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A REDUCTION THEOREM FOR STABLE SETS OF

HOLOMORPHIC FOLIATIONS ON COMPLEX TORI

TAKEO OHSAWA

Abstract. Some complex n-tori admit holomorphic foliations of codimension

one besides the flat ones. It will be shown that such nonlinear foliations, possi-

bly with singularities, can be reduced to those on 2-tori under some topological

conditions. A crucial step is an application of the Hodge theory on pseudocon-

vex manifolds.

Introduction

Let M be a compact Kähler manifold and let X ⊂M be a real-analytic

Levi flat hypersurface. It was provided in [O-3] that M \X does not admit a

C∞ plurisubharmonic exhaustion function whose Levi form has everywhere

at least 3 positive eigenvalues outside a compact subset of M \X. It turned

out later that, as well as M \X, complements of effective divisors of M with

topologically trivial normal bundles have the same non-convexity property

as above (cf. [O-4]).

Applying these results for M = CP
n, one obtains an alternate proof

of a theorem of LinsNeto [LN], asserting in particular that there exist no

real analytic Levi flat hypersurfaces in CP
n if n ≥ 3, because the comple-

ments of such hypersurfaces would admit strictly plurisubharmonic exhaus-

tion functions by the positivity of the holomorphic bisectional curvature of

the Fubini-Study metric. In view of this, we would like to pursue the con-

sequences of [O-3], [O-4] in case M is a complex torus equipped with a flat

metric, by exploiting a formula, due to Matsumoto [M], for the Levi form

of distance function to complex submanifolds in C
n.

Theorem 0.1. Let T be a complex torus equipped with a flat Hermitian

metric and let A ⊂ T be a closed subset. Assume that there exist a neigh-

bourhood U ⊃ A and a one-codimensional holomorphic foliation F ⊂ Ω1
T
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(= the sheaf of holomorphic 1-forms on T ) with possibly singular leaves on

U such that A is a stable set of F (i.e. A is the union of leaves of F inter-

secting with A) and that F is topologically trivial on a neighborhood of A.

Then, either F is generated by a holomorphic 1-form on T and A is totally

geodesic, or there exist a complex 2-torus T ′, a holomorphic map π : T → T ′

and a closed subset A′ ⊂ T ′ such that A = π−1(A′). In the latter case, F is

the pull back of some foliation F ′ on a neighbourhood of A′ whenever A is

not complex analytic.

The author does not know whether or not F ′|A′ is topologically trivial

if so is F|A in the above situation besides the trivial case where A is a real

hypersurface. Theorem 0.1 shows in particular that the classification of real

analytic Levi flat hypersurfaces in complex tori is reduced to that in the

2-tori (See also the remark after the proof of Theorem 0.1).

§1. Preliminaries

Let M be a complex manifold. We shall denote by Ωp
M the sheaf of

holomorphic p-forms on M. By a 1-codimensional holomorphic foliation on

M with possibly singular leaves, we shall mean an invertible subsheaf F
of Ω1

M which is locally generated by df for some nonconstant holomorphic

function f . A nonempty connected subset F ⊂M will be called a leaf of F
if, for any p ∈ M , there exists a neighbourhood U ∋ p and a holomorphic

function f on U such that df generates F|U and F ∩U = f−1(B) for some

subset B of C with at most countably many elements.

Theorem 1.1. Let M be a compact Kähler manifold and let A ⊂ M

be a proper and nonempty closed subset. Assume that there exist a neigh-

bourhood U ⊃ A and a 1-codimensional holomorphic foliation with possibly

singular leaves on U say F , such that A is a stable set of F and that F
is topologically trivial as an invertible sheaf. Then M \ A does not admit a

C∞ plurisubharmonic exhaustion function whose Levi form has everywhere

at least 3 positive eigenvalues outside a compact subset of M \ A.

Proof. Suppose that such a function, say Φ, exist. We shall show that

Φ violates the maximum principle.

