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1. Introduction

Let k£ be the field of complex numberS. We fix it as the ground field of our
discussion. LetS be a quartic surface in the projective tlsmaceP® = P3(k) and K =
k(S) the rational function field ofS . For each poift € S, let 7p: S--- — H be a
projection fromS to a hyperplan®  with the center . This ragiomap induces the
extension of fieldsK /k(H) if the multiplicity of P is not four. The structure of this
extension does not depend on the choiceHof , buton , so thatnte &y instead
of k(H). The field Kp is a maximal rational subfield &  (cf. [5]).

Derinimion 1. A point P € S is called a Galois point if the extensiaki/Kp is
Galois.

Note 1.1. If P is a singular point onS with multiplicity two or three, thethe
degree of the extensiok /Kp is two or one. NamelyP is a Galois point. Hereafter
in this paper, the term “Galois point” means a non-singulainpwhich is Galois.

In the paper [7], Yoshihara studied Galois points on smoatlrtic surfaces.
As a continuation of his results, in this paper, we considafo{s points and singu-
lar points on normal quartic surfaces.
We use the following notation:
e (X:Y:Z:W): homogeneous coordinates &1
e Tp: the tangent plane to the surfade at a pant
e G(X, Y, Z): a quartic homogeneous polynomial in three variables éve
e H(X,Y): a quartic homogeneous polynomial in two variables dver
e [(P, Q): the line passing through point8  arg@l
e (. a primitive sixth root of unity
o w:=(?

2. Statement of results

We use the same notation as is used in Section 1 and restreglees to the case
where S is a normal quartic surface.
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For a Galois pointP , let be an element of Gak{/K p). The next proposition is
essential in our discussion.

Proposition 2.2. The birational transformation of induced hyis a restriction
of a projective transformation ap®.

We denote byM ) € PGL(4,k) the projective transformation dP® induced
by o.

DerinimioN 2. We call ¢ an automorphism belonging to the Galois poifAt
and M ) the representation of.

Let GP() be the set consisting of Galois points f ar{d) the cardinality
of GP(S). Note that(S) is invariant under projective transformations $f

Theorem 1. If § is a normal quartic surface andGP(S) is a finite set then
0(S)=0, 1, 2, 4, 50r 8. Expressing in more detailve have the following.
(1) If §(S) =1, then by taking a suitable projective transformatighe defining equa-
tion of S can be given by W3+ G(X, Y, Z) = 0.
(2) If §(S) =2, then by taking a suitable projective transformatighe defining equa-
tion of § can be given by

(@ XY3+ZW3+H(X,Z)=0or

(b) zyY3+zZwW3+ H(X,Z)=0.
(3) If §(S) =4, then by taking a suitable projective transformatighe defining equa-
tion of S can be given by W3+ z4+ H(X,Y) = 0.
(4) 6(S)=51if and only if S is projectively equivalent to the surfaSg given by the
equationXY3+ ZW3+ Z4=0.
(5) 6(S) =8 if and only if S is projectively equivalent to the surfadg given by the
equationXY3+ ZW3+ X*+ 74 =0.

If Sis a smooth quartic surface, then GP( ) is a finite set (cf).[To the con-
trary in the case wherd is not smooth, the set can be an infleteC be a smooth
plane quartic curve with a Galois point. (For the definitidnGalois point of a plane
curve, see [3].).

Theorem 2. If S is a normal quartic surface andP(S) is an infinite setthen
S is a cone overC . Expressing in more detaile have the following.
(1) By taking a suitable projective transformatiothe defining equation of can be
given byZW3+ H(X, Z) = 0.
(2) Let O be the vertex of the cone  a@P(C) the set consisting of Galois points
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Table 2.1.

Defining equation o(S) | GP(S)
ZW3+G(X,Y,Z) =0|>1|>{P}
XY3+ZWS+H(X,Z) =0|>2 | >{ P, Ps}
ZY3+ZW3+H(X,Z) =0|=2 |={ P, Ps}
ZW3+Z4+ H(X,Y) = >4 | D{ P, P, P3, Py }
XY3+ZW3+ 24 =0 | =5 |={ P, Py P3, Py, P5 }
XY3+ZW3+X4+27% =0|=8 | ={ P, Py, P3, P4,

Ps, Ps, P7, Pg }
ZW3+ H(X, Z) =0| =00 | D{(0:a:0:1)|ack}
ZW3+ X4+ 74 =0|=co | ={(0:a:b:1)|ack,

b=0,¢ ¢3¢}

of the base curv&€ . Then we have that

GPES)= J «P.0)-{0}.

