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1. Introduction

A Fourier hyperfunction is defined to be an element of the dual space of the
test function spac&(D"). On the other hand a Fourier hyperfunction is considerd to
be a sum of boundary values of slowly increasing holomorphic functiéns i + )
(y — 0) defined on the wedg®” + iT';. This situation is expressed by an isomor-
phism Q(D") =~ HE.(V, (5). It is sometimes useful to express a hyperfunction as a
continuous sum (integral) of boundary values of slowly increasing holomorphic func-
tions F,,(x +iy) (y — 0) defined on a tub&”" +iB" where B" = {y € R"; |y +w| < 1}
for w € "1 = {y € R%|y| = 1}. In fact, S. Nagamachi and T. Nishimura [7]
showed that a slowly increasing holomorphic functidre () in the tRbei B" where
B" = {y € R";|y|] < 1} defines a Fourier hyperfunction as a (continuous) sum of
boundary values of slowly increasing holomorphic functiadfis(z) = U(z + iw) by
(2.3) and that a Fourier hyperfunction determines a slowly increasing funttion ()
in R" +iB" which reproduces the Fourier hyperfunction

This expression was used in [7] to define an analytic wave front set of a Fourier
hyperfunction and to prove the edge of the wedge theorem. In this paper, we want to
show that this expression can be also applied to prove the existence of the support of a
Fourier hyperfunction and to prove the kernel theorem for Fourier hyperfunctions. By
this expression we show where the support of a Fourier hyperfunction lies and specify
the set which carries the kernel Fourier hyperfuction.

Since a Fourier hyperfunction is a kind of analytic functional, it is not clear that it
has a support, the minimum carrier. The proof in this paper is more intuitive, elemen-
tary and shorter than the one in [9]. The kernel theorem for Fourier hyperfunctions of
the following form

B(Q(D"), Q(D") = Q(D"™Y’

was known in [6], and S.Y. Chung et al [2] gave another proof for it. Y. Ito [4] proved
a kernel theorem of the form

L(Q(K), Q(L)) = Q(K) ©Q(L) = Q(K x L)
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for closed subsetX < D", L C D™, by employing several deep results from [12]
and [3]. Recently, E. Bming and S. Nagamachi [1] gave a simple proof of the kernel
theorem of the form

B(Q(K), Q(L)) = Q(K x L)'.
They showed
Q(K)&Q(L) = Q(K x L)

and proved the kernel theorem using the theory of nuclear spaces, the abstract kernel
theorem ([10]) and the fact that the spa€¥K) is nuclear ([5]). The proof in this
paper is constructive and more elementary than the one in [1] in the sense that the
theory of nuclear spaces and the abstract kernel theorem are not used.

In Section 2, we review the theory of Fourier hyperfunctions we have developed.
In Section 3, we define a set " for each Fourier hyperfucntions through the cor-
respondingF,,(z) = U(z +iw) and show that it is a carrier of and that it is contained
in every carrier ofu . As a result we prove the existence of the minimum carrier of
a Fourier hyperfucntiont and give its characterization other than the intersection of
all carriers ofu . In Section 4, using methods summarized or developed in previous
sections, we prove a Schwartz type kernel theorem for Fourier hyperfunctions. For a
seperately continuous bilinear for  d(K) x Q(L) we construct a kernel Fourier
hyperfunctionF inD" x D™ (K ¢ D", L Cc D™) repesentingB F is constructed as a
continuous sum of boundary values of holomorphic functions in the product of cylin-
ders{|Imz| < 1} x{Imw| < 1} ¢ C"xC™. Then using methods developed in Section
3 we show thatF has a carrier iK x L. Also, in order to specify the set iD"*™
which carriesF we introduce a new product $et<xpw. L in D",

2. Preliminaries

First, we give a quick review of the theory of Fourier hyperfuctions developed in
[9], [8] and [7].

