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NONRATIONAL WEIGHTED HYPERSURFACES

TAKUZO OKADA

Abstract. The aim of this paper is to construct (i) infinitely many fami-

lies of nonrational Q-Fano varieties of arbitrary dimension ≥ 4 with at most

quotient singularities, and (ii) twelve families of nonrational Q-Fano threefolds

with at most terminal singularities among which two are new and the remain-

ing ten give an alternate proof of nonrationality to known examples. These

are constructed as weighted hypersurfaces with the reduction mod p method

introduced by Kollár [10].

§1. Introduction

We say that a normal projective variety defined over the field C of

complex numbers is a Q-Fano variety if its anticanonical divisor is an ample

Q-Cartier divisor. A terminal (resp. log terminal) Q-Fano variety is a Q-

Fano variety with at most terminal (resp. log terminal) singularities.

(Q-)Fano varieties were originally studied as candidates for nonrational

unirational varieties, that is, counterexamples to the Lüroth problem. In

the early seventies, V. A. Iskovskikh-Ju. I. Manin [8], and H. Clemems-

P. Griffith [4] independently proved the nonrationality of smooth quartic

threefolds and smooth cubic threefolds respectively by developing different

mothods, while all the smooth cubic threefolds and a certain smooth quartic

threefold have been known to be unirational.

The rationality problem is quite subtle in dimension > 3 as well. Essen-

tially there are only three known methods to construct nonrational varieties

of dimension> 3 which are either unirational or (Q-)Fano. Firstly, M. Artin-

D. Mumford [1] constructed a unirational smooth threefold X with nonzero

torsion in H3(X,Z) so that X×Pn−3 is a nonrational unirational n-fold for

each n ≥ 3. Secondly, A. V. Pukhlikov (e.g. [14]) proved the nonrationality

of general Fano hypersurfaces of dimension n and degree n + 1 with n ≥ 4
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by studying their birational self map groups (the method initiated by [8]).

Thirdly, Kollár [10] proved the nonrationality of very general Fano hyper-

surfaces of dimension n ≥ 3 and degree d such that n ≥ d ≥ 2⌈(n + 3)/3⌉.

We refer the readers to J. Kollár [11, V.5] for a more detailed account.

In this paper, we apply Kollár’s techniques [10] to weighted hypersur-

faces. In general, weighted hypersurfaces have singularities and this makes

our proof complicated. As a result, we obtain nonrational terminal Q-Fano

threefolds and infinitely many families of nonrational log terminal Q-Fano

varieties in each dimension ≥ 4 (cf. Section 7). We note that the examples

constructed in this paper are all rationally connected because a log terminal

Q-Fano variety is rationally connected [15].

Definition 1.1. Let X be a variety of dimension n over a field k.

• We say that X is rational if there is a birational map Pn
k 99K X.

• We say that X is ruled (resp. uniruled) if there is a variety Y of

dimension n− 1 over k and a birational map (resp. dominant rational

map) Y × P1
k 99K X.

• In positive characteristics, we say that X is separably uniruled if the

above rational map Y × P1
k 99K X is also separable.

• Let k̄ be an algebraic closure of k. We say that X is geometrically

ruled if Xk̄ = X ×Spec k Spec k̄ is ruled.

We work over the weighted projective space P(1, a1, . . . , an, b) with ho-

mogeneous coordinates x0, . . . , xn and y. Definitions and some basic prop-

erties of weighted projective spaces will be treated in the next section. For

a graded ring S and homogeneous elements f1, . . . , fm ∈ S, by

(f1 = · · · = fm = 0) ⊂ ProjS

we mean the closed subscheme defined by the homogeneous ideal (f1, . . . ,

fm) of S. In the same way, for a ring A and elements f1, . . . , fm ∈ A,

(f1 = · · · = fm = 0) ⊂ SpecA

denote the closed subscheme defined by the ideal (f1, . . . , fm) of A.

Now we state the main theorems. Condition 2.1 and 2.3 in the statement

below are introduced in Section 2.
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Theorem 1.2. Assume that (p, {ai}, b, n, d) satisfies Condition 2.1 and

2.3. Then, the weighted hypersurface

Xf := (ypx0 − f(x0, . . . , xn) = 0) ⊂ PC(1, a1, . . . , an, b)

of degree d is a non-ruled log terminal Q-Fano variety of dimension n for a

very general f = f(x0, . . . , xn) ∈ Hd(C).

Here, for a field k, we denote by Hd(k) the k-vector space k[x0, . . . , xn]d,

the degree d part of the graded ring k[x0, . . . , xn] whose grading is given by

deg xi = ai. By convention we say that f is very general when it does not

belong to countable union of suitable proper closed subvarieties.

Theorem 1.3. Assume that (p, {ai}, b, n, d) satisfies Condition 2.1 and

2.3. Let k be an algebraically closed field of characteristic p. Then, the

weighted hypersurface

Xf := (ypx0 − f(x0, . . . , xn) = 0) ⊂ Pk(1, a1, . . . , an, b)

is not separably uniruled for a general f = f(x0, . . . , xn) ∈ Hd(k).

Remark 1.4. It is originally proved in [10] that a certain p-fold covering

of a smooth variety is not separably uniruled in characteristic p. Specifically,

it is proved that, under certain conditions on positive integers p, a and n, a

general weighted hypersurface of the form

X = (yp − f(x0, . . . , xn) = 0) ⊂ P(1, . . . , 1, a)

is nonrational, where deg xi = 1, deg y = a and deg f = pa.

The point of this paper is to treat various kinds of weights and allow the

projection map Xf 99K P(1, a1, . . . , an) to have a point of indeterminacy.