Since F is topologically trivial, there exists an element of H1(U,O), say

α, which is mapped to F by the exponential homomorphism

H1(U,O) −→ H1(U,O∗).
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Then, by Grauert-Riemenschneider’s vanishing theorem applied on M \ A,

α can be extended as a cohomology class of H1(M,O).

Therefore, F can be extended as a topologically trivial invertible sheaf

over M , say F̃ .

Let us fix a system of open sets Ui ⊂ U (i = 1, 2, . . . ,m) and holo-

morphic functions fi on Ui in such a way that dfi generates F|Ui and that

A ⊂ ⋃m
i=1 Ui. Then there exists a system of nowhere vanishing holomorphic

functions {eij} on Ui ∩ Uj such that dfi = eij dfj holds on Ui ∩ Uj . This

means that the system {dfi} is identified with an F-valued 1-form say ξ on

a neighbourhood of A.

Note that ξ can be extended as an F-valued holomorphic 1-form on M

say ξ̃, since a Lefschetz type isomorphism theorem holds on M \A (cf. [O-1],

[D], [O-5]).

Since dξ̃ = 0 holds with respect to the unitary flat connection of F̃ ,

ξ̃ is locally d-exact by Poincaré’s lemma. This means that we could have

chosen fi in advance so that Ui ∩Uj are connected and eij are constants of

modulus one. In this situation we have

(1.1) fi = e
√
−1θijfj + cij on Ui ∩ Uj

for some θij ∈ R and cij ∈ C.

We put ∆ = {(p, p) | p ∈ A} and define a function δ on a neighbourhood

of ∆ in U × U by letting δ(z,w) = |fi(z) − fi(w)| if (z,w) ∈ Ui × Ui for

some i. Note that δ is well defined by (1.1).

Then we put

δA(z) = inf{δ(z,w) | (z,w) ∈ V ∩ (U ×A)}.

Since A is compact and is the union of leaves of F intersecting with A, δA
is continuous on a sufficiently small neighbourhood W of A, is constant on

every leaf of F|W , and satisfies δ−1
A (0) = A.

Let us choose ε > 0 such that δ−1
A (ε) has a compact component say L

in W .

Let p ∈ L be any point where Φ|L takes its maximum, and let Fp

be the leaf of F|W passing through p. Then Φ|Fp must be constant by the

maximum principle, but the Levi form of Φ|Fp is not zero by the assumption

on the Levi form of Φ, provided that ε is chosen to be sufficiently small.

This is the desired contradiction.
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§2. Matsumoto’s formula and its consequences

Let D = {z ∈ C | |z| < 1}, let γ : D
r → C

q be a holomorphic map

satisfying γ(0) = 0 and dγ(0) = 0, and let

G = {(z, γ(z)) | z = (z1, . . . , zr) ∈ D
r}.

For any point (z, ζ) ∈ D
r×C

q, let δ(z, ζ) be the euclidean distance from

(z, ζ) to G.

We put

ϕ(z, ζ) = − log δ(z, ζ)

Φ(ζ) =

(

∂2ϕ(z, ζ)

∂zi∂zj

)

1≤i,j≤r

∣

∣

∣

∣

z=0

F (z) =

(

∂2γ

∂zi∂zj

)

1≤i,j≤r

= (F1(z), . . . , Fq(z))

and

Λ(ζ) =

q
∑

µ=1

Fµ(0)ζµ.

Matsumoto’s formula. (cf. [M]) There exists ε > 0 such that

(2.1) Φ(ζ) =
1

2
‖ζ‖−2Λ(ζ)Λ(ζ)[Er − Λ(ζ)Λ(ζ)]−1

holds for 0 < ‖ζ‖ < ε. Here ‖ζ‖2 =
∑q

µ=1|ζµ|2 and Er denotes the unit

matrix of rank r.

If q = 1, then (2.1) becomes simpler:

(2.2) Φ(ζ) =
1

2
F1(0)F1(0)[Er − Λ(ζ)Λ(ζ)]−1.

We shall put (2.2) in more geometric form below.

Let D be a domain in C
n and let Y be a closed complex submanifold

of codimension one in D.

