEH, Hielr(l_XI_\-(M,-",g)_lef“f )

where I, € £(M)® is such thatx € M, .

It can be shown that, ik and both lie in the samg , thehx =& | y
for ¢ = ¢I(L). The proof is same as in the case of torus manifolds as was gh
[27]. We shall writeu; =cI(L) | x for x € M;. Taking Remark below Lemma 12.7 in
account, we get
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Proposition 12.9.

(M)(I)e" Y1, 8)
ch(RR"(M,L))= wiM))e” ) .
1EX (M) IN/Ni| SEN/N; [Lie, (- xi(ul, g)~te=)

Since ch:R [ )— H**(BT;R) is injective, the formula in Proposition 12.9 char-
acterizesRRT M, L ). Using the notation in Section 7, we obtain

Corollary 12.10.

RRT(M,L)= 3 w(M)(1)t ) XI(MI,Ig) —
IGE(M)(”) |N/N1| gEN/N] Hie[(l_xl(ujvg)7 t i)

Whenu; =cf(L)|x, x € My, lies in N* = H?(BT; Z), then x;(u;, g) = 1 for all
g € N/N;. Therefore, ifu; € N* for all I € £(M)®, then

w(M)(1)e .
RRT(M, L) = WAMNL)E .
16;”)(”) |N/NI| gGNZ/NI Hie[(l_ Xl(uilv g)*lt—u‘.)

By observing thatg — x;(u, g) is a character ofN /N, for any u € H3BT,,7) =
Hom(7;, 1), the formula above can be rewritten in the following form:

w(M)(I)r" 5 1

(12.1) RRT M, L)= — .
2 IN /N conowy Licr(=xa(uf, g)r=)

1€ (M)m

The right hand side of this formula (12.1) appeared in Caryll7.4. There, it was re-
lated to a lattice multi-polytopéP, in which u; is contained inv* for all 1 € =),
and the Duistermaat-Heckman functiadbHp,. Suppose that! (L) is of the form
(L) = Z,.GE(M)(D ci& € H2Z(M;R). Then the above multi-polytop® is nothing but
the one whose first Chern classdgP) = > _ c¢;x; as in Section 8. Note tha® is not
always a lattice multi-polytope in this case.

Remark. Corollary 7.4 shows that the right hand side of the formula.1) de-
pends only onA ¥ ) and?; namely, it does not depend on the choice of generating
vectorsv; € H%(BT;R) in so far as they lie inN  =H?(BT;Z) and {u! | i € I} is
interpreted as the dual basis 6f; | i € }.

When M is a torus manifold, the Duistermaat-Heckman functias a geometric
meaning coming from the moment map of the line bunblle  as wpkieed in Sec-
tion 11. There the role of the winding number was also explhirnThese notions are
generalized to the case of torus orbifolds and similar tesubld in this case too. The
details can be worked out without much alteration and aretéethe reader.
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The T, -genus of a torus orbifold is also defined by using the fipeuht formula
due to Vergne in a similar way as in Section 10, and the analaguTheorem 10.1
holds. the details are left to the reader.

13. Realizing multi-fans by torus orbifolds

In the previous section, we associated a complete simplidti-fan of dimen-
sionn with a torus orbifold of dimensionn2 . In this section, e@nsider the converse
problem. If a multi-fanA is associated with a torus orbifaldl then we say thaiA
is (geometrically realizedby M, or M realizesA.

We recall how the multi-fan ofM changes when the orientationsM or M;
are reversed. If the orientation aff is unchanged but thatvipf s reversed, then
the orientation of the normal bundle a¥; is reversed and, éericdimensional
cone C () tunrs into the cone-C(i), and the pair ¢ # (1), w(M)~(I)) turns into
(w(M)~(I), w(M)*(I)) for I € £(M)® containingi while others remain unchanged.
If the orientations ofM and of all théf; ’s are reversed, thentlad conesC i( )’s re-
main unchanged butu( M *(I), w(M)~ (1)) turns into @ M ) (1), w(M)*(1)) for any
I € Z(M)"™ so thatw (1 )( ) turns into—w(M)(I) for any I € =(M)™. The torus
orbifold M with the reversed orientations @af and all th¢  'slvibike denoted by
—M.