PEGP(C)

(3) The setGP( )U{O} consists of at most four lines. Moreoyéhne maximal number
is attained if and only ifS is projectively equivalent to therfaice Sy given by the
equationZW?3+ x4+ z4 = 0.

ExampLE 2.3. As a kind of converse assertion to the above theoremshawve
the examples in Table 2.1. In the table, we use the notatiah#h= (0 :0: 0 : 1),
P,=0:0:¢:1),P3=(0:0:¢3:1),P,=0:0:¢>:1),P5=(0:1:0:0),
Ps=(C:1:0:0),P,=(®:1:0:0)andPg=(>:1:0:0).

Note that the surface with(S) = 8 has some interesting properties. For example,
the number of lines on the surface is 64, this is the maximumbar of lines lying
on a smooth quartic surface. (For more detail, see [2].) Iditeah, the surfaces with
0(S) =5 andoo do not appear in [7], because they have a singular point. &edtudy
them in Section 4 by similar way to [2].

We can make clear what type of singulariti§s can havej(§) > 2. In what
follows, to represent types of singularities, we use theesatation as in [1, p. 143,
pp. 210-214]. To make sure, we show normal forms of the rovtasis follows. Let
(x, v, z) be a local coordinates.

Ay x2+y2+ 73 Az x2+y2+ 7t
Dy x2+y3+yz2 Tt x2+y%+ 5
Xgi x2+yt+74 Py x3+y3+28
Up:  x3+y3+ 2% Us: x3+y%+yz°

VJ{8: x3 + y4 + Z4
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For example, we denote hy3D3 the set consisting of three points with-singularity
and two points withD4-singularity.

Theorem 3. There exists a relation betweef(S) and the singularities as fol-
lows
(1) If 4(S) =2, thenS belongs to one of the following types.
(&) S is smooth.
(b) S is projectively equivalent to the surface given by the eignakY3+Z W3+
H(X, Z) = 0 with the singularitiesDs, D%, Ps, Uiz, U4, J1o, DaJro, J7 A3,
A§D4, Agpg, A§U14, Ag]lo, Ag or A2D4.
(c) S is projectively equivalent to the surface given by the eguaz W3+ ZY3+
H(X, Z) = 0 with the singularitiesA3, A3Da4, A3DZ, A3Ps or A3U.
(2) If 6(S)=4,thenS belongs to one of the following types.
(@) S is smooth.
(b) S is projectively equivalent to the surface given by the eiguaz W2 + Z* +
X?Y?=0 and has two double points of types.
(c) S is projectively equivalent to the surface given by the eiguaz W2 + Z* +
X?Y(X +Y) =0 and has one double point of typey.
(3) If 6(S) =5, thenS has one triple point of typ€&/,.
(4) If 6(S) =8, thenS is smooth.
(5) If GP(S)is an infinite setthen S has one singular poir®  with multiplicity fqur
and the geometric genus of the singular poit is four.

Note that in the case wheS) = 1, there may exist too many singularities to de-
termine completely.
Finally, we present more concrete examples.

ExampLE 2.4. There exist surfaces with the singularities listed iy ¢f Theo-
rem 3 as in Table 2.2. We denote Wy a-( b: c¢: d: ) the singular pointypie
® with coordinatesd b ¢ d ).

3. Proofs and some other results

Let P =(0:0:0:1) be a non-singular point gh . First, we give iecion when
the point P becomes Galois. We put /W, y=Y/W,z=Z/W and f (,y,z) =
F(X,Y,Z,W)/W* = Zlefi, where f; is a homogeneous part ¢f  with degiee
(i=1,2, 3, 4).

Lemma 3.5. Under the notation abovehe following assertions are equivalent
(1) P is a Galois point.
(2) fZ=3ff3

(3) By taking a suitable projective transformation fixing theirpioP, the defining
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Table 2.2.