For each p = (p1, . . . , pn) ∈ Y , we take unitary matrix A = (Aij) of

rank n in such a way that the vectors

n
∑

j=1

Aij
∂

∂zj
(2 ≤ i ≤ n)
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belong to the holomorphic tangent space of Y at p.

By letting

ζ =
n

∑

j=1

A1j(zj − pj)

ui =

n
∑

j=1

Ai+1 j(zj − pj) (1 ≤ i ≤ n− 1)

and u = (u1, . . . , un−1), we define a holomorphic function h on a neigh-

bourhood of u = 0 in such a way that Y is defined by ζ = h(u) on a

neighbourhood of p.

Since the hypersurface ζ = 0 is tangent to Y at (ζ, u) = (0, 0), we have

h(0) = 0 and dh(0) = 0.

Then we put

Hp =

(

∂2h

∂ui∂uj

)

1≤i,j≤n−1

∣

∣

∣

∣

u=0

and

Qp = (Qij)1≤i,j≤n−1 = HpHp.

Let MY denote a semipositive (1, 1)-form on Y defined by the correspon-

dence

p 7−→
√
−1

n−1
∑

i,j=1

Qij dui ∧ duj.

Let U be a tubular neighbourhood of Y with an orthogonal retraction

ρ : U → Y , and let MU be the (1, 1)-form on U which is induced fromMY

by the parallel transport along the line segments which are perpendicular

to Y .

Then, from (2.2) we deduce the following.

Proposition 2.1. Let Y , U andMU be as above, and let δY (z) be the

distance from z to Y . Then there exists a neighbourhood V ⊃ Y such that

V ⊂ U and

(2.3) 2
√
−1∂∂(− log δY ) ≥MU

holds on V \ Y .
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By an abuse of language, real (1, 1)-forms
√
−1

∑n
i,j=1 Θij dzi ∧ dzj

(Θij = Θji) will be identified with a Hermitian form
∑

i,j Θijξ
iξj on the

space of holomorphic tangent vectors
∑

i ξ
i ∂
∂zi

of C
n. Similar identification

will be carried over on complex manifolds, too.

In order to exploit (2.2) in full strength, we observe that (2.3) holds with

respect to any flat Hermitian metric on C
n and that the sums of functions

− log δY for several metrics have more convexity than the single one has.

To put it into a proposition, let T 1,0
z C

n denote the holomorphic tangent

space of C
n at z. For any two points z, z′ ∈ C

n, let

τ z
z′ : T

1,0
z C

n −→ T 1,0
z′ C

n

be the parallel transport.

For any z ∈ U , letNz be the maximal complex linear subspace of T 0,1
z C

n

satisfying MU |Nz = 0, and put

Nz = lim←−
W

⋂

z′∈W

τ z′

z (Nz′).

Here W runs through the neighbourhoods of z.

By the analyticity of Y , it is clear that Nz are parallel to each other on

any connected component of U and that dimNz is locally constant on U .

Similarly we define, given a Hermitian metric of the form

(2.4) g =
n

∑

i,j=1

gij dzi dzj (gij ∈ C)

and a tubular neighbourhood U ′ of Y with an orthogonal projection U ′ → Y

with respect to g, the associated (1, 1)-form MU ′ = MU ′,g, its null space

Nz = Nz,g and the space Nz = Nz,g as above for z ∈ U ′.
Clearly Nz,g may depend on g if z /∈ Y because so does the field of

normals for Y . However, as is clear from the definition, Nz does not depend

on the choice of g.

For any subset B ⊂ C
n, let δB,g denote the distance to B with respect

to g. Note that, for any z ∈ U \ Y and z′ ∈ Y such that δY,g(z) is attained

by the distance from z to z′, the foot of perpendicular from z to Y runs

through a dense subset of a neighbourhood of z′ in Y as g varies in the set

of metrics of the form (2.4).

Hence we deduce the following from Proposition 2.1.
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Proposition 2.2. Let Y ⊂ D ⊂ C
n be as above and let x ∈ Y . Then

there exists a neighbourhood U0 ∋ x in C
n, a positive number c, and flat

Hermitian metrics g1, . . . , gm of the form (2.4), such that the function

ψ =
m

∑

k=1

(log δY,gk
)2

satisfies the following.

