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A PACKING PROBLEM FOR HOLOMORPHIC

CURVES

MASAKI TSUKAMOTO

Abstract. We propose a new approach to the value distribution theory of

entire holomorphic curves. We define packing density of Brody curves, and

show that it has various non-trivial properties. The packing density of Brody

curves can be considered as an infinite dimensional version of characteristic

number, and it has an application to Gromov’s mean dimension theory.

§1. Main results

1.1. Introduction

Since R. Nevanlinna discovered his celebrated theory on meromorphic

functions ([14]), thousands of researchers have studied the value distribution

theory of meromorphic functions and, more generally, entire holomorphic

curves (and holomorphic mappings) in complex manifolds. This paper is

a new approach to the value distribution theory. We define and study a

packing problem for entire holomorphic curves.

Packing is usually a notion in discrete geometry. For example, the

Kepler conjecture on the sphere packing in R
3 is very famous. In this paper

we define a packing density of an entire holomorphic curve and investigate its

behavior. (To be precise, we consider only Brody curves.) In particular, we

study entire holomorphic curves in the projective space and prove that their

packing densities have a non-trivial upper bound. Hence their supremum

becomes a non-trivial invariant of the projective space. This invariant can be

considered as an infinite dimensional version of characteristic number, and

it has an application to Gromov’s mean dimension theory (see Subsection

1.5 and Tsukamoto [17]).
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1.2. Packing density of Brody curves

Let X be a Hermitian manifold and ω be its Kähler form. Let z = x +

y
√
−1 be the natural coordinate in the complex plane C. For a holomorphic

map f : C → X, we define the pointwise norm |df |(z) ≥ 0 of the differential

df by

f∗ω = |df |2(z) dxdy.

This is the “dilatation” of the map f , i.e.,

|df |(z) =
√

2|df(∂/∂z)|,

where ∂/∂z = 1
2 (∂/∂x−

√
−1∂/∂y) and the factor

√
2 comes from |∂/∂z| =

1/
√

2 (the complex plane is equipped with the usual Euclidean metric). We

call a holomorphic map f : C → X a Brody curve if it satisfies |df | ≤ 1 (cf.

Brody [2]). Let M(X,ω) be the moduli space of Brody curves in X:

M(X,ω) := {f : C → X | f is holomorphic and |df |(z) ≤ 1 for all z ∈ C}.

For a Brody curve f ∈ M(X,ω), we define its packing density ρ(f) by

setting

ρ(f) := lim sup
R→∞

1

πR2

∫

|z|≤R
f∗ω = lim sup

R→∞

1

πR2

∫

|z|≤R
|df |2 dxdy.

This satisfies

0 ≤ ρ(f) ≤ 1.

The integration of f∗ω is the energy functional. Hence if ρ(f) is close to 1,

the energy of f is densely packed in the complex plane. In other words, ρ(f)

evaluates the efficiency of the energy distribution of f . This is the reason

why we call ρ(f) “packing density”. We define ρ(X,ω) by setting

ρ(X,ω) := sup
f∈M(X,ω)

ρ(f).

This satisfies

0 ≤ ρ(X,ω) ≤ 1.

Then we can define a packing problem. The packing problem for holo-

morphic curves is the problem of determining, or estimating, the value of

ρ(X,ω). We will often abbreviate M(X,ω) and ρ(X,ω) to M(X) and ρ(X)

when it causes no confusion.
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Example 1.1. Let (z1, z2, . . . , zn) be the natural coordinate system on

C
n. The Euclidean metric and its Kähler form on C

n are given by

ds2 =

n
∑

i=1

dzidz̄i, ω =

√
−1

2

n
∑

i=1

dzi ∧ dz̄i.

Let f : C → C
n be the natural inclusion: f(z) := (z, 0, 0, . . . , 0). It is

obvious that |df | ≡ 1. Hence f ∈ M(Cn, ω) and ρ(f) = 1. Therefore

ρ(Cn, ω) = 1.

In the same way, if X is a complex torus with the Euclidean metric induced

by the universal covering, then we have

ρ(X) = 1.

Example 1.2. Let ∆ = {z ∈ C | |z| < 1} be the unit disk and g be an

arbitrary Hermitian metric on ∆. All holomorphic maps from C to ∆ are

constant maps by Liouville’s theorem. Therefore we have

ρ(∆, ω) = 0.

In the same manner, if X is a compact Riemann surface of genus ≥ 2, then

we have

ρ(X,ω) = 0 for any Hermitian metric on X.

The above two examples are trivial extremal cases. Our main concern is

the case of the complex projective space CPn with the Fubini-Study metric

(n ≥ 1). Let [z0 : z1 : · · · : zn] be the homogeneous coordinate in CPn. We

define the Fubini-Study metric form ωFS by

(1) ωFS :=

√
−1

2π
∂∂̄ log

(

1 +

n
∑

i=1

|zi|2
)

on {[1 : z1 : · · · : zn]}.

ωFS smoothly extends over CPn and defines the Fubini-Study metric. This

is normalized so that

(2)

∫

CP 1

ωFS = 1 for CP 1 := {[z0 : z1 : 0 : · · · : 0] ∈ CPn} .

The start point of the packing problem is the following:
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Theorem 1.3.

0 < ρ(CPn, ωFS) < 1,

i.e., ρ(CPn, ωFS) is not equal to 0 nor 1.

This result means that the packing problem for holomorphic curves in

CPn is a non-trivial problem. (The essential point of this statement is that

ρ(CPn, ωFS) cannot be equal to 1.) We will usually abbreviate ρ(CPn, ωFS)

to ρ(CPn).

Theorem 1.3 does not give an effective upper bound for ρ(CPn). We

investigate the explicit estimate for ρ(CP 1) in the next theorem.

Theorem 1.4.

ρ(CP 1) ≤ 1 − 10−100.

The above value, 1 − 10−100, itself has no importance. The important

point is that it is an explicit number. (ρ(CP 1) is a very transcendental

object and it is far from obvious whether we can give an explicit estimate of

it.) Actually the proof of this explicit estimate is the most difficult argument

in this paper.

Next we study the behavior of ρ(CPn) as n goes to infinity. The nat-

ural inclusion CPn = {[z0 : z1 : · · · : zn : 0] ∈ CPn+1} →֒ CPn+1 is a

holomorphic isometric imbedding. Hence we can consider

M(CP 1) ⊂ M(CP 2) ⊂ M(CP 3) ⊂ · · · ⊂ M(CPn) ⊂ M(CPn+1) ⊂ · · · .

It results that

0 < ρ(CP 1) ≤ ρ(CP 2) ≤ ρ(CP 3) ≤ · · · ≤ ρ(CPn) ≤ ρ(CPn+1) ≤ · · · < 1.

The following theorem determines the limit of this sequence.

Theorem 1.5.

lim
n→∞

ρ(CPn) = 1.

1.3. Gap theorem for holomorphic maps from elliptic curves

As an application of packing problem, we can prove a “gap theorem”

for elliptic functions and, more generally, holomorphic maps from elliptic

curves to CPn.

Let C/Λ be a elliptic curve. Here Λ is a lattice in C. We give C/Λ the

Euclidean metric induced by the universal covering C. Let f : C/Λ → CPn
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be a holomorphic map. (Here we don’t consider any restriction on the norm

|df |.) We define the degree deg(f) by setting

(3) deg(f) :=

∫

C/Λ
f∗ωFS =

∫

C/Λ
|df |2 dxdy.

From the normalization of the Fubini-Study metric in (2), deg(f) is a non-

negative integer. From (3), we get an a priori estimate:

(4) ||df ||2∞ ≥ deg(f)

vol(C/Λ)
.

Here ||df ||∞ := supz∈C/Λ |df |(z) and vol(C/Λ) denotes the volume of C/Λ.

