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1. Introduction

Takahashi manifolds are closed orientable 3-manifold®ihtced in [21] by Dehn
surgery with rational coefficients 0832, along the 2 -component liniC, of Fig. 1,
which is a closed chain ofi2 unknotted components. These faldsihave been in-
tensively studied in [10], [11], [17] and [19, 20]. In paxier, a topological charac-
terization of all Takahashi manifolds as two-fold covesngf S3, branched over the
closure of certain rational 3-string braids, is given in][ahd [19].

A Takahashi manifold is said to hgeriodic when the surgery coefficients have the
same cyclic symmetry of order of the ling,, i.e. the coefficients are;/qr = p/q
andr/s; =r/s alternately, fork =1...,n. Several important classes of 3-manifolds,
such as (fractional) Fibonacci manifolds [7, 11] and Siskananifolds [2], represent
notable examples of periodic Takahashi manifolds. More gélye all cyclic branched
coverings of two-bridge knots of genus one are periodic flakhi manifolds [10].
A characterization of periodic Takahashi manifoldsmas dfoyclic coverings of the
connected sum of two lens spaces, branched over a knot, és @iv[17].

In this paper we generalize the family of Takahashi mangplds well as peri-
odic Takahashi manifolds, considering surgery along a ngaeeral family of links
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Fig. 1. Surgery presentation for Takahashi manifolds.
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Fig. 2. Surgery presentation for generalized Takahashiifoida.

(see Fig. 2). We obtain a presentation for the fundamentalpgy (Theorem 1) and
study covering properties of these manifolds. The germzdliTakahashi manifolds are
described as 2-fold branched coverings S5f (Theorem 3) and the generalized peri-
odic Takahashi manifolds are described asihe -fold cyalimthed coverings of the
connected sum of lens spaces (Theorem 6). In particular,hee shat the family of
generalized periodic Takahashi manifolds contains alllicycoverings of two-bridge
knots (Corollary 9), thus obtaining a simple explicit susg@resentation for this im-
portant class of manifolds (Fig. 8). This shows that our galimation of Takahashi
manifolds is, in this sense, really natural. As a furtheulesve give cyclic presenta-
tions (in the sense of [8]) for the fundamental groups of giilic branched coverings
of two-bridge knots (Theorem 10).

2. Construction of the manifolds

In this section we define a family of manifolds which genasi Takahashi man-
ifolds. For any pair of positive integere and , we consideg timk £,,, C S*
with 2mn components presented in Fig. 2. All its componetts <1i < 2,
1 < j < m, are unknotted circles and they formz 2 subfamiliesnof  urdthlcir-
clesc;j, 1< j < m, with a common center. We observe thgt, is the link £, dis-
cussed above. The Iink, , has a cyclic symmetry of order which permutes these
2n subfamilies of circles.

Consider the manifold obtained by Dehn surgery $h along the link £, ,,
such that the surgery coefficienis ;/qx,; correspond to the components,_, ; and
rv,j/sk,; correspond to the components; ;, where 1< k < nand 1< j < m
(see Fig. 2). Without loss of generality, we can always ssppacdfy ;, gk, ) = 1,
ged(, ;. s,;) =1 andpy,j, re,; > 0.

We will denote the resulting 3-manifold b, ,, p{;/qx,;;r«,;/sk ;). This manifold
will be referred to as ayeneralized Takahashi manifoldince form = 1 we get the
Takahashi manifolds introduced in [21].

The following Theorem generalizes the result obtained it far Takahashi man-
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yk—1 ,m

Fig. 3. Generators ofr1(S*\ L,.)-

ifolds.

