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1. Introduction

In their paper [8], S. Kobayashi and E. Shinozaki introdutieel concept of con-
jugate connection for a reducible principal bundte . Frora foint of view of the
geometry of 4-manifolds, the importance of this concepthiat tan automorphism of
a Lie groupG fixing a Lie subgroug induces a compatible actiantiee quotient
spaceB(P) of connections by the group of gauge transformations. We fix a Rie-
mannian metricg on the base manifold aod is compact and semies we can
also see that the automorphism group acts on the moduli spég€) of Yang-Mills
connections modulo the group of gauge transformations. drtiqular, the automor-
phism group acts on the moduli space of anti-self-dual (A8B)nections, when the
dimension of the base manifold is 4.

One advantage of this action on the moduli space of ASD cdiumecis that it is
not the action induced from an action on the base manifoldeWive attempt to use
the induced action on the moduli space coming from the basafoid, typically we
have to overcome some serious transversality issues. M. limlever, observed in [5]
that the inner automorphism group induces a trivial actiarttee quotient spac8(P).

It is well known [12] that for compact simple Lie groups onlyelLgroups of typeA,

(r > 1), D, (r > 4), and Eg have a nontrivial outer automorphism group. As a first
application of conjugate connections to the geometry ofafifolds, in this paper we
exclusively deal with the simplest compact simple Lie grdip(3) other thanSU (2).

In this case the outer automorphism group is isomorphic éocjtlic groupZ,.

One of the aims of this paper is to prove a fixed point theoremieurthe group
Z, action on the irreducible patg*(P) of the quotient spac&(P) in a reducible prin-
cipal SU (3)-bundleP along the irreducible paft‘(Q) of the quotient space8(Q)
of SO(3)-subbundles) ofP . More precisely, in Section 3 we show ftilewing

Theorem 1.1. Let X be a closed oriented simply-connected manifold. Fix a
Riemannian metricg onX, and let P be a principal SU(3)-bundle reducible to
an SO(3)-subbundleQ . LeiM7}(g), denote the fixed point set of the irreducible part

+(g) of the moduli spaceM p(g) of Yang-Mills(or ASD on P under the action of
the outer automorphism group ¢fU(3) fixing a Lie subgroupSO(3) generated by.
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Then we have

Mi(2)s = [ Mpi(2),

o’er

whereI” denotes the set 610(3)-bundle isomorphism classes i

We then use this fixed point theorem to show a mod 2 vanishiegrém for
Donaldson’s type instanton invariants for the Lie gratig . @) the author’s knowl-
edge, however, there has been no well-developed theorynfdariton invariants us-
ing the higher rank Lie groups, or even the Lie grosipf  (3). Thus second aim
of this paper is to give well-definedU @@)stanton invariantsfor certain smooth
4-manifolds.

Unlike the SU (2) orSO (3) case whose associated adjoint bundée® mank 3,
in general we cannot expect that for a generic metric on a difold the moduli
space of irreducible ASDBU (3)-connections is a smooth méhifath the virtual di-
mension given by the Atiyah-Singer index theorem. This fyagdomes from the dis-
crepancy between the dimension of its associated adjoimdlbuand the dimension of
the space of self-dual 2-forms. For any metgic , it is possithlat the moduli space
of ASD SU (3)-connections on asU (3)-bund®  always contains riwluli space
of ASD connections on asU (2)-bundlB’ with c,(P’) = c2(P). In this case it is
easy to see through the Atiyah-Singer index calculationt tha virtual dimension of
the reducible part of the moduli space of the ASIY  (3)-corinaestis larger than
that of the irreducible part of the moduli space ASIY  (3)-cections.

Hence it seems to be impossible to defis®  (3) instanton imwtri inde-
pendent of the metrice with the irreducible part of the modspiace of ASD
SU(3)-connections. M. Marino and G. Moore also pointed out in [th@}t deriving the
higher rank Donaldson invariants using the standard madtieah methods in [2] did
not work well because of the singularities of instanton niogpace. Donaldson, how-
ever, suggested that it might be possible to define the higdrée invariants using the
techniques he developed in his paper [1]. It will be very uk&h consider the higher
rank invariants for many reasons. For example, by consigeeven dimensional Lie
groups such asU (3) in case the first Betti number is zero, oné&l ambtain results
about 4-manifolds wittb] even, while the Donaldson invariants usify  (2)S®  (3)
have a restriction to 4-manifolds with; odd for a very simple reason.

Following a line suggested by Donaldson, in this paper wesiclem an even di-
mensional Lie groupSU (3), and as a first step to more gengtal -ingBnton in-
variants on smooth 4-manifolds we define sim@&  (3)-instaninvariantsg, X )
for certain smooth 4-manifolds. We hope we can come back ¢octimstruction of
SU (3)-instanton polynomial invariants on smooth 4-manifold a future paper.

