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1. Introduction

In their paper [8], S. Kobayashi and E. Shinozaki introducedthe concept of con-
jugate connection for a reducible principal bundle . From the point of view of the
geometry of 4-manifolds, the importance of this concept is that an automorphism of
a Lie group fixing a Lie subgroup induces a compatible action on the quotient
spaceB( ) of connections by the group of gauge transformations. When we fix a Rie-
mannian metric on the base manifold and is compact and semi-simple, we can
also see that the automorphism group acts on the moduli spaceM ( ) of Yang-Mills
connections modulo the group of gauge transformations. In particular, the automor-
phism group acts on the moduli space of anti-self-dual (ASD)connections, when the
dimension of the base manifold is 4.

One advantage of this action on the moduli space of ASD connections is that it is
not the action induced from an action on the base manifold. When we attempt to use
the induced action on the moduli space coming from the base manifold, typically we
have to overcome some serious transversality issues. M. Itoh, however, observed in [5]
that the inner automorphism group induces a trivial action on the quotient spaceB( ).
It is well known [12] that for compact simple Lie groups only Lie groups of type
( > 1), ( ≥ 4), and 6 have a nontrivial outer automorphism group. As a first
application of conjugate connections to the geometry of 4-manifolds, in this paper we
exclusively deal with the simplest compact simple Lie group(3) other than (2).
In this case the outer automorphism group is isomorphic to the cyclic groupZ2.

One of the aims of this paper is to prove a fixed point theorem under the group
Z2 action on the irreducible partB∗( ) of the quotient spaceB( ) in a reducible prin-
cipal (3)-bundle along the irreducible partB∗( ) of the quotient spacesB( )
of (3)-subbundles of . More precisely, in Section 3 we show thefollowing

Theorem 1.1. Let be a closed oriented simply-connected manifold. Fix a
Riemannian metric on , and let be a principal (3)-bundle reducible to
an (3)-subbundle . LetM∗ ( )σ denote the fixed point set of the irreducible part
M∗ ( ) of the moduli spaceM ( ) of Yang-Mills (or ASD) on under the action of
the outer automorphism group of (3) fixing a Lie subgroup (3) generated byσ.
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Then we have

M∗ ( )σ =
∐

′∈
M∗

′( )

where denotes the set of (3)-bundle isomorphism classes in .

We then use this fixed point theorem to show a mod 2 vanishing theorem for
Donaldson’s type instanton invariants for the Lie group (3). To the author’s knowl-
edge, however, there has been no well-developed theory for instanton invariants us-
ing the higher rank Lie groups, or even the Lie group (3). Thusthe second aim
of this paper is to give well-defined (3)-instanton invariantsfor certain smooth
4-manifolds.

Unlike the (2) or (3) case whose associated adjoint bundles have rank 3,
in general we cannot expect that for a generic metric on a 4-manifold the moduli
space of irreducible ASD (3)-connections is a smooth manifold with the virtual di-
mension given by the Atiyah-Singer index theorem. This mainly comes from the dis-
crepancy between the dimension of its associated adjoint bundle and the dimension of
the space of self-dual 2-forms. For any metric , it is possible that the moduli space
of ASD (3)-connections on an (3)-bundle always contains themoduli space
of ASD connections on an (2)-bundle′ with 2( ′) = 2( ). In this case it is
easy to see through the Atiyah-Singer index calculation that the virtual dimension of
the reducible part of the moduli space of the ASD (3)-connections is larger than
that of the irreducible part of the moduli space ASD (3)-connections.

Hence it seems to be impossible to define (3) instanton invariants inde-
pendent of the metric with the irreducible part of the modulispace of ASD

(3)-connections. M. Marino and G. Moore also pointed out in [10]that deriving the
higher rank Donaldson invariants using the standard mathematical methods in [2] did
not work well because of the singularities of instanton moduli space. Donaldson, how-
ever, suggested that it might be possible to define the higherrank invariants using the
techniques he developed in his paper [1]. It will be very useful to consider the higher
rank invariants for many reasons. For example, by considering even dimensional Lie
groups such as (3) in case the first Betti number is zero, one could obtain results
about 4-manifolds with +

2 even, while the Donaldson invariants using (2) or (3)
have a restriction to 4-manifolds with+

2 odd for a very simple reason.
Following a line suggested by Donaldson, in this paper we consider an even di-

mensional Lie group (3), and as a first step to more general (3)-instanton in-
variants on smooth 4-manifolds we define simple (3)-instanton invariants ( )
for certain smooth 4-manifolds. We hope we can come back to the construction of

(3)-instanton polynomial invariants on smooth 4-manifolds in a future paper.
More precisely, in Section 4 we show the following



CONJUGATE CONNECTIONS AND (3)-INSTANTON INVARIANTS 755

Theorem 1.2. Let be a closed, oriented, simply connected, smooth4-manifold
with a generic metric and +

2( ) = 3 − 1 ( ≥ 1). We assume that the following
properties hold:
(H1) The signatureσ( ) of is not−2 mod 8.
(H2) There exists a principal (3)-bundle over with 2( ) = 2 that is re-
ducible to an (3)-subbundle satisfying 2( ) ≡ 2( ) mod 2.
Then there is a well-defined integer ( ) depending only on the smooth structure
of , and the smooth invariants ( ) are always zero modulo2.