The underlying space of a torus orbifold of dimension 2Sfswith the standard
Sl-action. In this case, there are two characteristic subivlasi They areS*-fixed
points. Taking orientations o2 and its characteristic submanifolds into account, we
easily have the following theorem.

Theorem 13.1. A complete simplicial multi-fam\ = (Z, C, w*) of dimensionl
is geometrically realized if and only iE is isomorphic to thegumented simplicial
set obtained from the boundary oflasimplex and{w*(I), w= (1)} = {1, O} as a set
for 1 € =@,

The analysis of a torus orbifold of dimension 4 is more coogikd. In this case,
each characteristic suborbifold is homeomorphicstoand has two fixed points. There-
fore, if two of the characteristic suborbifolds interseiten they intersect at one point
or two points, and if they intersect at two points, then they rebt intersect at any
other characteristic suborbifolds. We also note thaf a dfigeint is an intersection
of two characteristic suborbifolds. These facts imply tloaly if” part in the follow-
ing theorem. We will prove the “if” part later.

Theorem 13.2. A complete simplicial multi-fam\ = (X, C, w*) of dimension2
is geometrically realized if and only if the following two rmbtions are satisfied for
each/ € £@:

(1) {w*(1), w= (1)} ={1, 0} or {1, 1},
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(2) when {w*(I),w=(I)} = {1, 0}, there are exactly two elementsay I’ and I”,
in @ such thatl N1’ and I N 1" are in = and I NI’ N I” = (), and when
{w*(I), w=(I)} = {1, 1}, there is no element’ € *@ such thatI N I’ € =@,

In contrast to the low dimensional cases above, we have

Theorem 13.3. Any complete simplicial multi-fan of dimension3 is geometri-
cally realized.

In the following A = (Z, C, w*) will be a complete simplicial multi-fan of dimen-
sionn > 2 unless otherwise stated. Here is an outline of how to realizby a torus
orbifold. We choose and fix a generic (rational) 1-dimenaiarone inNg, and decom-
poseA using it into a number of what we calinimal multi-fans. Minimal multi-fans
can essentially be realized by weighted projective spades paste them together by
performing equivariant connected sum along characterstborbifolds and at” -fixed
points to obtain a desired torus orbifold realizing the give.

Equivariant connected sum is performed through two isofmorprbifold charts.
In this way attention should be paid to orbifold structur8s. we make a remark on
orbifold structures at this point. There are many choicesrobrbifold structure onv
(e.g. S? with the standards®-action admits infinitely many orbifold structures), bueth
associated multi-fan does not depend on the choice of arottbétructure. In fact,
the circle subgroups; determined by the vectpr in the previeeion is the one
which fixes points in the characteristic suborbifal4 , so line generated by; is
independent of the orbifold structure. Moreover the dimectof v; is determined by
the choice of orientations o and; , so the cone spanned by déepéndent of
the orbifold structure. What depends on the orbifold strieetis the length ob;  which
is equal to the degree of the covering mﬁp—> S;. In this way the vectors; reflect
the orbifold structure related to the torus action. We shall the vectorv; the edge
vector of the 1-dimensional con€ i ().

We shall use two types of equivariant connected sum; one i§-fixed points
and the other is along characteristic suborbifolds. Letxsaén the former first. Sup-
pose that torus orbifoldd/ antd’ with d(M) = d(M’) haveT -fixed pointy; ang’
respectively such that the -dimensional cones and the edgmnrg corresponding to
them are the same and the siggsande¢, atg andg’ are opposites. Then there are
a finite covering? of T, a finite subgroup# ofl' and orbifold charts, V, H, p )
and U, V, H, p') aroundg andg’ respectively such thaV is an invariant open disk
centered at the origin in &-module. In particular a diffeomorphism (in the sense of
orbifold) f from the closure of/ onto that df’ is induced. Moreoverf sends char-
acteristic suborbifolds that contain  onto characteristiborbifolds that contairg’.

It should be noticed thaf is orientation reversing @n  and lbrtha characteristic
suborbifolds. We remov&/ antd’ from M and M’ respectively and glue their bound-
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aries through the diffeomorphisri  restricted to the bouedarThe resulting space is
a torus orbifold with the orientations compatible with tleeus orbifoldspM  andv’.