The following result shows that this is not a best estimate.

Theorem 1.6. For any holomorphic map f : C/Λ → CPn, we have

||df ||2∞ ≥ 1

ρ(CPn)

deg(f)

vol(C/Λ)
.

From Theorem 1.3,
1

ρ(CPn)
> 1.

Hence there exists a certain gap between the a priori estimate (4) and The-

orem 1.6. The point is that 1/ρ(CPn) is the universal constant which does

not depend on any lattice Λ nor any holomorphic map f .

1.4. Packing problem for the complement of hyperplanes

Next we study the packing problem for holomorphic curves in the com-

plement of hyperplanes. Let H0,H1, . . . ,Hn be the n + 1 hyperplanes in

CPn defined by

(5) Hi :

n
∑

j=0

aijzj = 0 (0 ≤ i ≤ n).

Here [z0 : z1 : · · · : zn] is the homogeneous coordinate in CPn. Let A :=

(aij)0≤i,j≤n be the coefficients matrix. H0,H1, . . . ,Hn are said to be linearly

independent if A is a regular matrix.

Theorem 1.7. Let H0,H1, . . . ,Hn be n + 1 linearly independent hy-

perplanes in CPn. Then

ρ(CPn \ (H0 ∪ H1 ∪ · · · ∪ Hn), ωFS) = 0.

Here we use the Fubini-Study metric as the metric on CPn \(H0∪· · ·∪Hn).
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This theorem makes a sharp contrast with Theorem 1.3 and Theorem

1.5.

Example 1.8. Consider the exponential function exp : C → CP 1 \
{0,∞}. This satisfies

|d exp |(z) =
1√
π

ex

1 + e2x
< 1, (x = Re z).

Hence it is an element of M(CP 1 \ {0,∞}, ωFS). By a direct calculation

(or using the above theorem), we can see

ρ(exp) = 0.

Problem 1.9. If n = 1, then we have a stronger result: It is known

that all f ∈ M(CP 1 \ {∞}, ωFS) has order ≤ 1, where “order” means the

order of the Nevanlinna characteristic function of f (see Clunie-Hayman [4,

Theorem 3], Minda [12, pp. 210–211] or Eremenko [6, Theorem 5.2]). Then

ρ(f) = 0.

Hence we have

ρ(CP 1 \ {∞}, ωFS) = 0.

I don’t know whether this result can be generalized to a higher dimensional

case or not.

1.5. Application to Gromov’s mean dimension theory

Packing density has a “moduli theoretic” meaning. (We don’t prove the

result of this subsection in this paper; For the proof and related arguments,

see Tsukamoto [17].) Let X ⊂ CPn be an algebraic set (not necessarily

smooth), and set

M(X) = M(X,ωFS) := {f ∈ M(CPn, ωFS) | f(C) ⊂ X}.

We give the compact-open topology on M(X). Then M(X) becomes a

compact (metrizable) space. We set

ρ(X) := sup
f∈M(X)

ρ(f).

From Theorem 1.3,

ρ(X) ≤ ρ(CPn) < 1.
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The Lie group C naturally acts on M(X) by

C ×M(X) −→ M(X), (a, f(z)) 7−→ f(z + a).

M(X) can be an infinite dimensional space, but we can consider its “mean

dimension” dim(M(X) : C). Mean dimension is a “dimension of an infi-

nite dimensional space” (see Gromov [7], Lindenstrauss-Weiss [11], Linden-

strauss [10] or Tsukamoto [17]). Packing density can be used to estimate

the mean dimension:

Theorem 1.10.

dim(M(X) : C) ≤ 4ρ(X) dimC X,

where dimC X denotes the complex dimension of X.

This follows from Tsukamoto [17, Theorem 1.5].

Example 1.11. If X = CPn, then we have

(6) dim(M(CPn) : C) ≤ 4ρ(CPn)n < 4n.

Remark 1.12. M. Gromov gives a certain upper bound for dim

(M(CPn) : C) in [7, p. 396, (c)]. Unfortunately, I could not find the defi-

nition of the Fubini-Study metric used in [7, p. 396, (c)] (the Fubini-Study

metric has several conventions). Therefore I could not decide whether our

estimate (6) is better than Gromov’s estimate in [7, p. 396, (c)] or not. But

Gromov referred to the paper of A. Eremenko [6] there, and the argument

in [17, Lemma 2.1] is similar to the argument in [6, Theorem 2.5]. And I

think that the use of packing density (or “mean energy” in [17]) makes the

related estimates sharper.

Remark 1.13. Actually we mainly study “mean energy” instead of

packing density in [17]. But many results for mean energy can be easily

reformulated into the results for packing density.

1.6. Organization of the paper

In Section 2, we develop general theory of packing density and prove

Theorem 1.6. We prove Theorem 1.3 in Section 3, Theorem 1.5 in Section

4 and Theorem 1.4 in Section 5. We prove Theorem 1.7 in Section 6 by

using the Nevanlinna theory. Section 5 is independent of Section 3 and 4.

Section 6 is logically independent of all other sections. (But its meaning in

the packing problem is underpinned by other results.)
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§2. General theory

In this section we study general properties of packing density. We dis-

cuss its scaling invariance in Subsection 2.1. We study upper bounds for

packing density in Subsection 2.2, and we study lower bounds in Subsection

2.3. In this section X is a Hermitian manifold, and ω denotes its Kähler

form.

2.1. Scaling invariance

Let f : C → X be a holomorphic map. Suppose that there exists a

positive number m < ∞ such that

|df |(z) ≤ m for all z ∈ C.

We define the holomorphic map f̂ : C → X by setting f̂(z) := f(z/m).

Then

|df̂ |(z) =
1

m
|df |(z/m) ≤ 1.

Hence f̂ ∈ M(X,ω). The following can be easily checked:

Lemma 2.1.

lim sup
R→∞

1

m2πR2

∫

|z|≤R
|df |2 dxdy = ρ(f̂).

Then we have the following scaling invariance:

Proposition 2.2. For any positive number c, we have

ρ(X, cω) = ρ(X, ω).

Here ρ(X, cω) is the packing density of X defined by using c ω as the metric

form on X.

2.2. Upper bounds for packing density

To begin with, we introduce a key notion. For a positive number ε > 0,

let ∆(ε) be the disk of radius ε in the plane:

∆(ε) := {z ∈ C | |z|< ε}.

We use the natural Euclidean metric as the metric on ∆(ε). (So ∆(ε) is not

the Poincaré disk.)
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Definition 2.3. 1 A Hermitian manifold X is ε-WFL (without flat

lines) if there is no holomorphic isometric immersion from ∆(ε) to X. X

is WFL if X is ε-WFL for all positive numbers ε. Here a holomorphic

isometric immersion from ∆(ε) to X is a holomorphic map f : ∆(ε) → X

satisfying |df |(z) = 1 for all z ∈ ∆(ε).

Example 2.4. The complex projective line CP 1 is WFL. (Actually all

CPn are also WFL; see Section 3.)

Proof. Suppose that there exists a holomorphic isometric immersion

from ∆(ε) to CP 1 for some positive number ε. This means that ∆(ε) is

locally isometric to CP 1. But ∆(ε) is flat and CP 1 has a positive constant

curvature. Hence it is impossible.

The following is the main result of this subsection.

Theorem 2.5. Let X be a compact Hermitian manifold and suppose

X is ε-WFL for some positive number ε. Then

ρ(X) < 1.

Note that we can suppose X is 1/2-WFL without loss of generality

by using a scale change (cf. Proposition 2.2) if X is ε-WFL for a positive

number ε. The key for the proof of Theorem 2.5 is the following.