It is worth mentioning that the hypothesis(H2) is never strong because we can
always get such a principal (3)-bundle by extending a principal (3)-bundle
satisfying 2( ) ≡ 2( ) mod 2. In view of our proof of this theorem, it seems to
be possible to define more general (3)-instanton invariantswithout the hypothesis
(H1). Thus we conjecture that in that case (3)-instanton invariants should be equal
to (2)-instanton polynomial invariants modulo 2. But, in order to avoid any compli-
cations, in this paper we keep imposing the hypothesis(H1), and we will address this
issue somewhere else, later.

The mod 2 vanishing result in the above theorem is an immediate consequence of
the fixed point theorem (Theorem 1.1).

Let be an algebraic surface. On (2)-bundles over algebraic surfaces we have
the notion of Hermitian-Einstein connection. A (2)-connection is calledHermitian-
Einstein if its curvature satisfies =λ, where is the K̈ahler trace operator
on forms of type (1,1) andλ is constant.

S. Donaldson [2] proved that if is an (3) bundle over an algebraic surface
, the moduli space of irreducible ASD connections is naturally identified as a set

with the set of equivalence classes of stable holomorphic (3C) bundlesE which
are topologically equivalent to , i.e.,2(E) = 2( ). Since the moduli spaces of sta-
ble bundles are defined as complex spaces, they have a naturalorientation. Thus we
note that the signs in our simple invariants at different points agree, i.e., there is no
cancellation. For algebraic surfaces we have the following

Corollary 1.3. Let be a simply connected algebraic surface with+2( ) =
6 − 1 ( ≥ 1). Assume that the hypotheses(H1) and (H2) hold. Let be a complex
rank 3 vector bundle associated to, and let be the real rank3 bundle associated
to . Then the set of equivalence classes of stable holomorphic (3 C) bundlesE
which are topologically equivalent to is finite and the number is even.

We organize this paper as follows. In Section 2, we recall thedefinition and ba-
sic properties of conjugate connections in reducible principal bundles. Section 3 is de-
voted to showing a fixed point theorem for the action of outer automorphism group
of (3) on the quotient spaceB( ) in a principal (3)-bundle that is reducible
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to an (3)-subbundle . In Section 4, we define (3) instanton invariants for cer-
tain smooth 4-manifolds. We also show the mod 2 vanishing theorem for the smooth
invariants in that section.

ACKNOWLEDGEMENT. The author is grateful to Professor S. Kobayashi for many
helpful conversations during this work. He also would like to thank the referee for use-
ful comments on this paper.

2. Conjugate Connections in Principal Bundles

The purpose of this section is to review basic definitions andgeneral properties
for the conjugate connections introduced by S. Kobayashi and E. Shinozaki. See [8]
and [9] for more details.

Let be a manifold, a Lie group, and a principal -bundle over with
projectionπ. Let { } be an open cover of with local sectionsξ : −→ π−1( ).
Then, we define the transition function : ∩ −→ by

ξ ( ) = ξ ( ) ( )

A connection form on is defined as a family ofg-valued 1-forms on which
satisfies the following transformation rule from to :

(2.1) = −1 + −1 on ∩

Since is not defined on all of , we define ag-valued 1-form on from as
follows:

= −1 + −1 ∈

on π−1( ) = × . Then it is easy to see that is ag-valued 1-form on , and
it follows that ξ∗( ) = . The set of all connections on is denoted byA( ).

Now we recall the definition of conjugate connection on principal fiber bundles.
Let be a Lie group with its Lie algebrag, and let be a closed subgroup with
its Lie algebrah. Let Aut( ) be the group of automorphisms of leaving all el-
ements of fixed, Inn( ) be the group of all inner automorphismsin Aut( ),
and let ( ) = Aut( )/ Inn( ). ( ) is called theouter automorphism
group. Let σ be an automorphism in Aut( ). The induced automorphism ofg is
denoted alsoσ.

Let be a principal -subbundle of . In general, such a subbundle over
does not necessarily exist. However, we can always extend a principal -bundle
to the principal -bundle so that is a principal -subbundle of. In order

to define theσ-conjugate connection on principal fiber bundles we cover byopen
sets with local sectionsξ : −→ . It is important to take local sections of the
subbundle so that the transition functions ’s are -valued.
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We are ready to define conjugate connections on principal fiber bundles. Let
be a connection form on . We put =ξ∗ . Then is ag-valued 1-form on ,
but not necessarilyh-valued. We set σ = σ( ) and applyσ to (2.1). Since is

-valued, we have

σ = −1 σ + −1

Thus, { σ} defines a connection on . We call it theσ-conjugate connectionof
relative to , denoted σ . If there is no danger of confusion, we writeσ for σ .
Note that σ is not σ( ). In fact, σ( ) may not be a connection 1-form.