Type

Defining equation

Singular points

Dy

XY3+ZW3+ (X +2Z) X +2Z)X — Z)%> =

0

D4-(1:0:1:0)

XY+ ZW3+(X+2Z2)(X —2)?=0

D4-(1:0:1:0),D4-(—1:0:1:0)

XY3+ZW3+(X+Z)(X —2)3=0

Pg-(1:0:1:0)

Ui,

XY3+ZW3+(X —2)*=0

Ui»(1:0:1:0)

Uia

XY3+ZW3+X3(X+27)=0

U14-(0:O:1:O)

J1o

XY3+ZW3+X2(X?+XZ+2Z%=0

J10-(0:0:1:O)

Dy4Jyo

XY+ ZWe+X%(X —Z2)?=0

D4-(1:0:1:0),J10-(0:0:1:0)

XY3+ZW3+X272=0

Jio(1:0:0:0),J10(0:0:1:0)

XY3+ZW3+X*+XZ(X+Z) (X -2Z)=0

A-(0:1:1:0),A>-(0:w:1:0), A>-(0:

w?

XY3+ZW3 —X(X+Z)(X — Z2)*=0

A-(0:1:1:0),A2-(0:w:1:0), Ax-(0:
D4-(1:0:1:0)

UJZ

:1:0),

A3Pg

XY3+ZW3+X(X—-2)°=0

Ax-(0:1:1:0),A>-(0:w:1:0), A>-(0:
Pg-(—1:0:1:0)

:1:0),

A3U14

XY3+2zZw3—Xxz%=0

A2-(0:1:1:0),A2-(0:w:1:0), Ao-(0:
U14-(1 :0:0: O)

:1:0),

A3J10

XY3+ZW3+XZ3%(X -2)=0

A-(0:1:1:0),A2-(0:w:1:0), Ax-(0:
J]_o-(l :0:0: O)

:1:0),

XY+ ZWe —XZ(X?+XZ+Z%=0

A2-(0:1:1:0),A2-(0:w:1:0), Ao-(0:

w2

:1:0),

A>(1:0:0:1),A2-(1:0:0:w), A>-(1:0:0 :w?

651
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ASDy | XY3+ZW3—XZ(X — Z)’=0
A»-(0:1:1:0),4,-(0:w:1:0), A>-(0:w?:1:0),
A»-(1:0:0:1),A,-(1:0:0:w), A»-(1:0:0:w?),
D4(1:0:1:0)

A3 | ZY3+ZW3+ X4+ 2Z%=0
A3-(0:¢:0:1),A3-(0:¢%:0:1),A3-(0:¢°:0:1)
A3Dy | ZY3+ZW3+ XX (X+Z)(X—-2)=0
A3-(0:¢:0:1),A3-(0:¢%:0:1), A3-(0:¢°:0: 1),
D4-(0:0:1:0)

A3DZ | ZY3+ZW3+X%(X — Z)?=0
A3-(0:¢:0:1),A3-(0:¢%:0:1),A3-(0:¢°:0:1),
D4-(0:0:1:0),D4-(1:0:1:0)

A3Pg | ZY3+ZW3+X3(X+Z)=0
A3-(0:(:0:1),A3-(0:¢%:0:1), A3-(0:¢°:0:1),
Pg-(0:0:1:0)

A3Upp | ZY3+ZW3+X4=0
A3-(0:¢:0:1),A3-(0:¢%:0:1),A3-(0:¢°:0:1),
U;»-(0:0:1:0)

equation can be given by + g4(x, v, z) = 0, where g4 is a homogeneous polynomial
with degree four.

Proof. First let us prove the implication (£ (2). Puttingg &, v,z ) =f2—3f1f3
and letting Hp be a general hyperplane given by the equation ax= by +where
a, b € k, we infer from Bertini's theorem thaf» :$N Hp is a smooth quartic curve
given by the equationf x( y,ax &y ) = 0. We note th&  also becomes a $aloi
point of the curveCp . Hence we obtain thatx, ¢, ax by ) =0 for generab ,see(
[6, Lemma 11].) Therefore we getx(y,z )=0.

Next, we prove the implication (2 (3). By taking a suitable projective trans-
formation fixing the pointP , we may assume that = z. Then from the equation
f? = 3f1fs, we infer thatz is a factor off, and f3. Hence, f can be expressed as
7 +281 +2812/3 + fa, whereg; = gi(x, y, z) is a homogeneous polynomial with de-
gree one. LetF =ZW3+ Zgy(X,Y, Z)W2 + Zgi(X, Y, Z*W /3 + f4(X, Y, Z), which
is obtained fromf . Substitutingy — g1(X, Y, Z)/3 for W in the form F , that is, we
considerF &,Y, Z, W—gi(X, Y, Z)/3). Then we obtainF ZW3+g4(X, ¥, Z), which
means thatf z +a.