The following result of Matsusaka enables us to pass to positive char-

acteristics where we can make use of the unusual behavior of differential

forms.

Theorem 1.5. ([13], Appendix, Theorem 1.1, [11], IV, Theorem 1.6)

Let R be an excellent discrete valuation ring and X a normal irreducible

scheme. Let T be SpecR and ϕ : X → T a proper surjective morphism with

connected fibers. Then the following assertions hold.
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(1) If the generic fiber of ϕ is ruled over the quotient field of R, then every

irreducible component of the special fiber of ϕ is ruled over the residue

field of R.

(2) If the generic fiber of ϕ is geometrically ruled, then every reduced

irreducible component of the special fiber of ϕ is geometrically ruled.

Lemma 1.6. ([10], Lemma 7) Let X be a smooth proper variety and M

a big line bundle on X. Assume that there is an injection M →֒ Ωi
X for

some i > 0. Then X is not separably uniruled.

For a line bundle L on a normal projective variety X, we say that L is

big if some positive multiple of L defines a birational map onto its image.

Lemma 1.6 is a key to the proof of Theorem 1.3. Since Lemma 1.6 is

only valid for smooth varieties, we construct a desingularization ϕ : Y → Xf

in Section 3. In Section 4 and 5, we construct a big line bundle on Y which

is contained in Ωn−1
Y . Section 6 consists of the proof of Theorem 1.2 and 1.3.

Some of the examples which are obtained by Theorem 1.2 are presented in

Section 7.

Notation and terminology. Throughout this paper, p > 1 is a

prime number. We denote by C the field of complex numbers and by k an

algebraically closed field of characteristic p. Let us fix some notation with

respect to group schemes. Let k be a field.

• G
m,k is the one dimensional torus Speck[t, t−1] and we write Gm instead

of Gm,k.

• For a positive integer r, we denote by µr,k the finite group scheme

Speck[t]/(tr − 1). We write µr instead of µr,k.

• Let A be a k-algebra of finite type and X the affine scheme SpecA.

Let G = SpecR be an affine group scheme over k.

Suppose we are given an action of G on X. There is a homomorphism

φ : A→ A⊗k R of k-algebras which in turn induces the given action.

We write AG for the ring of invariants {g ∈ A | φ(g) = g ⊗ 1} ⊂ A.

If A is generated by z1, . . . , zn as a k-algebra and φ is determined by

sending zi to wi ∈ A⊗k R, we say that G acts on X by zi 7→ wi.

We frequently consider the following action: Put A = k[x1, . . . , xn]

and R = k[t, t−1] (resp. k[t]/(tr − 1)). Let α1, . . . , αn be non-negative

integers and let φ : A → A ⊗k R be the homomorphism of k-algebras
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determined by sending xi to xi⊗t
αi (resp. xi⊗ t̄

αi). Then, the induced

morphism G× An → An of schemes defines an action of G on An. In

this case, we say that G
m,k (resp. µr,k) acts on An by xi 7→ xi ⊗ tαi

(resp. xi 7→ xi ⊗ t̄αi).

• Let (X,x) be a germ of a variety of dimension n over a field C. We

say that the singularity of X at x is of type 1
r (α1, . . . , αn) if (X,x)

is analytically isomorphic to (An/µr,C, o), where o is the image of

the origin and the µr,C action on An, whose affine coordinates are

x1, . . . , xn, is given by xi 7→ xi ⊗ t̄αi .

Acknowledgment. The author expresses his gratitude to Professor

Shigefumi Mori for valuable comments and suggestions. The author is grate-

ful to Professor Noboru Nakayama for pointing out many errors in the draft

versions of this paper. The author is also grateful to Professors Shigeru

Mukai and Masayuki Kawakita for helpful discussions and warm encour-

agements. The author would like to thank Professor János Kollár whose

comments on our earlier version motivated the author to improve the pa-

per.

§2. Conditions

For a prime number p and positive integers n, d, a0, . . . , an, b, we con-

sider the following conditions.

Condition 2.1.

(1) n ≥ 3 and a0 = 1.

(2) d = pb+ 1.

(3) gcd{a1, . . . , an} = 1 and there are at least two i among 1, . . . , n such

that ai is coprime to p.

(4)
∑n

i=0 ai < d <
∑n

i=0 ai + b.

(5) For any algebraically closed field k of characteristic p, a general

weighted hypersurfaces of degree d in Pk(a1, . . . , an) is quasi smooth.

In the following, we define an+1 := b and we sometimes write an+1

instead of writing b for simplicity of the description. For a subset I ⊂

{1, . . . , n + 1}, we define rI = gcd{ai | i ∈ I}. A subset I ⊂ {1, . . . , n + 1}
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is called saturated if gcd{rI , ai} 6= rI for every i ∈ {1, . . . , n + 1} \ I. We

define

I = {I ⊂ {1, . . . , n+ 1} | rI > 1 and if rI | d then |I| > 1}.

and

Isat = {I ∈ I | I is saturated}.

For an integer m ∈ Z and a subset I ⊂ {1, . . . , n + 1}, we denote by [m]I

the integer such that m ≡ [m]I (mod rI) and 0 ≤ [m]I < rI .

Suppose that (p, {ai}, b, n, d) satisfies Condition 2.1. For I ∈ Isat, we

define

I# :=





{0, . . . , n} \ I if n+ 1 /∈ I and rI | d,

{0, . . . , n} \ (I ∪ {i}) if n+ 1 /∈ I and rI ∤ d,

{1, . . . , n+ 1} \ (I ∪ {i}) if n+ 1 ∈ I,

where the i in the second and the third cases is the minimum number such

that d − ai ≡ 0 (mod rI). If rI ∤ d, then Condition 2.1 ensures that there

exists i such that d − ai ≡ 0 (mod rI) (cf. Case 2 and Case 3 in the proof

of Lemma 5.7). Hence, I# is well-defined.