Given σ ∈ Aut( ), we can also define its action on as follows. This helps
us to understand the notion of conjugate connection on principal fiber bundles. Let
∈ lie over ∈ . Then, since we can let =ξ ( ) for ∈ , we define

a transformation σ of by

σ ( ) = σ (ξ ( ) ) = ξ ( )σ( )

If there is no danger of confusion, we writeσ for σ . Note that as a transformation
of × , σ can be given by

σ : ( ) 7→ ( σ( ))

Note that theσ-conjugate connection σ of can be given by

(2.2) σ = ( −1
σ )∗σ( )

The curvature form of theσ-conjugate connection{ σ} (resp. σ) is given by{ σ}
(resp. σ).

A transformation ϕ of a principal fiber -bundle which commutes with
the right action of , i.e.

ϕ( ) = ϕ( ) for all ∈ ∈

is called agauge transformation. The set of gauge transformations, denoted byG =
G( ), is called thegroup of gauge transformations. We have another important charac-
terization of gauge transformations which proves to be useful in constructing a gauge
transformation.

Lemma 2.1. (a) A gauge transformationϕ of defines a mapϕ : −→ by

(2.3) ϕ(ξ ( )) = ξ ( )ϕ ( ) ∈

(b) These mapsϕ form a family{ϕ } satisfying

(2.4) ϕ ( ) = ( )−1ϕ ( ) ( ) on ∈ ∩
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(c) Conversely, a family {ϕ } satisfying(2.4) defines a gauge transformation by(2.3).

Given a gauge transformation{ϕ } with respect to local sectionsξ of on ,
applyingσ to (2.4), we get

σ(ϕ ( )) = ( )−1σ(ϕ ( )) ( )

on ∈ ∩ . By Lemma 2.1, the family{σ(ϕ )} defines a gauge transformation of
, denotedϕσ, and calledσ-conjugate gauge transformation.

It is time to state two important theorems of S. Kobayashi andE. Shinozaki in
[8], [9]. To do this, we fix a point 0 ∈ and let 0( ) be the holonomy group of
the connection with respect to the reference point0. We call a connection in P
generic if its holonomy group 0( ) coincides with , and we call a connection
in irreducible if its isotropy groupG , as a closed Lie subgroup of , coincides
with the center ( ) of .

Theorem 2.2. The groupAut( ) acts on the quotient spaceB( ) of connec-
tions.

Note that since Inn( ) acts trivially on the quotient spaceB( ), ( ) acts
on B( ) (see [9] and [5]).

Theorem 2.3. Let σ ∈ Aut( ) and be a connection in . Assume thatσ

is gauge equivalent to under a gauge transformationϕ. If we define an element
∈ by ϕ( 0) = 0 , then

σ( ) = −1

for ∈ 0( ). In particular, if the holonomy group is , then σ is the inner auto-
morphism defined by−1 above.

From the above theorem, it is easy to see that ( ) acts freely onthe generic
part of the quotient spaceB( ) and that Aut( ) acts freely on the generic part of
the framed quotient spaceB0( ) of connections by the group of framed gauge trans-
formations.

Finally we need one more observation. That is, while the action of Aut( )
on G( ) andA( ) depends on the reduction of to the -subbundle , the action
of Aut( ) on the quotient space of connections does not dependon the reduction
of to the -subbundle . In fact, using (2.2) we have the following:

Proposition 2.4.
Let be a principal -bundle that is reducible to -subbundles and ′.

For a connection inA( ), σ is gauge equivalent to σ
′ under σ ′ ◦ −1

σ ∈
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G( ). Therefore, the action ofAut( ) on the quotient spaceB( ) is independent
of the chosen subbundle .

Proof. We first show that for anyσ ∈ Aut( ), σ ′ ◦ −1
σ is a gauge trans-

formation in . To do it, letϕ = σ ′ ◦ −1
σ . It suffices to show thatϕ( ) = ϕ( )

for all ∈ , ∈ . We first cover by an open covering{ } so that there exists
local sections ′ on of ′, respectively with the relation ( ) =′( ) ′( )
for some ′( ) ∈ . Then, we have

ϕ( ) = σ ′ ◦ −1
σ ′( ) = σ ′ ◦ −1

σ ( ( ) ) for some ∈
= σ ′ ( ( )σ−1( )) = σ ′ ( ′( ) ′( )σ−1( ))

= ′( )σ( ′( )) = σ ′ ( ′( ) ′( )σ−1( ))

= σ ′ ( ( )σ−1( )) = σ ′ ◦ −1
σ ( ( ) )

= σ ′ ◦ −1
σ ( ) = ϕ( )

which completes the proof of the claim.
It is also clear from (2.2) that

σ = ( −1
σ )∗σ( ) = ( σ ′ ◦ −1

σ )∗( −1
σ ′)∗σ( ) = ( σ ′ ◦ −1

σ )∗ σ
′

Since σ ′ ◦ −1
σ is a gauge transformation in , σ

′ is gauge equivalent to σ .
This completes the proof.