Let D" = R" U 8”1 be the radial compactification &®". It is determined so that
the homeomorphisnp : B" = {x € R"; |x| < 1} — R", x — (tanz|x|/2)x is
extended to a homeomorphism :"B" = B" U "1 — D" = R" U "1, Let Q" =
D" x iR" (topologically). C" = R" +iR" is embedded iQ". Forz = (x,iy)€ Q" we
use the notations Re = Im = and x= iy evemwik D" is a point at infinty.
We note here that a subsgt  Qf is compact if and only ifK is closed iQ" and
sup{|Imz|;z€ K } < o0.

Let V be an open set iQ". A function f is said to beéholomorphic inV if f
is holomorphic inV N C". f is calledrapidly decreasingn V if for any compact set
K C V there existsy > 0 such thatf { 9"l is bounded ink N C". f is said to be
slowly increasingin V if for every compact sek iV and every> 0 f(z)e "
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is bounded ink N C". The space of all slowly increasing holomorphic functionsvin
is denoted byO(V). Forn > 0, Q.(V;n) denotes the space of functions which are
holomorphic inV N C", continuous on the closure of N C" in C", and satisfy

I fllva= sup |f(2)e" ! < co.
zevNer

Q.(V;n) is a Banach space with the norm ||y .

Let K be a compact set ilD". Then Q(K) denotes the inductive limit of
Q.(Vu; 1/m), where{V,,}..en is @ fundamental system of neighbourhoodskof . An
element of the dual spad@(D") is called aFourier hyperfunction There is a natural
injection (embedding)?(K) — @(D")’ and if a Fourier hyperfunctiom is identified
with an element of)(K)’, we sayu iscarried by K or K is acarrier of u.

By O(Q") we denote the space of all rapidly decreasing holomorphic functfons
in Q" (i.e., entire analytic irC" ande”? f(z) are bounded idlmz| < r for anyr >0
and for somen =n(r) > 0).

The spaceQ(Q") is a linear subsapce aP(D") and known to be a dense sub-
space ofQ(K) for any compact subsek  @" (Theorem 2.7 of [9]). Sox € Q(D")
can be extended to a continuous linear functionalMiK) if u is continous onQ(Q")
with respect to the relative topology fro@(K). This observation gives the following
lemma.

Lemma 2.1. u € Q(D") is carried by K if and only if
(C): for any neighbourhood/ oK ang > O there existsC = Cy , such that

(A< C I fllva
for every f € Q(Q").

(For somef ,|| f ||lv,, may beoco and then the above inequality holds trivially. We
do not exclude such cases throughout this paper.) If a linear functional Q(Qf)
satisfies (C), then it extends uniquly to a continuous linear functionaD¢K). (We
identify u with the unique extension.) The minimum carrierofe Q(D")’ is called
the support ofu, but its existence is not trivial.

As main tools of the present paper, we summarize here some of the results in [7]
on the representation of Fourier hyperfucntions by slowly increasing holomorphic func-
tions in a domain containing the cylinder

(2.1) Q={zeQ";|Imz| <1} =D"+iB".

(N.B. In [7], 2 denoted2 N C" = R" +iB".) Let I (£) be the function defined ifR"
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by the following integral on the unit spherg—!
1) = / e “dw,
Jw]=1

wheredw is the surface measure &t ~1. Let K (z) = K, (z) be a function inQ N C"
defined by

K@=Qﬂﬂ/emﬂﬂ@mgzegm@.

Rn

The integral converges far € 2 N C" and defines a holomorphic functiokl z () in
QNC" (so, in2) which is analytically continued to the connected open set

Q={ze€C"; (z,2) & (—o0, —1] }(> QN C").
Lemma 2.2 (Lemma 3.1. of [7]). K £ )is a holomorphic function in
Y={zeC";|Imz]® < 1+|Rez|’},

and we havefor somec > 0, K(z) = O(e~Il) as z — oo in

Re
Z:{zeC";|lmz|<%}.

RemArk 2.3. K () is rapidly decreasing ifg: = {z € Q";|Imz]? < 1+
|Rez|?} = Y U (Q"\ C") since every compact subs@ & is represented as
P=P,UP, where P,NC" C Z and P, is a compact subset df

Proposition 2.4 (Proposition 3.3 (i) of [7]). Let V be an open set contained in
Q. If ucQ.(V;n) for everyn > 0, then

Ux) =K *u(z) =u(K(z—))
is a slowly increasing holomorphic function in any open 8ét Qitsatisfying

22) WwWnc'c
{zeC";[Imz—Im¢|* <1+|Rez —Ret|* foranyr e VNC"}.