Finally let us prove the implication (3} (1). Puttings =y/x andr =z/x, we
obtain Kp =k §,7) andK =Kp £ ). The minimal equation af ovérp is the one
x3+1/g4(1,s,t) = 0, which implies that the extensioki/Kp is Galois. Il

From Lemma 3.5, we infer the following readily.
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Note 3.6. If P is a Galois point, therl» N S consists of only lines which meet
at P.

Let us prove Proposition 2.2. Suppose is a Galois point Sof enTh
by Lemma 3.5, we may assume th@at is given by the equationz #(xty,z) =0.
Puttings =y/x andt =z/x, we obtainKp, =k £, ) andK =Kp A ). The minimal
equation ofx overK, is the one®+1/f4(1,s,t) = 0. Hence, we infer that(x) = wx
if o € Gal(K/Kp) is not identity. Therefore, a birational transformatioh $induced
by o is a restriction of a projective transformation Bf. Thus, we complete the proof
of Proposition 2.2.

Remark 3.7. Copying the proofs in [7], we obtain the following.
(1) Let F be the homogeneous defining equatiorsof &hd™ ( ) be thesiate of F .
If Pis a Galois point, thenH £ ¥ )=0.
(2) Suppose that? an@’ are Galois points, and and ¢’ are automorphisms be-
longing to P andP’, respectively. Theng(P’) is also a Galois point ando’'c~? is
an automorphism belonging te(P’).
(3) Suppose thaP an@t’ are two Galois points, and the lire passing through these
points does not lie orf . Then in (2) we have thdP’) # P/, hence there exist two
more Galois pointsr(P’) and o2(P’).

To prove Theorem 1 and 2, we show the following two lemmas.

Lemma 3.8. Let!/ be a line lying onS . The#( N GP()) =0, 1, 20r co. The
last case occurs if and only i§ is projectively equivalentti® cone given by the
equation

ZW3+H(X,Z)=0,

especially /N GP(S) =l — {0}, where O is the vertex of the core

Proof. Suppose that there exist three Galois poikts P, and P; on /. Then,
from Lemma 3.5, we may assume that = (0:0:0: 1),/ is given by the equation
X =7=0, andS is given by the equation

ZW3+XH(X,Y)+ZG(X,Y,Z)=0.
Here, we define linear systems as follows:

H = {H\ | [ C H\, Hy is a hyperplané,
C={C\=SNH\,—1| H\eH}.

Let Hy, be an element of{ given by the equationkX =\Z (A € k). Then, Cy =
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SN Hy, — 1 is given by the equation
W3+ AH(\Z,Y)+G(\Z, Y, Z) =0,
hence, we see that, N1 is given by the equation
W3+ H(,Y)+G(0,Y,0)=0Q

If H(O,Y) # 0, then the linear systerfi determines the finite morphism with de-
gree threed [ — P Note thatTp C H (i =1, 2, 3) and let us pu€pr SNTp —1.
Then from Note 3.6, we can see easily tligt N/ = {P;}, this implies thatP; must be
a ramification point of® . However, the number of ramificatiooirgs of ® are two,
this is contradiction.

Assume thatH (0Y ) = 0. Then, the points 6f, N/, which are given by the
equationsX =Z =0 andv3+ G(0,Y, 0) = 0, are singular points of . Henc® ¢
C\nl, and we infer from Note 3.6 thelp, = Tp, = Tp,, and Tp, N S consists of one
line I. So, we may assume th&t is given by the equation

ZW3+ X4+ Z (GoY3+G1Y?+GoY +G3) =0,

where G; =G; (K, Z ) is a homogeneous polynomial with degiee . EitheP0br P;
can be represented by (0 :1: @: 9 € k, a # 0), now we assume tha®; can be
so. Then, checking the condition (2) of Lemma 3.5Pt we obtain thatGg = G, =
G, = 0. Namely, we may assume th§it is given by the equadi®vi® + H(X, Z) = 0.
Note thatO = (0:1:0:0) is the vertex of the cofe . Then, usingiita 3.5, we
see easily thatNGP(S) =1 — {0}. Il

Lemma 3.9. Suppose thafS has four Galois poin® (i =1, 2, 3, 4)and these
are collinear. In addition suppose that the line passing through these four points does
not lie onS. ThenS is projectively equivalent to the surfaceegi by the equation

ZW3+Z%+ H(X,Y)=0.