3. A Fixed Point Theorem

In this section, we primarily consider the following special case: the symmetric
pair ( ( ) ( )) ( ≥ 3) which defines a simply connected symmetric space. It is
well known that every automorphism of (2) fixing a Lie group (2) is inner.

We also fix σ which is the automorphism on ( ) defined by 7→ ¯ for
∈ ( ). Since σ( ) = if and only if ∈ ( ), the automorphismσ is in

Aut( ( ) ( )) and actually this is a generator for ( ( ) ( ))∼= Z2 (see
[12] for more details).

In particular, if = 3, we get the following fixed point theorem:

Theorem 3.1. Let be a simply connected manifold, and let be a princi-
pal (3)-bundle that is reducible to an (3)-subbundle . Let be an irreducible
connection in . If[ ]σ = [ ] in the quotient spaceB( ), then the holonomy group

0( ) = (3) up to conjugacy under inner automorphisms.
As a consequence, defines a connection in an (3)-subbundle ′ of .

Proof. First note that if a connection has (2) or1 as a holonomy group, then
the connection is not irreducible because the centralizer of (2) or 1 in (3) is
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not Z3, which is the center of (3). On the other hand, every connection having
(3) as a holonomy group is irreducible.
Suppose that σ is gauge equivalent to underϕ ∈ G( ). Since is a simply-

connected manifold, it is shown in [7] and [6] that the holonomy group 0( ) is
a connectedclosedLie subgroup of (3). Then, by Theorem 2.3̄= σ( ) = −1

for in the Lie algebra of 0( ), where as before is an element in (3) such
that ϕ( 0) = 0 . Thus, we havedet( ) = det(̄ ) = det( ) for in the Lie alge-
bra of 0( ). On the other hand, by the property of the Lie algebras (3), we have
det( ) = det(̄ ) = det(¯ ) = − det( ) for in the Lie algebra of 0( ). Thus, clearly
we have det( ) = 0 for in the Lie algebra of 0( ).

We next show that the holonomy group 0( ) is a compact connected rank-1 Lie
subgroup of (3). In fact, suppose that 0( ) is a rank-2 Lie subgroup of (3).
The Lie algebras (3) contains a Lie subalgebra of the following form

(3.1)








0 0
0 0
0 0


 : + + = 0





Since 0( ) is assumed to be a rank-2 Lie subgroup of (3), we may assume with-
out loss of generality that its Lie algebra also contains theLie subalgebra of the form
(3.1). However, this Lie subalgebra contains an element diag( −2 ) whose determi-
nant is 2 6= 0, which is a contradiction to det( ) = 0 for in the Lie algebraof

0( ). Hence, we can conclude that the Lie subgroup0( ) of (3) contains only
a 1-dimensional maximal torus. Moreover, using det( ) = 0 for in the Lie algebra
of 0( ), the Lie algebra of the maximal torus should be of the following form (3.2)
without loss of generality:

(3.2)








0 0
0 − 0
0 0 0


 : ∈ R





This Lie subalgebra is exactly the Lie algebra of a maximal torus of (3) or (2)
in (3) up to conjugation under inner automorphisms. But, since any connection
having (2) or 1 as a holonomy group is not irreducible, we can conclude that the
holonomy group 0( ) is (3) up to conjugation under inner automorphisms, com-
pleting the proof.

Since the holonomy group 0(
σ) of the conjugate connection σ is just

σ( 0( )), it is obvious that the action of the automorphism group Aut( ) on
the irreducible part of the quotient space of connections iswell defined.

In order to state and prove our main theorem in this section, we begin with
the following proposition:
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Proposition 3.2. Let be a connected manifold, and let be a principal
( )-bundle that is reducible to an ( )-subbundle . Then there is a natural em-

bedding fromB∗( ) to B∗( ).

To show Proposition 3.2, it suffices to prove the following lemma:

Lemma 3.3. Let , , and be the same as inProposition 3.2. Let = ϕ∗

for someϕ ∈ G( ), where and are irreducible connections on such that they
define connections on . Then there exists a gauge transformation ψ ∈ G( ) such
that = ψ∗ when and are considered as connections on .