In particular, if u € Q(D"), U(z) is holomorphic in]lmz| < 1 and we have

(2.3) u(p) = lim /Suildw / U(x +irw)o(x)dx.

r—1-0

DerinimioN 2.5.  For a compact set  iD", we defineWy to be the union of all
open setsW C Q" which satisfy (2.2) for some neighbourhodti &f dh
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Proposition 2.6. Let K C D" be compact.
(1) Then

QuU{zeQ";

Imz| =1, Rez ¢ K} C Wk.

(2) If ue O(K)Y and U(z) = K = u(z) = u(K(z — ), thenU is a slowly increasing
holomorphic function inWy .

Proof. (2) is obvious from Proposition 2.4. We prove (1). By the definition of
Wk, obviously 2 C Wg. So, assume thajy = xo +iyo € Q" and|yo| = 1, x0 € K
and show thatzg € Wg. We can take an open neighbourho®d of K in D" and
an open neighbourhoo#; of xg in D" such thatvy; N Wy = () and§ = dist(W, N
R”, Vi N R") > 0. We taken > 0 small enough so thatnp4+ 472 < 62 and form
V =V xi{y € R"; |y] < n} as an open neighbourhood & @" and W =
Wi xi{y € R"; |y — yo| < n} as an open neighbourhood @§ in Q". Now, let
ze WNC"andsr € VNC". Then,|Imz| < 1+n, |Imz| <n, |Rez —Ret| >4 and,

S0,

lImz —Imz]? < (1 + 2))? < 1+6% < 1+|Rez — Ret|?
Thus, (2.2) holds andg € W C Wk. ]

Sometimes it becomes necessary to introdDéex D"z (n = ny +ny) as a com-
pactification ofR” and thenQ™ x Q"2(= D™ x D"2 x {R" D C"). The space)(K) and
its dual Q(K)" are defined for any compact s&  DBi* x D2 in the same way as
for compact sets iD" by exact word-for-word repetition. Takeing DB x D"z we
obtain @(D" x D"2). Note that the family of set¥,, #(x,iy) € Q™ x Q"2 =D" x
D" xiR"; |y| <1/m}, m €N (resp.V,, = {(x,iy) € Q"; |y| < 1/m}, m € N) con-
stitutes a fundamental system of neighbourhood®'6fx D"z (resp.D") in Q™ x Q"2
(resp. Q"). SinceV,, N C" = V,, N C", it is obvious thatQ(D") = Q(D" x D"2).
So, for any compactk C D™ x D" the spaceQ(K) is naturally embedded in
Q(D"Y = Q(D™ x D"2)., We sayK € D" x D"™) is a carrier of a Fourier hyper-
functionu € QD) if u € Q(K). If u € Q(D") has a minimal carrier among all
such K ¢ D™ x D"z, we call it thesupport ofu inD" x D".

Also, in pararell with the definition of2(Q"), we defineQ(Q" x Q"2) to be the
space of all the rapidly decreasing holomorphic functionsQit x Q"2. Of course
“holomorphic functions inQ™ x Q"2” means holomorphic functions inQ" x Q"2) N
C" =C" and thus,Q(Q™ x Q"2) = O(Q"). Now, the spac&?(Q" x Q"2) (= Q(Q")) is
proven to be dense i®(K) for any compactk C D": x D"2 by an argument parallel
to the one in the proof of Theorem 2.7 of [9]. Thus, also, Lemma 2.1 holds for any
compactK C D"t x D"z,
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DerinimioN 2.7. For a compact sk D" xD"2, we defineWx to be the union
of all open setsW C Q™ x Q"2 satisfying (2.2) for some neighbourhodd &f in
{z€QmxQ"; [Img] <1}

We set
Qum,={z2€Q"xQ%; |Imz] <1} =D" xD"2xi{yeR";|y|<1}.