For j = 1, . . . , n, let ψ′
j : {1, . . . , b− 1} → Zn−1 be the map defined by

ψ′
j(k) :=

(
(1/b)(aj [ka1]

I − a1[kaj ]
I), . . . , (1/b)(aj [kaj−1]

I − aj−1[kaj ]
I),

(1/b)(aj [kaj+1]
I − aj+1[kaj ]

I), . . . , (1/b)(aj [kan]I − an[kaj ]
I)

)
,

where I = {n + 1}, and ψj : {1, . . . , b − 1} → (Z/pZ)n−1 be the composite

of ψ′
j and the natural projection Zn−1 → (Z/pZ)n−1.

Definition 2.2. For j = 1, . . . , n, we denote by Ψj the set {1, . . . , b}\
ψ−1

j (0).

For (p, {ai}, b, n, d) satisfying Condition 2.1, we consider the following

additional condition.

Condition 2.3. Put A = d−
∑n

i=0 ai.

(1) For any I ∈ Isat with I 6= {n+ 1}, we have

A > rI − min
0<k<rI

{∑
i∈I#

[kai]
I
}
.

(2) For I = {n+ 1}, there exists some j ∈ {1, . . . , n} such that p ∤ aj and

A > b− min
k∈Ψj

{∑n

i=1
[kai]

I
}
.
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§3. Singularities and desingularization

First we recall the definition of weighted projective space and study its

basic properties. For details, we refer the reader to [6].

Definition 3.1. Let c0, . . . , cn be positive integers and k a field. The

weighted projective space Pk(c0, . . . , cn) over k is defined by

Pk(c0, . . . , cn) = Proj k[x0, . . . , xn],

where k[x0, . . . , xn] is the graded polynomial ring with degxi = ci. The

variables x0, . . . , xn are called homogeneous coordinates.

Note that the one dimensional torus G
m,k acts on An+1

k by xi 7→ xi ⊗ tci

and then Pk(c0, . . . , cn) is the geometric quotient (An+1
k \ {0})/G

m,k. The

affine piece D+(xi) = (xi 6= 0) is isomorphic to An
k/µci,k, where µci,k acts

on An
k by ξj 7→ ξj ⊗ t̄cj for all j 6= i on the coordinates {ξ0, . . . , ξ̂i, . . . , ξn}

of An
k . The variable ξj is identified with xjx

−cj/ci

i .

Definition-Lemma 3.2. Let X be a closed subscheme of the weighted

projective space P = Pk(c0, . . . , cn) and let τ : An+1
k \{0} → P the canonical

morphism. The punctured affine cone C∗
X of X is defined by C∗

X = τ−1(X)

and the affine cone CX is the scheme-theoretic closure of C∗
X in An+1

k .

For a subset I ⊂ {0, . . . , n}, we denote by D+(xI) the affine open subset

D+(
∏

i∈I xi) of P. We define

CP,I := Spec k
[
{ξi | i ∈ {0, . . . , n} \ I}

]
× Speck

[
u1, u

−1
1 , . . . , u|I|−1, u

−1
|I|−1

]

∼= A
n+1−|I|
k × (A1

k \ {0})
|I|−1,

Put F =
∏

i∈I x
αi

i , where {αi | i ∈ I} are integers such that
∑

i∈I αici =

gcd{ci | i ∈ I} =: r. We identify ξi with xiF
−ai/r for i /∈ I and uj with

x
aj0,j

j x
−aj0,j

j0
for j = 1, . . . , |I| − 1, where j0 is the minimum of I and ai,j =

ai/ gcd{ai, aj}. This yields a natural morphism τI : CP,I → D+(xI) and an

isomorphism CP,I/µr,k
∼= D+(xI), where the µr,k-action on CP,I is defined

by ξi 7→ ξi ⊗ t̄ai for i /∈ I and uj 7→ uj for j = 1, . . . , |I| − 1. We define

CX,I := τ−1
I (X ∩ D+(xI)). By a slight abuse of notation, we denote by

τI : CX,I → X ∩ D+(xI) the restriction of the morphism CP,I → D+(xI). If

I = {i} then we write CX,i = CX,I and τi = τI .

Note that G
m,k (resp. µr,k) acts on C∗

X (resp. CX,I) and gives the iso-

morphism X ∼= C∗
X/Gm,k (resp. X ∩ D+(xI) ∼= CX,I/µr,k).
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The proof is straightforward and we leave it to the reader.

Definition 3.3. A closed subschemeX in Pk(c0, . . . , cn) is called quasi

smooth if its affine cone CX is smooth outside the origin.

In this paper, we consider weighted projective spaces P(1, a1, . . . , an, b)

with homogeneous coordinates x0, . . . , xn, y and P(1, a1, . . . , an) with homo-

geneous coordinates x0, . . . , xn.

Definition 3.4. Suppose that (p, {ai}, b, n, d) satisfies Condition 2.1.

For a field (or more generally a ring) k, we denote by Hd(k) the k-vector

space (or k-module) k[x0, . . . , xn]d, the degree d part of the graded ring

k[x0, . . . , xn] whose grading is given by degxi = ai.

Hd(k) can be naturally identified with a k-vector subspace of H0(Pk(1,

a1, . . . , an, b),O(d)). For f = f(x0, . . . , xn) ∈ Hd(k), set

Xf := (ypx0 − f = 0) ⊂ Pk(1, a1, . . . , an, b).

Quasi smoothness is important since singularities of a quasi smooth

variety are all caused by the G
m,k action.

Lemma 3.5. Assume that (p, {ai}, b, n, d) satisfies Condition (2.1.5).

