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1. Introduction

Let be the field of complex numbersC. We fix it as the ground field of our
discussion. Let be a quartic surface in the projective threespaceP3 = P3( ) and =
( ) the rational function field of . For each point ∈ , let π : · · · → be a

projection from to a hyperplane with the center . This rational map induces the
extension of fields / ( ) if the multiplicity of is not four. The structure of this
extension does not depend on the choice of , but on , so that we write instead
of ( ). The field is a maximal rational subfield of (cf. [5]).

DEFINITION 1. A point ∈ is called a Galois point if the extension/ is
Galois.

Note 1.1. If is a singular point on with multiplicity two or three, thenthe
degree of the extension / is two or one. Namely is a Galois point. Hereafter
in this paper, the term “Galois point” means a non-singular point which is Galois.

In the paper [7], Yoshihara studied Galois points on smooth quartic surfaces.
As a continuation of his results, in this paper, we consider Galois points and singu-
lar points on normal quartic surfaces.

We use the following notation:
• ( : : : ): homogeneous coordinates onP3

• : the tangent plane to the surface at a point
• ( ): a quartic homogeneous polynomial in three variables over
• ( ): a quartic homogeneous polynomial in two variables over
• ( ): the line passing through points and
• ζ: a primitive sixth root of unity
• ω := ζ2

2. Statement of results

We use the same notation as is used in Section 1 and restrict ourselves to the case
where is a normal quartic surface.
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For a Galois point , letσ be an element of Gal(/ ). The next proposition is
essential in our discussion.

Proposition 2.2. The birational transformation of induced byσ is a restriction
of a projective transformation ofP3.

We denote by (σ) ∈ (4 ) the projective transformation ofP3 induced
by σ.

DEFINITION 2. We call σ an automorphism belonging to the Galois point
and (σ) the representation ofσ.

Let GP( ) be the set consisting of Galois points of andδ( ) the cardinality
of GP(S). Note thatδ( ) is invariant under projective transformations of .

Theorem 1. If is a normal quartic surface andGP( ) is a finite set, then
δ( ) = 0, 1, 2, 4, 5or 8. Expressing in more detail, we have the following.
(1) If δ( ) = 1, then by taking a suitable projective transformation, the defining equa-
tion of can be given by 3 + ( ) = 0.
(2) If δ( ) = 2, then by taking a suitable projective transformation, the defining equa-
tion of can be given by

(a) 3 + 3 + ( ) = 0 or
(b) 3 + 3 + ( ) = 0.

(3) If δ( ) = 4, then by taking a suitable projective transformation, the defining equa-
tion of can be given by 3 + 4 + ( ) = 0.
(4) δ( ) = 5 if and only if is projectively equivalent to the surface5 given by the
equation 3 + 3 + 4 = 0.
(5) δ( ) = 8 if and only if is projectively equivalent to the surface8 given by the
equation 3 + 3 + 4 + 4 = 0.

If is a smooth quartic surface, then GP( ) is a finite set (cf. [7]). To the con-
trary in the case where is not smooth, the set can be an infinite. Let be a smooth
plane quartic curve with a Galois point. (For the definition of Galois point of a plane
curve, see [3].).

Theorem 2. If is a normal quartic surface andGP( ) is an infinite set, then
is a cone over . Expressing in more detail, we have the following.

(1) By taking a suitable projective transformation, the defining equation of can be
given by 3 + ( ) = 0.
(2) Let be the vertex of the cone andGP( ) the set consisting of Galois points
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Table 2.1.
Defining equation δ( ) ( )

3 + ( ) = 0 ≥ 1 ⊃{ 1 }
3 + 3 + ( ) = 0 ≥ 2 ⊃{ 1, 5 }
3 + 3 + ( ) = 0 = 2 = { 1, 5 }
3 + 4 + ( ) = 0 ≥ 4 ⊃{ 1, 2, 3, 4 }

3 + 3 + 4 = 0 = 5 = { 1, 2, 3, 4, 5 }
3 + 3 + 4 + 4 = 0 = 8 = { 1, 2, 3, 4,

5, 6, 7, 8 }
3 + ( ) = 0 =∞ ⊃{ (0 : : 0 : 1) | ∈ }
3 + 4 + 4 = 0 =∞ = { (0 : : : 1) | ∈

= 0, ζ, ζ3, ζ5 }

of the base curve . Then we have that

GP( ) =
⋃

∈GP( )

( )− { }

(3) The setGP( )∪{ } consists of at most four lines. Moreover, the maximal number
is attained if and only if is projectively equivalent to the surface +× given by the
equation 3 + 4 + 4 = 0.