Proof. Set = ( ) = ( ), for our convenience, and recall thatσ ∈
Aut( ) is given by 7→ .̄ Observe first that

= σ = (ϕσ)∗ σ = (ϕσ)∗ = (ϕσ)∗(ϕ−1)∗ = (ϕ−1 ◦ ϕσ)∗

Thus ϕ−1 ◦ ϕσ ∈ G = ( 0( )) = ( ), where ( 0( )) is the centralizer of
the holonomy group 0( ) of in . Thus, we have

(3.3) ϕσ( ) = ϕ( )

for some constant ∈ ( ), because ( ) is discrete and actually in this case is
isomorphic toZ .

Next we are going to construct a gauge transformationψ ∈ G( ) such that
= ψ∗ . Let { } be an open covering of the base manifold , and take the local

sections : → . Since the given gauge transformationϕ in defines a family of
functions{ϕ } which satisfies ( )−1ϕ ( ) ( ) = ϕ ( ), where ( ) is the transi-
tion function, it follows from (3.3) that we have

ϕ = ϕ( ) = ϕσ( ) = σ(ϕ )

for ∈ . Thus, we have

(3.4) σ(ϕ ( )) = ϕ ( )

On the other hand, since ( )∼= Z , we can set =ηI, whereη is a complex number
with |η| = 1 andη = 1, andI is the identity element in .

Hence, from (3.4), we haveσ(ϕ ( )) = ϕ ( )η = ηϕ ( ) This implies that

η−1/2σ(ϕ ( )) = η1/2ϕ ( )

Sinceσ( ) = ,̄ we haveη−1/2σ(ϕ ( )) = σ(η1/2ϕ ( )). This implies thatσ(η1/2ϕ ( ))
= η1/2ϕ ( ). Thus we haveη1/2ϕ ( ) ∈ = ( ). Here we used that is exactly
the set of elements of which are fixed by Aut( ).
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Finally we defineψ ( ) = η1/2ϕ ( ) ∈ ( ) = on . This family{ψ ( )} sat-
isfies the condition −1( )ψ ( ) ( ) = ψ ( ), because the family{ϕ ( )} satisfies this
condition andη is just a complex number. Hence, this family defines a gauge transfor-
mationψ on . Moreover, the connections and in are gauge equivalent under
ψ. In fact, we have

ψ−1 ψ + ψ−1 ψ = η−1/2ϕ−1 η1/2ϕ + η−1/2ϕ−1 (η1/2ϕ )

= ϕ−1 ϕ + ϕ−1 ϕ =

which completes the proof.

Lemma 3.4. Let −→ be a principal -bundle that is reducible to two prin-
cipal -subbundles 1, 2. Assume that 1 and 2 are bundle isomorphic. Then, ev-
ery connection which defines one in1 is gauge equivalent to a connection which
defines one in 2.

Proof. Letϕ be a bundle isomorphism between1 and 2. Note thatϕ extends
to the gauge transformation of , denoted alsoϕ. Since is a connection which de-
fines one in 1, as a connection in 1 we have =ϕ∗ for some connection in 2.
Then, it is easy to see that by extending as a connection in , isgauge equiva-
lent to underϕ, completing the proof.

Let σ ∈ Aut( ) and let ′ be the subgroup of consisting of elements that
are fixed byσ and g′ be its Lie algebra. Let ′ be the ′-bundle extending . Then,

Lemma 3.5. A connection is invariant byσ ∈ Aut( ), i.e., σ = if and
only if it defines a connection in ′.

Proof. Since ⊂ ′ ⊂ , we have ⊂ ′ ⊂ . If a connection is already
a connection in ′, then isg′-valued and thus σ = . Conversely, if does not
define a connection in ′, then takes its values outsideg′, and thusσ( ) 6= .
Hence, the connection is not invariant byσ.

Now we are ready to state our main theorem in this section which is an imme-
diate consequence of Proposition 2.4, Theorem 3.1, Proposition 3.2, Lemma 3.4, and
Lemma 3.5.

Theorem 3.6. Let be a simply connected oriented manifold, and be a prin-
cipal (3)-bundle that is reducible to an (3)-subbundle . LetB∗( )σ denote
the fixed point set of the action of( (3) (3)) ∼= 〈σ〉 ∼= Z2 on B∗( ). Then
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we have

B∗( )σ =
∐

′∈
B∗( ′)

where denotes the set of (3)-bundle isomorphism classes in .

Proof. It suffices to show that if is a connection in which defines one in
an (3)-subbundle ′ then it is invariant under the action of theσ on the quotient
space of irreducible connections in . In fact, since defines aconnection in ′

σ
′ = by Lemma 3.5, and σ = ϕ∗ σ

′ for a gauge transformationϕ ∈ G( )
by Proposition 2.4. Thus, σ = ϕ∗ , which completes the proof.

Assume that is compact and semisimple. Then the inner product

〈 〉 = − tr((ad )(ad )) ∈ g

is invariant not only by Ad but also by all automorphisms of . Fix also a Rieman-
nian metric on . Then, Aut( ) acts on the moduli space of Yang-Mills connec-
tions [8]. It is also easy to see that Aut( ) acts on the moduli space of anti-self-
dual (ASD) connections, when dim = 4. Using Theorem 3.6 and the above remark,
it is easy to prove Theorem 1.1.