It is obvious that the following proposition is proven by an argument similar to the
one in the proof in Proposition 2.6.

Proposition 2.8. Let K € D™ x D"2 be compact.
(1) Then
Qun,U{z€Q"xQ"; |Imz]=1, Rez¢ K} C Wg.

(2 fue Q)Y andU(z) = K *u(z) = u(K(z — -)), thenU is a slowly increasing
holomorphic function inW.

3. Existence of support of Fourier hyperfunctions

In this section we take an arbitragy € @Q(D")’ and fix it. U (z) denotesU A ) =
u(K(z —-)).

Lemma 3.1. Let K be a compact set iD” and let W be an open set Q"
such that

(3.1) {zeQ";|Imz| <1}u{ze€Q";|Imz|=1 Rez¢K)} C W.
Assume that the functioty is a slowly increasing holomorphic functioin . Let
x(x) be a continuous function i®" valued in [0, 1] with bounded continuous first
derivatives inR" which takes the valud on K. LetT',(x,¢), w € S"~* be the sur-
face inC" defined by

Tu(x,€):x—x+i(l—ex(x)w, R" — C",

where0 < ¢ < 1/2. Then we have for ¢ € Q(Q"),

u(9) /S o dw /r " UR)¢(z —iw)dza A -+ Adz,

/S”_1 dw / U(x +i(1—ex(x))w)o(x —iex(x)w)J,(x)dx,
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where J,,(x) = J,(x, €, x) is the bounded continuous function (@f, x) on §"~! x R”
given by

(3.2) (dx1—iewdx(x)A---N(dx, —iewpdx(x)) = Jo(x)dx1 A -+ Adx,.

Proof. Fix 0< € < 1/2. The following equation holds for & r < 1 by Stokes’
theorem sincell z()(z — irw) is a rapidly decreasing holomorphic function {x €
Q" |Imz| <1} :

/S’Hdw /” Ulx +irw)p(x)dx = /S”i1 dw /” Ulx +i(r — e)w)o(x — iew)dx.

Note that the right-hand side is a continuous functiorrof iR @ < 1 +e¢. Taking
the limit asr — 1 — 0, we get, by (2.3),

u(¢) :/Snildw/l_ U@R)d(z —iw)dzy A -+ - ANdzy,

wherel', . is a surface defined by
Fpeixr—x+i(l—ew, R" —C".

Owing to the wayy is taken, we have % ex(x) < 1 for x € K and so,I',,(x, €) and
I, . are both relatively compact subsets Wf . So, using Stokes’ theorem again, we
get the lemma. [l

Lemma 3.2. If K is a carrier of u, then

/ Ux+iw)dw =0, x € R"\ K.
Sn—1

Proof. Without loss of generality, we have only to show the above equality for
x =0 assuming that & K. We define a functiorg, z( & O(Q"), tr > 0 by

() en{ 52}

Let V be a neighbourhood ok such that iy € V means|x| > 20 > § >
ly| (0 is a constant ). Then for a smajl > 0 we have|| E, |y ,— 0 ast — +0,
and so,u £, )— 0. Take y and ¢ of Lemma 3.1, so thaly takes the value 0 on
a closed ball{|x| < 2¢} disjoint with K. Since for|x| > 2¢, |E/(x —iex(x)w)| =
(1/\/E ne—\x\z/(Zl)e—\x|2/(21)+ezx(x)2/1 < (1/\/5”6_')6‘2/(21)6_62/’ and U is S|0w|y in-
creasing inWg , we have

u(E,) = /S”ldw/|x<2e U(x +iw)E (x)dx
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+/s"*1 dw /|x|225 Ux+i(1—ex()WE (x — iex(x)w)J,(x)dx

— U(iw) dw ast — +0.
Sn—l

Thus, we have shown the equality. Il

Theorem 3.3. Let X be the open subset &" consisting of allx € D" satisfy-
ing the following conditions
(i) U(z) is a slowly increasing holomorphic function in a neighbourhddd {efe
Q"; Rez =x, |Imz| <1} in Q"
(i) x has a neighbourhood™ D" such thath,,,1 U(x' +iw)dw = 0 for everyx'
T NR".
Then Ko =D"\ Xy is a support ofu .