EXAMPLE 2.3. As a kind of converse assertion to the above theorems, wehave
the examples in Table 2.1. In the table, we use the notation that 1 = (0 : 0 : 0 : 1),

2 = (0 : 0 : ζ : 1), 3 = (0 : 0 : ζ3 : 1), 4 = (0 : 0 : ζ5 : 1), 5 = (0 : 1 : 0 : 0),

6 = (ζ : 1 : 0 : 0), 7 = (ζ3 : 1 : 0 : 0) and 8 = (ζ5 : 1 : 0 : 0).

Note that the surface withδ( ) = 8 has some interesting properties. For example,
the number of lines on the surface is 64, this is the maximum number of lines lying
on a smooth quartic surface. (For more detail, see [2].) In addition, the surfaces with
δ( ) = 5 and∞ do not appear in [7], because they have a singular point. Let us study
them in Section 4 by similar way to [2].

We can make clear what type of singularities can have, ifδ( ) ≥ 2. In what
follows, to represent types of singularities, we use the same notation as in [1, p. 143,
pp. 210–214]. To make sure, we show normal forms of the notation as follows. Let
( ) be a local coordinates.

2: 2 + 2 + 3
3: 2 + 2 + 4

4: 2 + 3 + 2
10: 2 + 3 + 6

9: 2 + 4 + 4
8: 3 + 3 + 3

12: 3 + 3 + 4
14: 3 + 3 + 3

′
18:

3 + 4 + 4
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For example, we denote by3
3

2
4 the set consisting of three points with3-singularity

and two points with 4-singularity.

Theorem 3. There exists a relation betweenδ( ) and the singularities as fol-
lows:
(1) If δ( ) = 2, then belongs to one of the following types.

(a) is smooth.
(b) is projectively equivalent to the surface given by the equation 3 + 3 +

( ) = 0 with the singularities 4, 2
4, 8, 12, 14, 10, 4 10, 2

10,
3
2,

3
2 4, 3

2 8, 3
2 14, 3

2 10, 6
2 or 6

2 4.
(c) is projectively equivalent to the surface given by the equation 3 + 3 +

( ) = 0 with the singularities 3
3, 3

3 4, 3
3

2
4, 3

3 8 or 3
3 12.

(2) If δ( ) = 4, then belongs to one of the following types.
(a) is smooth.
(b) is projectively equivalent to the surface given by the equation 3 + 4 +

2 2 = 0 and has two double points of type9.
(c) is projectively equivalent to the surface given by the equation 3 + 4 +

2 ( + ) = 0 and has one double point of type9.
(3) If δ( ) = 5, then has one triple point of type ′

18.
(4) If δ( ) = 8, then is smooth.
(5) If GP( ) is an infinite set, then has one singular point with multiplicity four,
and the geometric genus of the singular point is four.

Note that in the case whereδ( ) = 1, there may exist too many singularities to de-
termine completely.

Finally, we present more concrete examples.

EXAMPLE 2.4. There exist surfaces with the singularities listed in (1) of Theo-
rem 3 as in Table 2.2. We denote by -( : : : ) the singular point oftype

with coordinates ( : : : ).

3. Proofs and some other results

Let = (0 : 0 : 0 : 1) be a non-singular point on . First, we give a criterion when
the point becomes Galois. We put =/ , = / , = / and ( ) =

( )/ 4 =
∑4

=1 , where is a homogeneous part of with degree
( = 1, 2, 3, 4).

Lemma 3.5. Under the notation above, the following assertions are equivalent:
(1) is a Galois point.
(2) 2

2 = 3 1 3

(3) By taking a suitable projective transformation fixing the point , the defining
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Table 2.2.
Type Defining equation

Singular points

4
3 + 3 + ( + )( + 2 )( − )2 = 0

4-(1 : 0 : 1 : 0)
2
4

3 + 3 + ( + )2( − )2 = 0

4-(1 : 0 : 1 : 0), 4-(−1 : 0 : 1 : 0)

8
3 + 3 + ( + )( − )3 = 0

8-(1 : 0 : 1 : 0)

12
3 + 3 + ( − )4 = 0

12-(1 : 0 : 1 : 0)