Theorem 1. The fundamental group of the generalized Takahashi mahifol
Tum(Pr.j/qk.ji 7. /sx.;) has the following balanced presentation wizhm generators
A={a;;}1<i<on, 1<j<m @nd 2nm relations

—DPkj —  Sk—1j Sk—1,j+1 . g Sk=1m —Skm —Sk,j+1  —Sk,j

(A] Aop—1.j = Aop—2,j Aok—2 j+1 Ao —2.m 2k ,m Ao, j+1 Gor,j »
—Tkj - Gk+1, j Gk+1,j—1 qr+1,1 —qk,1 —qk.j—1 —qk.j .
Aor.j = Qo1 Ook+1j—1 " " G2k+1,1%%—1,1 """ Gok—1,j—1%2%—1,j»

1<k<n,1<j<m).

Proof. LetX = {xk,j}lgkgn,lgjgm and Y = {yk.j}lgkgn, 1<j<m be sets of
Wirtinger generators ofry(S®\ £,.,), according to Fig. 3.

Applying the Wirtinger algorithm we get the following pregation for
11(S*\ L)

-1 1 ~1 _
(XUY [ Y YemV—am " Yk Xk Yk=1 " Yk=Lm Vi " Vi) = Xkjs

-1 -1 -1 — .
Xt Xk X117 g, j Yk XKL T XL X T Yk
1<k<n,1<j<m).

Foreveryk =1...,nandj =1... ,m, let h; andl,; be the longitudes associated
to the components of, ,, corresponding to the meridiang ; and; respectively
(as usual we consider longitudes which are homologicailyatrin the complement of
the relative component). Then we have the relations:

_ —1 1 -1
hiej = Ye—1,j Ye—1,j+1 *** Yk=Lm Y = Y41 Ve o
and

— -1 -1 -1
lkj = Xiwdj Xewdjm1 " XksL 21X g © 00 Xp g X -
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Introducing H :{hk,j}lgkgn, 1<j<m and L = {lk,j}lgkgn, 1<j<m, W€ obtain the fol-
lowing new presentation forr (S \ Lom):

(XUYUHUL | [xgj hiej1=1, hij = ykfl,j"'ykfl,my/:;i;"'y]:},

_ _ —1 —1.
s bl = L0l j = Xewnj oo Xasn, 1% 1 X

1<k<n,1<j<m).
Therefore, the fundamental group ®f,, pi(/qi ;i ;/si;) admits the presentation:

(XUYUHUL [[x hi ] =10 hij = Ye1j- Ye-imYim Vi »

— — -1 —1.
ko bl = 1, Dk = Xewnj oo Xas1, 001 - X

xefhid =L k=1 1<k<n, 1<j<m).

Since gedpy j,gx; ) = 1 and ged(;,s.; ) = 1, there exist certain integars
Uk, js Wk, j and Zk,j such that]k_juk,j — Dk,jVk,j = 1 andsk,jwk,j — Yk, jZk,j = 1.
Fork=1...,nandj =1...,m we define

Tk,

— HUkjp Uk = Wk
a2—1,j = X j hk’j 5 a2k,j = Vi, j lk,j .
Sincex ; andh; (respy,; anbl; ) commute, we have
qk.j — Pk Ak jVk Y —
Aop—1,j — xksj(xk,j hk.j ) =

—Pkj  — — Pk, jUk,j 3 — Gk, jUk,j —
a2k—1j,j - (xk,j hk,j Yir,j = hj,
Sk,j — Tk, jZk,j 7,5, j Tk, j —_
Aok, j ~ )’k,j(yk,j hk,j ) = Yk.j»
—rk.j —_ —rk‘jwk‘j _Sk,jwk,j = .
g i = O, . Vij = .-

Xk, j»

Using these relations we can eliminate all the generatorh@fprevious presentation
of Tm(Pr.j/qr.jirx.j /s ), replacing them with the sefa; ;} 1<i<o. 1<j<m. The first
four types of relations of the above presentation disappear the statement is ob-
tained. O

When the surgery coefficients are -periodic, itg,;; pF gy q7~1; ;=
ands,; =s;, the resulting manifold;, ,, p(/q;;r;/s;) is said to be ageneralized pe-
riodic (n-periodic) Takahashi manifold