Proposition 2.6. Let X be a 1/2-WFL compact Hermitian manifold

and K be a unit square in the complex plane C. Then there exists a constant

c(K) < 1 such that

∫

K
|df |2 dxdy ≤ c(K) for all f ∈ M(X).

Proof. Since vol(K) = 1 and |df | ≤ 1, it is trivial that
∫

K |df |2 dxdy ≤
1. Hence the proposition states that this trivial estimate can be improved.

Suppose the proposition is false. Then we have a sequence {fn}n≥1 in

M(X) such that

(7)

∫

K
|dfn|2 dxdy → 1 (n → ∞).

1The word “WFL” is inspired by the word “WFF” in Donaldson-Kronheimer [5, Def-
inition (3.2.2)].
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Because |dfn| ≤ 1 and X is compact, we can apply Arzela-Ascoli’s theorem,

and get a continuous map f : C → X such that an appropriate subsequence

of {fn}n≥1 converges to f in the sense of uniform convergence on compact

sets. Since each fn is holomorphic, f is also holomorphic and

|dfn| → |df | (n → ∞) (uniform convergence on compact sets).

From |dfn| ≤ 1, we get |df | ≤ 1. From the assumption (7),
∫

K
|df |2 dxdy = 1.

Since |df | ≤ 1, this means

|df |(z) = 1 for all z ∈ K.

Then f is a holomorphic isometric immersion from K to X. This contradicts

the assumption that X is 1/2-WFL (note that a unit square contains a open

disk of radius 1/2).

The above proposition states that there exists a constant c(K) < 1

satisfying the statement for each unit square K. But we have the Euclidean

symmetry. Hence we can suppose that

c(K) = c(K ′) =: c < 1 for all unit squares K and K ′ in the plane.

Proof of Theorem 2.5. As it is noted before, we can suppose that X is

1/2-WFL by using a scale change (this is just for simplicity). Let f be

an element of M(X) and R be a positive number greater than
√

2. We

prove ρ(f) ≤ c by packing unit squares in the disk ∆̄(R) = {z ∈ C| |z| ≤
R} (here we promise that unit square means “closed” unit square). Since

the diameter of a unit square is
√

2, we have the following fact: If a unit

square K has a intersection with the disk ∆̄(R −
√

2), K is contained in

∆̄(R). Hence if we consider a tiling of the plane by unit squares, the disk

∆̄(R −
√

2) is covered by unit squares contained in ∆̄(R). (See Figure 1.

The shaded area shows the unit squares which have intersections with the

disk ∆̄(R −
√

2).) In other words, we have the following situation: There

are unit squares K1,K2, . . . ,KN contained in ∆̄(R) such that Ki and Kj

(i 6= j) have common points at most on their boundaries and

∆̄(R −
√

2) ⊂
N
⋃

i=1

Ki ⊂ ∆̄(R).
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R

R −
√

2

Figure 1: A tiling by unit squares.

Then N = vol(
⋃

Ki) satisfies

π(R −
√

2)2 ≤ N ≤ πR2.

Therefore
∫

∆̄(R)
|df |2 dxdy =

N
∑

i=1

∫

Ki

|df |2 dxdy +

∫

∆̄(R)\∪Ki
|df |2 dxdy

≤ N · c + (πR2 − N)

≤ πR2 · c + {πR2 − π(R −
√

2)2}.
Here we have used Proposition 2.6 and |df | ≤ 1. Therefore

1

πR2

∫

∆̄(R)
|df |2 dxdy ≤ c +

{

1 −
(

1 −
√

2

R

)2
}

.

Taking the superior limit, we get

ρ(f) = lim sup
R→∞

1

πR2

∫

∆̄(R)
|df |2 dxdy ≤ c < 1.

Thus

ρ(X) ≤ c < 1.

Remark 2.7. The above argument does not give an effective estimate of

the constant c. Hence we need another method if we want an explicit upper

bound for ρ(X). This is the theme of Section 5, and we prove Theorem 1.4

there.
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2.3. Lower bounds for packing density

Next we will establish lower bounds for ρ(X) by using holomorphic

maps from elliptic curves to X. Let C/Λ be an elliptic curve. Here Λ

denotes a lattice in the complex plane C. The elliptic curve C/Λ has the

Euclidean metric induced by the universal covering C.

For a holomorphic map f : C/Λ → X, we define its energy E(f) by

setting

(8) E(f) :=

∫

C/Λ
f∗ω =

∫

C/Λ
|df |2 dxdy.

When (X, ω) = (CPn, ωFS), this is the degree of f defined in (3). Let

f̃ : C → X be the lift of f and set m := supz∈C/Λ |df |(z).

Proposition 2.8.

lim
R→∞

1

πR2

∫

|z|≤R
|df̃ |2 dxdy =

E(f)

vol(C/Λ)
.

Proof. We can prove this proposition by packing the fundamental do-

mains of Λ ⊂ C in the plane. The argument is similar to the proof of

Theorem 2.5 and we omit the detail.

Theorem 2.9. If there exists a non-constant holomorphic map f :

C/Λ → X, then we have the following estimate.

ρ(X) ≥ E(f)

||df ||2∞ vol(C/Λ)
.

In particular,

ρ(X) > 0.

Proof. Note that m = ||df ||∞ and E(f) are positive because f is a

non-constant map. From Lemma 2.1 and Proposition 2.8,

0 <
E(f)

||df ||2∞ vol(C/Λ)
= lim

R→∞
1

m2πR2

∫

|z|≤R
|df̃ |2 dxdy ≤ ρ(X).

As a corollary of Theorem 2.9, we get Theorem 1.6:

Proof of Theorem 1.6. If f : C/Λ → CPn is a constant map, then the

statement is trivial. When f is a non-constant map, the statement follows

from Theorem 2.9 (here we have E(f) = deg(f).)
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§3. Proof of Theorem 1.3

We give the proof of Theorem 1.3 in this section. Most of the proof

have already been done in Section 2. The last piece which we need is the

following.

Proposition 3.1. The complex projective space CPn is WFL.

This follows from a general result of E. Calabi concerning isometric

imbeddings of complex manifolds [3, Theorem 8]. This proposition is one

of the most fundamental result for the theory of “packing problem for holo-

morphic curves”. So, for the completion of the argument, we will give its

proof (which is not essentially different from the argument of [3]). Recall

the following easy fact:

Lemma 3.2. Let f(z1, z2) be a holomorphic function in two variables

defined on a connected open neighborhood of the origin in C
2. Set g(z) :=

f(z, z̄). g(z) is defined on a neighborhood of the origin in C. If g(z) ≡ 0,

then we have f(z1, z2) ≡ 0.

Proof. Differentiating the equation g(z) = f(z, z̄), we have

∂

∂z
g(z) :=

1

2

(

∂

∂x
−

√
−1

∂

∂y

)

g(z) =
∂f

∂z1
(z, z̄),

∂

∂z̄
g(z) :=

1

2

(

∂

∂x
+

√
−1

∂

∂y

)

g(z) =
∂f

∂z2
(z, z̄).

More generally we have

∂n+m

∂zn∂z̄m
g(z) =

∂n+mf

∂zn
1 ∂zm

2

(z, z̄) for all n,m ≥ 0.

Hence, if g(z) ≡ 0, then all partial derivatives of f at (z1, z2) = (0, 0) are

zero. This means that f(z1, z2) ≡ 0.

Proof of Proposition 3.1. 2 Suppose that there exists a holomorphic iso-

metric immersion f : ∆(ε) → CPn for some positive number ε. We can

2This proof implicitly uses the notions “diastasis” and “resolvability of rank n” in
Calabi [3, p. 3 and p. 11]. So this argument is essentially contained in the proof of [3,
Theorem 8].
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suppose that f(0) = [1 : 0 : · · · : 0] without loss of generality. Then we can

express f in some neighborhood of the origin by

f(z) = [1 : f1(z) : f2(z) : · · · : fn(z)],

where fi(z) is a holomorphic function such that fi(0) = 0 (1 ≤ i ≤ n).