Proof. By Proposition 2.6 and Lemma 3.2, for any carfer uof , we Havg
K C Xo and s0,Kg C K. Thus we have only to show tha&, is a carrier ofu . We
take W to be the union ofz € Q"; |Imz| < 1} and all W, in condition (i) for
x € Xo. Then, obviouslyW safisfies the condition of Lemma 3.1, #or Kgand U
is a slowly increasing holomorphic function w . L&  be an open neighbourhood
of Ky relatively compact inQ". Take x, ¢ of the lemma forKk =Ky so that they
satisfy the conditions described there and

(3.3) {z € C"|Imz| <ex(Rez) Rez e suppx} CV.

Then for ¢ € Q(Q"), we have by Lemma 3.1,
u(p) = / dw/ U(x +i(1—ex(x))w)o(x —iex(x)w)d,(x)dx.
sn—1 n

Note that forx € R*\ V C R"\ Ko = XoNR" we have [,,_, U(x —iw)dw = 0 by (ii).
Thus,

(3.4) u(e) = /S Ux +i(1—ex(x))w)o(x —iex(x)w)J,(x)dxdw.

n—1y (D" ﬂV)

This equation shows thak, is a carrier ofu . In fact, the surfacds,(y, €), w € §"*
all lie in the compact sefx +iy € Q"; |y| < 1—ex(x)} C Wg,. So, for eachy > 0,
there existsC, such that|/U(x +i(1 — ex(x))w)| < C,e"1/2, x € R". Also, for x €
R"NV, by (3.3),x —iex(x)w € V and s0,|¢(x —iex(x)w)| < ||¢|lv.,e”"*|. Applying
these estimates to the integrand of (3.4) we have

(@) < Crylollv.y,
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where

C1p=Cy % sup  |Ju(x)] x / e 2.
xebr,wesn—1 "

Since this holds for any relatively compact open neighbourhod Q’inof Ky and

any n > 0, we conclude thaKj is a carrier ofu . ]

By an argument parallel to the above one, we can prove the following theorem.

Theorem 3.4. Let X, be the open subset @t x D"2 (n = ny+ny) consisting of
all x € D" x D2 satisfying the following conditions
(i) U(z) is a slowly increasing holomorphic function in a neighbourhddd {efe
Q™ x Q"2; Rez =x, |[Imz| <1} in Q™ x Q"2
(i) x has a neighbourhood” D™ x D"2 such thath,, U(x' +iw)dw = 0 for every
x' e TNR"
Then Ky = (D" x D"2) \ X is a support ofu .

Proof. Lemmas similar to Lemma 3.1 and Lemma 3.2 are proven for compact
setsK C D™ x D" and Wk. Then, from these and Proposition 2.8, obviously follows
the theorem. ]

4. The kernel theorem for Fourier hyperfunctions

Let B be a separately continuous bilinear form @QL1) x Q(L»), where L, and
L, are compact subsets 8 and D™ respectively. We note that for any fixede W,
the functionk, ¢ — -) belongs toQ(L:) and ¢ — B(K,(z — -), ¢) belogns toQ(L,)’
and in the same way) — B(v, K,,(w — -)) belogns toQ(L;)'. So, it is easy to see
that the function

(41) Un,m(za w) = B(I(n(Z - ')s Km(w - ))
is defined in ¢,, x W;,) N C""™ and separately holomorphic by Proposition 2.6 and

consequently a holomorphic function by Hartogs’ theorem.
We note that by Lemma 3.2,