Then, a general weighted hypersurface of degree d in PC(a1, . . . , an) is quasi

smooth.

Proof. Fix a general homogeneous polynomial g ∈ C[x1, . . . , xn] of

degree d, where the grading is given by degxi = ai. Let R be a subring

of C which is of finite type over Z such that g ∈ R[x1, . . . , xn] and the

localization R(p) of R at the ideal (p) is a discrete valuation ring. Then,

the geometric special fiber of Z := (g = 0) ⊂ PR(p)
(a1, . . . , an) is smooth by

Condition (2.1.5). Thus, there is a smooth weighted hypersurface of degree

d in PC(a1, . . . , an), which implies the smoothness of a general weighted

hypersurface.

Lemma 3.6. Let k = k or C, where k is an algebraically closed field of

characteristic p. Assume that (p, {ai}, b, n, d) satisfies Condition 2.1. Then

we have

Sing(CXf
) ∩ (x0 = 0) = {0}

for a general f ∈ Hd(k).
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Proof. Put X = Xf . By the Jacobi criterion, we have

Sing(CX) =

(
ypx0 − f = yp −

∂f

∂x0
=

∂f

∂x1
= · · · =

∂f

∂xn
= pyp−1x0 = 0

)
.

If we write f = fd + fd−1x0 + · · · + f0x
d
0, where fj = fj(x1, . . . , xn) is a

weighted homogeneous polynomial of degree j, we have

∂f

∂xi
=
∂fd

∂xi
+
∂fd−1

∂xi
x0 + · · · +

∂f1

∂xi
xd−1

0

for i = 1, . . . , n. Thus, we see that

Sing(CX) ∩ (x0 = 0)

=

(
x0 = yp − fd−1 = 0

)
∩

(
fd =

∂fd

∂x1
= · · · =

∂fd

∂xn
= 0

)
.

Condition (2.1.5) or Lemma 3.5 implies that Spec(k[x1, . . . , xn]/(fd)) is

smooth outside the origin. Thus, we have Sing(CX) ∩ (x0 = 0) = {0}.

3.1. Quasi smoothness over C

Lemma 3.7. Assume that (p, {ai}, b, n, d) satisfies Condition 2.1 and

P(1, a1, . . . , an, b) is defined over C. Then Xf is quasi smooth for a general

f ∈ Hd(C).

Proof. Put X = Xf . By Lemma 3.6, it suffices to show that CX∩(x0 6=

0) is smooth. By the Jacobi criterion, we have

Sing(CX) ∩ (x0 6= 0)

=

(
∂f

∂x0
=

∂f

∂x1
= · · · =

∂f

∂xn
= f = 0

)
∩ (y = 0) ∩ (x0 6= 0).

Hence, it suffices to show that a general weighted hypersurfaces of degree d

in PC(a0, . . . , an) is quasi smooth. This follows from the quasi smoothness

criterion [7, Theorem 8.1] and Lemma 3.5.

3.2. Construction of a desingularization of Xf over k

Unfortunately, in positive characteristics, Xf is not quasi smooth in

general. Next, we consider singularities of Xf which lie on D+(x0). Let

us recall some definitions and basic properties of critical points. For proofs

and details see [11, IV].
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Definition-Lemma 3.8. Let X be a smooth variety of dimension n

over a field k of characteristic p and f a function on X. Let x ∈ X be

a closed point and assume that f has a critical point at x. Choose local

coordinates x1, . . . , xn at x.

(1) The matrix H(f) = (∂2f/∂xi∂xj) is called the Hessian of f .

(2) f has a nondegenerate critical point at x if rankH(f)(x) = dimX.

If p 6= 2 or p = 2 and n is even, then f has a nondegenerate critical

point at x if and only if in suitable local coordinates f can be written

as

f =

{
c+ x1x2 + · · · + xn−1xn + f3 if n is even,

c+ x2
1 + x2x3 + · · · + xn−1xn + f3 if n is odd,

where c ∈ k and f3 ∈ m
3
x.

(3) If p = 2 and dimX is odd, then every critical point is degenerate.

(4) Assume that p = 2 and dimX is odd. A critical point of f is called al-

most nondegenerate if lengthOx,X/(∂f/∂x1, . . . , ∂f/∂xn) = 2. Equiv-

alently, in suitable local coordinates f can be written as

f = c+ ax2
1 + x2x3 + · · · + xn−1xn + bx3

1 + f3,

where a, b, c ∈ k, b 6= 0, f3 ∈ m
3
x and the coefficient of x3

1 in f3 is 0.

Throughout this subsection, we assume the following.

Assumption 3.9.

• (p, {ai}, b, n, d) satisfies Condition 2.1.

• We work over an algebraically closed field k of characteristic p.

We denote by U the affine open subset D+(x0) of P(1, a1, . . . , an, b).

We see that U is the affine space An+1 with coordinates ξ1, . . . , ξn and ν,

where we identify ξi with xi/x
ai

0 for i = 1, . . . , n and ν with y/xb
0. Put

f ′ = f/xd
0 = f(1, ξ1, . . . , ξn) for f ∈ Hd(k). Then Xf ∩ U is defined by

the equation νp − f ′ = 0. Let A be the polynomial ring k[ξ1, . . . , ξn] and

consider the natural projection

ψ : Xf ∩ U = Spec(A[ν]/(νp − f ′)) −→ SpecA =: V.

Lemma 3.10. Notation as above. Then f ′ ∈ A has only (almost) non-

degenerate critical points on V for a general f ∈ Hd(k).
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Proof. For every closed point v ∈ V , the natural map Hd(k) →
OV,v/m

2
v which maps g to ḡ′, where g′ = g(1, ξ1, . . . , ξn), is surjective since

ai < d for every i.