4. SU(3)-Instanton Invariants for certain 4-Manifolds

The purpose of this section is to give well-defined (3)-instanton invariants for
certain smooth 4-manifolds, and to prove Theorem 1.2.

Let be a closed, oriented, smooth 4-manifold with a Riemannian metric . Let
−→ be a principal -bundle, and letM ( ) be the moduli space of ASD con-

nections on modulo the group of gauge transformations. The Atiyah-Singer index
theorem gives the formula for the virtual dimension ( ) ofM ( )

( ) = −2 1(g )− dim (1− 1 + +
2)

where 1 is the first Betti number, +
2 is the dimension of maximal positive part

of 2( R), and g is the adjoint bundle of . In particular, for ( )-bundles
and the associated vector bundle of via the standard representation, we have
2 1(g ) = −4 2( ). Thus for = 3 we have ( ) = 122( )− 8(1− 1 + +

2). On the
orther hand, for (3)-bundles and the associated vector bundle of via the
standard representation of (3), we have ( ) =−2 1( ) − 3(1− 1 + +

2). Note
also that for a generic metric on , the moduli space of ASD (3)-connections is
smooth and has the virtual dimension, if it is non-empty ([3], [2]).

For the rest of this section, we fix a principal (3)-bundle with positive 2( )
over a simply connected Riemannian 4-manifold .
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4.1. Reducible connections onP. When we work with (2) or (3) con-
nections over simply connected 4-manifolds, all possible reductions are very simple.
For example, for the (2) case the only reductions are to a copyof 1 ⊂ (2)
or to the trivial subgroup corresponding to the product connection. In case of an

(2)-bundle the reductions correspond to splittings∼= ⊕ −1, and such an
isomorphism exists if and only if 2( ) = − 1( )2. In the (3) case, we have

1(R ⊕ ) = − 2( R ⊗ C) = − 2( ⊕ ¯) = 1( )2. For the (2) or (3) case,
a line bundle over the Riemannian 4-manifold admits an ASD connection if and
only if 1( ) is represented by an anti-self-dual 2-form. Furthermore, when is sim-
ply connected, this connection is unique up to gauge equivalence. Thus we have the
following Proposition 4.2.15 in [2] we do not use in this paper.

Proposition 4.1. Let be a simply connected oriented Riemannian4-manifold
and let be an (2) or (3) bundle over . Then the gauge equivalence classes
of reducible ASD connections on whose holonomy group is1 are in one-to-
one correspondence with the pairs± , where is a non-zero anti-self-dual class in

2( Z) with 2 = − 2( ) or 2 = 1( ), respectively.

On the other hand, in the (3) case the possible reductions aremuch more
complicated, compared to (2) or (3) case. However, it turns out that it suffices
to consider only the largest possible reductions. In order to state and prove an analo-
gous statement of Proposition 4.1 for the largest possible reductions in the (3) case,
we need to set up some notations.

Let M( )red denote the set of the gauge equivalence classes of reducibleASD
connections on whose isotropy group is1. Let R̃ denote the set of pairs (1 2) in

2( Z)× 4( Z), where 1 is an anti-self-dual class satisfying2( )+ (1/2) 2
1 ≥ 0

and 2 = 2( ) + 2
1.

Let be a representative for [ ]∈ M( )red. Since has an isotropy group1,
the complex rank 3 vector bundle associated to has a reduction to an ( (2)×

(1))-bundle formed by a (2)-bundle ′ and a line bundle . Thus, we have a
decomposition of into a diagonal form (1 2), where 1 (resp. 2) denotes an
ASD connection on ′ (resp. ).

Since tr( 1) + tr( 2) = 0, it is easy to see that1( ) = − 1( ′). Furthermore, we
have

2( ) =

[
tr

(
1

8π2
2

1

)]
+

[
tr

(
1

8π2
2

2

)]

= 2( ′)− 1
2 1( ′)2− 1

2 1( )2

= 2( ′)− 1( )2

Note also from Proposition 2.1.42 in [2] that since′ admits an ASD connection we
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have

0≤ κ( ′) := 2( ′)− 1
2 1( ′)2 = 2( ) +

1
2 1( )2

If we choose a different representative for [ ]∈ M( )red, we have a different line
bundle ′ for . But, since is gauge equivalent to , must be isomorphic to′.
This implies that we have a well-defined map

φ :M( )red→ R̃ [ ] 7→ ( 1( ) 2( ′))

Let R denote the image ofφ. Note that (0 2( )) is contained in the setR.