The following argument is purely local. Hence we promise that all

functions are defined on some neighborhood of the origin in the complex

plane C. From the definition of the Fubini-Study metric (1), we have

|df |2(z) =
1

4π
∆ log

(

1 +

n
∑

i=1

|fi(z)|2
)

(

∆ :=
∂2

∂x2
+

∂2

∂y2

)

.

Since f is a holomorphic isometric immersion, |df |2 ≡ 1. On the other hand,

we have
1

4π
∆(π|z|2) ≡ 1.

Hence

∆
{

log
(

1 +
∑

|fi(z)|2
)

− π|z|2
}

≡ 0.

Because a harmonic function is locally the real part of a holomorphic func-

tion, we have a holomorphic function g(z) such that g(0) = 0 and

log
(

1 +
∑

|fi(z)|2
)

= π|z|2 + g(z) + g(z).

Introducing the new holomorphic functions f̄i(z) := fi(z̄) and ḡ(z) := g(z̄),

we can express the above equation by

log
(

1 +
∑

fi(z)f̄i(z̄)
)

= πzz̄ + g(z) + ḡ(z̄).

Applying Lemma 3.2 to this, we get

log
(

1 +
∑

fi(z1)f̄i(z2)
)

= πz1z2 + g(z1) + ḡ(z2).

Substituting z2 = 0, we get g(z1) ≡ 0 because f̄i(0) = ḡ(0) = 0. Thus the

above equation becomes

log
(

1 +
∑

fi(z1)f̄i(z2)
)

= πz1z2.

Hence we have

1 +

n
∑

i=1

fi(z1)f̄i(z2) = exp(πz1z2).
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Applying ∂α+β/∂zα
1 ∂zβ

2 to this at (z1, z2) = (0, 0), we get

n
∑

i=1

f
(α)
i (0)f

(β)
i (0) = παα!δαβ for α, β ≥ 1.

Here f
(α)
i (0) is the α-th derivative of fi at the origin and δαβ is the Kro-

necker delta. This means that an infinite number of non-zero vectors

(f
(α)
1 (0), f

(α)
2 (0), . . . , f

(α)
n (0)) (α ≥ 1) in C

n are orthogonal to each other.

It is impossible.

Proof of Theorem 1.3. The complex projective space CPn satisfies all

the conditions required in Theorem 2.5. Hence we get

ρ(CPn) < 1.

On the other hand there are non-constant elliptic functions; for example,

Weierstrass’ elliptic function ℘(z). Then we can apply Theorem 2.9, and

we get

ρ(CP 1) > 0.

Since the natural inclusion CP 1 →֒ CPn is a holomorphic isometric imbed-

ding, we conclude that

ρ(CPn) ≥ ρ(CP 1) > 0.

§4. Packing density and theta functions

We prove Theorem 1.5 in this section. The proof is based on the lower

bound given in Theorem 2.9. In order to apply it, we need holomorphic

maps from elliptic curves to the projective space. The classical theory of

theta functions (or the theorem of Tian [15]) gives a good answer. Let

τ = s + t
√
−1 be an element of the upper half plane (t = Im τ > 0). We

define the theta function θ(z) by setting

θ(z) :=
∑

n∈Z

exp(π
√
−1n2τ + 2π

√
−1nz) for z ∈ C.

We define the theta function θa,b(z) with characteristics a, b ∈ R by setting

θa,b(z) := exp(π
√
−1a2τ + 2π

√
−1a(z + b))θ(z + aτ + b).
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We can construct projective imbeddings of elliptic curves by using these

θa,b(z). We follow the arguments in Mumford [13, Chapter 1, §4].
We define a lattice Λ in C by setting Λ := Z ⊕ Zτ . For any integer

l ≥ 2, we set

(1

l
Z

)2
∩ [0, 1)2 = {(a0, b0), (a1, b1), . . . , (al2−1, bl2−1)},

θi(z) := θai,bi
(z) (0 ≤ i ≤ l2 − 1),

ϕl : C/lΛ −→ CP l2−1, [z] 7−→ [θ0(z) : θ1(z) : · · · : θl2−1(z)].

It is well-known that ϕl becomes a holomorphic imbedding and deg(ϕl) = l2

(see [13, Chapter 1, §4]). Since vol(C/lΛ) = t l2 (t = Im τ), Theorem 2.9

gives the following lower bound:

(9) ρ(CP l2−1) ≥ 1

t ||dϕl||2∞
.

Therefore we need the estimate of ||dϕl||∞.

Proposition 4.1.

lim
l→∞

∣

∣

∣

∣

∣

∣

∣

∣

|dϕl|2 −
1

t

∣

∣

∣

∣

∣

∣

∣

∣

∞
= 0.

Hence we have

lim
l→∞

||dϕl||2∞ =
1

t
.

This can be considered as a special case of the result of Tian [15]. (See also

Ji [8], Zelditch [18] and the references therein.) But for the completion of

the argument, we will give its direct proof below. I think that probably

the paper of Kempf [9] essentially contains the direct proof of this result

although I did not get this paper.

Lemma 4.2.

∫ 1

0

∫ 1

0
|θa,b(z)|2 dadb =

√

1

2t
exp

(

2πy2

t

)

.

Hence we have

1

4π
∆ log

∫ 1

0

∫ 1

0
|θa,b(z)|2 dadb ≡ 1

t
,

(

∆ =
∂2

∂x2
+

∂2

∂y2

)

.
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Proof. The proof is just a calculation.

|θa,b(z)| = exp(−πa2t − 2πay)|θ(z + aτ + b)|,
θ(z + aτ + b) =

∑

n

exp(π
√
−1n2τ + 2π

√
−1n(z + aτ)) exp(2π

√
−1nb).

From Parseval’s equality
∫ 1

0
|θ(z + aτ + b)|2 db =

∑

n

|exp(π
√
−1n2τ + 2π

√
−1n(z + aτ))|2

=
∑

n

exp(−2πn2t − 4πn(y + at)).

Hence
∫ 1

0
|θa,b(z)|2 db = exp(−2πa2t − 4πay)

∑

n

exp(−2πn2t − 4πn(y + at))

=
∑

n

exp(−2πt(a + n)2 − 4πy(a + n)).

Thus we get

∫ 1

0
da

∫ 1

0
|θa,b(z)|2 db =

∑

n

∫ 1

0
exp(−2πt(a + n)2 − 4πy(a + n)) da

=
∑

n

∫ n+1

n
exp(−2πta2 − 4πya) da

=

∫ +∞

−∞
exp(−2πta2 − 4πya) da

=

√

1

2t
exp

(

2πy2

t

)

.

Lemma 4.3. For α, β ∈ Z, we have

|dϕl|(z + ατ + β) = |dϕl|(z).

In other words, |dϕl|(z) is invariant under the following Z
2-action on C/lΛ.

Z
2

y C/lΛ, ((α, β), z) 7−→ z + ατ + β.

(Actually this result is still true for α, β ∈ 1
l Z. But we don’t need it.)
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Proof.

θa,b(z + ατ + β)

= exp(−π
√
−1α2τ − 2π

√
−1αz) exp(−2π

√
−1αb) θa+α,b+β(z).

Since α and β are integers, we have

θa+α,b+β(z) = exp(2π
√
−1aβ) θa,b(z).

Set ci := exp(−2παbi + 2π
√
−1aiβ) ∈ U(1), (0 ≤ i ≤ l2 − 1). Then

θi(z + ατ + β) = exp(−π
√
−1α2τ − 2π

√
−1αz) ci θi(z).