We show that, for every closed point v ∈ V , there is an element g ∈
Hd(k) which has an (almost) nondegenerate critical point at v. We may

assume that a1 ≤ ai for every i. Then, by Condition (2.1.1) and (2.1.4), we

have 3a1 < d and ai + aj < d for every distinct i, j. Hence, if n is even

there exists g1 ∈ Hd(k) such that

g′1 = (ξ1 − v1)(ξ2 − v2) + (ξ3 − v3)(ξ4 − vv) + · · · + (ξn−1 − vn−1)(ξn − vn),

and if n is odd there exist g2, g3 ∈ Hd(k) such that

g′2 = (ξ1 − v1)
2 + (ξ2 − v2)(ξ3 − v3) + (ξ4 − v4)(ξ5 − v5)

+ · · · + (ξn−1 − vn−1)(ξn − vn),

g′3 = (ξ2 − v2)(ξ3 − v3) + (ξ4 − v4)(ξ5 − v5)

+ · · · + (ξn−1 − vn−1)(ξn − vn) + (ξ1 − v1)
3.

If p 6= 2 or p = 2 and n is even then g1 or g2 has nondegenerate critical

point at v. If p = 2 and n is odd then g3 has almost nondegenerate critical

point at v.

Fix v ∈ V and let Wv ⊂ Hd(k) be the set of functions with a critical

point at v. The codimension of Wv in Hd(k) is n. In Wv, the set of functions

with an (almost) nondegenerate critical point at v form an open set W ◦
v

which is nonempty. Thus the set of functions with a degenerate critical

point is
⋃

v∈V (Wv \W
◦
v ) and it has codimension at least one in Hd(k).

Lemma 3.11. Notation as above. Then Xf ∩ U has only isolated hy-

persurface singularities which can be resolved by successive blow ups at each

singular points for a general f ∈ Hd(k).

Proof. For an element f ∈ Hd(k), we put f ′ = f(1, ξ1, . . . , ξn) and

X0 = Xf ∩ D+(x0). We see that

X0 = (νp − f ′ = 0) ⊂ An+1,

and

Sing(X0) =

(
νp − f ′ =

∂f ′

∂ξ1
= · · · =

∂f ′

∂ξn
= 0

)
.
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It follows from Lemma 3.10 that f ′ has only (almost) nondegenerate critical

points on V for a general f ∈ Hd. Thus, X0 has only isolated singular

points which correspond to critical points of f ′. It follows from [11, V,

Proposition 5.10] that the isolated singular points of X0 can be resolved by

successive blow ups at each singular points.

Lemma 3.12. Fix a general f ∈ Hd(k) and put

Xqs := X \ Sing(X ∩ D+(x0)), Uqs := Xqs ∩ D+(x0 · · · xny),

where X = Xf . Then Uqs ⊂ Xqs is a toroidal embedding without self-

intersection.

Proof. We refer the readers to [9] for the definition of a toroidal em-

bedding (without self-intersection). By Lemma 3.6, the punctured affine

cone C∗
Xqs

:= τ−1(Xqs) is smooth and the singular locus of Xqs is con-

tained in Xqs \ Uqs. Smoothness of C∗
Xqs

implies that Uqs ⊂ Xqs is a

toroidal embedding (cf. Section 5.2). For each i = 0, . . . , n, the closed

subscheme X ∩ (xi = 0) is isomorphic to a weighted hypersurface contained

in P(a0, . . . , âi, . . . , an, b) and, in particular, normal. Therefore, Uqs ⊂ Xqs

is a toroidal embedding without self-intersection.

Corollary 3.13. Let f ∈ Hd(k) be a general element and put X =

Xf . There exists a desingularization ϕ : Y → X with the following propertie:

(1) Around the singular points on X ∩ D+(x0), ϕ is the composition of

blow ups at each singular points.

(2) The restriction ϕ : ϕ−1(Xqs) → Xqs is a resolution of the toroidal

embedding Uqs ⊂ Xqs.

Proof. This follows immediately from Lemma 3.11 and 3.12. We refer

the reader to [9] for the existence of a desingularization of a toroidal em-

bedding.

§4. Construction of a big line bundle

In the previous section, we show that there is a desingularization ϕ : Y →
X = Xf . In this section, we construct a big line bundle on Y which is con-

tained in Ωn−1
Y . Throughout this section, we assume the following.

Assumption 4.1.
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• (p, {ai}, b, n, d) satisfies Condition 2.1 and 2.3.

• We work over an algebraically closed field k of characteristic p.

• The weighted homogeneous polynomial f = f(x0, . . . , xn) is a general

element of Hd(k) and X = Xf .

• We choose and fix a desingularization ϕ : Y → X which satisfies the

properties (1) and (2) of Corollary 3.13.

• We denote by A the integer

A = d−
∑n

i=0
ai.

There is a natural projection

π : P(1, a1, . . . , an, b) \ {(0 : · · · : 0 : 1)} −→ P(1, a1, . . . , an).

Let V be the smooth locus of P(1, a1, . . . , an). Put U = π−1(V ) and X◦ =

X ∩U . By Condition (2.1.3), we see that U is smooth and the codimension

of X \X◦ in X is greater than or equal to 2. By a slight abuse of notation,

the restriction of π on X◦ is again denoted by π : X◦ → V .

For an integer l, we denoted by OX◦(l) the restriction of the tautological

sheaf O(l) of P(1, a1, . . . , an, b) on X◦. The sheaf OX◦(l) is invertible on X◦

for every integer l since O(l) is invertible on U .

Lemma 4.2. Notation as above.

(1) There is an exact sequence; 0 → π∗Ω1
V → Ω1

U |X◦ → OX◦(−b) → 0.