The eigenvalues γ1 ≤ γ2 ≤ · · · ≤ γn of
√
−1∂∂ψ at z satisfy

γk > c for k > dimNz if z ∈ U0 \ Y .
(2.5)

It is clear that Proposition 2.2 and the preceding materials carry over if

Y is a locally closed complex submanifold of codimension one in a complex

torus equipped with flat Hermitian metrics.

Moreover, if Y depends continuously on a parameter t ∈ D and forms

a family of complex submanifolds of codimension one say

Y = {Yt}t∈D with Y0 = Y

in some fixed domain, then U0, c and ψ = ψt in Proposition 2.2 can be

chosen in such a way that (2.5) holds on U0 \ Yt for ψt for all sufficiently

small t.

From now on, let T be a complex n-torus and let A ⊂ T be a nonempty

and closed subset. We shall assume that there exists a neighbourhood

U ⊃ A and a 1-codimensional holomorphic foliation F on U with possi-

bly singular leaves such that A is stable, i.e. A is the union of leaves of F
intersecting with A.

For each point a ∈ A, let Ua be a neighbourhood of a in T such that

F|Ua is generated by dfa for some holomorphic function fa on Ua.

We put

A0 = {a ∈ A | dfa = 0 at a}
and

A◦ = A \A0.

Clearly A0 is nowhere dense in A.

Let Herm+(T ) denote the set of flat Hermitian metrics on T . By fixing

a basis of the space of global holomorphic vector fields on T , we may identify

Herm+(T ) with a subset of the space of Hermitian matrices.
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For any g ∈ Herm+(T ) and z ∈ T \ A we put

Az,g = {w ∈ A | distg(z,A) = distg(z,w)},

where distg( , ) denotes the distance with respect to g. We put δg(z) =

distg(z,A) for simplicity.

If w ∈ Az,g, then there exists a flat holomorphic curve lw : C→ T such

that lw(0) = z, lw(1) = w and l
1

w(A)∩D = ∅. We shall say that z is generic

with respect to (A, g) if Az,g ⊂ A◦ and lw intersects with the leaf passing

through w transversally at w for any w ∈ Az,g. Then we put

A∗
g = {z ∈ T \ A | z is generic with respect to (A, g)}.

Clearly A∗
g is nonempty.

Proposition 2.3. There exists a neighbourhood W ⊃ A such that, for

any point z ∈W \ A, there exists a g ∈ Herm+(T ) such that z ∈ A∗
g.

Proof. Let a ∈ A be any point, let (Ua, f = fa) be as above, and let

Y = f−1(f(a)). If a is a singular point of Y , then there exist neighbourhoods

W (k) (k = 1, 2, . . . ,m) of a and surjective holomorphic maps

πk : W (k) −→ D
n−1

satisfying the following.

1. π−1
k (z′) are flat submanifolds of T for all z′ ∈ D

n−1.

2. W (k) ∩ f−1(f(a′)) (k = 1, 2, . . . ,m) are nonsingular if f(a′) 6= f(a).

3. π|W (k) ∩ Y is a finite morphism for every k.

4.
⋂m

k=1W
(k)∩π−1

k (πk(Yk)) ⊂ A, where Yk denotes the set {z ∈W (k)∩Y |
π−1

k (πk(z)) does not intersect transversally with Y at z}.

Then it is easy to see that there exists a neighbourhood Wa ∋ a such

that Wa ⊂
⋂m

k=1W
(k) and that, for any point z ∈ Wa \ A, there exists a

g ∈ Herm+(T ) such that z ∈ A∗
g.

Let g1, . . . , gm ∈ Herm+(T ). For any a ∈ A, let (Ua, f) be chosen as

above and put

ψg1,...,gm,a(z) = sup

{ m
∑

k=1

(log δf−1(ζ),gk
(z))2

∣

∣

∣

∣

ζ ∈ f(Ua)

}

.
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Let U ′
a be any neighbourhood of a satisfying U ′

a ⋐ Ua. Since A is compact,

there exist finitely many points a1, . . . , aµ ∈ A such that A ⊂ ⋃µ
i=1 U

′
ai

.