Hence (this is the “equivariance” described in [13, Chapter 1, §4])

ϕl(z + ατ + β) = [c0 θ0(z) : c1 θ1(z) : · · · : cl2−1 θl2−1(z)].

Therefore

|dϕl|2(z + ατ + β) =
1

4π
∆ log

∑

i

|ci θi(z)|2

=
1

4π
∆ log

∑

i

|θi(z)|2

= |dϕl|2(z).

Proof of Proposition 4.1. From the definition of the Fubini-Study met-

ric (1),

|dϕl|2(z) =
1

4π
∆ log

∑

i

|θi(z)|2 =
1

4π
∆ log

(

1

l2

∑

i

|θi(z)|2
)

.

Since [0, 1)2 =
⊔

i[ai, ai + 1/l)× [bi, bi + 1/l) is a division into small squares,

the definition of the Riemann integral gives the following point-wise conver-

gence.

lim
l→∞

1

l2

∑

i

|θi(z)|2 =

∫ 1

0

∫ 1

0
|θa,b(z)|2 dadb

=

√

1

2t
exp

(

2πy2

t

)

for any z ∈ C.
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Actually we can say more. Set K := {x + yτ ∈ C| 0 ≤ x, y ≤ 1}. Since K is

compact, it is easy to see that

lim
l→∞

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

l2

∑

i

|θi(z)|2 −
∫ 1

0

∫ 1

0
|θa,b(z)|2 dadb

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Ck(K)

= 0 for all k ≥ 0.

Here || · ||Ck(K) is the Ck-norm for functions defined over K. Therefore we

have

lim
l→∞

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

4π
∆ log

(

1

l2

∑

i

|θi(z)|2
)

− 1

4π
∆ log

∫ 1

0

∫ 1

0
|θa,b(z)|2 dadb

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

C0(K)

= 0.

Hence

lim
l→∞

∣

∣

∣

∣

∣

∣

∣

∣

|dϕl|2 −
1

t

∣

∣

∣

∣

∣

∣

∣

∣

C0(K)

= 0.

Here we consider K as a subspace of the elliptic curve C/lΛ through the

natural projection C → C/lΛ. Since K is a fundamental domain of the

Z
2-symmetry described in Lemma 4.3, we get the conclusion:

lim
l→∞

∣

∣

∣

∣

∣

∣

∣

∣

|dϕl|2 −
1

t

∣

∣

∣

∣

∣

∣

∣

∣

C0(C/lΛ)

= 0.

Proof of Theorem 1.5. From the inequality (9) and Proposition 4.1, we

have

lim inf
l→∞

ρ(CP l2−1) ≥ lim
l→∞

1

t ||dϕl||2∞
= 1.

Hence liml→∞ ρ(CP l2−1) = 1. Since ρ(CPn) is monotone increasing in n,

we get

lim
n→∞

ρ(CPn) = 1.

§5. Explicit upper bounds for ρ(CP 1)

In this section we prove Theorem 1.4. To simplify the calculations, we

will use the following rescaled Fubini-Study metric ds2 as the metric on CP 1
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in this section (cf. Proposition 2.2).

ds2 :=
dwdw̄

(1 + |w|2)2 ,(10)

the fundamental 2-form of ds2 =

√
−1

2

dw ∧ dw̄

(1 + |w|2)2 (= πωFS), (cf. (1)).

Here w is the natural coordinate on C of CP 1 = C ∪ {∞}. Then for a

meromorphic function f(z) in the complex plane, the norm of the differential

df is given by

|df |(z) =
|f ′(z)|

1 + |f(z)|2 .

5.1. Preliminary estimates

In this subsection we prepare various estimates for the proof of Theorem

1.4. Here we will not pursue precise estimates. Actually we will use many

loose estimates for simplicity of the calculations. Our purpose is to show

the fact that we can get an explicit upper bound on packing densities.

To begin with, we compute the distance on CP 1 defined by the metric

(10).

Lemma 5.1. Let w be a point of CP 1. Then we have

dCP 1(0, w) = arctan|w|.

Here dCP 1( · , · ) is the distance on CP 1 defined by (10), and arctan( · ) is

the branch of the inverse function of tan( · ) satisfying arctan 0 = 0.

Proof. c(t) := wt (0 ≤ t ≤ 1) is the minimum geodesic from 0 to w.

Hence we get

dCP 1(0, w) =

∫ 1

0

|c′(t)|
1 + |c(t)|2 dt =

∫ 1

0

|w|
1 + |w|2t2 dt = arctan |w|.

We set r := |z| for z in the complex plane and put

ε := 10−100 and r0 := 10−10.

Let f(z) be a meromorphic function in the complex plane which satisfies

(11) |df |(z) =
|f ′(z)|

1 + |f(z)|2 ≤ 1 for all z ∈ C.
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In addition, we suppose that the following conditions are also satisfied:

(12) f(0) = 0 and 1 − ε ≤ |df |(0) ≤ 1.

The main purpose of this subsection is to get a good estimate of |df |2(z) in

the disk r ≤ r0 under the conditions (11) and (12). The following lemma is

the basis of our argument.

Lemma 5.2.

|f(z)|2 ≤ tan2 r ≤ r2 + 2r4 ≤ 2r2 (r ≤ r0).

Let f(z) = a1z + a2z
2 + a3z

3 + · · · be the Taylor expansion centered at the

origin. Then we have

1 − ε ≤ |a1| ≤ 1 and |an| ≤ (4/π)n < 2n.

Proof. Since |df | ≤ 1 and f(0) = 0, we have

arctan |f(z)| = dCP 1(f(0), f(z)) ≤ r.

Hence

(13) |f(z)| ≤ tan r (r < π/2).

Here we have

tan2 r =
sin2 r

1 − sin2 r
= sin2 r +

sin4 r

1 − sin2 r
≤ r2 + 2r4 ≤ 2r2 (r ≤ r0).

Hence we get the above first statement. (Of course, this is a very loose

estimate.)

Next we will estimate the coefficients of the Taylor expansion. Since

|df |(0) = |f ′(0)| = |a1|, we have

1 − ε ≤ |a1| ≤ 1.

Using (13) at r = π/4, we have

|f(z)| ≤ 1 (r = π/4).

Thus we get

|an| =

∣

∣

∣

∣

∣

1

2π
√
−1

∫

|z|=π/4

f(z)

zn+1
dz

∣

∣

∣

∣

∣

≤ (4/π)n < 2n.
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In the following estimates, we always assume r ≤ r0. The important

term in the estimate of |df |2 is the second order term and the higher order

terms will be loosely estimated. First we will estimate the denominator of

|df |2(z) = |f ′(z)|2/(1 + |f(z)|2)2:

Lemma 5.3.

1

(1 + |f(z)|2)2 ≤ 1 − 2 r2 + 30 r3 + ε (r ≤ r0).

Proof. Using Lemma 5.2, if r ≤ r0, we have

1

(1 + |f(z)|2)2 = 1 − 2 |f(z)|2 +
3 |f(z)|4 + 2 |f(z)|6

(1 + |f(z)|2)2
≤ 1 − 2 |f(z)|2 + 3 · 22 · r4 + 2 · 23 · r6

= 1 − 2 |f(z)|2 + (3 · 22 + 24 · r2)r4

≤ 1 − 2 |f(z)|2 + 13 r4.

The term −2 |f(z)|2 can be estimated as follows.

|f(z)| ≥ |a1z| − |a2z
2 + a3z

3 + · · · |.

And we have

|a2z
2 + a3z

3 + · · · | ≤ 22 · r2 + 23 · r3 + · · · =
4r2

1 − 2r
≤ 5 r2.

Hence

|f(z)| ≥ |a1| r − 5 r2 ≥ (1 − ε) r − 5 r2 ≥ 0.

Then

|f(z)|2 ≥ (1 − ε)2 r2 − 10 (1 − ε) r3 + 25 r4 ≥ (1 − 2 ε) r2 − 10 r3.