(2) There is an exact sequence; 0 → OX◦(−d)
δ
−→ Ω1

U |X◦ → Ω1
X◦ → 0,

and we have Im δ ⊂ π∗Ω1
V .

(3) There is an exact sequence;

0 −→ Coker[OX◦(−d)
δ
−→ π∗Ω1

V ] −→ Ω1
X◦ −→ OX◦(−b) −→ 0.

Proof. There is a locally splitting exact sequence

0 −→ π∗Ω1
V −→ Ω1

U −→ OU (−b) −→ 0.

Pulling back this sequence to X◦ we obtain (1). The existence of the exact

sequence of (2) is a general fact. (3) follows from (1) and (2). We check

locally to see that Im δ is contained in π∗Ω1
V .
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Take a point u ∈ X◦. We can choose local coordinates z1, . . . , zn, w of U

at u so that z1, . . . , zn form local coordinates of V at π(u) and X◦ is defined

by the equation wpg′(z1, . . . , zn)− f ′(z1, . . . , zn) = 0 around u, where g′, f ′

and w correspond to x0, f and y respectively. We see that Im δ is generated

by

d(wpg′ − f ′) = pwp−1g′dw + wpdg′ − df ′ = wpdg′ − df ′

and, thus, it is contained in π∗Ω1
V .

Notice that X◦ is not smooth in general. It may have isolated singular

points on X◦ ∩ D+(x0) as described in Lemma 3.11. If we restrict the

sequences in (1), (2) and (3) of Lemma 4.2 on the smooth locus of X◦, then

those are exact sequences of locally free sheaves.

Definition 4.3. Let M◦ be the double dual of

∧n−1(
Coker[OX◦(−d)

δ
−→ π∗Ω1

V ]
)

and M = i∗M
◦, where i : X◦ →֒ X is the embedding. Let M be a Weil

divisor on X such that OX(M) ∼= M.

Lemma 4.2 implies that

M ∼= OX

(
d−

∑n

i=0
ai

)
= OX(A),

and M ⊂ (Ωn−1
X )∨∨. By Condition (2.1.4), M is ample.

Let F be the exceptional divisor of ϕ : Y → X which is obtained by

resolving isolated singular points on X ∩D+(x0). Let E be the exceptional

divisor of ϕ : Y → X away from F , that is, E is obtained by resolving the

singularities of the toroidal embedding Uqs ⊂ Xqs and then let E =
⋃

iEi be

the irreducible decomposition. The restriction of OY (⌊ϕ∗M⌋) on Y \(E∪F )

can be seen as a subsheaf of Ωn−1
Y |Y \(E∪F ).

Definition 4.4. For each i, let γi be the largest integer such that

OY (⌊ϕ∗M⌋ + γiEi) is contained in Ωn−1
Y generically around Ei. We define

L := OY (⌊ϕ∗M⌋ +
∑
γiEi).

By the definition, we have L|Y \F ⊂ Ωn−1
Y |Y \F .

Lemma 4.5. L is a subsheaf of Ωn−1
Y .
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Proof. Put X0 = X ∩D+(x0), Y0 = ϕ−1(X0) and ϕ0 = ϕ|Y0 : Y0 → X0.

We need to show that L|Y0 = ϕ∗
0(M|X0) ⊂ Ωn−1

Y0
. The restriction of the

projection

π0 = π|X0 : X0 → D+(x0) ⊂ P(1, a1, . . . , an)

is identified with the morphism

SpecA[ν]/(νp − f ′) −→ SpecA = An,

where A = k[ξ1, . . . , ξn] and f ′ = f(1, ξ1, . . . , ξn) ∈ A. Consider the homo-

morphism of A-modules ρf ′ : A→ Ω1
A determined by ρf ′(1) = df ′. We have

δ|X0 = −π∗0ρf ′ and this implies that M|X0 = π∗0Q, where Q is the invertible

sheaf on An associated with the A-module (
∧2 Coker(ρf ′))∨∨.

It is proved in [10] that the invertible sheaf π∗0Q is generated by the

(n − 1)-form η which is defined in Remark 4.6 below and that ϕ∗
0η does

not have a pole along exceptional divisors of ϕ0 (cf. [10, Section 22, 23]).

Therefore, we have L|Y0 = ϕ∗
0(π

∗
0Q) ⊂ Ωn−1

Y0
.

Remark 4.6. It is shown in [10, Lemma 16] that M|X∩D+(x0) =

OX∩D+(x0) ·η, where

η = (±)
dξ2 ∧ · · · ∧ dξn

∂
∂ξ1

(νp − f ′)
= (±)

dξ1 ∧ dξ3 ∧ · · · ∧ dξn
∂

∂ξ2
(νp − f ′)

= · · · = (±)
dξ1 ∧ · · · ∧ dξn−1

∂
∂ξn

(νp − f ′)
,

is a (n − 1)-form on X.

Let l be a sufficiently divisible positive integer so that M[l] is an in-

vertible sheaf on X, where M[l] is the double dual of M⊗l. Then, there are

integers ε′i such that

L⊗l = ϕ∗M[l] ⊗OY

(
−

∑
i
ε′iEi

)
.

Put εi = ε′i/l. The rational number εi does not depend on the choice of l.

Definition 4.7. For each I ∈ I, let

ZI :=
(⋂

i∈{0,...,n+1}\I
(xi = 0)

)
∩

(⋂
i∈I

(xi 6= 0)
)
∩Xqs

be a locally closed subset of X. We call ZI a singular stratum of X.
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By Lemma 3.6 and the definition of I, we see that

Sing(X) ∩ (x0 = 0) =
⋃

I∈I
ZI ,

where the union is disjoint.