Let us explain the equivariant connected sum along charstatesuborbifolds. For
the sake of simplicity we assume thatM ( ) = 1. Ld be a charatitersuborb-
ifold, p a point in the principal stratum of the orbifolsf; . We ynassume that the
isotropy subgroup ap of th& -action is the circle gragip . Ketoe the covering
group of S; corresponding to the edge vectpr  as introduced enptievious section.
Denote byV; the standard complex 1-dimensioSaiodule and byD ; ) the unit
disk of V;. Then it follows from the Slice Theorem and Lemma 1th&t the T -orbit
of p has a closed invariant tubular neighborhdgdin M equivariantly diffeomorphic
to

(13.1) (x5 D(V})) x D"~

where T xz D(V;) denotes the orbit space df x D(V;) by the S;-action defined by
s(r, x) = (tpi(s) L, sx) for s € §;, t € T andx € D(V)).

Suppose that there are characteristic suborbifaltls Mndof torus orbifolds
M and M’ with d(M) =d(M’) = 1 respectively such that the corresponding edge vec-
tors coincide. Then the corresponding circle subgratipand S{, agree and there is an
equivariant diffeomorpism betweel; and 171.’, reversing the orientations induced from
M, M;, M' and M/, because bottU; and 171.’, are equivariantly diffeomorphic to the
space in (13.1) and"~! (n > 2) has an orientation reversing self-diffeomorphism.
We remove the interior ot/; and 17,.’, from M and M’ and paste them together along
the boundaries ol; and 17,.’, through the orientation reversing equivariant diffeomor-
phism restricted to the boundaries, producing a new torbifatd, say M. We call
this procedure the equivariant connected sumibf afidalong M; andM/,. The
codimension of the principal orbits inZ; and/, is n — 1, so whenn > 3, M; and
M), are pasted together to become one characteristic subldrbifod” and A (")
is obtained fromA ¥ ) andA M’) by identifying i with i’. However, whenn = 2,
the characteristic suborbifold®; ard], are S and the principal orbits in them are
circles; so the orbits separatd;  amff, into two connected components respectively
and hence two characteristic suborbifoldsMf’ are produced.

Let I € =(M)™ and I’ € ©(M')™ be such thatC ¥ X ) = M )Y(). Suppose
that the corresponding edge vectors are the samd for 7andihen one can make
equivariant connected sum &f amd’ along each pair of characteristic suborbifolds
M; and M/, such thatC ¥ X ) =C ¢’)(i’) for i € I andi’ € I’, and then elements in
I and I’ will be identified in pairs in the multi-fan of the resultingrtis orbifold and
the weightsw® on the identifiedn -dimensional cone is the sum of thosé at &nd

We say thatA isconnectedf X is connected. According to the decomposition of
¥ into connected components, the multi-fan ~ decomposes iommerted multi-fans
which are again complete simplicial and of dimension
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Lemma 13.4. Suppose: > 2. Then the multi-fanA is geometrically realized if
all connected components &f  are geometrically realized.

Proof. LetM be a torus orbifold of dimensiom?2 and et be a painthe
principal stratum ofM . We may suppose thatM () = 1. A closed larbaneighbor-
hood U of the orbit of p is equivariantly diffeomorphic t@& x D" and the complement
of U is connected because is connected and the orbit has codimens 2.

Let M’ be another torus orbifold of dimensiom2 withM() = 1, and letU’
be a closed subset i’ corresponding ta/ in M. Since bothU and U’ are equiv-
ariantly diffeomorphic toT x D" and D" has an orientation reversing diffeomorphim,
there is an orientation reversing equivariant diffeomésph betweenU and U’. We
remove the interior o/ and U’ from M and M’ respectively and glue their bound-
aries through the diffeomorphism restricted to the bouiedaand obtain a new torus
orbifold M”. The multi-fan A (") is the disjoint union ofA # ) andA M’). (Pre-
cisely speakingX M") is the disjoint union ofE ¥ ) and= M’) with the empty sets
in them identified.)

If all connected components ok  are geometrically realizésin we connect
torus orbifolds that realize the connected componenta of thbyabove method. Then
the resulting torus orbifold realizes . ]

As is shown in the proof of Lemma 13.4, whenever we have maaa tvo torus
orbifolds of dimensiorm > 2, we can connect them and the multi-fan of the resulting
torus orbifold is the disjoint union of the multi-fans of therus orbifolds we had.