Lemma 4.2. The preimage of( 1 2) ∈ R under φ is the set of reducible con-
nections whose isotropy group is1, corresponding to each( 1 2) ∈ R, and is ex-
actly same as the set{[ ] = [ 1 2] ∈ M( )red| 1 ∈ M( ′)} for a fixed ASD con-
nection 2 on the line bundle satisfying1( ) = 1

Proof. Let be the line bundle whose first Chern class is1. Since is simply
connected, there is a unique gauge equivalence class [2] of ASD connections on .
Thus every element [1 2] ∈ φ−1( 1 2) is gauge equivalent to [1 2]. This com-
pletes the proof.

4.2. Transversality. In this subsection, we explain in more detail why the
Freed and Uhlenbeck’s transversality result for the ASD equations in an principal

(3)-bundle does not hold. This suggests a way to overcome such difficulties in our
case.

With a given metric, an irreducible ASD connection is calledregular if 2 =
coker + = 0 and we call a moduli spaceregular if all its irreducible points in the
moduli space are regular points. A regular moduli space of irreducible connections is a
smooth manifold of dimension given by the Atiyah-Singer index theorem. In particular,
if the moduli spaceM∗ ( ) contains only generic connections on , then the zeros
of + in B∗( ) are transverse, forming a smooth manifold of dimension 122( ) −
8(1 + +

2( )).
After we identify 2( R) with the space of harmonic 2-forms, we have a de-

composition 2( R) = H+ ⊕ H−, whereH+ and H− are the spaces of harmonic
self-dual and anti-self-dual 2-forms, respectively. If a connection in an (3)-bundle

is reduced to one on an ( (2)× (1))-bundle formed by a (2)-bundle ′ and
a (1)-bundle , then for this connection the line bundle admits an ASD con-
nection. Thus 1( ) can be represented by an anti-self-dual harmonic form andlies
in H−. If +

2 is non-zero, the spaceH− is a proper subspace of 2( R). Thus we
can see that genericallyH− meets the integer lattice 2( Z) ⊂ 2( R) only at
zero. Hence the reducible connections in an (3)-bundle are not just the product con-
nection. In fact, it is clear from Lemma 4.2 that for any metric on the moduli space
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of ASD (3)-connections could contain the moduli space of ASDconnections in an
(2)-bundle ′ with 2( ′) = 2( ), unless we impose additional hypotheses on

or .
Now we are in a position to state and prove the statement whichis analogous to

Corollary 4.3.15 in [2]. We first need some notations. LetC denote the space of con-
formal structures of metrics on for some fixed suitable non-negative integer .
The space ofC is just the quotient of metrics by the conformal changes.

Lemma 4.3. If +
2( ) > 0 then for any > 0, there is an open dense subset

C( ) ⊂ C such that for[ ] ∈ C( ) the only possible reducible -ASD connections on
an (3)-bundle over with 2( ) ≤ are either the connections consisting of
an irreducible -ASD connection on the (2)-bundle ′ satisfying 2( ′) = 2( )
and the trivial product connection on the trivial (1)-bundleC or the trivial product
connection on .

Moreover, if < +
2( ) and : → C is a smooth family of metrics parametrized

by a -dimensional manifold , then there is an arbitrarily small perturbation of
whose image lies inC( ).

Proof. We prove the first assertion. The proof of the second assertion is similar
to Corollary 4.3.14 in [2].

The proof of the first assertion is essentially same as that ofCorollary 4.3.15
in [2]. From the above discussion, we see that generically the spaceH− meets the in-
teger lattice 2( Z) only at zero. Thus generically we have1 = 0. Since (0 2( ))
is contained in the setR, by Lemma 4.2 and above argument, there is an open dense
subsetC1( ) ⊂ C such that, for [ ]∈ C1( ), the reducible -ASD connections on are
connections consisting of a -ASD connection on′ satisfying 2( ) = 2( ′) and the
trivial product connection onC.

Applying once again, if necessary, the same argument as in the proof of Corol-
lary 4.3.15 in [2] to the -ASD connections on ′, we get an open dense subset
C2( ) ⊂ C such that, for [ ] ∈ C2( ), the only reducible -ASD connection on′

is the trivial product connection on ′. Thus we have an open dense subsetC( ) =
C1( ) ∩ C2( ) ⊂ C satisfying the statements of the theorem.

For the orientation of the moduli space consisting of zeros+ in B∗( ), it can
be shown as in Proposition 5.4.1 and Section 5.4.3 of [2] thata choice of orientations
of 0( ; R) and 2

+ ( ; R) defines a natural orientation of the moduli space.

4.3. Proof of Theorem 1.2. Since we want to get differential-topological in-
variants of fromM ( ), we have to study its properties under the change of met-
ric. As we can see in Lemma 4.3, an one-parameter family of metrics could contain
non-generic metrics for which the largest possible reducible connections occur. This
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implies that a singular moduli space and the homology class of M ( ) changes in-
side the quotient space of connections on . However, by making a good choice of
an (3)-subbundle of , we can obtain the homology class independent of the
metric.