Proof. Since Lemma 3.5, by taking a suitable projective siamation, we may
assume that; = (0 : 0 : 0 : 1) andS is given by the equatichWs + G(X, Y, Z) =
0. Let ! be the line passing through the Galois poiRts i ( = 1, 24)3,Note that
[ ¢ S, we may assume thdt is given by the equation Y = =0. Then, th&tsi
(i =1, 2, 3, 4) are given by the equations Y= =0 aadv3+ G(0, 0, 1)°%) = 0.
Namely, 7, = (0:0:1 wi=2¥=¢) (i = 2, 3, 4), wherec =G (0 0 1). Now we put
G = X7,G,(X, Y)Z*J, whereG; , Y ) is a homogeneous polynomial with degjee
(=0, 1, 2, 3, 4). Then, by checking the condition (2) of Lemm&a &t each Galois
point P;, we obtain thatG; = G, = G3 = 0. Therefore, we get the defining equation
ZW3+Z4+H(X,Y)=0. O
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Let us prove Theorem 1. The assertion (1) of Theorem 1 is atriffom
Lemma 3.5.

We prove the assertion (2) of Theorem 1. LRt  aRtl be two Galois points.
Then, letoc and ¢’ be automorphisms belonging ® a®d, M(c) and M ¢’) their
representations, respectively. Let be the line passingugir the pointsP and’’.
We infer from Remark 3.7 that is contained $h . Hence, we seslyethat M (o)
and M ¢') have the following properties:

e M(c)(P)=P, M(c)(P')=P', M(c')(P)=P, M(c')(P) = P’

o M(o)(lp) =1p [resp. M ¢')(Ip:) = 1p/], for any linelp [resp.lp:] passing through
P [resp. P'].

e M(0)® and M ¢’)° are identity.
So by taking a suitable projective transformation, we maguaee thatP =(0:0:0:
1), P'=(0:1:0:0),

w000 wi00 0
lowoo W la1p 0
M@)=1060wo0 dMe)=| g 0w 0 |
0001 00 0w

wherea ,b €k, i =1 or 2. ThenM ¢) and M (') can be diagonalized simultaneously,
since M ¢)M(c') = M(c’)M (o). Therefore, we may assume that

w0O0O
0100
OOwO
000w

M(o') =

From the conditionsM «)(S) = S and M ¢')(S) = S, we obtain the assertion (2)
of Theorem 1.

It is easy to see that the surface with= 3 cannot exist. Indeed, suppose that
0(S) = 3. Then, letP;, P, and P; be three Galois points. From Remark 3.7, we obtain
that [ (P1, P2), I(P2, P3), I(P3, P1) C S. Hence we infer from Lemma 3.8 that three
points P;, P, and P; are not collinear. However, we see that the configuratiorhde
lines /;; contradicts to Note 3.6.

Let us consider the case where<4§(S) < co. Then, we infer from Remark 3.7
and Lemma 3.8 that there exist four Galois points which aréinear. Hence from
Lemma 3.9, by taking a suitable projective transformatire, defining equation of
can be given by

ZW3+Z*+ H(X,Y)=0.

Now we obtain the assertion (4) of Theorem 1.
If H(X,Y) has only simple factors, thef is smooth. Therefore weeh¥sS) = 4
or 8, especiallyj(S) = 8 if and only if S is projectively equivalent to the surfageren
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by the equationXY3+ ZW?3+ X%+ Z4 =0 (see [7, Theorem 3]). On the other hand, if
H(X,Y) has a multiple factor, the is given by one of the followieguations, by
taking a suitable projective transformation.

() Zw3+2z4+x%v =0 (i) ZW3+ 24+ X?v?=0
(i) ZW3+ 24+ X?y(X +Y) =0 (iV)ZW3+ 2%+ X%=0

Calculate§(S) using Lemma 3.5 and Remark 3.7, we obtain thgf) = 5 when §
is given by the equation (i)9(S) = 4 when S is given by the equation (ii) or (iii),
and GPf{ ) is not a finite set whe§i is given by the equation (iv)isIclear that
the surface given by the equation (i) is projectively eqi@mato the surface given by
the equationXY3+ ZW?3+ Z% = 0. Thus we complete the proof of Theorem 1.