Corollary 2. The fundamental group of the generalized periodic Takahasn-
ifold T,,.(p;/q;;r;/s;) admits the presentation

<{ . } . . ‘ —Dj — 5 e gSm —Sm L S
Qi jy1<i<2n,1<j<m | Q1 j = Aop_2 ; A2k —2.m U2k m Aoy i
—r = _d4j q - T
Ao j = Qo+ " Aop+1,1%%—1,1 Aop_1,j»

1<k<n,1<j<m).
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Fig. 4. The link /K, (pr.j/qr.ji 7k /Sk.j)-

3. Covering properties of generalized Takahashi manifolds

We will define a new family of links inS%. For any pair of integers m > 0
consider two pairs of coprime integergi(j, qr,; ) and ( s.; ), where = 1n
and j = 1...,m. Let K, .(px.j/qx ji7x.j/Sk,;) be the closure of the rational braid
on 2n + 1 strings with rational tangles [I ;/q«,; andr /s ; indicated in Fig. 4.

As a generalization of the results from [11, 19, 21], we get:

Theorem 3. The generalized Takahashi manifolyl ,,(p«.;/qx.j; rc.j/Sk.;) is the
2-fold covering ofS®, branched over the iNKC,,. 0 (Pk /i3 Tr,j ) Sk, j)-

Proof. From Fig. 2 we see that the ling,, admits a strongly invertible in-
volution 7 whose axis (pictured with dashed line) intersects each ocomqt of the
link in two points. Thus, in virtue of the Montesinos Theoredb], the manifold
Tym(Pr.j/qr.ji v, /5k,j) can be obtained as the 2-fold covering 8% branched over
some link.

Applying the Montesinos algorithm, we get the link depictedFig. 5. Obviously,
this branching set is equivalent to the link presented in Big U

In particular, if the surgery coefficients are -periodi®. ipx,; = pj,qrj =4,
r,j = rj, andsg; =s;, the linkiC, ,.(p;j/q;;r;j/s;) is alson -periodic. Note that
K..1(1;—1) is an alternating link with 2 double-crossings, which le tclosure of
a 3-string braid, referred to as a Turk head link in [18} 1(1; —1) is the figure-eight
knot andK3 1(1; —1) are the Borromean rings.
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/s
km km

Fig. 5.

Corollary 4. The generalized periodic Takahashi manifdg..(p;/q;;r;/s;) is
the 2-fold covering ofS®, branched over the periodic inkC,, ..(p;/q;ir;/s;).

In other words, T,. p;j/q;;r;/s;) is the Zy-covering of the orbifold
S3(1Cn,m(pj/qj;rj/sj)) whose underlying space i§® and whose singular set is
Kum(pj/qj;ri/s;), with singularity indices 2. Since the singular set of thbifold
is n-periodic, there is a natural action of a cyclic grodp such that the quo-
tient orbifold is S*(Q, .(p;/q;;7;/s;)), where the singular set is the link pictured
in Fig. 6 and the indices of singularity are: 2 on the compésewvhich are images
of Kum(pj/q;irj/s;) andn on the unknotted component. Note that the part of the
singular set having index 2 can be obtained as a connectedo$u@m two-bridge
links corresponding to the rational tanglgs/q1, r1/s1, - - -+ Pm/dms T/ Sm-

Therefore we get the following statement.

Corollary 5. The generalized periodic Takahashi manifdg,.(p;/q;;r;/s;) is
the Z, @ Z,,-covering of the orbifoldS*(Q,..(p;/q;:7/s)))-

The following theorem extends to generalized periodic Takai manifolds the re-
sult given in [17] for periodic Takahashi manifolds.