Then it is easy to see that there exists a neighbourhood V ⊃ A such

that

ψg1,...,gm,ai
(z) = ψg1,...,gm,aj

(z)

holds for any z ∈ V ∩ U ′
ai
∩ U ′

aj
\A.

Hence we obtain a well defined function ψg1,...,gm on V \ A by setting

ψg1,...,gm(z) = ψg1,...,gm,ai
(z) on V ∩ U ′

ai
\A.

In order to describe a property of the function ψg1,...,gm, we shall intro-

duce a quantity νA below.

For any z ∈ A∗
g and w ∈ Az,g, let Iz,w be the geodesic interval joining z

and w. We fix a neighbourhood Uz,w ⊃ Iz,w in such a way that there exists

an orthogonal retraction from Uz,w to the leaf of F|Uz,w ∩ U containing w,

say Fz,w.

Then, with respect to the pair (Fz,w, Uz,w), we define the subspaces Nz′

and Nz′ of T 1,0
z′ T for any z′ ∈ Uz,w similarly as in the case of the pairs

(Y,U ′).
Denoting Nz′ by Nz′,w to make the dependence of Nz′ on w explicit, we

put

NA,z = lim←−
U

⋂

g′∈U

⋂

w∈Az,g′

Nz,w

and

νA = lim inf
U ′

inf
{

dimNA,z | z ∈ U ′ \ A
}

.

Here U runs through the neighbourhoods of g and U ′ runs through the

neighbourhoods of A. Clearly NA,z′ and NA do not depend on the choice

of g if A contains a leaf of F densely.

Now, with respect to the function ψg1,...,gm as above, it is easy to see

that the following is true.

Proposition 2.4. If some leaf of F is dense in A, then there exist

g1, . . . , gm ∈ Herm+(T ), a neighbourhood V ⊃ A, a point z ∈ V \ A, a

neighbourhood Ω of z, and a C∞ semipositive (1, 1)-form θ on Ω such that

θn−νA has no zeros on Ω and that
√
−1∂∂ψg1,...,gm − θ is a semipositive

(1, 1)-current on Ω.

In order to proceed further, we need the following approximation theo-

rem.
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Theorem 2.1. Let X be a complex manifold admitting a (not necessar-

ily complete) flat Hermitian metric, let ϕ be a (not necessarily continuous)

plurisubharmonic function on X such that the sublevel sets Xc := {x ∈ X |
ϕ(x) < c} are relatively compact for all c ∈ R, and let r ∈ N. Suppose that

there exist a nonempty open set Ω ⊂ X and a C∞ semipositive (1, 1)-form

θ on Ω such that θr 6= 0 and that
√
−1∂∂ϕ− θ is a semipositive current on

Ω. Then there exists a C∞ plurisubharmonic exhaustion function ϕ̃ on X

whose Levi form has everywhere at least r positive eigenvalues.

Proof. Let us fix c0 ∈ R such that Xc0 ∩ {θr 6= 0} 6= ∅. Since Xc

are all relatively compact in X, there exist ci (i = 1, 2, 3, 4) such that

Xci−1
⊂ Xci

(i = 1, 2, 3, 4). Let X be a non-negative C∞ function on R

such that suppX ⊂ [−1, 1] and
∫ ∞
−∞X (t) dt = 1. Let d(x, y) be the distance

between x and y in X. For any ε > 0 we put ρX,ε(y) = ε−2n(d(x, y)/ε).

Then there exist ε0 > 0 and a constant C such that supp ρX,ε ⋐ X and
∫

X
ρX,ε(y)ω

n = C hold for 0 < ε < ε0 and x ∈ Xc4. Here ω (= ωy) denotes

the fundamental form of the flat metric on X.

Given any locally integrable function ψ on X we put

ψε(x) =
1

C

∫

X

ψ(y)ρX,ε(y)ω
n.