4.2) / Upm(x +iw, w)dws =0, / Upm(z,y +iwz)dws, =0
Sn—1 Sm—1
forx e R"\L;, ye R"\ Ly andz € Wr,, w € Wp,.
Proposition 4.1. U, .(z, w) of (4.1) is a slowly increasing holomorphic function

in W, x W,, that is, for any compact subset ¥, x W;, C Q" x Q™, and any
n > 0, the functionU,,(z, w)e~"** is bounded ink N C**".
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Proof. Let o, wo) € W, x Wp,. Sincezg = xo +iyo € Wr,, we can take a
compact neighbourhoo#® af in Q" and a neighourhood’; in Q" of L; such that
{z—(;z€ePNC", (e€ViNC"} is a relatively compact subset ot of Remark
2.3. By the remark, it follows that

| Kn(z =) llvin = sUp |K(z —Q)]e!
cevinee

S SUp ‘K(Z — <)|e7]‘<_z‘e77|2| S Cnen|z|’
¢eEVINCt

for some smallp > 0 and a constanC,, > 0. Similarly we can take a com-
pact neighbourhood? I®Q™ of wy and a neighbourhood, in Q™ of L, so that

| Kn(w =) [lv,p< Cle™l, w € QN C™ for small > 0. On the other hand, since
Q.(V1;n) and Q.(V2; ) are Banach spaces, the seperately continuous bilinear form
restricted on their product space is also jointly continuous (e.g., Corollary of Theorem
1.9 of [11]), i.e., there existC =y, v,, > 0 such that

|B(¢1, ¢2)| < C || 1 llvinll @2 llvoms
for ¢; € Q.(Vj;m) (j =1, 2). Thus, combining these inequalities, we have,sfor 0,
Uz w)| = |B(Ku(z — ), Ku(w — )| < CC Cppe =MD,

for (z,w) € (P x Q)nCHm, [

Proposition 4.2. U, .(z, w) of (4.1) defines a Fourier hyperfunction
F € Q(D"*™) through

F(¢) =

lim / dwldwz/ Upm(x +irwy, y +irw)o(x, y)dxdy
r—1-0 S”*IXS’”’l R x Rm

for ¢ € Q(D"™).

Proof. First we prove the existence of the limit. Assuthe Q.(V.;n) for V.
{(z, w) € Q"™ ; |Im(z, w)| < 2¢}, e < 1/2. Note that by Stokes’ formula,

/ dwldWZ/ Un,m(x +irwy, y+ irw2)¢(x’ y)dXdy
Sn—1yx gm—1 R" x Rm

= / dwldWZ/ Unm(x +i(r — €)1, y +i(r — €)wp)
Sn—1y gm—1 R x Rm

O(x —iewr, y — iewp)dxdy

holds for 0< r < 1. SinceU is slowly increasing iW., x W.,, the existence of the
integral is obvious and the right-hand side has values and is continuous<in 6<
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1+e. So, the limit asr — 1 — 0 exists and equals to
@3 ro= [ dordon [ Upplr (L ooy +i(L - )
Snflxsmfl R x Rm
O(x —iewy, y — iewp)dxdy.

From the above expression and Proposition 4.1, continuity of Qif\V,, n) follows
easily and soF € Q(D"*")'. ]

Derinimion 4.3, For compact setd; € D% (j = 1, 2), we define a compact set
Ll X pritnn L2 |n Dnl+n2 as

Ly xpum Ly =N{ (V1 x V) NRw™2; V; is a neighbourhood of.;  iD" },
where the closures are taken D12,
Lemma 4.4. Let L; (j = 1, 2) be compact sets iD"/ and V be a neighbour-

hood of L1 xpu. Ly in Q"2 Then there exist neighbourhoodfs Ibf Q% such
that

(Vi x Vo)nC™*2 v,
Proof. This lemma follows from the fact thdt; xpwu+, Lo is also written as

Lyxpmm Ly =N{ (V1 x V)N Cm*z; V; is a neighbourhood of.; Q" } where the
closures are taken i@"*"2, O

Theorem 4.5 (Kernel Theorem). Let L; and L, be compact sets iD" and D™
respectively, andB a separately continuous bilinear form @L1) x Q(L2). Then
there exists a Fourier hyperfunctior ~ whose supportDft x D"z is contained in
L, x L, safisfying

(4.4) B(¢1, #2) = F(p1® ¢2), ¢1 € Q(L1), ¢2 € Q(L2).