More precisely, in Section 4 we show the following
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Theorem 1.2. Let X be a closedoriented simply connectedsmooth4-manifold
with a generic metric and3(X) = 3k — 1 (k > 1). We assume that the following
properties hold
(H1) The signatures(X) of X is not—2k mod 8
(H2) There exists a principalSU(3)-bundle P overX withc,(P) = 2k that is re-
ducible to anSO(3)-subbundleQ satisfying2(Q) = wo(T X) mod 2
Then there is a well-defined integet(X) depending only on the smooth structure
of X, and the smooth invariantg,(X) are always zero modul@.

It is worth mentioning that the hypothes{l2) is never strong because we can
always get such a principdfU (3)-bundle by extending a ppaicis O (3)-bundle Q
satisfyingw2(Q) = w2(T X) mod 2. In view of our proof of this theorem, it seems to
be possible to define more gene®l/  (3)-instanton invariantisout the hypothesis
(H1). Thus we conjecture that in that cas&  (3)-instanton inmésiahould be equal
to SU (2)-instanton polynomial invariants modulo 2. But, irder to avoid any compli-
cations, in this paper we keep imposing the hypoth@dik), and we will address this
issue somewhere else, later.

The mod 2 vanishing result in the above theorem is an immediahsequence of
the fixed point theorem (Theorem 1.1).

Let X be an algebraic surface. An (2)-bundles over algebraiaces we have
the notion of Hermitian-Einstein connection.lA (2)-conti@t A is calledHermitian-
Einsteinif its curvature F, satisfiesA\F, 3, where A is the Khler trace operator
on forms of type (1,1) and is constant.

S. Donaldson [2] proved that i is afiU (3) bundle over an algebsurface
X, the moduli space of irreducible ASD connections is nalyralentified as a set
with the set of equivalence classes of stable holomortiic , CYJundlesE which
are topologically equivalent t& , i.ecp(€) = c2(E). Since the moduli spaces of sta-
ble bundles are defined as complex spaces, they have a natigafation. Thus we
note that the signs in our simple invariants at differentngoiagree, i.e., there is no
cancellation. For algebraic surfaces we have the following

Corollary 1.3. Let X be a simply connected algebraic surface wif(X) =
6k — 1 (k > 1). Assume that the hypothesg@4$l) and (H2) hold. Let E be a complex
rank 3 vector bundle associated tB, and let F be the real raniB bundle associated
to Q. Then the set of equivalence classes of stable holomoph(3, C) bundles&
which are topologically equivalent t& is finite and the numizeeven.

We organize this paper as follows. In Section 2, we recall dagénition and ba-
sic properties of conjugate connections in reducible fpedcbundles. Section 3 is de-
voted to showing a fixed point theorem for the action of outetomorphism group
of SU(3) on the quotient spacB(P) in a principal SU (3)-bundleP that is reducible
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to an SO (3)-subbundlg) . In Section 4, we defifig  (3) instantoariants for cer-
tain smooth 4-manifolds. We also show the mod 2 vanishingrdra for the smooth
invariants in that section.

ACKNOWLEDGEMENT.  The author is grateful to Professor S. Kobayashi for many
helpful conversations during this work. He also would likethank the referee for use-
ful comments on this paper.

2. Conjugate Connections in Principal Bundles

The purpose of this section is to review basic definitions gederal properties
for the conjugate connections introduced by S. KobayasHti BnShinozaki. See [8]
and [9] for more detalils.

Let X be a manifold,G a Lie group, an® a princip@ -bundle ower thwi
projectionr. Let {U;} be an open cover ok  with local sectiofis U; — 7~ 1(U;).
Then, we define the transition functien; U; NU; — G by

&i(x) = & (x)a;j(x).

A connection formA on P is defined as a family gf-valued 1-formsA; orJ; which
satisfies the following transformation rule frody 1,

(21) Aj :a,-;lA,-a,-j +a,-;lda,-j onU; N Uj.

Since A; is not defined on all ok , we definegavalued 1-form onP fromA; as
follows:

A=g 'Aig+gldg, g€G,

on 7 XU;) =U; x G . Then it is easy to see that isgavalued 1-form onP , and
it follows that (A) = A;. The set of all connections oR  is denoted J4yP).

Now we recall the definition of conjugate connection on ppat fiber bundles.
Let G be a Lie group with its Lie algebrg, and let H be a closed subgroup with
its Lie algebrah. Let Aut(G, H) be the group of automorphisms 6f leaving all el-
ements ofH fixed, Inng, H ) be the group of all inner automorphisméut(G, H),
and letE G, H) = AutG, H Y Inn(G, H). E(G, H) is called theouter automorphism
group. Let o be an automorphism in Aul, H ). The induced automorphisny d$
denoted alsar.