Then ϕε is plurisubharmonic on Xc4 and one may choose ε0 in advance so

that c0 < ϕε holds on XC2
\XC1

and ϕε < c4 holds on Xc3 .

Let λ be a C∞ convex increasing function on R such that λ(t) = c0 on

(−∞, c2) and λ((c2 + c3)/2) > c4. Then we put

(2.6) ϕ∨
ε (x) =

{

max{ϕε(x), λ(ϕ(x))} if x ∈ Xc3

λ(ϕ(x)) if x ∈ X \Xc3 .

Clearly ϕ∨
ε is a plurisubharmonic function on X. Note that ϕ∨

ε is C∞ on

Xc1 and the set

Ω(ϕ∨
ε ) :=

{

x ∈ Xc1

∣

∣ (∂∂ϕ∨
ε )r(x) 6= 0

}

contains Ωε := {x ∈ Xc1 | d(x,U) < ε} for any 0 < ε < ε0. Here d(x,Ω)

denotes the distance from x to Ω.

We put ϕδ = ϕ + δϕ∨
ε for δ > 0. Then ϕδ are plurisubharmonic on X

and satisfy c0 < (ϕδ)ε on Xc0 \ Xc1 and (ϕδ)ε < c4 on Xc3 for sufficiently

small δ.
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Therefore, by taking the maximum of (ϕδ)ε and λ(ϕ(x)) as in (2.6), we

obtain a plurisubharmonic function (ϕδ)∨ε such that Ω((ϕδ)∨ε ) ⊃ Ω2ε holds

true.

Hence, by putting further ϕδ,δ′ = ϕδ + δ′(ϕδ)∨ε for δ′ > 0 and repeating

the above smoothing procedure one after another, we arrive at a plurisub-

harmonic function ϕ∗ = (ϕδ1,δ2,...,δm)∨ε on X such that ϕ∗ is C∞ on Xc1 and

Ω(ϕ∗) = Xc1.

The rest is routine and may well be left to the reader.

Thus, combining Matsumoto’s formula with Theorem 1.1 and Theo-

rem 2.1, we conclude the following.

Proposition 2.5. Let T be a complex n-torus and let A be a nonempty

and proper closed subset of T . Suppose that there exist a neighbourhood

U ⊃ A and a holomorphic 1-codimensional foliation F with possibly singular

leaves on U whose normal bundle is topologically trivial such that A is stable

for F . Then νA ≥ n− 2 for any g ∈ Herm+(T ).

§3. Proof of Theorem 0.1

If A = T , there is nothing to prove. Nevertheless we note that the

leaves of F are all flat in this case because F is, being topologically trivial

on T , analytically trivial on T as a subsheaf of Ω1
T . If A = ∅ there is also

nothing left to prove.

If A 6= T, ∅, let LA be the collection of leaves of F that are contained in

A, let A = {ℓ | ℓ ∈ LA}, and let A∗ be any element of A. We assume that A

is connected, since the general case follows without any difficulty from this

case.

Then, in view of the definition of NA∗,z and Proposition 2.5, we know

that there exists a trivial subbundle F ⊂ T 1,0T of rank n− 1 or n− 2 such

that Fz = NA∗,z holds for all z ∈ T \ A∗.
If rankF = n− 1 for some A∗, then clearly A∗ are (n− 1)-subtori of T

and they are parallel to each other. Hence this falls into the second case in

the assertion.

If rankF = n − 2 for all A∗, then some A∗ are not flat. Therefore the

foliations defined by F on the leaves of F in such A∗ have nowhere dense

leaves. In view of the triviality of F , this means that A∗ is the union of

parallel translates of an (n− 2)-subtorus of T .