Next, let us prove Theorem 2. Suppose that SP( ) is an infigite Then letPy,
P, and P; be three Galois points of . First, we suppose that these areatinear.
Then from Note 3.6, we see thatPy, Po) ¢ S, [(P2, P3) ¢ S or [(Ps, P1) ¢ S. Now
we assume that Ry, P;) ¢ S. Then, from Remark 3.7 and Lemma 3.9, by taking
a suitable projective transformation, we may assume $hat givisn by the equation
ZW?3+Z*+ H(X,Y) = 0. Hence noting that GB( ) is an infinite set, similarlyths
last part of the proof of Theorem 1, we may assume that is gbsethe equation
ZW?3 + X%+ z% = 0. This is the special one of the surfaces given by the eguati
ZW?3+ H(X, Z) = 0. Next, we suppose that,, P, and P; are collinear. Then let
be the line passing through these points/ tf S, then similarly as above, by taking
a suitable projective transformation, we may assume shat givisn by the equation
ZW3+ X%+ 7%= 0. On the other hand, if ¢ S, then from Lemma 3.8, we may as-
sume thatS is given by the equatiafW3+H (X, Z) = 0. Thus we obtain the assertion
(1) of Theorem 2.

Suppose thaS is a cone aml  is a Galois pointSof . Then by a siitab-
jective transformation and by choosing a suitable baseecarywe may assume that
P=(0:0:0:1),thevertex0 =(0:1:0:0)an#t € C. Moreover, from [6,
Proposition 5], we may assume th@t is given by the equafién® + H(X,Z) =0
on the hyperplane given by the equatitn = 0. For each pBinof /((P, O) — {0},
using Lemma 3.5, we can check easily thidtis a Galois point ofS . Thus we obtain
the assertion (2) of Theorem 2.

The assertion (3) of Theorem 2 is clear from [6, Theorem 4 amghdition 5]

Thus we complete the proof of Theorem 2.

Finally we prove Theorem 3. From Theorem 1, its proof and Té&eo2, we infer
readily the assertions (2), (3), (4) and (5). Let us consttiercase whereS is given
by the equationXY3+ ZW?3+ H(X, Z) = 0. We put

H(X, Z) = hoX* + hiX3Z + hoX?Z? + h3X Z3 + haZ*,

whereh; € k (i =0, 1, 2, 3, 4). Letl;, I, and I3 be lines given by the equations
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X=W=0,Y =Z =0 andY =W =0 respectively. We see easily that any simgula
point of S must be orl; Ul, Ul3. By calculating local equations, we can decide types
of singularities whichS can have adh, I, andlz as follows:
1. Onl;. Let Q be the point (Oa :1:0), where € k.

(@) Q is a singular point if and only if4s = 0 andhs = —a®.

(b) Q is a singular point of typei, if and only if 1, =0 andhz = —a® # 0.

(c) Q is a singular point of typeio if and only if a =hs =hs =0 andhy # 0.

(d) Q is a singular point of typd/i4 if and only if a =hy; = hg=hs = 0.

Hence we see that the type of singularitiesigns A3, Jip or Uya.
2. Onl,. Let QO be the point (1:0:0¢a ), where € k.

(@) Q is a singular point if and only ifkg =0 andh; = —a®.

(b) Q is a singular point of typei, if and only if 1o =0 andh; = —a® # 0.

(c) Q is a singular point of typeio if and only if a =ho=h; =0 andhy # 0.

(d) Q is a singular point of typd/i4 if and only if a =ho =h; =hy = 0.

Hence we see that the type of singularitiesigns A3, Jip or Uya.
3. Oniz—(l1Ulx) NIz Let Q be the pointd :0:1:0), where € k anda # 0.
Now we putH &, Z) =K —aZ) Hi(X, Z), where j =0, 1, 2, 3 or 4Hy(X, Z) is
a homogeneous polynomial with degree-4 and Hj(a, 1) # 0.

(@) Q is a singular point if and only if > 2.

(b) Q is a singular point of typeD, if and only if j = 2.

(c) Q is a singular point of typePs if and only if j = 3.