We first claim that the moduli spaceM ( ) contains only irreducible connections
under the hypotheses(H1) and (H2). To do this, we show that there are no reductions
of , and it suffices to consider onlyC⊕ ′ reductions for a (2) vector bundle′

in the moduli space of ASD (3)-connections for a generic metric, since they are
the largest possible reductions by Lemma 4.3.

Suppose that the complex rank 3 vector bundle has a reductionof C⊕ ′. Then
clearly the real rank 3 subbundle has also a reduction ofR ⊕ . Thus we have

1( ) = 1( )2. Since 1( ) is a lift of 2( ) and any lift of 2( ) = 2( ) to the
integers is characteristic, we must have modulo 8

−2 =− 2( ) = − 2( ⊗ C) = 1( ) = 1( )2 = σ( )

where we used in the last equality the standard fact (e.g., see Subsection 1.1.3 in [2]
or Lemma 1.2.20 in [4]) that for any characteristic element∈ 2( Z) and the in-
tersection form of we have

( ∪ )[ ] = σ( ) mod 8

Hence the signatureσ( ) must be−2 mod 8, which is a contradiction.
Note also that the dimension of the moduli space of ASD (3)-connections on

any (3)-subbundle ′ of is ( ′) = −2 1( ′)−3(1+ +
2( )) = 4 −9 =−5 < 0.

Thus these moduli spaces are generically empty and so the moduli space of ASD
(3)-connections on , in fact, consists of only generic connections. Thus the mod-

uli spaceM ( ) is a submanifold cut out transversely inB∗( ). Moreover, since

2( ) = 2 and +
2( ) = 3 − 1, we have ( ) = 122( ) − 8(1 + +

2( )) = 0. On
the other hand, for any of lower (3)-bundles( ) with 2( ( )) = 2( )− ( > 0)
the virtual dimension of the moduli spaceM ( )( ) predicted by the Atiyah-Singer in-
dex formula is negative, and so the generic parts of these moduli spacesM ( )( ) are
generically empty. Note also that an argument as above showsthat for a generic metric

the irreducible parts of these moduli spacesM ( )( ) consist of only generic ASD
connections.

As remarked at the beginning of the Subsection 4.4.1 in [2], astraightfor-
ward generalization of the compactness theorem 4.4.4 in [2]to more general gauge
groups says that any infinite sequence{ α} in M ( ) whose terms are in our
case generic ASD connections has a weekly convergent subsequence whose limit
( { 1 2 . . . }) lies in M ( )( ) × Sym ( ) for some non-negative integer ,
where Sym ( ) is the -th symmetric product. (See Subsection 4.4.1 in [2] for
the definition of a weekly convergent sequence.) So, letρα : ( )| \{ 1 2 ... } →
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| \{ 1 2 ... } be bundle isomorphisms such thatρ∗α( α) converges in ∞ on any
compact subset of the punctured manifold\{ 1 2 . . . } to in ( ), as in Sub-
section 4.4.1 in [2]. For the sake of simplicity, let′α to be α| \{ 1 2 ... }. Then
an argument completely similar to Lemma 4.3.21 in [2] asserts that ′

α is irreducible
on | \{ 1 2 ... }. Thus the restricted holonomy group of′α is isomorphic to (3)
or (3). If the restricted holonomy group of′α is isomorphic to (3) then the re-
stricted holonomy group ofρ∗α( ′

α) is also isomorphic to (3). Now extendρ∗α( ′
α)

to an ASD connection α on the (3)-bundle ( ) with 0 ≤ 2( ( )) ≤ 2( ) by
the Removable Singularities Theorem of Uhlenbeck in [11]. Then clearly the holon-
omy group of α is isomorphic to (3) or (3). But the irreducible parts of those
moduli spacesM ( )( ) for > 0 are generically empty, so the restricted holonomy
group of ′

α should be isomorphic to (3). It is also easy to see that by the same
argument as above this case cannot occur, either. Thus such an infinite sequence does
not exist for > 0. It follows thatM ( ) is itself compact. Hence the moduli space
M ( ) is a finite set of points, each a transverse zero of+.

Now fix an orientation as above to give a sign to each point inM ( ), and then
define ( ) to be the number of points in the moduli space, counted with signs. This
will be independent of the metric by the same argument as above.

To finish the proof, we need to prove the mod 2 vanishing resultof the the-
orem. Using the conjugate connections on and the outer automorphism group

( (3) (3)), we have a compatibleZ2 action on the moduli space of ASD (3)
connections on . Since the fixed point set of the action of ( (3)(3)) on the
moduli space of ASD connections on consists of the homeomorphic images of the
moduli space of irreducible ASD connections on′ ∈ (Theorem 1.1), we have al-
ready shown that in our case the fixed point set is empty. Thus the invariants ( )
must be zero modulo 2. This completes the proof.
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