Thus

−2 |f(z)|2 ≤ −2 (1 − 2 ε) r2 + 20 r3.

Hence we get the conclusion:

1

(1 + |f(z)|2 )2
≤ 1 − 2 (1 − 2 ε) r2 + 20 r3 + 13 r4

= 1 − 2 r2 + (20 + 13 r) r3 + 4 ε r2

≤ 1 − 2 r2 + 30 r3 + ε.
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Next we will estimate the numerator |f ′(z)|2. This case is more com-

plicated and we need some preparations.

Lemma 5.4.

2 |a2| ≤ 30
√

ε.

Proof.

f ′(z) = a1 + 2a2z + 3a3z
2 + 4a4z

3 + · · · .

Using |df | ≤ 1 and r ≤ r0, we have

|f ′(z)| ≤ 1 + |f(z)|2 ≤ 1 + 2 r2.

Hence

|a1 + 2 a2 z| ≤ 1 + 2 r2 + |3a3z
2 + 4a4z

3 + 5a5z
4 + · · · |

≤ 1 + 2 r2 + (3 · 23 · r2 + 4 · 24 · r3 + 5 · 25 · r4 + · · · )

= 1 + 2 r2 +
24 r2 − 32 r3

(1 − 2r)2

≤ 1 + r2

(

2 +
24

(1 − 2r)2

)

≤ 1 + 27 r2.

Let θn ∈ R/2πZ be the argument of an: an = |an|e
√
−1θn . If an = 0, then

we set θn := 0. Putting z =
√

ε e
√
−1(θ1−θ2) in the above, we get

|a1| + 2 |a2|
√

ε ≤ 1 + 27 ε.

Since |a1| ≥ 1 − ε,

2 |a2| ≤
ε + 27 ε√

ε
≤ 30

√
ε.

Set E(r) := 4 |a4| r3 + 5 |a5| r4 + 6 |a6| r5 + · · · . (“E” is the initial letter

of “error term”.)

Lemma 5.5.

E(r) ≤ 65 r3 ≤ 10−20 (r ≤ r0).
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Proof. Using Lemma 5.2 (and r ≤ r0), we have

E(r) ≤ 4 · 24 · r3 + 5 · 25 · r4 + 6 · 26 · r5 + · · ·

=
64 r3 − 96 r4

(1 − 2 r)2
≤ 64 r3

(1 − 2 r)2
≤ 65 r3.

Since r0 = 10−10, we have 65 r3 < 10−20.

Lemma 5.6. Set δ := 10−5. We have

3 |a3| r2 ≤ r2 + 100 r3 + δ
√

ε (r ≤ r0).

Proof. From Lemma 5.2,

|a1 + 2a2z + 3a3z
2 + 4a4z

3 + · · · | = |f ′(z)| ≤ 1 + |f(z)|2 ≤ 1 + r2 + 2 r4.

Using Lemma 5.4 and Lemma 5.5, we have

|a1 + 3 a3 z2| ≤ 1 + r2 + 2 r4 + |2 a2 z + 4 a4 z3 + 5 a5 z4 + · · · |
≤ 1 + r2 + 2 r4 + 30

√
ε r + E(r)

≤ 1 + r2 + (2 r + 65) r3 + 30
√

ε r

≤ 1 + r2 + 100 r3 + 30
√

ε r.

Let θn be the argument of an as in the proof of Lemma 5.4. Putting z =

r e
√

−1

2
(θ1−θ3) in the above, we get

|a1| + 3 |a3| r2 ≤ 1 + r2 + 100 r3 + 30
√

ε r.

Since |a1| ≥ 1 − ε, we have

3 |a3| r2 ≤ ε + r2 + 100 r3 + 30
√

ε r ≤ r2 + 100 r3 + δ
√

ε.

Set

cos+ x := max (0, cos x) for all x ∈ R.

Lemma 5.7.

|f ′(z)|2 ≤ 1 + 2 r2 cos+(2 θ − θ1 + θ3) + 500 r3 +
1

2

√
ε (r ≤ r0).

Here θ is the argument of z and θn is the argument of an.
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Proof. Since f ′(z) = a1 + 2a2z + 3a3z
2 + · · · , we have

|f ′(z)| ≤ |a1 + 3 a3 z2| + |2 a2 z| + |4 a4 z3 + 5 a5 z4 + 6 a6 z5 + · · · |
≤ |a1 + 3 a3 z2| + 30

√
ε r + E(r).

Hence

|f ′(z)|2 ≤|a1 + 3 a3 z2|2 + E(r)2 + 2 |a1 + 3 a3 z2| · E(r)

+ 900 ε r2 + 2 |a1 + 3 a3 z2| · 30
√

ε r + 60
√

ε r · E(r).

Since 2 |a1 + 3 a3 z2| ≤ 2|a1| + 6 |a3| r2 ≤ 2 + 6 · 23 · r2 ≤ 3,

900 ε r2 + 2 |a1 + 3 a3 z2| · 30
√

ε r + 60
√

ε r · E(r)

≤ (900
√

ε r2 + 90 r + 60 r E(r))
√

ε

≤ δ
√

ε, (δ = 10−5).

Here we have used r ≤ r0 = 10−10 and Lemma 5.5: E(r) ≤ 10−20. Thus we

get

|f ′(z)|2 ≤ |a1 + 3 a3 z2|2 + E(r)2 + 3E(r) + δ
√

ε

≤ |a1 + 3 a3 z2|2 + 4E(r) + δ
√

ε.

Using Lemma 5.6, we have

|a1 + 3 a3 z2|2 = |a1|2 + 2 · 3 · |a1| · |a3| · r2 cos(2θ − θ1 + θ3) + 9 |a3|2r4

≤ 1 + 2 · 3 |a3| r2 cos+(2θ − θ1 + θ3) + 9 · 26 r4

≤ 1 + 2 (r2 + 100 r3 + δ
√

ε) cos+(2θ − θ1 + θ3) + 576 r4

≤ 1 + 2 r2 cos+(2θ − θ1 + θ3) + 200 r3 + 2δ ·
√

ε + r3

= 1 + 2 r2 cos+(2θ − θ1 + θ3) + 201 r3 + 2δ ·
√

ε.

Thus

|f ′(z)|2 ≤ 1 + 2 r2 cos+(2θ − θ1 + θ3) + (201 r3 + 4E(r)) + 3δ ·
√

ε

≤ 1 + 2 r2 cos+(2θ − θ1 + θ3) + 500 r3 +
1

2

√
ε.

Then we can estimate |df |2(z) in the disk r ≤ r0.



58 M. TSUKAMOTO

Proposition 5.8.

|df |2(z) ≤ 1 − 2 r2 (1 − cos+(2θ − θ1 + θ3)) + 600 r3 +
√

ε (r ≤ r0).

Proof. To simplify the descriptions, we set ϕ := 2θ − θ1 + θ3. From

Lemma 5.7,

|df |2(z) =
|f ′(z)|2

(1 + |f(z)|2)2 ≤ 1 + 2 r2 cos+ ϕ + 500 r3 + 1
2

√
ε

(1 + |f(z)|2)2

≤ 1 + 2 r2 cos+ ϕ

(1 + |f(z)|2)2 + 500 r3 +
1

2

√
ε.

From Lemma 5.3,

1 + 2 r2 cos+ ϕ

(1 + |f(z)|2)2 ≤ (1 + 2 r2 cos+ ϕ)(1 − 2 r2 + 30 r3 + ε)

= 1 − 2 r2 (1 − cos+ ϕ) + (30 r3 − 4 r4 cos+ ϕ + 60 r5 cos+ ϕ)

+ ε + 2 ε r2 cos+ ϕ

≤ 1 − 2 r2 (1 − cos+ ϕ) + 31 r3 + 2 ε.