Derinimion.  We say that a complete simplicial multi-fah £ (C, w*) of di-
mensionn isminimal if
(1) = is isomorphic to the argumented simplicial set obtaifresn the boundary of
an n -simplex, and
(2) the set{w*(I), w—(I)} is independent of € T,

Although the sef{w*(I), w ()} is independent of for a minimal multi-faa
the pair (v*(), w— (1)) may not be independent df € . But one can converh
into another minimal multi-fanA = (X, C, w*) such that the pairu™(1), w—(1)) is
independent off . The definition ok is as follows. SinceA is of dimensiom and
the cardinality of 2@ is n + 1, there is a relatiory_;_ s b;v; = 0 among the edge
vectorsv; with non-zero real numbebs . We then define

(e if b >0,
—c(i) if b <O,

and defineC(K) for K € =™ with m > 2 to be the cone spanned h(k)'s for
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k € K. We also define

@ (1), (1)) = {WU)’ wD) e )b <Opis even,
(w=(1), w* (1)) if §{i € 1 |b; <0} is odd,

for [ € =,

Lemma 13.5. A is minimal and satisfies the following two conditions
(1) the n-dimensional cone€(7) (I € ™) do not overlap and their union covers
the entire spaceVg, and
(2) the pair (w*(I), w—(I)) is independent of € ™.
Moreover A is geometrically realized if and only if sods

Proof. Letv; be a non-zero vector in the cc(?\(é). One may choose it to be
if b > 0 and —v; if b; < 0. Then one has a relation; .y bivi = 0 with positive
numbersh;. This implies the statement (1) in the lemma.

We shall prove the statement (2) in the lemma. et =Y. Since the cardi-
nality of =@ is n + 1, there are exactly two elemenitsi’ ,€ £ not contained inJ ,
and JU{i} and JU{i'} are in ™, in other words, ther(— 1)-dimensional con& J( )
is a facet of only twan -dimensional con€sJ{{i}) and C ¢ U{i’}). We project them
on Nﬂg(’) (the quotient space oNr by the subspace generated ByJ ( )). Then the
vectors projected fromy; and; are toward opposite directions if and onlyZfb;, >
0. It follows from the completeness ok that J U {i}) = sign®;b;)w(J U {i'}).
This together with the definition ofv™ shows thatw AU {i}) = w ¢ U {i'}). Since
J € =1 is arbitrary, this proves the statement (2). It also proves dompleteness
of A, so thatA is minimal.

The procedure fromA ta\ corresponds to reversing orientations on characteristic
suborbifoldsM; withb; < 0, so the latter statement in the lemma is obvious. [

Lemma 13.6. Let A be a minimal multi-fan of dimension> 2. If n > 3, then
A is geometrically realized. Iz = 2, then A is geometrically realized ifand only
if) {w*(I),w=(I)} = {1,0} for any I € £@. In any case we can take an orbifold
structure on the realizing torus orbifold such that the @sponding edge vectofs); }
are all primitive; that is, if v; = a;v] for somev] € N and a; € Z, theng; = 1.

Proof. By Lemma 13.5, we may assume that the union of c@éhds el e
™ covers the entire spac#r and the pair ©*(I), w=(I)), which we denote by
(p, q), is independent off . Whenp(q ) = (1 0 can be realized by a htei
projective space, saX . There is an orbifold structure on mhted projective space
such that the edge vectors are all primitive. We admit thes¢sffor a moment; the
proof will be give in the appendix at the end of this sectiome —X realizes the
case wheng,q )= (0 1). This completes the proof when =2.
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Supposen > 3. For a general value ofp(g ), we prepape  copiesxof and
copies of—X and do equivariant connected sum alongXll ’'s and;’s for eachi €
2(X). Then the resulting torus orbifold realizés . The edgetarscare all primitive
in this construction since it is so fax . O

Now let A be an arbitrary complete simplicial multi-fan of dimsionn > 2.
We decomposeA into a number of minimal multi-fans as followé&e choose and
fix a generic (rational) 1-dimensional cone Mg, say/, which is not contained in
any subspaces spanned by cones of dimension — 1 in A. We labell asx. To
eachn -dimensional con€ I () far € =, we formn cones which are respectively
spanned by and facets &f I ( ). These cones together @ith ( yndieie a sim-
plicial multi-fan A[7]= (Z[1], C[ 1], u[ ] ), where = [ ] consists of all proper subsets
of I U {x}. The weight functionsw [ } are defined as follows. Let; be a non-zero
vector inC §) for eachi € I and v, a non-zero vector ii . Then there is a relation