14
3 + 3 + 3( + ) = 0

14-(0 : 0 : 1 : 0)

10
3 + 3 + 2( 2 + + 2) = 0

10-(0 : 0 : 1 : 0)

4 10
3 + 3 + 2( − )2 = 0

4-(1 : 0 : 1 : 0), 10-(0 : 0 : 1 : 0)
2
10

3 + 3 + 2 2 = 0

10-(1 : 0 : 0 : 0), 10-(0 : 0 : 1 : 0)
3
2

3 + 3 + 4 + ( + )( − ) = 0

2-(0 : 1 : 1 : 0), 2-(0 : ω : 1 : 0), 2-(0 : ω2 : 1 : 0)
3
2 4

3 + 3− ( + )( − )2 = 0

2-(0 : 1 : 1 : 0), 2-(0 : ω : 1 : 0), 2-(0 : ω2 : 1 : 0),

4-(1 : 0 : 1 : 0)
3
2 8

3 + 3 + ( − )3 = 0

2-(0 : 1 : 1 : 0), 2-(0 : ω : 1 : 0), 2-(0 : ω2 : 1 : 0),

8-(−1 : 0 : 1 : 0)
3
2 14

3 + 3− 3 = 0

2-(0 : 1 : 1 : 0), 2-(0 : ω : 1 : 0), 2-(0 : ω2 : 1 : 0),

14-(1 : 0 : 0 : 0)
3
2 10

3 + 3 + 2( − ) = 0

2-(0 : 1 : 1 : 0), 2-(0 : ω : 1 : 0), 2-(0 : ω2 : 1 : 0),

10-(1 : 0 : 0 : 0)
6
2

3 + 3− ( 2 + + 2) = 0

2-(0 : 1 : 1 : 0), 2-(0 : ω : 1 : 0), 2-(0 : ω2 : 1 : 0),

2-(1 : 0 : 0 : 1), 2-(1 : 0 : 0 :ω), 2-(1 : 0 : 0 :ω2)
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6
2 4

3 + 3− ( − )2 = 0

2-(0 : 1 : 1 : 0), 2-(0 : ω : 1 : 0), 2-(0 : ω2 : 1 : 0),

2-(1 : 0 : 0 : 1), 2-(1 : 0 : 0 :ω), 2-(1 : 0 : 0 :ω2),

4-(1 : 0 : 1 : 0)
3
3

3 + 3 + 4 + 4 = 0

3-(0 : ζ : 0 : 1), 3-(0 : ζ3 : 0 : 1), 3-(0 : ζ5 : 0 : 1)
3
3 4

3 + 3 + 2( + )( − ) = 0

3-(0 : ζ : 0 : 1), 3-(0 : ζ3 : 0 : 1), 3-(0 : ζ5 : 0 : 1),

4-(0 : 0 : 1 : 0)
3
3

2
4

3 + 3 + 2( − )2 = 0

3-(0 : ζ : 0 : 1), 3-(0 : ζ3 : 0 : 1), 3-(0 : ζ5 : 0 : 1),

4-(0 : 0 : 1 : 0), 4-(1 : 0 : 1 : 0)
3
3 8

3 + 3 + 3( + ) = 0

3-(0 : ζ : 0 : 1), 3-(0 : ζ3 : 0 : 1), 3-(0 : ζ5 : 0 : 1),

8-(0 : 0 : 1 : 0)
3
3 12

3 + 3 + 4 = 0

3-(0 : ζ : 0 : 1), 3-(0 : ζ3 : 0 : 1), 3-(0 : ζ5 : 0 : 1),

12-(0 : 0 : 1 : 0)

equation can be given by + 4( ) = 0, where 4 is a homogeneous polynomial
with degree four.

Proof. First let us prove the implication (1)⇒ (2). Putting ( ) = 2
2−3 1 3

and letting be a general hyperplane given by the equation = + ,where
, ∈ , we infer from Bertini’s theorem that :=∩ is a smooth quartic curve

given by the equation ( + ) = 0. We note that also becomes a Galois
point of the curve . Hence we obtain that ( + ) = 0 for general , . (see
[6, Lemma 11].) Therefore we get ( ) = 0.