Theorem 6. The generalized periodic Takahashi manifdd,.(p;/q;;r;/s;) is
the n -fold cyclic covering of the connected sum2ef lens spaces

L(pls 511)#]4(”1, S]_)#' T #L(_pms Qm)#L (rm’ sm )s

branched over a knot which does not dependron



GENERALIZED TAKAHASHI MANIFOLDS 711

2
2
2
(~ > )
|| P/,
T I r./s
175
_|\ p,/q —
2" M5
T R r./s
I —1 2 ——
I . .
n | . .
! . L]
4
| 7w,
| ]
rm/srn
& e )
2

Fig. 6. The linkQ, .(pj/a;;ri/s;)-

Proof. Both the linkZ,,, and the surgery coefficients defining the manifold
T,m(pj/qj;r;j/s;) (and so, also the manifold) are invariant with respect toolhwious
rotation symmetryp of ordern . Denote byp) the cyclic group of orden generated
by this rotation. Observe that the fixed-point set of theamcf (p) on S* is a triv-
ial knot disjoint fromZ, ,,. Therefore, we have an action ¢f) on T, .. (p;/q;;r;/s;),
with a knotK =K {p) as fixed-point set. The underlying space of the quotienifacb
T.m(pji/aj,ri/s;)/(p) is precisely the manifold ,.(p;/q;;r;/s;), which can be ob-
tained by Dehn surgery o8% with coefficientsp;/q; andr;/s;, j =1,...,m, along
the 2n -component linkC; ,, depicted in Fig. 7.

The components of,,, are unlinked, unknotted, and form a trivial link withn2
components. Therefore the underlying space of the quotigsifold is homeomorphic
to the connected sum ofs2 lens spade, G1)#L (r1, g1)# - - - #L (P, G JEL s S )
(see [18, p. 260]). Moreover, it is obvious from the actionpothat the singular sek
of the quotient orbifold is a knot which does not dependnon . U

Denote by O, .(p;/a;iri/s;) = Tam(pj/q;iri/s;)/{p) the orbifold from the
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Fig. 7. The linkLq .

proof of Theorem 6, whose underlying space is the conneated & 2n lens spaces
L(pla ql)#L(rla Sl)#. o #L(pma Qm)#L (rl717 sm )'

Corollary 7. The following commutative diagram holds for each geneealipe-
riodic Takahashi manifold.
Tom(Pj/ajirils))

o
S (Kum(pj/ajiri/si)) Owm(pi/ajiri/s;)

e 7
Sa(Qn,m(pj/Qj;rj/sj))

Proof. From Fig. 2 we see thdl, ,, admits an invertible involution whose axis
intersects each component in two points and the rotationrsstny p of ordern which
was discussed in Theorem 6. These symmetries induce syraméiso denoted by
and p) of the generalized periodic Takahashi manifdld 7z, p;Ag;;r;/s;), such
that (7, p) = (1) ® (p) =¥ Z, ® Z,. As mentioned abovey induces the symmetry (also
denoted byp) of the orbifold T /() (whose singular set is given by Corollary 4), and
the coveringT — (T /(r))/{p) is given by Corollary 5. The coverind — T/{p)
is given by Theorem 6. As we see from Fig. 77,induces the strongly invertible in-



GENERALIZED TAKAHASHI MANIFOLDS 713

volution (also denoted by) of the link £1,,. Using the Montesinos algorithm we
see that 1/(p))/(1) = SX(Qum(p;/q;ir;/s;)) (note that the part of the singular set
of S3(Qn,,,z(pj/qj;rj/sj)) having index 2 can be obtained as a connected surmmof 2
two-bridge links corresponding to the rational tangl@sqi, r1/s1, - - - s P/ qms Tm /Sm)-

]

4. Cyclic branched coverings of 2-bridge knots

In this section we show that generalized periodic Takahasmifolds contain the
whole class of cyclic branched coverings of two-bridge kndm the following we use
the Conway notation for two-bridge knots (see [4]).