Therefore there exists a complex 2-torus T ′, a surjective holomorphic

map π : T → T ′ and A′
∗ ⊂ T ′ such that π−1(A′

∗) = A∗.
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If A∗∗ ∈ A and A∗∗ 6= A∗, then we have another 2-torus T ′′, a holomor-

phic map π′ : T → T ′′ and A′
∗∗ ⊂ T ′′ such that π′−1(A′

∗∗) = A∗∗.
However, fibers of π|A∗ and π′|A∗∗ must be parallel to each other, since

otherwise we would have an exhaustion function on T \ (A∗ ∪ A∗∗) with a

property contradicting Theorem 1.1 (just by adding exhaustion functions of

T \A∗ and T \A∗∗ resulting from Proposition 2.4 and Theorem 2.1).

Consequently, the map π : T → T ′ pulls back some A′ ⊂ T ′ to A.

In view of the uniqueness theorem for holomorphic functions, the last

assertion of Theorem 0.1 is a corollary of the rest.

Remark . See [O-2] and the appendix following this section for some

examples of nonflat foliations on certain tori which admit stable real hyper-

surfaces. Since smooth real hypersurfaces have topologically trivial analytic

normal bundles, holomorphic foliations of codimension one on complex tori,

possibly with singular leaves, are reduced to those on 1-tori or 2-tori when-

ever they have Levi flat stable sets with nonlinear leaves.

§4. Appendix

The geometric structure of our reduction map π is illustrated below by

an explicitly described class of Levi flat hypersurfaces living in principal

torus bundles over compact Riemann surfaces.

Let C be a compact Riemann surface and let π : T → C be a holomor-

phic principal n-torus bundle. Let T be an n-torus as the structure group of

the bundle and let g be the Lie algebra of T . The kernel of the exponential

map exp: g → T will be denoted by g0. We put exp ζ = [ζ] for simplicity.

g/g0 and T will not be distinguished below.

Recall that a meromorphic connection on T → C is by definition a

system of g-valued meromorphic 1-forms, say, {ωα}α∈A associated to an

open covering {Uα}α∈A of C with local trivializations

ϕα : π−1(Uα) −→ Uα × T,

ωα being defined on Uα, such that ωα and ωβ are related on Uα ∩ Uβ by

ωα − ωβ = dcαβ. Here cαβ is defined by

ϕα ◦ ϕβ
−1(z, [ζ]) = (z, [ζ + cαβ(z)]).

Meromorphic connections will be simply denoted by ω, by abbreviating

{ωα}α∈A. By an abuse of notation, ω will also stand for ωα.
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Given any closed subgroup Γ ⊂ T and any finite subset Σ ⊂ C, we

shall denote by Ω(Γ,Σ) the set of meromorphic connections ω of T → C

satisfying the following conditions.

1. ω has at most simple poles contained in Σ.

2. The holonomy group of ω, as that of a holomorphic connection over

C \ Σ, preserves Γ.

For any ω ∈ Ω(T,Σ) and for any C1-smooth curve γ : [0, 1]→ C \Σ, let

ωγ denote the parallel transport from π−1(γ(0)) to π−1(γ(1)) along γ with

respect to ω.

If γ is a closed curve, ωγ depends only on the homology class [γ] of γ in

H1(C\Σ, Z), and is a parallel translate in π−1(γ(0)). We define P (ω, γ) ∈ T
by

ωγ(x) = x+ P (ω, γ) (x ∈ π−1(γ(0))).

Then we have

Ω(Γ,Σ) =
{

ω | P (ω, γ) ∈ T whenever [γ] ∈ H1(C \ Σ, Z)
}

.

Lemma 4.1. Ω(Γ,Σ) 6= ∅ if there exist ω ∈ Ω(T,Σ) and a g-valued

meromorphic 1-form σ on C with at most simple poles contained in Σ, such

that
∫

γ

σ ∈ P (ω, γ) + Γ

holds for any [γ] ∈ H1(C \Σ, Z).

Proof. The assertion is obvious because ω − σ ∈ Ω(Γ,Σ).

Proposition 4.1. Ω(T,Σ) 6= ∅ if Σ 6= ∅.