Next, we prove the implication (2)⇒ (3). By taking a suitable projective trans-
formation fixing the point , we may assume that1 = . Then from the equation

2
2 = 3 1 3, we infer that is a factor of 2 and 3. Hence, can be expressed as
+ 1 + 1

2/3 + 4, where 1 = 1( ) is a homogeneous polynomial with de-
gree one. Let = 3 + 1( ) 2 + 1( )2 /3 + 4( ), which
is obtained from . Substituting − 1( )/3 for in the form , that is, we
consider ( − 1( )/3). Then we obtain = 3+ 4( ), which
means that = +4.

Finally let us prove the implication (3)⇒ (1). Putting = / and = / , we
obtain = ( ) and = ( ). The minimal equation of over is the one

3 + / 4(1 ) = 0, which implies that the extension/ is Galois.

From Lemma 3.5, we infer the following readily.
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Note 3.6. If is a Galois point, then ∩ consists of only lines which meet
at .

Let us prove Proposition 2.2. Suppose is a Galois point of . Then,
by Lemma 3.5, we may assume that is given by the equation = +4( ) = 0.
Putting = / and = / , we obtain = ( ) and = ( ). The minimal
equation of over is the one3 + / 4(1 ) = 0. Hence, we infer thatσ( ) = ω
if σ ∈ Gal( / ) is not identity. Therefore, a birational transformation of induced
by σ is a restriction of a projective transformation ofP3. Thus, we complete the proof
of Proposition 2.2.

REMARK 3.7. Copying the proofs in [7], we obtain the following.
(1) Let be the homogeneous defining equation of and ( ) be the Hessian of .
If is a Galois point, then ( )( ) = 0.
(2) Suppose that and ′ are Galois points, andσ and σ′ are automorphisms be-
longing to and ′, respectively. Then,σ( ′) is also a Galois point andσσ′σ−1 is
an automorphism belonging toσ( ′).
(3) Suppose that and ′ are two Galois points, and the line passing through these
points does not lie on . Then in (2) we have thatσ( ′) 6= ′, hence there exist two
more Galois pointsσ( ′) and σ2( ′).

To prove Theorem 1 and 2, we show the following two lemmas.

Lemma 3.8. Let be a line lying on . Then#( ∩ GP( )) = 0, 1, 2or ∞. The
last case occurs if and only if is projectively equivalent tothe cone given by the
equation

3 + ( ) = 0

especially, ∩GP( ) = − { }, where is the vertex of the cone .

Proof. Suppose that there exist three Galois points1, 2 and 3 on . Then,
from Lemma 3.5, we may assume that1 = (0 : 0 : 0 : 1), is given by the equation

= = 0, and is given by the equation

3 + ( ) + ( ) = 0

Here, we define linear systems as follows:

H = { λ | ⊂ λ λ is a hyperplane}
C = { λ := ∩ λ − | λ ∈ H}

Let λ be an element ofH given by the equation =λ (λ ∈ ). Then, λ =
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∩ λ − is given by the equation

3 + λ (λ ) + (λ ) = 0

hence, we see thatλ ∩ is given by the equation

3 + λ (0 ) + (0 0) = 0

If (0 ) 6= 0, then the linear systemC determines the finite morphism with de-
gree three : → P1. Note that ⊂ H ( = 1, 2, 3) and let us put =∩ − .
Then from Note 3.6, we can see easily that∩ = { }, this implies that must be
a ramification point of . However, the number of ramification points of are two,
this is contradiction.

Assume that (0 ) = 0. Then, the points ofλ ∩ , which are given by the
equations = = 0 and 3 + (0 0) = 0, are singular points of . Hence, 6∈

λ ∩ , and we infer from Note 3.6 that 1 = 2 = 3, and ∩ consists of one
line . So, we may assume that is given by the equation

3 + 4 + ( 0
3 + 1

2 + 2 + 3 ) = 0

where = ( ) is a homogeneous polynomial with degree . Either of2 or 3

can be represented by (0 : 1 : 0 : ) (∈ , 6= 0), now we assume that3 can be
so. Then, checking the condition (2) of Lemma 3.5 at3, we obtain that 0 = 1 =

2 = 0. Namely, we may assume that is given by the equation3 + ( ) = 0.
Note that = (0 : 1 : 0 : 0) is the vertex of the cone . Then, using Lemma 3.5, we
see easily that ∩GP( ) = − { }.