(d) Q is a singular point of typd/i, if and only if j = 4.

Hence we see that the type of singularitieslgr- (I1 U l5) N3 iS Dy, Dﬁ, Pg or
Uio.

Let us consider the combinations of above types of sindidarias in Table 3.1.
In the table, the symbdl means that there does not exist a singular poins of ;on
I or I3 — (I3 U l3) Nl3. Moreover, if there exists the surface with the singular {gin
then we use the symbd@l), otherwise we usex.

Therefore, we infer the assertion (1)-(b) of Theorem 3. Birlyi as above, we can
prove the assertion (1)-(c) of Theorem 3. Thus we completeptioof of Theorem 3.

From the above discussions, it seems easy to check Exangbknd. Example 2.4.

4. The surfaces with many Galois points

In the paper [2], it is studied that the structures of the tiaaurface which has
eight Galois points. So, in this section, let us study thacttre of the quartic surfaces
which appear in (4) of Theorem 1 and (3) of Theorem 2 similadyit. We denote
by S5 the surface given by the equation

XY3+zZwi+2Z7%=0,
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Table 3.1.
combination of types of singularities | existence ofS
onl; | only onlz—(1Ul)Nls
0 0 0 O
0 A3 | 0, Dy or Pg O
0 A3 DZ or U X
0 J1o 0 or Dy O
0 Jio | D3, Pg or Up X
0 Ui 0 O
0 Uyg Dy, DE, Pg or Uiz X
A3 0 0, Dy or Py O
A3 0 D or Up X
A3 | A3 0 or Dy O
A3 A3 | D;, Pg or U X
A3 Jio 0 O
Ag J1o0 Da, Di, Pg or Uqo X
A3 | U 0 O
Ag U1a Dy, Di, Pg or Uiz X
J1o ) 0 or Ds O
J1io ] DE, Pg or Ujp X
J1o A% 0 O
Jio | A3 | Ds D2, Pg or U X
J1o J1o 0 O
Jio | Jio | Da, DI, Pg or U X
J1o Uis any type of singularities X
Uia 0 0 O
Ui 0 D4, D3, Pg or Up X
U | A3 0 O
U1a Ag Dy, DE, Pg or Uiz X
Uis J1o any type of singularities X
Uiy | U any type of singularities X

which has five Galois points and one singular point of tyffg (cf. Theorem 1 and
3). Nowwe putP, = (0:0:0:1),P,=(0:0:¢:1),Ps=(0:0:¢:1),
P,=(0:0:¢>:1)andPs = (0:1:0:0), which are five Galois points ¢,
and we putQ = (1:0:0:0), which is the singular point 8&f. Let £(Ss5) be the
set of automorphisms ofs induced by projective transformations, and (&tSs)(be
the group generated by the automorphisms belonging to tlkeG@®iois points onSs.
Since G s) has an injective representation BGL {4 ) (cf. Propositio?),2we use
the same notation of an element 6f Ss) as the projective transformation induced by
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We denote bySy the surface given by the equation
ZW3+ X%+ 7%= 0.

Now, we putO = (0 : 1 : 0 : 0), which is the vertex dfy, the singular point
with multiplicity four and the geometric genus @i  is four.tLHy be the hyperplane
given by the equatiory = 0. Then, we pGf = Sy N Hy, which is a base curve of
the coneSx. Using [6, Lemma 11], we see thad, P, P; and P4 are four Galois
points of C4. Hence, we have that

4
GP@x) = Ji(P. 0) {0} ={(0:a:b:1)|ack b=0 ¢ °}
i=1

(cf. Theorem 2 and Example 2.3). Let us defiigsy) and G §y) similarly as above.
We can prove the following lemma by similar argument to theoprof [2,
Lemma 2].