The suppot ofF irD"*" is contained iNLy Xpwn L.

Proof. We proceed using only test functions@(Q'), (I = n, m, n + m) because
these are dense in ead(K). Then, (4.3) holds for aly € Q(Q"*™) and 0< € < 1/2.
Take ¢1 € Q(Q") and ¢, € O(Q™) and sety = ¢1 ® ¢, in the above equation. Then
we have, by (4.3),

F(p1® ¢2) = /SHdwl/” {/S,,,ldwz/m -~-dy} d1(x — iewr)dx.

Note that in the above [(, 1 dws [, - -dy} = B(Ku(x +i(1—e)wi —-), ¢2) = Ug,(x +
i(1—€e)w1) whereUy,(z) is a holomorphic function in the cylindgff Imz| < 1} which
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is the expression of the Fourier hyperfunctidn-, ¢¢). So, F (1 ® ¢2) = B(¢1, ¢2)
holds. This is sufficient for (4.4), if the statement on the support is shown.

Let V; (j =1 2) be arbitrary neighbourhoods bf; relatively compacQih and
Q™ respectively. Takey = x;, € > 0 which satisfy the conditions in Lemma 3.1 for
K =L; so that

{ze€C"; [Imz] <exi(Rez) Rez e suppyxy} C Vi.

and similarly forx, concerningV,. Then we construct, as in Lemma 3.1, the surfaces
Iy, (x;,€) In Wi .. Applying Stokes’ theorem to (4.4), we have

F(¢) = / dwzdwz/ Uz, w)p(z — iwy, w — iw)dzy A -+ - Adwy,
s r

iy sl o1 (1 X Ty (x21€)
@8 = [ deides [ UG- ey il - el
SH —1x Slﬂ — R“+m

d(x —iex1(x)w, y — iex2(y))w2) J1,w, () J2,0, (¥)dxdy,

whereU =U,, of (4.1) and/1,,(x) = J1w, (X1, € %), J2.0,(¥) = J2.w,(Xx2, €, ¥) are
bounded continuous functions ab4, x), (w», y) defined ins"~1 x R* and §”~1 x R™
respectively by equations like (3.2). In (4.5) we can limit the range of integration in
dxdy to R™" N (Vy x V) by (4.2) since for £,y )¢ V1 x V, , either xy1(x) = 0 or
x2(y) = 0. Thus,

(4.6) F(¢) = du&du&/ Ux +i(1— exa(x))ws, y +i(1— exa(y))w2)
Sn—lxsm—l Rn+mm(V1 sz)
Plx —iex1(x)wr, y — iex2(y))w2)J1,w, () J2.0,(y)dxdy.

By this equation and an argument parallel to the one in the proof of Theorem 3.3, we
can show that the support &f  is containedlin x L, as follows. Note that since

Xx; 70 onL;, alTy, (x1,€) x T'u,(x2, €) are contained in a compact subsetWj, x

Wi, whereU is slowly increasing. Thus, for eagh> 0 there existsC, > 0 such that

[Upm(x +i(1— exa(x))wr, y +i(1— iexa(y))wz)| < CpeFH¥D/2,
Also, we have, for £,y £ Vi x Vs,
|6(x — iexa()wr, y — iexa()wa)] <[l & [lvixvom e "D,
Then, using the above estimates, we have, for ny0 and for some constary ,,,

[F(A)] < Con Il ¢ vaxvzm: &€ QEQ™).
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The constantCq, is given by

CO.n = Cn sup |Jl,w1(x)‘ X sup |]2,wz(y)|
wleS"*l,xeR” wzesm—l’yeRm

o [ etz
RlH—m

This indicatesL; x L, is the carrier of F inD" x D" and so contains the support of
F in D" x D™,

For any relatively compact neighbourho®d  ©f xp»m Ly in Q" we can take

V; such that {1 x Vo) nC"™ C V by Lemma 4.4. SoL1 xp~» Ly is a carrier of F
(in D™™m), O

(1]
(2]

(3]

(4]
(5]

(el
(7]
(8]
9]
(10]
[11]

(12]
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