Lemma 3.9. Suppose that has four Galois points ( = 1, 2, 3, 4)and these
are collinear. In addition, suppose that the line passing through these four points does
not lie on . Then is projectively equivalent to the surface given by the equation

3 + 4 + ( ) = 0

Proof. Since Lemma 3.5, by taking a suitable projective transformation, we may
assume that 1 = (0 : 0 : 0 : 1) and is given by the equation 3 + ( ) =
0. Let be the line passing through the Galois points ( = 1, 2, 3,4). Note that
6⊂ , we may assume that is given by the equation = = 0. Then, the points

( = 1, 2, 3, 4) are given by the equations = = 0 and (3 + (0 0 1) 3) = 0.
Namely, = (0 : 0 : 1 :ω −2 3

√− ) ( = 2, 3, 4), where = (0 0 1). Now we put
= 4

=0 ( ) 4− , where ( ) is a homogeneous polynomial with degree
( = 0, 1, 2, 3, 4). Then, by checking the condition (2) of Lemma 3.5 at each Galois
point , we obtain that 1 = 2 = 3 = 0. Therefore, we get the defining equation

3 + 4 + ( ) = 0
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Let us prove Theorem 1. The assertion (1) of Theorem 1 is trivial from
Lemma 3.5.

We prove the assertion (2) of Theorem 1. Let and′ be two Galois points.
Then, letσ and σ′ be automorphisms belonging to and′, (σ) and (σ′) their
representations, respectively. Let be the line passing through the points and ′.
We infer from Remark 3.7 that is contained in . Hence, we see easily that (σ)
and (σ′) have the following properties:
• (σ)( ) = , (σ)( ′) = ′, (σ′)( ) = , (σ′)( ′) = ′

• (σ)( ) = [resp. (σ′)( ′ ) = ′ ], for any line [resp. ′ ] passing through
[resp. ′].
• (σ)3 and (σ′)3 are identity.

So by taking a suitable projective transformation, we may assume that = (0 : 0 : 0 :
1), ′ = (0 : 1 : 0 : 0),

(σ) =




ω 0 0 0
0 ω 0 0
0 0 ω 0
0 0 0 1


 and (σ′) =




ω 0 0 0
1 0

0 0 ω 0
0 0 0 ω




where , ∈ , = 1 or 2. Then (σ) and (σ′) can be diagonalized simultaneously,
since (σ) (σ′) = (σ′) (σ). Therefore, we may assume that

(σ′) =




ω 0 0 0
0 1 0 0
0 0 ω 0
0 0 0 ω




From the conditions (σ)( ) = and (σ′)( ) = , we obtain the assertion (2)
of Theorem 1.

It is easy to see that the surface withδ = 3 cannot exist. Indeed, suppose that
δ( ) = 3. Then, let 1, 2 and 3 be three Galois points. From Remark 3.7, we obtain
that ( 1 2), ( 2 3), ( 3 1) ⊂ . Hence we infer from Lemma 3.8 that three
points 1, 2 and 3 are not collinear. However, we see that the configuration of three
lines contradicts to Note 3.6.

Let us consider the case where 4≤ δ( ) � ∞. Then, we infer from Remark 3.7
and Lemma 3.8 that there exist four Galois points which are collinear. Hence from
Lemma 3.9, by taking a suitable projective transformation,the defining equation of
can be given by

3 + 4 + ( ) = 0

Now we obtain the assertion (4) of Theorem 1.
If ( ) has only simple factors, then is smooth. Therefore we have δ( ) = 4

or 8, especially,δ( ) = 8 if and only if is projectively equivalent to the surfacegiven
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by the equation 3 + 3 + 4 + 4 = 0 (see [7, Theorem 3]). On the other hand, if
( ) has a multiple factor, then is given by one of the followingequations, by

taking a suitable projective transformation.

(i) 3 + 4 + 3 = 0 (ii) 3 + 4 + 2 2 = 0

(iii) 3 + 4 + 2 ( + ) = 0 (iv) 3 + 4 + 4 = 0

Calculateδ( ) using Lemma 3.5 and Remark 3.7, we obtain thatδ( ) = 5 when
is given by the equation (i),δ( ) = 4 when is given by the equation (ii) or (iii),
and GP( ) is not a finite set when is given by the equation (iv). It is clear that
the surface given by the equation (i) is projectively equivalent to the surface given by
the equation 3 + 3 + 4 = 0. Thus we complete the proof of Theorem 1.