Lemma 4.10. Under the notation aboyenve have the following.
Q) If o; (#id) is an automorphism ofs belonging to the Galois poinp; (i = 1....,
5), theno; (or 0;) has the following representation

100 O 10 O 0
010 O 01 O 0
%1001 0 |° 27002 =2 |
000¢-1 00%;2 <1

10 O 0 10 O 0

01 O 0 01 O 0

= 20-1 —¢+2 |, = 20-1 2¢-1 |,

737100 X A

_2C+4 1 —2¢-2 1

00 %+ I 00 %2 ¢t

and

1000
-|o¢oo
®"loo10
0001

(2) Let us denote thaP,; =(0:a :0:1),P,o=0:a:¢:1), P,3=(0:a:3:1)
and P,4=(0:a :¢°: 1), wherea € k. If o,; is an automorphism ofy belonging
to the Galois pointP,;(a € k andi = 1, 2, 3or 4), theno,; has the following
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representation
100 0O 10 0 0
01 %2, 22,4
Lo |o10¢-2n = 3 3
a,l 001 0 ) a,2 00 2(;1 7(371 )
000 ¢-1 -2 1
¢ 00 %32 <
10 O 0 10 O 0
01-= §+4a C—gza 01 72g72a %a
0a3 = 20—-1 —¢+2 |>» Oa4= 20—-1  2¢-1
00 %34 =% 00 %7t %57
—2(+4 1 —2¢-2 1
00 =X+ ¢ 00 5= &

We can prove the following proposition readily, by the samimethod to the proof
of [2, Theorem 1] and a elementary consideration of matrices

Proposition 4.11.
(1) The order ofG(Ss) is 223%. Moreover we have the following

G(Ss) = { 0fogolr™ |i1,izi3=0,1 2 is=0,1}U
{ofotolr™ | ip=0,1 2 i1,ip=0,1} U

{0'10'3010é17'i2 | i]_ = 0, :L 2, i2 = 0, 1},

where
100 0
010 0
"“loo-10
00 0 —1

(2) G(Sx) is an infinite group. Moreoverthere exists an exact sequence of groups as
follows (for the definition ofG(C4), see[2])

1— Hi — G(Sx) — G(Cs) — 1,
where H; is the subgroup ofG(Sy) consisting of

1000
Olab
0010
0001

€ PGL(4, k)  (a, bek),
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and the mapr is defined as
ail aiz aizdaia
ail aiz a4
azy azz a3 a4 _
r = | as1azzaz
asz) az2 a33dsza
Q41 42 G434 44

as1 a43 a 44

(note thatr is a homomorphisreince for any element a¥(Sx), ai2 = azp = as2 = 0.).

By the similar way to the proof of [2, Theorem 3] and a elempntnsideration
of matrices, we have the following proposition.

Proposition 4.12.
(1) The order of the group’(Ss) is infinite. In fact, £(Ss) consists of the following
elements

A0 0 O A00 O
op 0 o | _ fopo o
00 a aBy 00a O ’
00 208 ay 00 0o

wherea?=1/9, 33=-1,+3=-1,0*=1,8%=1and \3 =1
(2) The order of the groupC(Sy) is infinite. In fact there exists an exact sequence
of groups as follows(the definition of£(C4), see[2])

1— Hy — L(Sx) — L(Ca) — 1,
where H; is the subgroup of(Sx) consisting of

1000
abcd
0010
0001

€ PGL(4,k) (a,b,c,d €k),

and r is the same homomorphism usedPioposition 4.11

The number of lines on the surface witi{S) = 8 is 64, this is the maximum
number of lines lying on a smooth quartic surface (cf. [2, Rekd]). However, the
lines on the surfaceSs is not so many, and the lines on the surfatg is finitely
many sinceSy is a cone.

Proposition 4.13. The number of lines on the surfack is eight. In fact they
are [(P1, Ps), (P2, Ps), [(Ps, Ps), [(Ps, Ps), [(P1, Q), [(P2, Q), [(P3, Q) and [(Py4, Q).
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Proof. A line inP? is given by one of the following equations:

o X —aZ-bW=Y—-cZ—-dW=0 oY —aW=Z-bW=0
e X—aY-bW=Z—-cW=0 oY —aZ=W=0
e X —aY—-bZ=W=0 e Z=W=0

(a, b, ¢, d€k)
Therefore, by elementary calculation, we conclude. Ll

From Ss has the triple point andy is a cone over a smooth plane quartic curve,
We infer the following readily.

Proposition 4.14.
(1) A non-singular model ofs is a rational surface.
(2) A non-singular model ofy is birationally equivalent to a ruled surface of genus
three.

Remark 4.15. By similar argument in this section and [2], if the difinequa-
tion of a normal quartic surfacd is given, then we can find &ments of G § ),
L(S) and the set of lines o , and then we can calculate thesesorilmreover, by
[4, Theorem 1], we can see easily what type of surface a nugukir model ofS is.
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