(13.2) v+ Y aiv; =0

iel

with non-zero real numbers; 's. L&t € =[1]®. ThenZ = I or (I\{i}) U {x} for
i € 1. We define
(13.3)
(w*(I),w= (1)) if =1 or
w[1*(Z), wl1] (D)) := I=(\{i})u{x} anda; >0,
(w—(1), w*(1)) if T=(\{i})U{x} anda; < O.

Lemma 13.7. A[I] is complete and hence minimal.

Proof. The proof is essentially the same as that of lemma. ¥8&5remarked in
Section 2, it suffices to show that, when a generic vector getess ani — 1)-
dimensional cone, the integé,  in Section 2 remains uncltariget 7 be an element
of [1]®~V and leti andi’ be the two elements inf (U {x})\.7. ThenZ := 7 U {i}
andZ’ := J U {i’} are the elements irt I["]) which contain7. We project cones
Cl1(Z) and C [1]@") on NSUXT). Then it follows from (13.2) that the vectors pro-
jected fromwv; andv;; are toward opposite directions if and onlydfa;; > 0, where
a, is understood to be 1. This together with the definition (1®Bw[/]* implies that
d, remains unchanged regardless of the signief. whenv gets across the ¢ 1)-
dimensional cone” I[ I{). U

Let / € == and letly,..., I be the elements irE™ containing J . The
n-dimensional cone spanned liy J ( ) ahd appearai, [ Jkfor =.1,2 with
the form C [I, ](J U {*}).



THEORY OF MULTI-FANS 63
Lemma 13.8. Y ,_; w[L](J U {x}) =0.

Proof. Consider the projection of the con€sl; ( )'s N@@We define signf, ) =
1 or —1 according as the projection image Ofl; ( ) disagrees or agséthsthat of /.
Applying (13.3) withl =I, andl/\{i} = J, one sees that

wlL](J U {x}) = signle w @ )

On the other hand, it follows from the completenessAof  that

dYoowt)= Yo wh).

sign(l, )=1 sign{, )=—1

These two equalities imply the lemma. ]

Proof of Theorem 13.3. By lemma 13.4 we may assume that isewbed.
We choose a generic (rational) 1-dimensional céne and degse\ using/ into
minimal multi-fans A [ I's ¢ € =®). By Lemma 13.6A | ] is realized by a torus
orbifold, say M [l ], such that all its edge vectors are pringitivWe consider the dis-
joint union of M[I] over I € £ and piece them together using equivariant con-
nected sum in the following way. For ea¢te £ we do equivariant connected sum
of {M[I] | i € I} successively along/ I[;]'s, and similarly do equivariant cected
sum of all M [[Ts alongM [ 1 as well. The resulting space is connected becahse
is connected, and becomes a torus orbifold. Its multi-faclise to A but contains
extra cones which are the cones spanned by @ntl ( yferz( with m <n—1.

For a fixedJ € ==Y it follows from Lemma 13.8 that there are the same num-
ber of T -fixed pointsp withe, = 1 andg withe, = —1 contained in the union of
M[I] with J C I, and corresponding to the cone spanned/by @nd ( ). Hence one
can do equivariant connected sum at pairs7of -fixed pomts @rab that those
T-fixed points will be eliminated. Doing this for eache -1, we obtain a torus
orbifold, say M , realizingA . In fact, the characteristic stfolds M [I], turn into a
codimension two suborbifold oM , which is fixed by the circlebgroup determined
by I but has nol' -fixed point, so it is not a characteristic suifad of M by defini-

tion. This means that all the cones &I [ ]'s containihg as ageedo not show up

in the mulit-fan of M . ]

Proof of Theorem 13.2. We already observed the “only if” paa we prove
the “if” part. By Lemma 13.4 we may assume that onr , whichs$iat the condi-
tions (1) and (2) in Theorem 13.2, is connected. Then (thézeg®n of) T is either

Case 1. a l1l-simplex, or

Case 2. the boundary of @ -gon wheg> 3,
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and that

{1,1} in Case 1,

{w™ (), w (1)} = {{1’ 0} in Case 2.