Let O be a principalH -subbundle oP . In general, such a subleuigdl over
X does not necessarily exist. However, we can always extendnaigal H -bundle
Q to the principalG -bundleP so thaD is a principAl -subbundlePofin order
to define theos-conjugate connection on principal fiber bundles we co¥er opgn
setsU; with local sectiong;: U; — Q. It is important to take local sections of the
subbundleQ so that the transition functioms 's #e -valued.
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We are ready to define conjugate connections on principal fipedles. LetA
be a connection form o®® . We pu; &A. ThenA; is ag-valued 1-form onU; ,
but not necessarilyy-valued. We setAy = o(4;) and applyo to (2.1). Sinceg;; is
H-valued, we have

o - —1,0 -1
Aj —a[-j A,- a,-j+a,.j da,‘j.

Thus, {A?} defines a connection o® . We call it theconjugate connectionf A
relative to Q , denotedd,. If there is no danger of confusion, we wrii¢” for A7,
Note thatA? is not o(A). In fact, 0(A) may not be a connection 1-form.

Given o € Aut(G, H), we can also define its action ah  as follows. This helps
us to understand the notion of conjugate connection on ipahdiber bundles. Let
p € P lie overx € U;. Then, since we can lep  £(x)g for ¢ € G, we define
a transformatiorm:, o of P by

ho.o(P) = ho,o(&i(x)8) = &i(x)o(g).

If there is no danger of confusion, we writg for /i, . Note that as a transformation
of U; x G, h, can be given by

he:(x,8) — (x,0(g)).
Note that theo-conjugate connectiod® of A can be given by
(2.2) 7= (h, ) o (A).

The curvature form of ther-conjugate connectiofAY} (resp.A°) is given by {F7}
(resp. FY).

A transformation ¢ of a principal fiber G -bundleP  which commutes with
the right action ofG , i.e.

oug) =pm)g forall geG, uePr

is called agauge transformationThe set of gauge transformations, denoted oy
G(P), is called thegroup of gauge transformation$Ve have another important charac-
terization of gauge transformations which proves to be ulsef constructing a gauge
transformation.

Lemma 2.1. (a) A gauge transformatiorp of P defines a map;: U; — G by
(2.3) &) =&)wilx),  xeU.
(b) These maps; form a family{¢;} satisfying

(2.4) 2(x) = 4y (") Lpi(x)ay(x). on x € U;NU;.
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(c) Converselya family {¢;} satisfying(2.4) defines a gauge transformation (3.3).

Given a gauge transformatiofy; } with respect to local section§ of Q on U;,
applying o to (2.4), we get

o(p(x)) = a;; (x) o (pi(x))ai; (x)

onx € U;NU;. By Lemma 2.1, the family{c(y;)} defines a gauge transformation of
P, denotedyp?, and calledo-conjugate gauge transformation

It is time to state two important theorems of S. Kobayashi &dShinozaki in
[8], [9]. To do this, we fix a pointup € Q and let H,,(A) be the holonomy group of
the connectionA with respect to the reference paintWe call a connectiod in P
genericif its holonomy groupH,,(A) coincides withG , and we call a connection
in P irreducible if its isotropy groupG,, as a closed Lie subgroup @ , coincides
with the centerC G ) ofG .

Theorem 2.2. The groupAut(G, H) acts on the quotient spadg(P) of connec-
tions.

Note that since Inn§, H ) acts trivially on the quotient sp&&), E(G, H) acts
on B(P) (see [9] and [5]).

Theorem 2.3. Let o € Aut(G, H) and A be a connection irP . Assume th&t
is gauge equivalent tod  under a gauge transformationlf we define an element
a € G by o(uo) = uoa, then

o(g)=a 'ga

for ¢ € H,,(A). In particular, if the holonomy group is5, then o is the inner auto-
morphism defined by ! above.

From the above theorem, it is easy to see that, K ) acts freelth@meneric
part of the quotient spacB(P) and that AutG, H ) acts freely on the generic part of
the framed quotient spadgy(P) of connections by the group of framed gauge trans-
formations.

Finally we need one more observation. That is, while theoactf Aut(G, H)
on G(P) and A(P) depends on the reduction ¢f to té -subbundle , the action
of Aut(G, H) on the quotient space of connections does not dementhe reduction
of P to the H -subbundlg) . In fact, using (2.2) we have the follayvi

Proposition 2.4.
Let P be a principal G -bundle that is reducible t& -subbundi@s ndaQ’.
For a connectionA inA(P), A7 is gauge equivalent t, under i, o/ o h;’lQ €
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G(P). Therefore the action ofAut(G, H) on the quotient spac&(P) is independent
of the chosen subbundi@

Proof. We first show that for any € Aut(G, H), hy o’ © h;‘lQ is a gauge trans-
formation in P. To do it, lety = h, o o h Y. It suffices to show thatp(ug) = (u)g
for all g € G, u € P. We first coverX by an open coverind/;} so that there exists
local sectionss;, s/ on U; of O, Q, respectively with the relation; x( ) 55(x)aggr(x)
for someago/(x) € G. Then, we have

o(ug) = he,gr o h;ﬁl (ug)=hs g o h;’lg(s,-(x)tg) for some t € G
heo,0 (5i ()0 (18)) = ho, 0/ (s (X)age (x)o~H(tg))
si(X)o(apg (X))1g = ho o/(s{(X)age (x)o~1(1))g

ho.o (5i ()0 H(1)g = ho o 0 hy o (si(x)D)g

= ho,gr 0 hyp(u)g = (u)g,

which completes the proof of the claim.
It is also clear from (2.2) that
AG = (h, ) 0(A) = (hegr 0 hy ) (1 5 0(A) = (ho g 0 b ) A
Since h, o/ © h;}Q is a gauge transformation i® A7, is gauge equivalent tolf.
This completes the proof. ]