Thus

|df |2(z) ≤ 1 − 2 r2 (1 − cos+ ϕ) + 531 r3 +
(

2
√

ε +
1

2

)√
ε

≤ 1 − 2 r2 (1 − cos+ ϕ) + 600 r3 +
√

ε.

The following proposition is the conclusion of this subsection.

Proposition 5.9. Let D be a circular sector of radius r0 and angle

π/2 centered at the origin in the complex plane, i.e.,

D = {r e
√
−1θ ∈ C | 0 ≤ r ≤ r0, α ≤ θ ≤ α + π/2} for some α ∈ R.

Then
1

vol(D)

∫

D
|df |2 dxdy ≤ 1 − 1

4
r2
0 +

√
ε < 1 − 10−30.
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D
r0

α

Figure 2: a circular sector D.

Proof. From Proposition 5.8,

1

vol(D)

∫

D
|df |2 dxdy

≤ 1 +
√

ε − 2

vol(D)

∫

D
r2 (1 − cos+(2θ − θ1 + θ3)) +

600

vol(D)

∫

D
r3.

Since vol(D) = πr2
0/4,

1

vol(D)

∫

D
r3 =

4

πr2
0

∫ r0

0
r4 dr

∫ α+π/2

α
dθ =

2

5
r3
0.

1

vol(D)

∫

D
r2 (1 − cos+(2θ − θ1 + θ3))

=
4

πr2
0

∫ r0

0
r3 dr

∫ α+π/2

α
(1 − cos+(2θ − θ1 + θ3)) dθ

=
r2
0

π

∫ α+π/2

α
(1 − cos+(2θ − θ1 + θ3)) dθ.

Setting ϕ := 2θ − θ1 + θ3 and β := 2α − θ1 + θ3, we have

r2
0

π

∫ α+π/2

α
(1 − cos+(2θ − θ1 + θ3)) dθ =

r2
0

2π

∫ β+π

β
(1 − cos+ ϕ) dϕ

≥ r2
0

2π

∫ π/2

−π/2
(1 − cos+ ϕ) dϕ

= r2
0

(1

2
− 1

π

)

.
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Thus

1

vol(D)

∫

D
|df |2 dxdy ≤ 1 +

√
ε −

(

1 − 2

π

)

r2
0 + 240 r3

0

≤ 1 +
√

ε − 1

3
r2
0 + 240 r3

0

≤ 1 − 1

4
r2
0 +

√
ε.

Since r0 = 10−10 and ε = 10−100,

1 − 1

4
r2
0 +

√
ε = 1 − 10−20

4
+ 10−50 < 1 − 10−30.

5.2. Proof of Theorem 1.4

Let f(z) be a meromorphic function in the complex plane which satisfies

|df |(z) ≤ 1 for all z ∈ C.

Here we don’t suppose the condition (12) is satisfied. The following argu-

ment is similar to the argument in Subsection 2.2. First we establish a result

on small squares.

Proposition 5.10. Let K be a square of length of side 2r0 in the com-

plex plane. Then we have

1

vol(K)

∫

K
|df |2 dxdy ≤ 1 − ε.

Proof. If |df |(z) < 1 − ε for all z ∈ K, it is obvious that

1

vol(K)

∫

K
|df |2 dxdy ≤ (1 − ε)2 < 1 − ε.

Hence we can suppose that there is a point z0 ∈ K such that |df |(z0) ≥ 1−ε.

Since the length of side of K is 2r0, there is a circular sector D of radius

r0 and angle π/2 centered at z0 such that D ⊂ K (see Figure 3). We can

suppose z0 = 0 and f(z0) = 0 without loss of generality. Then f(z) satisfies

the condition (12). Applying Proposition 5.9 to this situation, we get

(14)
1

vol(D)

∫

D
|df |2 dxdy ≤ 1 − 10−30.
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K

z0

D

r0

2r0

Figure 3: a circular sector D in a square K.

From vol(K) = 4r2
0 and vol(D) = πr2

0/4,

vol(D)

vol(K)
=

π

16
.

Using (14) and |df | ≤ 1, we get

1

vol(K)

∫

K
|df |2 dxdy

=
vol(D)

vol(K)
· 1

vol(D)

∫

D
|df |2 dxdy +

1

vol(K)

∫

K\D
|df |2 dxdy

≤ vol(D)

vol(K)
(1 − 10−30) +

1

vol(K)
(vol(K) − vol(D))

= 1 − π

16
· 10−30

< 1 − 10−100 = 1 − ε.

Proof of Theorem 1.4. We prove the theorem by packing squares of

length of side 2r0 in the disk ∆̄(R) = {z ∈ C | |z| ≤ R}. If we con-

sider a tiling of the complex plane by squares of length of side 2r0, then the

disk ∆̄(R − 2
√

2r0) is covered by the squares contained in ∆̄(R). And we

can use the estimate of Proposition 5.10 on each squares of the tiling. Then

the rest of the arguments are the same as the proof of Theorem 2.5. We

omit the details.
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§6. Proof of Theorem 1.7

We define the n + 1 hyperplanes P0, P1, . . . , Pn in CPn by

Pi : zi = 0 (0 ≤ i ≤ n),

where [z0 : z1 : · · · : zn] is the homogeneous coordinate of CPn. Then

CPn \ (P0 ∪ · · · ∪ Pn)(15)

= {[1 : z1 : z2 : · · · : zn] | zi 6= 0 (1 ≤ i ≤ n)} ∼= (C \ {0})n.

The following proposition is proved in Berteloot-Duval [1, Appendice],

and it is the key result for the proof of Theorem 1.7.

Proposition 6.1. Let f : C → CPn \ (P0 ∪ · · · ∪Pn) be a holomorphic

map with ||df ||∞ < ∞. Then there are complex numbers ai and bi (1 ≤ i ≤ n)

such that

f(z) = [1 : exp(a1z + b1) : exp(a2z + b2) : · · · : exp(anz + bn)].

I think this is a basic fact. So we will give a new proof of this proposition

below. (In Tsukamoto [16] we prove a more general theorem.) We need:

Lemma 6.2. (i) Let a and b be complex numbers and set f(z) := eaz+b.

Then we have a positive constant C such that

∫

|z|≤r
|df |2 dxdy ≤ Cr for all r ≥ 0.

Here |df | is the spherical derivative defined by

|df |(z) =
1√
π

|f ′(z)|
1 + |f(z)|2 .

(ii) Let a, b, c be complex numbers with a 6= 0, and set f(z) := eaz2+bz+c.

Then for any positive number ε, there exists an open subset E in [0, 2π] with

|E| < ε (|E| means the Lebesgue measure of E) such that

∫

[0,2π]\E
dθ

∫ ∞

0
|df |2(re

√
−1θ) rdr < ∞.
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Proof. The proof of (i) is a direct calculation. We give the proof of (ii).

Using the rotation of the coordinate, we can suppose that a is a positive

real number. From f ′(z) = (2az + b)f(z), we have

|df |(z) =
1√
π

|2az + b||f(z)|
1 + |f(z)|2 , |f(z)| = exp(Re(az2 + bz + c)).

We define E ⊂ [0, 2π] by

E :=

(

π

4
− δ

2
,
π

4
+

δ

2

)

∪
(

3π

4
− δ

2
,
3π

4
+

δ

2

)

∪
(

5π

4
− δ

2
,
5π

4
+

δ

2

)

∪
(

7π

4
− δ

2
,
7π

4
+

δ

2

)

.

Here δ is a sufficiently small positive number such that |E| = 4δ < ε. Then

|cos 2θ| ≥ sin δ for all θ ∈ [0, 2π] \ E.