Using the latter statement in Lemma 13.6, the same argunseint the proof of Theo-
rem 13.3 shows thah in Case 2 is geometrically realized. A<kEse 1, letl ¢ =@
be the unique simplex. There exist a finite coveriig— T whose kernelH is iso-
morphic to N/N,; where N; is the sublattice generated by the primitive vecigrs
for i € I, and a 2-dimensional’-module V corresponding to the com@/ ( ), as was
explained in Section 12. Then the one point compactificatbrv/ /H, i.e., the orbit
space ofS* by an action ofN/N;, realizes ourA in Case 1. ]

Appendix. Realization of minimal multi-fans by weighted projective spaces

We identify the ¢ + 1)-dimensional torug”*! = §* x --. x S with the standard
maximal torus ofGL § + 1C) consisting of diagonal matrices. We sEt= T"1/D
where D denotes the subgroup of diagonal elements. (, z). It is a maximal torus
in PGL(n+1,C) and acts effectively on the projective spaée Let S; denote the -
th factor of 77*1. It is mapped injectively intdl'. We shall denote by the same letter
S; its image inT. We setM; = {[zo,...,z.] | z = 0}, for i =0,...,n. They are the
characteristic submanifolds d@" regarded as a torus manifold with the orientations
induced from the complex structure. H is a finite subgrouplofthen the quotient
My = P"/H is a torus orbifold acted on b¥ i"/H for which (My,P", H, p) is
an orbifold chart, wherep P* — My is the projection. It is called a weighted pro-
jective space. Its characteristic suborbifolds &te p#4,)( i = O,...,n, and the
corresponding circle subgroups ase =€S;), wherer: T — T is the projection. The
symmetric groupS,.; of degreen +1 acts off"*! and also induces an action dn It
also acts onP". If H? denotes the transform af by an element S,.1, then the
transformations: P* — P" induces an isomorphism of torus manifoldgy; — My-.
We set

WP = {H | finite subgroup of'} /S,+1.

Every element inVP represents an isomorphism class of weighted projectiveespa
In order to describe the multi-fany  associated with the tatksfold My we
introduce the following notations:

N =27"*'/diagonal submodule v;~ =image ef N, N =7",
wheree; is thei -th fundamental unit vector ##*1. N is canonically identified with

Hom(s?, 7). If one chooses an identification of HoS( 7) = Hx(BT;Z) with N, then
the finite covering mapr: 7 — T induces an injective homomorphisp: N — N.
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The vectorsv; =p(v;) are the edge vectors of the 1-dimensional coneg\ gf . Note
that they satisfy the equality
(13.4) Z v; =0,

since thev; 's satisfy a similar equality. This implies that; s a minimal multi-fan
satisfying the conditon (1) in Lemma 13.5. It is also cleattfw* (1), w= (1)) = (1, 0).
We shall denote byMF the set of minimal multi-fans satisfying the above two con-
ditions. If one chooses another identification of HSM(') with N, then ¢ is trans-
formed toyop wherey € GL(n,Z). GL(n, Z) acts onMF from left by transforming
the cones simultaneously by its elements. #gte Z be the maximal common divisor
of the edge vectors; of\y; . We get a correspondence

a: WP/S41 — GL(n, Z)\MF X Z~o
which sendsH toAy,dy ).

Lemma 13.9. The correspondenca is a bijection. In particular, every minimal
multi-fan A in MF is realizable.

Proof. We shall define a correspondenteGL(n, Z)\ MF X Zso — WP/S,+1
which is to be the inverse ofv. Take a multi-fanA InMF andd € Z-g. It is
easy to see there is a unique dei} of edge vectors ofA such that,v; = 0
and the maximal common divisor dfv;} is d. Define a homomorphism: N — N
by requiring ¢(v;) = v;. Then there is a unique finite covering map T - T
which inducesy: N = Hom(s!,T) — N = Hom(S%, 7). Let H be the kernel of
w. The homomorphismp, hence H either, does not depend on the choice of iden-
tification N = Hom(?, T), but it depends on the numbering of ’s. So if we put
8(A, d) = the class ofH inWP/S,.1, it induces a correspondengkas above. It is