3. A Fixed Point Theorem

In this section, we primarily consider the following spéc@ase: the symmetric
pair SU (), SO()) (- > 3) which defines a simply connected symmetric space. It is
well known that every automorphism U (2) fixing a Lie gro§@ ) {8 inner.

We also fix ¢ which is the automorphism osU r () defined hy — g for
g € SU(r). Sinceo(g) = g if and only if g € SO(r), the automorphisnv is in
Aut(SU(r), SO(r)) and actually this is a generator fd&t S r (O r ( B Z, (see
[12] for more details).

In particular, ifr =3, we get the following fixed point theorem

Theorem 3.1. Let X be a simply connected manifpldnd let P be a princi-
pal SU(3)-bundle that is reducible to a§O(3)-subbundleQ . LetA be an irreducible
connection inP . IffA]? = [A] in the quotient spacé(P), then the holonomy group
H,,(A) = SO(3) up to conjugacy under inner automorphisms.

As a consequencel defines a connection in afiO(3)-subbundleQ’ of P.

Proof. First note that if a connection hd%  (2)$ras a holonomy group, then
the connection is not irreducible because the centralife§(2) or S* in SU(3) is
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not Zs, which is the center ofSU (3). On the other hand, every conaectiaving
SO(3) as a holonomy group is irreducible.

Suppose that? is gauge equivalent tet  under € G(P). SinceX is a simply-
connected manifold, it is shown in [7] and [6] that the holonyogroup H,,(A) is
a connectectlosedLie subgroup ofSU (3). Then, by Theorem 2B= o(Z)=a"1Za
for Z in the Lie algebra ofH,,(A), where as before is an element v (3) such
that p(up) = wuopa. Thus, we havedet(Z) = det(f) = det(Z) for Z in the Lie alge-
bra of H,,(A). On the other hand, by the property of the Lie algetwé3), we have
det(Z) = detg) = det(z”) = — det(Z) for Z in the Lie algebra of,,(A). Thus, clearly
we have detf ) =0 foiZ in the Lie algebra &f,,(A).

We next show that the holonomy grouf,,(A) is a compact connected rank-1 Lie
subgroup ofSU (3). In fact, suppose thak,,(A) is a rank-2 Lie subgroup ofU (3).
The Lie algebrasu(3) contains a Lie subalgebra of the following form

xi 00
(3.1) Oyi O):x+y+z=05,.
0 0z

Since H,,(A) is assumed to be a rank-2 Lie subgroupSaéf  (3), we may assuithe w
out loss of generality that its Lie algebra also containsltleesubalgebra of the form
(3.1). However, this Lie subalgebra contains an elemerd(dia —2i) whose determi-
nant is 2 # 0, which is a contradiction to def( ) = 0 fdf  in the Lie algelwh
H,,(A). Hence, we can conclude that the Lie subgrdijp(A) of SU(3) contains only
a l-dimensional maximal torus. Moreover, using det( ) = 0 Zorn the Lie algebra
of H,,(A), the Lie algebra of the maximal torus should be of the feitg form (3.2)

ug

without loss of generality:

xi 0 O
(3.2) {(O —xi O)erR}.
0 0 O

This Lie subalgebra is exactly the Lie algebra of a maximalgoof SO (3) orSU (2)

in SU(3) up to conjugation under inner automorphisms. Butceimny connection
having SU (2) orS! as a holonomy group is not irreducible, we can conclude that t
holonomy groupH,,(A) is SO(3) up to conjugation under inner automorphisms, com-
pleting the proof. Il

Since the holonomy group,,(A°) of the conjugate connectiom? is just
o(Hu(A)), it is obvious that the action of the automorphism groupt(&, H) on
the irreducible part of the quotient space of connectionwea$ defined.

In order to state and prove our main theorem in this sectioa, b&gin with
the following proposition:



CONJUGATE CONNECTIONS AND SU (3)-INSTANTON INVARIANTS 761

Proposition 3.2. Let X be a connected manifqldand let P be a principal
SU (r)-bundle that is reducible to as O(r)-subbundleQ . Then there is a natural em-
bedding fromB*(Q) to B*(P).