Theorem 8. The generalized periodic Takahashi manifdigd,,(1/¢;;1/s;) is the
n-fold cyclic branched covering of the two-bridge knot cepending to the Conway
parameters]—2q1, 251, . .., —2Gu, 25, )-

Proof. From Theorem 67, , (%,;1/s;) is the n-fold cyclic covering ofS?,
branched over a knoK . Figs. 9-15 shows how to defdfm to a Cgsawer-

mal form of a two-bridge knot with Conway parameters2f, 2s1, ..., —2q,;, 25, ]
by ambient isotopy (from Fig. 9 to Fig. 12) and surgery caleu[18] (from Fig. 13
to Fig. 15). ]

Remark. As a consequence of Theorem 8, the generalized periodiah@zki
manifold 7, ,, (1/g;;1/s;) is homeomorphic to the Lins-Mandel manifofin, @, b, 1)
[12, 16], the Minkus manifoldV, , b ) [14] and the Dunwoody manifa¥ ((« —1)/2,
0,1b/2,n,—q,) [5, 6], wherea > 0 and

1
Tt A 12, + @)

1) —2q1

a _

b
Because every 2-bridge knot admits a Conway representafitbnan even number
of even parameters (see, Exercise 2.1.14 of [9]), we havéallmving property.

Corollary 9. The family of generalized periodic Takahashi manifoldstaimis all
cyclic branched coverings of two-bridge knots.

From Theorem 8 we can easily get the surgery presentationtHern -fold
cyclic branched covering”,(a/b) of the two-bridge knot, with Conway parameters
[—2q1, 251, ..., —2q,, 2s,,], depicted in Fig. 8.
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1/q,

1/q,

Fig. 8. Surgery presentation fa, ( — 2q1 +

1
251+'"+1/{72‘]m+1/(23m)} ) '
5. Cyclically presented fundamental groups

A cyclic presentation for the fundamental groups of cycliarithed coverings of
two-bridge knots is obtained by J. Minkus (see Theorem 10 4f)[1Corollary 2 and
Theorem 8 allow us to obtain a different cyclic presentafimnsuch groups. Note that
explicit cyclic presentations different from the above &sted in the Appendix of [3],
for two-bridge knots up to nine crossings.

Theorem 10. Let C,(a/b) be then -fold cyclic branched covering of the two-
bridge knotb(a/b), with a/b given by formula(1l). Then its fundamental group has
the following cyclic presentation

~ a .
m (Cn (Z)) = (X1, X | Wayp(Xiy o Xin—1) = 1, i=1...,n),
where
wa/h(-xia cees Xidn— l) b, ’ dl+lmbsm

i+1,m i,m

fori =1,...,n (indicesmod n). The right parts of these formulas are defined by the
recurrent rule

s ; .
dk bkj] idk/ 1bk 1,j-1 b dkjbkj ldk+1j, ]—2,...,]’}1
and
— g @
br1= dk,ldk+l,l’
wherex;, =dy 1, for k=1,...,n

Proof. From Corollary 2 and Theorem 8, the gromﬁﬁ‘,,(a/b)) is generated by
the Zum elementda; ;}i=1,.. 20, j=1...m @nd has relations of two types:

—1
-1 — Sj+l Sm Sj+1 Sm
Aor—1,j = (aZk 2,022 j+1° " Aok Zm) : (aZk ok, j+1" " Ao, m) )
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-1
-1 _ qj—1 q1 qj—1 q1
Aok, j = (a2k+],ja2k+],j 1° a2k+Ll) ’ (aZk 1,j%%k—-1,j-1" a2k71.1) )

wherek =1...,nandj =1...,m, and all the indices are taken mod 2 amd
respectively. Denotéy, ; &y, andd,; =ax—1; fork=1...,nandj =1...,m
Then we have 2n relations of the two following types:

=% pSitl Sm Smo L SiM —Sj
dk./ - bk.jbk,j+1 bk mbk 1m bkfl,j+1bk71,j
and
L= g9 g9i—1 q1 —4j—1 3.—4j
bk,/ - dk,jdk,j—l dk ldk+l 1’ dk+1.j—1bk+l,j'

Therefore, the defining relations for the group are:

bk /M:;”dkmbz”—l,m =1, dk’j+1 = b/:j‘jdk,jsz_lﬁj, j=1...,m—1,
and
bia = dhd Ty bij = di" !ibr, 1dk+1j, j=2,...,m,

for k = 1,...,n. Denotingx; =dr1, k = 1,...,n, we will eliminate all other
generators in the following orderb; 1, di2, b2, ..., dk.m, brm according to the
above formulae. At the end of this process we will get retaicarising from
b demby" 1 ,, = 1. That completes the proof. g

We will illustrate the obtained result for the cases =1 and .=2

If m=1, thena/b = —2q +1/(2s), andC,(a/b) = T,.1(1/q, 1/s). This case, cor-
responding to a Takahashi manifold, was discussed in [16][&f4]. Using notations
by =by1 anddy, =dy for k=1,...,n, we get

( (1 1>)
1| Th =

q S

(bro .. byody. ... dy | b7db =1 by =d'dl. k=1.....n).

Hence

11 —q\—s —q\s
7r1<T,11<q )):<x1,...,xn|(x,§xk+q1) xxl_x =1 k=1...,n).

N

For example, ifg =1 ands =1 theru/b =5/2, that corresponds to the figure-
eight knot 4 [1]. So, itsn -fold cyclic branched covering has the fundatakgroup
with the cyclic presentation

m(Tra(—1, 1)) = (g, ooy | xpaxp e =1 k=1...,n)



716 M. MuLAzzANI AND A. VESNIN

(compare with [3, 10, 11]).
Form =2 we get

m1(Tn2(1/q1, 1/g2; 1/51, 1/52)) =
(b11s -+ bpa,b1os oo byo,dra, o dya,dro, ., dy |
by dk2b? 1 ,=1, di2 = by 'di bt g g, bia = ddLt
bio = b 1di s, k=1 n).

Denotex; =dj.1, thenby 1 = x/",x, .1 Therefore
dr2 = (' x 3D (ol g )"
and

q2
brz = | (xf xa ) " (g g x, ql)ﬂ} CraE ey [(xk+1xk+§1) oo (0] 0, 1)

Define

We /b (Xk—25 Xk—1, Xe» Xk+1s Xk+2) =
qiy—s1 —q1\S1 a2 1\—S1 q1\s1 a2 o
(xk Xps1 )~ xk(xk 1%k ) xk xk+1 (xk+1xk+ )~ xk+1(xk Xpa1 )

S ETE0 ) IS 1 C e i

—q2 S2
q —q q —q q —q q —q
'H(xkl X ) (g ox, i)sl} XX {(xk X)) (g 1)51} } .
Therefore, we get the following cyclic presentation for fiimdamental group of

the n -fold cyclic branched covering of the two-bridge krxfz/b) corresponding to
[72ql’ 2Sl’ 72q27 2S2]

1 111
m | Th2 — = =)=
q1’ g2" 51’ 52
(X1, ooy Xn | Wayp (k-2 Xk—1, Xks Xpr, Xp4) = 1, k=1...,n),

where all the indices are mod

For example, forg; = ¢» = —1 ands; = s, = 1 we geta/b = 29/12, that cor-
responds to the knot;8 So, itsn -fold cyclic branched covering has the fundamental
group with the following cyclic presentation:

-1 -2 -1 -1.2 -1 -1
(X120 ooy X | X1 XX Xk 2X g 1 XX 1 X X 1 Xk X 1

2.—1 -1 ) -1 1.2 -1 _ _ _
XX g Xu X Xk—2X Xk X Xk XXX X = Lk =1 ... n).
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Fig. 11.
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