If cos 2θ ≥ sin δ, then we have

Re(az2 + bz + c) = ar2 cos 2θ + Re(bz + c)

≥ a(sin δ)r2 − |b|r − |c|.

Hence

|df |(z) ≤ 1√
π

|2az + b||f(z)|
|f(z)|2

≤ 1√
π

(2ar + |b|) exp(−Re(az2 + bz + c))

≤ 1√
π

(2ar + |b|) exp(−a(sin δ)r2 + |b|r + |c|).

If cos 2θ ≤ − sin δ, then a similar argument gives

|df |(z) ≤ 1√
π

(2ar + |b|) exp(−a(sin δ)r2 + |b|r + |c|).

Therefore we get

|df |(re
√
−1θ) ≤ 1√

π
(2ar+ |b|) exp(−a(sin δ)r2 + |b|r+ |c|) if θ ∈ [0, 2π] \ E.

Thus we have a constant C independent of θ such that
∫ ∞

0
|df |2(re

√
−1θ) rdr ≤ C for all θ ∈ [0, 2π] \ E.
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It follows that
∫

[0,2π]\E
dθ

∫ ∞

0
|df |2(re

√
−1θ) rdr ≤ 2πC < ∞.

Proof of Proposition 6.1. 3 From (15), we have holomorphic maps fi :

C → C \ {0} (1 ≤ i ≤ n) such that f(z) = [1 : f1(z) : · · · : fn(z)]. There

are holomorphic functions gi(z) in the complex plane such that fi(z) =

exp(gi(z)) (1 ≤ i ≤ n). We will prove that all gi(z) are linear functions.

The proof falls into three steps. First we prove that gi(z) are polynomials.

Next we show deg(gi(z)) ≤ 2. In the last step we prove deg(gi(z)) ≤ 1.

The arguments in the first and second steps are standard in the Nevanlinna

theory. The last step is a little tricky.

Set m := ||df ||∞. Here |df |2 = 1
4π ∆ log(1 +

∑

|fi|2). Using Jensen’s

formula, we get

1

4π

∫

|z|=r
log

(

1 +
∑

i

|fi|2
)

dθ =

∫ r

1

dt

t

∫

|z|≤t
|df |2(z) dxdy + const(16)

≤ 1

2
m2πr2 + const.

Set log+ x = max(0, log x) for a non-negative real number x. We have

m(r, fi) :=
1

2π

∫

|z|=r
log+ |fi| dθ ≤ 1

4π

∫

|z|=r
log

(

1 +
∑

j

|fj|2
)

dθ(17)

≤ 1

2
m2πr2 + const.

From Nevanlinna’s lemma on the logarithmic derivative,

m(r, g′i) = m(r, f ′
i/fi) ≤ C(log+ m(r, fi) + log r) ≤ const · log r + const,

for all r ∈ [1,∞) \ E, where E is a Lebesgue measurable set in [1,∞) with

a finite measure. It follows that

lim inf
r→∞

m(r, g′i)
log r

< ∞.

3This argument can be generalized to the proof of a more general theorem in
Tsukamoto [16].
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This shows that g′i(z) is a polynomial (this is a standard fact in the Nevan-

linna theory). Hence gi(z) is also a polynomial. Next we will prove

deg(gi(z)) ≤ 2. Suppose deg(g1(z)) ≥ 3. Then it is easy to see that there

is a positive constant C1 such that m(r, f1) ≥ C1r
3 for r ≫ 0. This means

that

C1r
3 ≤ m(r, f1) ≤

1

2
m2πr2 + const (r ≫ 0).

This is obviously impossible. Hence deg(gi(z)) ≤ 2 (1 ≤ i ≤ n).

Finally we will prove deg(gi(z)) ≤ 1. Suppose deg(g1(z)) = 2. We have

positive constants C2 and r0 ≥ 1 such that m(r, f1) ≥ C2 r2 (r ≥ r0). From

(16) and (17),

(18) C2r
2 ≤ m(r, f1) ≤

∫ r

1

dt

t

∫

|z|≤t
|df |2 dxdy + const (r ≥ r0).

From the definition of the Fubini-Study metric (1),

|df |2 =
1

π

[

∑

i |f ′
i |2

(1 +
∑

i |fi|2)2
+

∑

i<j |g′i − g′j |2|fi|2|fj|2

(1 +
∑

i |fi|2)2

]

(19)

≤ 1

π

[

∑

i

|f ′
i |2

(1 + |fi|2)2
+
∑

i<j

|g′i − g′j |2|fi|2|fj|2
(|fi|2 + |fj|2)2

]

=
1

π

[

∑

i

|dfi|2 +
∑

i<j

|d(fi/fj)|2
]

.

fi(z) = exp(gi(z)), fi(z)/fj(z) = exp(gi(z) − gj(z)), and the degrees of

gi(z) and gi(z) − gj(z) are at most two. Then we can apply Lemma 6.2

to holomorphic functions fi(z) and fi(z)/fj(z); there are positive constants

C3, C4 and a open set F ⊂ [0, 2π] with |F | < 2C2/m
2 such that

∫

[0,2π]\F
dθ

∫ t

0
|df |2(re

√
−1θ) rdr ≤ C3t + C4.
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Then we have
∫

|z|≤t
|df |2 dxdy

=

∫

F
dθ

∫ t

0
|df |2(re

√
−1θ) rdr +

∫

[0,2π]\F
dθ

∫ t

0
|df |2(re

√
−1θ) rdr

≤
∫

F
dθ

∫ t

0
m2 rdr + C3t + C4

=
m2|F |

2
t2 + C3t + C4

≤ C2t
2 + C3t + C4.

Substituting this into (18), we get

C2 r2 ≤ C2

2
r2 + C3r + C4 log r + const (r ≥ r0).

This is impossible. Thus we conclude that all gi(z) are linear functions.

Corollary 6.3. Let f : C → CPn \ (P0 ∪ · · · ∪ Pn) be a holomorphic

map with ||df ||∞ < ∞. Then

lim sup
R→∞

1

πR2

∫

|z|≤R
|df |2 dxdy = 0.

Proof. From (19),

|df |2 ≤ 1

π

[

∑

i

|dfi|2 +
∑

i<j

|d(fi/fj)|2
]

.

Since fi(z) = exp(gi(z)) and fi(z)/fj(z) = exp(gi(z) − gj(z)) with linear

functions gi(z) and gi(z) − gj(z), we can apply Lemma 6.2 (i) and get
∫

|z|≤R
|df |2 dxdy ≤ CR.

Here C is a positive constant. Thus we get the conclusion.

Proof of Theorem 1.7. Using the defining equations of Hi in (5), we

define a biholomorphic map A : CPn → CPn by

A([z0 : z1 : · · · : zn]) :=

[

∑

j

a0jzj :
∑

j

a1jzj : · · · :
∑

j

anjzj

]

.
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A gives a biholomorphic map from CPn \ (H0 ∪ · · · ∪ Hn) to CPn \ (P0 ∪
· · · ∪ Pn). We have a positive constant C such that

|dA(u)| ≤ C|u| and |dA−1(u)| ≤ C|u| for all u ∈ TCPn.

Let f : C → CPn \ (H0 ∪ · · · ∪Hn) be a holomorphic map with ||df ||∞ ≤
1. Then Af is a holomorphic map from C to CPn \ (P0 ∪ · · · ∪ Pn) with

||d(Af)||∞ ≤ C < ∞. Since f = A−1 ◦ Af , Corollary 6.3 gives

ρ(f) = lim sup
R→∞

1

πR2

∫

|z|≤R
|df |2 dxdy

≤ lim sup
R→∞

C2

πR2

∫

|z|≤R
|d(Af)|2 dxdy = 0.

Thus we conclude that

ρ(CPn \ (H0 ∪ · · · ∪ Hn)) = 0.
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