To show Proposition 3.2, it suffices to prove the followingnhea:

Lemma 3.3. Let X, P, and Q be the same as iRroposition 3.2Let A = ¢*B
for somep € G(P), where A andB are irreducible connections dh  such that they
define connections o® . Then there exists a gauge transfimmat € G(Q) such
that A =¢*B whenA andB are considered as connections@n

Proof. SetG =SU £ )H =SO £ ), for our convenience, and recall thatc
Aut(G, H) is given by g — g. Observe first that

A=A = () B7 = () B= () (¢ ) A= (0 o)A,
Thus 1o 7 € G4 = Cg(H,(A)) = C(G), where Cs H,,(A)) is the centralizer of
the holonomy groupH,,(A) of A in G. Thus, we have

(3.3) @7 (u) = p(u)a

for some constant € C(G), becauseC ¢ ) is discrete and actually in this case is
isomorphic toZ,.

Next we are going to construct a gauge transformatione G(Q) such that
A =9y*B. Let {U;} be an open covering of the base manifofd , and take the local
sectionss; :U; — Q. Since the given gauge transformatignin P defines a family of
functions {¢;} which satisfiesa;; X J1p;(x)a;j(x) = p;(x), wherea;; & ) is the transi-
tion function, it follows from (3.3) that we have

sipiga = p(si)ga = o7 (si)g = sio(pi)g.
for g € G. Thus, we have
(3.4) o(pi(x)) = i(x)a.

On the other hand, sinc€ G( 3 Z,, we can setz I, wheren is a complex number
with |n| =1 andn” = 1, andI is the identity element irG .
Hence, from (3.4), we have(y;(x)) = p:(x)n = np;(x). This implies that

1 2o (pi(x)) = n'20i (x).

Sinceo(g) = g, we haven Y20 (p;(x)) = o(n*/?p;(x)). This implies thato(n%¢; (x))
= n¥/2p;(x). Thus we havey/2p;(x) € H = SO(r). Here we used thall is exactly
the set of elements off which are fixed by AGI(H ).
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Finally we definey; (x) = 7%%¢;(x) € SO(r) = H on U;. This family {1;(x)} sat-
isfies the conditiom,.;l(x)qﬁ,-(x)a,-,-(x) =1;(x), because the familyy;(x)} satisfies this
condition andn is just a complex number. Hence, this family defines a gaumestor-
mation) on Q. Moreover, the connections aml ¢  are gauge equivalergrund
1. In fact, we have

YT B+t = Y2 B P + Y 2o d (M 2 )
= ¢ 'Bigi + o) g = Ay,

which completes the proof. Ll

Lemma 3.4. Let P — X be a principal G -bundle that is reducible to two prin-
cipal H-subbundlesP;, P,. Assume thatP; and P, are bundle isomorphic. Then, ev-
ery connectiond which defines one M is gauge equivalent to a connectigh  which
defines one inP».

Proof. Lety be a bundle isomorphism betweéh and P,. Note thaty extends
to the gauge transformation @¢f , denoted alsoSince A is a connection which de-
fines one inPy, as a connection i, we haveA =p*B for some connectioB irP,.
Then, it is easy to see that by extendiBg as a connectioR id , gauge equiva-
lent to B undery, completing the proof. O

Let o € Aut(G, H) and letG’ be the subgroup o consisting of elements that
are fixed byo and g’ be its Lie algebra. Le??’ be theG’-bundle extending? . Then,

Lemma 3.5. A connectionA is invariant by € Aut(G, H), i.e, A° = A if and
only if it defines a connection i®’.

Proof. SinceH C G’ C G, we haveQ C P’ C P. If a connectionA is already
a connection inP’, then A; isg’-valued and thusA® = A. Conversely, ifA does not
define a connection irP’, then A; takes its values outsidg, and thusc(A;) # A;.
Hence, the connectiod is not invariant by ]

Now we are ready to state our main theorem in this section lwkican imme-
diate consequence of Proposition 2.4, Theorem 3.1, Pridpos3.2, Lemma 3.4, and
Lemma 3.5.

Theorem 3.6. Let X be a simply connected oriented manifadadd P be a prin-
cipal SU(3)-bundle that is reducible to ar§O(3)-subbundleQ . Let5*(P), denote
the fixed point set of the action d&(SU(3),SO(3)) = (o) = Z, on B*(P). Then
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we have

B (P), = [T B°(2)

Q’er

whereI" denotes the set 610(3)-bundle isomorphism classes i

Proof. It suffices to show that if is a connection ih  which deirone in
an SO (3)-subbundlg)’ then it is invariant under the action of the on the quotient
space of irreducible connections iR . In fact, sinde  definesomnection inQ’
A% = A by Lemma 3.5, andAj, = ¢*Af, for a gauge transformatiop € G(P)
by Proposition 2.4. Thusdg, = »* A, which completes the proof. Ul

Assume thatG is compact and semisimple. Then the inner ptoduc
(Z,W)=—tr((adZ)(@dW )) Z, Weg

is invariant not only by Ad; but also by all automorphisms®@f ix Blso a Rieman-
nian metric onX . Then, Auff, H ) acts on the moduli space of YansMionnec-
tions [8]. It is also easy to see that AGY(H ) acts on the modpéice of anti-self-
dual (ASD) connections, when dish = 4. Using Theorem 3.6 amdabove remark,
it is easy to prove Theorem 1.1.