To conclude that the line bundle L is big, we need to lift global sections

of M[l] to those of L⊗l. In other words, we need to bound the rational

number εi from above. The proof of the following lemma will be postponed

until the next section.

Lemma 4.8. Let Ei be an exceptional divisor of ϕ : Y → X whose cen-

ter is the closure Z̄I of a stratum ZI for some I ⊂ {1, . . . , n+ 1}. Then, we

have A > rIεi.

Lemma 4.9. L is a big line bundle on Y .

Proof. Put amax = max{a1, . . . , an}. By Lemma 4.8, we have lεi ≤
Al/rI − amax for all sufficiently large and divisible l. We see that

ϕ∗L
⊗l = M[l] ⊗ ϕ∗OY

(
−

∑
i
lεiEi

)

⊃ M[l] ⊗ ϕ∗OY

(
−

∑
εi>0

(Al/rI − amax)Ei

)
.

Consider the global sections xAl
0 , x

Al−a1
0 x1, . . . , x

Al−an

0 xn of M[l] ∼= OX(Al).

Let U be a sufficiently small open subset of X such that U ∩ ZI 6= ∅.
Then xrI

0 |U ∈ OU and it vanish along Z̄I . Hence, for each i, the section

xAl−ai

0 xi = (xrI

0 )Al/rI−aix
(rI−1)ai

0 xi vanishes along each singular stratum Z̄I

with multiplicity at least Al/rI − amax and thus lifts to a global section of

L⊗l.

The global sections xAl
0 , . . . , x

Al−an

0 xn define a dominant map X 99K Pn.

Therefore, L is big.

§5. Local models of Xqs

This section is devoted to prove Lemma 4.8.

5.1. Preparation from toric geometry

Let us fix some basic notations on toric varieties. For details, we refer

the reader to [9]. Let N be a lattice of rank n, M = Hom(N,Z) its dual,

σ a strictly convex rational polyhedral cone in NR = N ⊗Z R and k an

algebraically closed field. Then, the scheme S := k[σ∨ ∩ M] is an affine
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normal variety which we call the affine toric variety defined by (N, σ) over

k. Such an variety S contains the n-dimensional torus T := Speck[M]. We

can identify N (resp. M) with the group of homomorphisms of algebraic

groups from Gm to T (resp. from T to Gm). If α ∈ M then we denote by

χα the corresponding element of Γ(T,OT ) and if β ∈ N then we denote by

λβ : Gm → T the corresponding homomorphism. Let τ be a face of σ and β

be any point of Int(τ) ∩ N. Then, the limit limt→0 λβ(t) exists in S and is

uniquely determined by τ , that is, if β1, β2 ∈ N then we have limt→0 λβ1(t) =

limt→0 λβ2(t) if and only if β1 and β2 lie in the interior of some face of σ.

We call limt→0 λβ(t) the distinguished point which corresponds to τ .

Definition 5.1. For a positive integer r and integers c1, . . . , cn, let

N = N(r; c1, . . . , cn) := Z · e1 + · · · + Z · en + Z · (1/r)(c1e1 + · · · + cnen)

be the lattice of rank n and M = M(r; c1, . . . , cn) be the dual lattice of N.

For a subset {i1, . . . , ik} of {1, . . . , n}, let

σ = σ(i1, . . . , ik) := R≥0 · ei1 + · · · + R≥0 · eik

be the strictly convex rational polyhedral cone in NR.

For each i = 1, . . . , n, put

δi = gcd{r, c1, . . . , ĉi, . . . , cn}/ gcd{r, c1, . . . , cn} ∈ Z.

For a lattice point α ∈ M, let α(1), . . . , α(n) be the integers such that α =

α(1)e∗1 + · · · + α(n)e∗n, where {e∗1, . . . , e
∗
n} is the dual basis of {e1, . . . , en}.

Let k be an algebraically closed field of characteristic p. We denote by V

the k-vector space M ⊗Z k.

Definition 5.2. Let N be a lattice, M a dual lattice of N, σ a strictly

convex rational polyhedral cone in NR and S the affine toric variety defined

by (N, σ). For a lattice points α1, . . . , αq ∈ M, we denote by ω(α1, . . . , αq)

the rational q-form

ω(α1, . . . , αq) =
dχα1 ∧ · · · ∧ dχαq

χα1+···+αq

on S.
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Lemma 5.3. Let p be a prime number, r a positive integer and c1, . . . , cn
integers. Let S be the affine toric variety defined by

(N, σ) = (N(r; c1, . . . , cn), σ(1, . . . , k))

over k. Suppose that we are given lattice points α1, . . . , αq ∈ M = Hom(N,Z)

such that α1 ∧ · · · ∧ αq 6= 0 in
∧q V and put ω = ω(α1, . . . , αq). Let l be a

positive integer and α ∈ M. Then, we have

χαω⊗l ∈ H0(S, (Ωq
S)[l])

if and only if the following holds for every i = 1, . . . , k:

α(i) ≥

{
0 if α

(i)
j /δi ≡ 0 (mod p) for every j = 1, . . . , q,

lδi otherwise.

Proof. For each i = 1, . . . , k, let σi = R≥0·ei be the 1-dimensional face

of σ and let

Si = Speck[σi
∨ ∩M ]

be the open subvariety of S. The variety Si is nonsingular and the codi-

mension of S \
⋃k

i=1 Si in S is 2. Thus, χαω⊗l ∈ H0(S, (Ωq
S)[l])) if and only

if χαω⊗l is holomorphic on Si for every i = 1, . . . , k.