Next, let us prove Theorem 2. Suppose that GP( ) is an infinite set. Then let 1,

2 and 3 be three Galois points of . First, we suppose that these are not collinear.
Then from Note 3.6, we see that (1 2) 6⊂ , ( 2 3) 6⊂ or ( 3 1) 6⊂ . Now
we assume that (1 2) 6⊂ . Then, from Remark 3.7 and Lemma 3.9, by taking
a suitable projective transformation, we may assume that isgiven by the equation

3 + 4 + ( ) = 0. Hence noting that GP( ) is an infinite set, similarly asthe
last part of the proof of Theorem 1, we may assume that is givenby the equation

3 + 4 + 4 = 0. This is the special one of the surfaces given by the equation
3 + ( ) = 0. Next, we suppose that1, 2 and 3 are collinear. Then let

be the line passing through these points. If6⊂ , then similarly as above, by taking
a suitable projective transformation, we may assume that isgiven by the equation

3 + 4 + 4 = 0. On the other hand, if ⊂ , then from Lemma 3.8, we may as-
sume that is given by the equation 3+ ( ) = 0. Thus we obtain the assertion
(1) of Theorem 2.

Suppose that is a cone and is a Galois point of . Then by a suitable pro-
jective transformation and by choosing a suitable base curve , we may assume that

= (0 : 0 : 0 : 1), the vertex = (0 : 1 : 0 : 0) and ∈ . Moreover, from [6,
Proposition 5], we may assume that is given by the equation3 + ( ) = 0
on the hyperplane given by the equation = 0. For each point′ of ( )− { },
using Lemma 3.5, we can check easily that′ is a Galois point of . Thus we obtain
the assertion (2) of Theorem 2.

The assertion (3) of Theorem 2 is clear from [6, Theorem 4 and Proposition 5]
Thus we complete the proof of Theorem 2.
Finally we prove Theorem 3. From Theorem 1, its proof and Theorem 2, we infer

readily the assertions (2), (3), (4) and (5). Let us considerthe case where is given
by the equation 3 + 3 + ( ) = 0. We put

( ) = 0
4 + 1

3 + 2
2 2 + 3

3 + 4
4

where ∈ ( = 0, 1, 2, 3, 4). Let 1, 2 and 3 be lines given by the equations
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= = 0, = = 0 and = = 0 respectively. We see easily that any singular
point of must be on1 ∪ 2 ∪ 3. By calculating local equations, we can decide types
of singularities which can have on1, 2 and 3 as follows:
1. On 1. Let be the point (0 : : 1 : 0), where ∈ .

(a) is a singular point if and only if 4 = 0 and 3 = − 3.
(b) is a singular point of type 2 if and only if 4 = 0 and 3 = − 3 6= 0.
(c) is a singular point of type 10 if and only if = 3 = 4 = 0 and 2 6= 0.
(d) is a singular point of type 14 if and only if = 2 = 3 = 4 = 0.
Hence we see that the type of singularities on1 is 3

2, 10 or 14.
2. On 2. Let be the point (1 : 0 : 0 : ), where ∈ .

(a) is a singular point if and only if 0 = 0 and 1 = − 3.
(b) is a singular point of type 2 if and only if 0 = 0 and 1 = − 3 6= 0.
(c) is a singular point of type 10 if and only if = 0 = 1 = 0 and 2 6= 0.
(d) is a singular point of type 14 if and only if = 0 = 1 = 2 = 0.
Hence we see that the type of singularities on2 is 3

2, 10 or 14.
3. On 3 − ( 1 ∪ 2) ∩ 3. Let be the point ( : 0 : 1 : 0), where ∈ and 6= 0.
Now we put ( ) = ( − ) 1( ) where = 0, 1, 2, 3 or 4, 1( ) is
a homogeneous polynomial with degree 4− and 1( 1) 6= 0.

(a) is a singular point if and only if ≥ 2.
(b) is a singular point of type 4 if and only if = 2.
(c) is a singular point of type 8 if and only if = 3.
(d) is a singular point of type 12 if and only if = 4.
Hence we see that the type of singularities on3 − ( 1 ∪ 2) ∩ 3 is 4, 2

4, 8 or

12.
Let us consider the combinations of above types of singularities as in Table 3.1.

In the table, the symbol∅ means that there does not exist a singular point of on1,

2 or 3 − ( 1 ∪ 2) ∩ 3. Moreover, if there exists the surface with the singular points,
then we use the symbol©, otherwise we use×.

Therefore, we infer the assertion (1)-(b) of Theorem 3. Similarly as above, we can
prove the assertion (1)-(c) of Theorem 3. Thus we complete the proof of Theorem 3.