4. SU(3)-Instanton Invariants for certain 4-Manifolds

The purpose of this section is to give well-definfd  (3)-ingta invariants for
certain smooth 4-manifolds, and to prove Theorem 1.2.

Let X be a closed, oriented, smooth 4-manifold with a Riemammhetricg . Let
P — X be a principalG -bundle, and le¢ p(g) be the moduli space of ASD con-
nections onP modulo the group of gauge transformations. TtigaA-Singer index
theorem gives the formula for the virtual dimensiorP ( ).ofp(g)

s(P) = —2pi(gp) — dimG (1 — by + b3),

where b; is the first Betti numberp; is the dimension of maximal positive part
of H?(X,R), and g, is the adjoint bundle ofP . In particular, faSU r ( )-bundlg®
and the associated vector bundie  Bf  via the standard repetes, we have
2p1(gp) = —4rcp(E). Thus forr =3 we have K ) = X3(E) — 8(1— b1 +b3). On the
orther hand, forSO (3)-bundle® and the associated vectorlbufAdof Q via the
standard representation f0 (3), we have® ( }»2pi(F) — 3(1 — b1 + b3). Note
also that for a generic metrig oK , the moduli space of A&  c(8)nections is
smooth and has the virtual dimension, if it is non-empty,([2]).

For the rest of this section, we fix a principgl/  (3)-bundie hnftositive cy(E)
over a simply connected Riemannian 4-manifadd
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4.1. Reducible connections orP. When we work withSU (2) orSO (3) con-
nections over simply connected 4-manifolds, all possildductions are very simple.
For example, for theSU (2) case the only reductions are to a afpy' C SU(2)
or to the trivial subgroup corresponding to the product emtion. In case of an
SU(2)-bundle E the reductions correspond to splittings>~ L @ L', and such an
isomorphism exists if and only it,(E) = —ci(L)2 In the SO (3) case, we have
PR B L) = —co(Lp @ C) = —co(L & L) = ¢1(L)?. For the SU (2) orSO (3) case,
a line bundleL. over the Riemannian 4-manifofd  admits an ASBnection if and
only if c1(L) is represented by an anti-self-dual 2-form. Furthermergen X is sim-
ply connected, this connection is unique up to gauge ecneal. Thus we have the
following Proposition 4.2.15 in [2] we do not use in this pape

Proposition 4.1. Let X be a simply connected oriented Riemanrdamanifold
and let E be anSU(2) or SO(3) bundle overX . Then the gauge equivalence classes
of reducible ASD connections of  whose holonomy grouglisare in one-to-
one correspondence with the paitisc, where ¢ is a non-zero anti-self-dual class in
H2(X, Z) with ¢ = —c,(E) or ¢? = p1(E), respectively.

On the other hand, in th&U (3) case the possible reductionsmareh more
complicated, compared t8U (2) &tfO (3) case. However, it turaistbat it suffices
to consider only the largest possible reductions. In ordestate and prove an analo-
gous statement of Proposition 4.1 for the largest possédeations in theSU (3) case,
we need to set up some notations.

Let M(P)eq denote the set of the gauge equivalence classes of redukgile
connections onP  whose isotropy groupss. Let R denote the set of pairgy(, c2) in
H?(X,Z) x H¥(X, Z), wherec; is an anti-self-dual class satisfying(E)+(1/2)c? > 0
and ¢z = ca(E) + 2.

Let A be a representative fod[ § M(P)eq. Since A has an isotropy grougt,
the complex rank 3 vector bundle  associatedPto  has a redutdi@n S (U (2)x
U(1))-bundle S formed by a/ (2)-bundl€’ and a line bundleL . Thus, we have a
decomposition ofA into a diagonal formA{, A,), where A; (resp. A;) denotes an
ASD connection onE’ (resp.L ).

Since trF4,) +tr(Fa,) = 0, it is easy to see that (L) = —ci(E’). Furthermore, we

have
1 1
(527 )] [ (57

ol )~ BV~ Ser(L)

c2(E)

c2(E") — e1(L)2

Note also from Proposition 2.1.42 in [2] that sing® admits an ASD connection we
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have
N\ oe— / 1 N2 — 1 2
0 < K(E') =ca(E") — écl(E =c(E) + ECI(L) .

If we choose a different representati’e  for [€ IM(P)req, We have a different line
bundle L’ for B. But, sinceA is gauge equivalent ® L, must be isomorphié.to
This implies that we have a well-defined map

¢ M(Pled— R, [A] = (ca(L), c2(E")).

Let R denote the image ap. Note that (Qcz(E)) is contained in the seR.