Proof. It suffices to show that Ω(T, {P}) 6= ∅ for any P ∈ C. To see

this, let U be a coordinate neighbourhood of P and let ϕ : π−1(U)
∼−→ U×T

and ψ : π−1(C \ {P}) ∼−→ C \ {P} × T be respectively local trivializations

of T over U and C \ {P}. Existence of ϕ and ψ is guaranteed by that of

holomorphic sections of T over U and C \ {P}, which is a consequence of

the Oka-Grauert principle asserting, in particular, that every holomorphic

vector bundle over a noncompact Riemann surface is trivial (cf. [F]).
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Let us define c : U \ {P} → g by

ψ ◦ ϕ−1(x) =
(

π(x), x+ [c(π(x))]
)

.

Since H1,1(C, [P ]) = 0, there exist a neighbourhood V ∋ P with V ⊂ U ,

a g-valued holomorphic 1-form τ0 on C \ {P} and a g-valued meromorphic

1-form τ1 on U with at most one simple pole at P such that dc = τ1 − τ0
holds on U \ V .

Hence τ = {τ0, τ1} gives a meromorphic connection on T → C with

possibly one simple pole at P .

In view of the above construction of the connection τ , it is easy to see

that the period of the primitive of τ1 around P , denoted by

∮

P

τ

(

=

∮

P

τ1

)

does not depend on the choise of ϕ and ψ.

Proposition 4.2.
∮

P
τ does not depend on P .

Proof. Let P,Q ∈ C be any distinct points. Then, as is well known,

there exists a meromorphic 1-form σ on C whose poles are simple and

situated at P and Q, such that

∮

P

σ = 1.

Then the meromorphic connection τ ′ = τ −
(∮

P
τ
)

σ belongs to

Ω(T, {Q}) and
∮

P
τ =

∮

Q
τ ′ holds since

∮

Q
σ = −1.

From now on, we shall call the element
∮

P
τ of g the curvature of the

bundle T → C and denote it by ΘT .

Proposition 4.3. For any closed subgroup Γ ⊂ T , there exists ν0 ∈ N

such that for any integer ν ≥ ν0 one can find a finite set Σ ⊂ C with deg Σ

(:= the cardinality of Σ) = ν and Ω(Γ,Σ) 6= ∅.

Proof. Since Ω(T,Σ) 6= ∅ if Σ 6= ∅ by Proposition 2.1, the conclusion

follows from the well known existence theorem for meromorphic differentials

of the third kind on C with prescribed periods (cf. [F]).
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By the same reasoning as above we obtain the following.

Proposition 4.4. For any closed subgroup Γ ⊂ T satisfying

[
√
−1RΘT ] ⊂ Γ and [RΘT ] ∩ Γ = ZΘT , there exist ν1 ∈ N such that one

can find, for every integer ν ≥ ν1, a finite set Σ ⊂ C with deg Z = ν and an

element ω ∈ Ω(Γ,Σ) satisfying the following conditions for every P ∈ Σ.

1.
√
−1R

∮

P
ω ⊂ Γ

2. R
∮

P
ω ∩ Γ = Z · 1

2

∮

P
ω.

(In [O-2], Supplement, Theorem 1, 1
2 is missing in the condition corre-

sponding to 2.)

If Γ is a subtorus of real codimension one satisfying the above require-

ment of Proposition 2.4, then it is easy to see that, for any x ∈ T \ π−1(Σ),

the closure of the set
⋃

γ

ωγ(x+ Γ).

where γ runs through the C1-smooth curves γ : [0, 1] → C \ Σ with γ(0) =

π(x), is a real-analytic Levi-flat in T . We shall denote this Levi-flat by

X(T ,Γ, ω, x).
We note, as one sees from Proposition 4.4, that X(T ,Γ, ω, x) exists if

and only if the curvature ΘT of the bundle satisfies

√
−1RΘT ∩ g0 6= {0}.

Hence, in particular, flat torus bundles over compact Riemann surfaces al-

ways admit Levi-flats of the form X(T ,Γ, ω, x) which are generically fibered

over C.

Remark . The notation of the curvature as above immediately general-

izes to arbitrary principal complex Lie group bundles. However the author

does not know how this notion carries over to bundles with higher dimen-

sional base spaces.
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