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This note describes a property of the Asian option process, which neatly links the
process aps with the one at—p, wherey is the drift of the geometric Brownian mo-
tion. The proof is based on (i) a known result due to Yor, on the law of the Asian op-
tion process taken at an exponential time, and (ii) a recent result on beta and gamma
distributions.

SupposeW is one-dimensional standard Brownian motion starting at the origin,
and define what this author calls tiesian option processfor want of a better name:
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Asian options have payoffs such aAS‘() — K)+, and have been studied by numer-
ous authors in Finance and Mathematics; reciprocal Asian options have payoffs such
as K — 1/A§’*))+, and have not received much attention so far; for more details and
references, the reader is referred to [3] and [4].

Theorem 1 ([6]). Let T, be an exponentially distributed random variaplade-
pendent ofW, with meanl1/A. Then
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where By, ~ Beta(l o) and Gz ~ I'(5, 1) are independenta = 11/2 + /22X + (12/2,
0=a—u.

Theorem 2 ([2]). For anya, b, c >0,
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where G, ~ Gammag, 1),G. ~ Gamma{, 1),B,.+. ~ Betab,a +c¢), By, ~
Betap, a ) and all variables are independent.
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Theorem 3. For any u,t > 0,
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where G, ~ I'(u, 1) is independent ofv .

The last result follows directly from the two previous ones, upon setting 5, =
b =1, ¢ =pu, and then inverting the Laplace transform represented by the exponential
time Ty. Theorem 3 gives an easy proof of the well-known formula in Corollary 4
(just observe than®) = oo a.s. if u > 0).

Corollary 4. For any u > 0,

W ~ Gamma(t, 1)

Theorem 5. Let {U;; k > 1} be independent variables with the same distribu-
tion as

U= —, By ~ Beta(3, p), B, ~ Beta(l +3, ),

with By, B, independent. > 0, 8= —u/2 +/2\ +2/2, and let {G¥); k > 0} be a
sequence of independent variables with a com@ammaf, 1) distribution, indepen-
dent of {U;; k > 1}. Then
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In (a), A(T’i) and G, are independentmoreover given G, and U with the given dis-
tributions the squtionl/ZA(T*;) is unique(in distribution).

Part (a) follows from computing the Mellin transform & E (-)*) of either side,
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which from Theorem 1 is
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Uniqueness of the solution is essentially a consequendeled U < 0, see [5], The-
orem 1.5. Part (b) results from iterating (a) (see also Theorems 3 and 3 in [2]). Parts
(c) and (d) result from conditioning ofiUy; k > 1} in (b).

Theorem 5 (b) is another instance of the relationship between perpetuities and the
Asian option process, observed in [1]. Finally, note that Theorem 5 (a) does not say
anything aboutE 1/A§“), asEU =1 and (by (b))E 1/A(T’i) = oco. The expectation of
1/A,(”) is obtained by other means in [3].
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