clear thatg is in fact the inverse ofv. ]
RemArRk. Leta be a positive integer. The corresponde®é® > (zo, 71, - - ., Zu)
— (28,74, ...,2%) € T" induces a homomorphism: 7 — T. For a finite groupH

of T define H' = p~1(H). The edge vector$v!} corresponding to the torus manifold
My are of the formv] = av;, where{v;} correspond toMy . Hencay Ay and
dp' = ady. Let g : P" — P" be the map defined by zd, z1, ..., z.] = [2§. 25, . . ., Z4].
Then it induces a homeomorphisMy, — My which is equivariant with respect to
the isomorphism of tori betweefi/H’ and 7/H induced byp. If My and My, are
considered as algebraic varieties then the homeomorphésrantes an equivalence. It
is a fundamental fact in the theory of toric varieties thatetch fan corresponds a
toric variety. The above equivalence gives an interpretatif this fact within this spe-
cial case in our context. Related results are found in [2&€]afd to the above remark,
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for a later use, we point out the following fact. Let, ..., a, be positive integers, and
let Z/a; C S* be the subgroup of; -th roots of unity. S6t [ Z/a;. Then the map
C" > (z1,..-.zn) — (z7* ..., z%) € C" induces an equivalence of affine algebraic
varietiesC"/G — C".

Let My € WP and let{v;} be the edge vectors corresponding to the orbifold
structure as given above. Even df; = 1, it may happen that sofme’® are not
primitive. We will show that there always exists a torus @l structure onMy such
that the corresponding edge vectors are all primitive. Mypeaerally we have

Lemma 13.10. Let My be a weighted projective space afd } the correspond-
ing edge vectors satisfyiny, v; = 0 as given above. Suppose th@at/} are vectors in
N such thaty; = ;v with a; € Z~o. Then there is an orbifold structure oy which
admits {v!} as the corresponding edge vectors.

Proof. For eachx € My let 7, c T be the isotropy subgroup at ~ of thé-
action onP" wherex” € p~1(x). 7, does not depend on the choice of ~ pri(x).
If x lies in IntM; = M; \U,o, My for I € S(Mu)®, thenT, = 5; =T, 5. We
put H, = H N T,. We take a family{V,, | u € Zso} of small T -invariant open
neighborhoods of ~ such thaf, , converges toxr™ whemn tends to infinity. We may
assume thav, , is equivariantly diffeomorphic to aB;-invariant open disk inC". It

is possible to maké/, ,'s so small that they satisfy the following condition:
(13.5) H. ={he€ H|h- -V, NV, 70}

ThenU,, = V, ,./H: is an open neighborhood of sy , andi(,, Vs ., He, p |
V. ) is an orbifold chart ofMy compatible with{y, P", H, p).

On the other hand the fact that 4] implies that the kernel op S; — S;
containsZ/a;,which we denote byG; . Sincé/ is the kernel pf T:— T, G; is
contained inH . We putG; F[,.,G; for I € £(My)® and define

Vi, =Veu/Gr, H=H,/G; for x € IntM,.
V. can be considered as an open diskUh as pointed out in Remark above. The
projectionp | V.: Vy — U, induces a mapp; , : V; , — U, which induces a homeo-
morphismVy ,/H; — Uy.

We shall prove that the familf(Uy ,, Vy .. Hy, py,) | x € M, p € Zso} forms
a set of orbifold charts of an orbifold structure é#y; . For tpatpose it suffices to
show that, ifU; , C Uy ,, then there are an injective homomorphigmH; — H; and
a p-equivariant open embedding: V; , — V;, such that

(13.6) p(Hy) ={h € Hy | h-o(V{,)N(Vy,) #0}.
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The condition (13.5) implies that, it € IntM; andy € IntM; with [ andJ €
X(My), and if Uy, C Uy, thenl D> J. Therefore

y,v!
H.CH, and G;NH,=G;y.

It follows that the inclusionH, — H, induces an injective homomorphispt H, =
H,/G; — H,/G; = H;. If X is taken inV,,, thenV, , is contained inV, ,. The
inclusion induces an embedding Vx”u — V}’.‘V. ¢ is clearly p-equivariant. The con-
dition (13.6) follows from (13.5).

If x lies in M;, then the action of; lifts to the action & = §;/G; on v/, and
the lifting is minimal. Hence the edge vector afi () corresgiog to the orbifold
structure defined above must bg O
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