Lemma 4.2. The preimage ofci, c2) € R under ¢ is the set of reducible con-
nections whose isotropy group &', corresponding to eaclici, c;) € R, and is ex-
actly same as the sdfA] = [A1, Aj] € M(P)red A1 € M(E')} for a fixed ASD con-
nection A, on the line bundleL satisfyingy(L) = ¢;

Proof. LetL be the line bundle whose first Chern classg,;isSince X is simply
connected, there is a unique gauge equivalence clagsof ASD connections onl. .
Thus every elementH;, By] € ¢~ (c1, c2) is gauge equivalent toBf, A,]. This com-
pletes the proof. ]

4.2. Transversality. In this subsection, we explain in more detail why the
Freed and Uhlenbeck’s transversality result for the ASDa#iqns in an principal
SU(3)-bundle does not hold. This suggests a way to overcomie dificulties in our
case.

With a given metric, an irreducible ASD connection is callegular if H32 =
cokerd}; = 0 and we call a moduli spaceegular if all its irreducible points in the
moduli space are regular points. A regular moduli spacereflircible connections is a
smooth manifold of dimension given by the Atiyah-Singereérdheorem. In particular,
if the moduli spaceM’(g) contains only generic connections dh , then the zeros
of Fi in B*(P) are transverse, forming a smooth manifold of dimension,(I2) —
8(1 +b3(X)).

After we identify H?(X, R) with the space of harmonic 2-forms, we have a de-
composition H2(X,R) = H* @ H~, where H* and H~ are the spaces of harmonic
self-dual and anti-self-dual 2-forms, respectively. IfanoectionA in anSU (3)-bundle
E is reduced to one on af U( (¥ U(1))-bundle formed by &/ (2)-bundl&’ and
a U (1)-bundleL , then for this connectioh  the line bundle adraih ASD con-
nection. Thusci(L) can be represented by an anti-self-dual harmonic form laesd
in H~. If b3 is non-zero, the spack~ is a proper subspace of7?(X, R). Thus we
can see that genericall{f~ meets the integer latticé/?(X,Z) ¢ H?(X,R) only at
zero. Hence the reducible connections inSin (3)-bundle argust the product con-
nection. In fact, it is clear from Lemma 4.2 that for any meh X the moduli space
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of ASD SU (3)-connections could contain the moduli space of A&ihnections in an
SU(2)-bundle E’ with co(E’) = c2(E), unless we impose additional hypotheseson
or P.

Now we are in a position to state and prove the statement wiki@nalogous to
Corollary 4.3.15 in [2]. We first need some notations. Cetlenote the space of con-
formal structures ofC” metrics oX  for some fixed suitable negative integer .
The space of is just the quotient ofC” metrics by th€” conformal changes.

Lemma 4.3. If b3(X) > O then for any/ > 0, there is an open dense subset
C(l) c C such that for[g] € C(/) the only possible reduciblg -ASD connections on
an SU(3)-bundle E overX withcy(E) < [ are either the connections consisting of
an irreducible g -ASD connection on th&U(2)-bundle E’ satisfying co(E’) = ¢2(E)
and the trivial product connection on the trividl (1)-bundle C or the trivial product
connection onE .

Moreover if d < b3(X) andh: R — C is a smooth family of metrics parametrized
by a d-dimensional manifoldR, then there is an arbitrarily small perturbation of
whose image lies i€ (7).

Proof. We prove the first assertion. The proof of the secomséréien is similar
to Corollary 4.3.14 in [2].

The proof of the first assertion is essentially same as thaCafllary 4.3.15
in [2]. From the above discussion, we see that genericablysfiaceH~ meets the in-
teger latticeH?(X, Z) only at zero. Thus generically we havg = 0. Since (Qcx(E))
is contained in the seR, by Lemma 4.2 and above argument, there is an open dense
subsetCy(I) C C such that, for § ]Je C1(l), the reducibleg -ASD connections dii  are
connections consisting of @ -ASD connection Bhsatisfyingc,(E) = c2(E’) and the
trivial product connection ort.

Applying once again, if necessary, the same argument aseimtbof of Corol-
lary 4.3.15 in [2] to theg -ASD connections oA’, we get an open dense subset
Co(I) C C such that, for § 1€ Co(I), the only reducibleg -ASD connection oA’
is the trivial product connection o’. Thus we have an open dense subG@) =
C1(l) N Co(l) C C satisfying the statements of the theorem. ]

For the orientation of the moduli space consisting of zefgsin B*(P), it can
be shown as in Proposition 5.4.1 and Section 5.4.3 of [2] éhahoice of orientations
of H9(X;R) and H2(X;R) defines a natural orientation of the moduli space.

4.3. Proof of Theorem 1.2. Since we want to get differential-topological in-
variants of X fromMp(g), we have to study its properties under the change of met-
ric. As we can see in Lemma 4.3, an one-parameter family oficsetould contain
non-generic metrics for which the largest possible redacitmnnections occur. This
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implies that a singular moduli space and the homology clds3(g) changes in-
side the quotient space of connections Bn . However, by rgakirgood choice of
an SO (3)-subbundleQ off , we can obtain the homology class inudgr@ of the
metric.