From the above discussions, it seems easy to check Example 2.3 and Example 2.4.

4. The surfaces with many Galois points

In the paper [2], it is studied that the structures of the quartic surface which has
eight Galois points. So, in this section, let us study the structure of the quartic surfaces
which appear in (4) of Theorem 1 and (3) of Theorem 2 similarlyas it. We denote
by 5 the surface given by the equation

3 + 3 + 4 = 0
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Table 3.1.
combination of types of singularities existence of

on 1 on 2 on 3− ( 1 ∪ 2) ∩ 3

∅ ∅ ∅ ©
∅ 3

2 ∅, 4 or 8 ©
∅ 3

2
2
4 or 12 ×

∅ 10 ∅ or 4 ©
∅ 10

2
4, 8 or 12 ×

∅ 14 ∅ ©
∅ 14 4, 2

4, 8 or 12 ×
3
2 ∅ ∅, 4 or 8 ©
3
2 ∅ 2

4 or 12 ×
3
2

3
2 ∅ or 4 ©

3
2

3
2

2
4, 8 or 12 ×

3
2 10 ∅ ©
3
2 10 4, 2

4, 8 or 12 ×
3
2 14 ∅ ©
3
2 14 4, 2

4, 8 or 12 ×
10 ∅ ∅ or 4 ©
10 ∅ 2

4, 8 or 12 ×
10

3
2 ∅ ©

10
3
2 4, 2

4, 8 or 12 ×
10 10 ∅ ©
10 10 4, 2

4, 8 or 12 ×
10 14 any type of singularities ×
14 ∅ ∅ ©
14 ∅ 4, 2

4, 8 or 12 ×
14

3
2 ∅ ©

14
3
2 4, 2

4, 8 or 12 ×
14 10 any type of singularities ×
14 14 any type of singularities ×

which has five Galois points and one singular point of type′18 (cf. Theorem 1 and
3). Now we put 1 = (0 : 0 : 0 : 1), 2 = (0 : 0 : ζ : 1), 3 = (0 : 0 : ζ3 : 1),

4 = (0 : 0 : ζ5 : 1) and 5 = (0 : 1 : 0 : 0), which are five Galois points of5,
and we put = (1 : 0 : 0 : 0), which is the singular point of5. Let L( 5) be the
set of automorphisms of 5 induced by projective transformations, and let (5) be
the group generated by the automorphisms belonging to the five Galois points on 5.
Since ( 5) has an injective representation in (4 ) (cf. Proposition 2.2), we use
the same notation of an element of (5) as the projective transformation induced by
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it.
We denote by +× the surface given by the equation

3 + 4 + 4 = 0

Now, we put = (0 : 1 : 0 : 0), which is the vertex of+×, the singular point
with multiplicity four and the geometric genus of is four. Let be the hyperplane
given by the equation = 0. Then, we put4 = +× ∩ , which is a base curve of
the cone +×. Using [6, Lemma 11], we see that1, 2, 3 and 4 are four Galois
points of 4. Hence, we have that

GP( +×) =
4⋃

=1

( )− { } = { (0 : : : 1) | ∈ = 0 ζ ζ3 ζ5 }

(cf. Theorem 2 and Example 2.3). Let us defineL( +×) and ( +×) similarly as above.
We can prove the following lemma by similar argument to the proof of [2,

Lemma 2].

Lemma 4.10. Under the notation above, we have the following.
(1) If σ (6= id) is an automorphism of 5 belonging to the Galois point ( = 1,. . .,
5), then σ (or σ 2) has the following representation:

σ1 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 ζ − 1


 σ2 =




1 0 0 0
0 1 0 0
0 0 2ζ−1

3
−ζ−1

3

0 0 4ζ−2
3

ζ+1
3




σ3 =




1 0 0 0
0 1 0 0
0 0 2ζ−1

3
−ζ+2

3

0 0 −2ζ+4
3

ζ+1
3


 σ4 =




1 0 0 0
0 1 0 0
0 0 2ζ−1

3
2ζ−1

3

0 0 −2ζ−2
3

ζ+1
3




and

σ5 =




1 0 0 0
0 ζ2 0 0
0 0 1 0
0 0 0 1




(2) Let us denote that 1 = (0 : : 0 : 1), 2 = (0 : : ζ : 1), 3 = (0 : : ζ3 : 1)
and 4 = (0 : : ζ5 : 1), where ∈ . If σ is an automorphism of +× belonging
to the Galois point ( ∈ and = 1, 2, 3 or 4), then σ has the following
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representation:

σ 1 =




1 0 0 0
0 1 0 (ζ − 2)
0 0 1 0
0 0 0 ζ − 1


 σ 2 =




1 0 0 0
0 1 4ζ−2

3
ζ−2

3

0 0 2ζ−1
3

−ζ−1
3

0 0 4ζ−2
3

ζ+1
3




σ 3 =




1 0 0 0
0 1 −2ζ+4

3
ζ−2

3

0 0 2ζ−1
3

−ζ+2
3

0 0 −2ζ+4
3

ζ+1
3




σ 4 =




1 0 0 0
0 1 −2ζ−2

3
ζ−2

3

0 0 2ζ−1
3

2ζ−1
3

0 0 −2ζ−2
3

ζ+1
3




We can prove the following proposition readily, by the similar method to the proof
of [2, Theorem 1] and a elementary consideration of matrices.

Proposition 4.11.
(1) The order of ( 5) is 2332. Moreover, we have the following:

( 5) = { σ 1
1 σ

2
3 σ

3
5 τ

4 | 1 2 3 = 0 1 2 4 = 0 1} ∪
{ σ 1

3 σ
1

1 σ
2

5 τ
3 | 2 = 0 1 2 1 2 = 0 1} ∪

{ σ1σ3σ1σ 1
5 τ

2 | 1 = 0 1 2 2 = 0 1}

where

τ =




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1




(2) ( +×) is an infinite group. Moreover, there exists an exact sequence of groups as
follows: ( for the definition of ( 4), see[2])

1−→ 1 −→ ( +×) −→ ( 4) −→ 1

where 1 is the subgroup of ( +×) consisting of




1 0 0 0
0 1
0 0 1 0
0 0 0 1


 ∈ (4 ) ( ∈ )
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and the map is defined as







11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44





 =




11 13 14

31 33 34

41 43 44




(note that is a homomorphism, since for any element of ( +×), 12 = 32 = 42 = 0 ).

By the similar way to the proof of [2, Theorem 3] and a elementary consideration
of matrices, we have the following proposition.

Proposition 4.12.
(1) The order of the groupL( 5) is infinite. In fact,L( 5) consists of the following
elements:




λ 0 0 0
0 µ 0 0
0 0 α αβγ

0 0 2αβ2 αγ


 o




λ 0 0 0
0 µ 0 0
0 0 α′ 0
0 0 0 α′β′




whereα4 = 1/9, β3 = −1, γ3 = −1, α′4 = 1, β′3 = 1 and λµ3 = 1.
(2) The order of the groupL( +×) is infinite. In fact, there exists an exact sequence
of groups as follows: (the definition ofL( 4), see[2])

1−→ 2 −→ L( +×) −→ L( 4) −→ 1

where 2 is the subgroup ofL( +×) consisting of




1 0 0 0

0 0 1 0
0 0 0 1


 ∈ (4 ) ( ∈ )

and is the same homomorphism used inProposition 4.11.

The number of lines on the surface withδ( ) = 8 is 64, this is the maximum
number of lines lying on a smooth quartic surface (cf. [2, Remark 4]). However, the
lines on the surface 5 is not so many, and the lines on the surface+× is finitely
many since +× is a cone.

Proposition 4.13. The number of lines on the surface5 is eight. In fact, they
are ( 1 5), ( 2 5), ( 3 5), ( 4 5), ( 1 ), ( 2 ), ( 3 ) and ( 4 ).
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Proof. A line in P3 is given by one of the following equations:

• − − = − − = 0 • − = − = 0

• − − = − = 0 • − = = 0

• − − = = 0 • = = 0

( ∈ )

Therefore, by elementary calculation, we conclude.

From 5 has the triple point and+× is a cone over a smooth plane quartic curve,
We infer the following readily.

Proposition 4.14.
(1) A non-singular model of 5 is a rational surface.
(2) A non-singular model of +× is birationally equivalent to a ruled surface of genus
three.

REMARK 4.15. By similar argument in this section and [2], if the defining equa-
tion of a normal quartic surface is given, then we can find all elements of ( ),
L( ) and the set of lines on , and then we can calculate these orders. Moreover, by
[4, Theorem 1], we can see easily what type of surface a non-singular model of is.
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