We first claim that the moduli spac&1,(g) contains only irreducible connections
under the hypothesg$il) and (H2). To do this, we show that there are no reductions
of E, and it suffices to consider onlg & E’ reductions for aSU (2) vector bundIg’
in the moduli space of ASOSU (3)-connections for a generic imesince they are
the largest possible reductions by Lemma 4.3.

Suppose that the complex rank 3 vector bunélle  has a reduati6hd E’. Then
clearly the real rank 3 subbundIE has also a reductioR @b L. Thus we have
p1(F) = c1(L)?. Sincecy(L) is a lift of wy(F) and any lift of wo(T X) = w,(F) to the
integers is characteristic, we must have modulo 8

—2k = —cp(E) = —co(F ® C) = py(F) = c1(L)? = o(X),

where we used in the last equality the standard fact (e.g.,Ss#section 1.1.3 in [2]
or Lemma 1.2.20 in [4]) that for any characteristic elemert H2(X, Z) and the in-
tersection form ofX we have

(cUc)[X]=0o(X) mod 8

Hence the signature(X) must be—2k mod 8, which is a contradiction.

Note also that the dimension of the moduli space of ASD (3meations on
any SO (3)-subbundle?’ of P is s(Q') = —2p1(Q")—3(1+b3(X)) = 4k— 9% = -5k < 0.
Thus these moduli spaces are generically empty and so thellimgmhce of ASD
SU(3)-connections orP , in fact, consists of only generic catinas. Thus the mod-
uli space Mp(g) is a submanifold cut out transversely i§*(P). Moreover, since
c2(E) = 2k andb3(X) = 3k — 1, we haves P ) = 12(P) — 8(1 +b3(X)) = 0. On
the other hand, for any of loweSU (3)-bundl&d”) with c(EM) = co(E) —r (r > 0)
the virtual dimension of the moduli spacdel;«(g) predicted by the Atiyah-Singer in-
dex formula is negative, and so the generic parts of theseulinspacesM zw(g) are
generically empty. Note also that an argument as above stitmtgor a generic metric
g the irreducible parts of these moduli spacks;»(g) consist of only generic ASD
connections.

As remarked at the beginning of the Subsection 4.4.1 in [2]strightfor-
ward generalization of the compactness theorem 4.4.4 intd2jnore general gauge
groups says that any infinite sequenéd,} in Mp(g) whose terms are in our
case generic ASD connections has a weekly convergent sudrseg] whose limit
(A, {x1,x2,...,x.}) lies in Mgn(g) x SynT (X) for some non-negative integer
where Sy K ) is ther -th symmetric product. (See Subsectighl4in [2] for
the definition of a weekly convergent sequence.) So, gt EO|x\ (qrp. s} —
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E|X\{x1,55....,} b€ bundle isomorphisms such that(A.) converges inC> on any
compact subset of the punctured manifad{x1, x2, ..., x,} to A in E®), as in Sub-
section 4.4.1 in [2]. For the sake of simplicity, l&t, to be Ay|x\{x,xs....x,}- TheEN
an argument completely similar to Lemma 4.3.21 in [2] ass#tat A/, is irreducible
ON E[x\{x,xs....,}- Thus the restricted holonomy group 4f, is isomorphic toSO (3)
or SU(3). If the restricted holonomy group of/, is isomorphic toSO (3) then the re-
stricted holonomy group op*(A’,) is also isomorphic taSO (3). Now exteng},(Al)
to an ASD connectionB, on the SU (3)-bundleE®) with 0 < c(E®) < ¢o(E) by
the Removable Singularities Theorem of Uhlenbeck in [11§ef clearly the holon-
omy group ofB,, is isomorphic toSO (3) orSU (3). But the irreducible parts of thos
moduli spacesM v (g) for s > 0 are generically empty, so the restricted holonomy
group of A/, should be isomorphic t&U (3). It is also easy to see that by #mes
argument as above this case cannot occur, either. Thus sutffirite sequence does
not exist forr > 0. It follows that M p(g) is itself compact. Hence the moduli space
Mp(g) is a finite set of points, each a transverse zerd bdf

Now fix an orientation as above to give a sign to each pointn(g), and then
defineg, (X ) to be the number of points in the moduli space, caunii¢h signs. This
will be independent of the metric by the same argument aseabov

To finish the proof, we need to prove the mod 2 vanishing resfilthe the-
orem. Using the conjugate connections &h and the outer aupdism group
E(SU(3), SO(3)), we have a compatibl&, action on the moduli space of ASBU (3)
connections onP . Since the fixed point set of the actionEafU ( , §8)(3)) on the
moduli space of ASD connections ad  consists of the homeomimimages of the
moduli space of irreducible ASD connections @i € T (Theorem 1.1), we have al-
ready shown that in our case the fixed point set is empty. Thasirtvariantsg; X )
must be zero modulo 2. This completes the proof.
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