Choose and fix any i ∈ {1, . . . , k}. Put mj = α
(i)
j /δi and m = α(i)/δi ∈

Z. We can take affine coordinates z1, . . . , zn so that we have

Si
∼= Speck[z1, . . . , zn, z

−1
1 , . . . , ẑ−1

i , . . . , z−1
n ].

Moreover, under the isomorphism, we have χα = zm
i h and χαj = z

mj

i hj ,

where h, hj are functions of z1, . . . , ẑi, . . . , zn. Therefore, we have

χαω⊗l|Si
= zm

i h

(
d(zm1

i h1) ∧ · · · ∧ d(z
mq

i hq)

z
m1+···+mq

i h1 · · ·hq

)⊗l

.

Since h and hj are unit element in OUi
, by a direct computation, the lemma

is proved.

For a prime number p and a nonnegative integer c, we define multp(c) :=

max{m | c ∈ pmZ} if c 6= 0 and multp(c) := ∞ if c = 0. If c = 0 then we

define p−multp(c) := 0.
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Corollary 5.4. Let p be a prime number, r a positive integer and

c1, . . . , cn integers such that 0 ≤ ci < r for i = 1, . . . , n. Assume that

multp(c1) ≤ multp(c2) ≤ · · · ≤ multp(cn−1).

Let S be the affine toric variety defined by

(N, σ) = (N(r; c1, . . . , cn), σ(1, . . . , k))

over k and

ω = ω(r′e∗1, c
′
1e

∗
2 − c′2e

∗
1, . . . , c

′
1e

∗
n−1 − c′n−1e

∗
1)

be the rational (n − 1)-form on S, where r′ = rp−min{multp(r),multp(c1)} and

c′i = cip
−multp(c1). Suppose we are given a positive integer l which is divisible

by r. Then, we have

k(S) · ω⊗l ∩ (Ωn−1
S )[l] ⊂ OS · χl(e∗1+···+e∗

k′
)ω⊗l,

where k′ = min{k, n − 1}.

Proof. It can be checked that

α1 := r′e∗1, α2 := c′1e
∗
2 − c′2e

∗
1, . . . , αn−1 := c′1e

∗
n−1 − c′n−1e

∗
1

form a basis of V . Set s = multp(r) and ti = multp(ci). By Lemma 5.3,

it suffices to show that the integer α
(1)
i /δ1 is not divisible by p for some

i = 1, . . . , n − 1, since p ∤ α
(i)
i = c′1 for i = 2, . . . , n − 1. If t1 = t2 then

α
(1)
2 = c′2 is not divisible by p. If s ≤ t1 then α

(1)
1 = r′ = r/ps is not divisible

by p. We assume that t1 < t2 and t1 < s. In this case multp(α
(1)
1 ) = s− t1

and multp(α
(1)
2 ) = t2 − t1. By the definition of δ1, we have multp(δ1) =

min{s, t2} − t1. If s ≤ t2 then we have

multp(α
(1)
1 /δ1) = multp(α

(1)
1 ) − multp(δ1) ≤ (s − t1) − (s− t1) = 0.

If s ≥ t2 then we have

multp(α
(1)
2 /δ1) = (t2 − t1) − (t2 − t1) = 0.

This completes the proof.
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Corollary 5.5. Let p be a prime number, r a positive integer and

c1, . . . , cn nonnegative integers. Assume that c1 and c2 are not divisible by

p. Let S be the affine toric variety defined by

(N, σ) = (N(r; c1, . . . , cn), σ(1, . . . , n))

over k and

ω = ω(c1e
∗
2 − c2e

∗
1, c1e

∗
3 − c3e

∗
1, . . . , c1e

∗
n − cne

∗
1)

be the rational (n − 1)-form on S. Suppose we are given a positive integer

l which is divisible by r. Then, we have

k(S) · ω⊗l ∩ (Ωn−1
S )[l] ⊂ OS · χl(e∗1+···+e∗n)ω⊗l

Proof. It can be checked that

α1 := re∗1, α2 := c1e
∗
2 − c2e

∗
1, . . . , αn := c1e

∗
n − cne

∗
1

form a basis of V = M ⊗Z k. We have multp(α
(i)
i ) = multp(c1) = 0 for

i = 2, . . . , n and multp(α
(1)
2 ) = multp(c2) = 0. Thus, the Lemma follows

from Lemma 5.3.

5.2. Description of local models

Throughout this subsection, we assume Assumption 4.1.

Definition 5.6. For I ∈ Isat with I 6= {n + 1}, put m = |I#|, ñ =

n−(m+1) and let c1, . . . , cm be the positive integers such that {c1, . . . , cm} =

{[ai]
I | i ∈ I#}, multp(c1) ≤ · · · ≤ multp(cm) and if multp(ci) = multp(cj)

then ci ≤ cj . Then, let

NI := N(rI ; c1, . . . , cm, 0, . . . , 0, b)

be the lattice of rank n, MI its dual and let

σI :=

{
R≥0 · e1 + · · · + R≥0 · em + R≥0 · en, if n+ 1 /∈ I,

R≥0 · e1 + · · · + R≥0 · em, if n+ 1 ∈ I,

be the cone in (NI)R. We denote by SI the affine toric variety defined by

(NI , σI) over k and by sI the distinguished point of SI which corresponds

to the cone σI in (NI)R. Let αI := e∗1 + · · · + e∗m be the point of σ∨I and let

ωI := d(c′1e
∗
1, c

′
1e

∗
2 − c′2e

∗
1, . . . , c

′
1e

∗
m − c′me

∗
1, e

∗
m+1, . . . , e

∗
n−1)
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be the rational (n− 1)-form on SI , where c′i = cip
−multp(ci).

When I = {n + 1}, after renumbering the indices of a1, . . . , an, we as-

sume that Condition (2.3.2) holds for j = 1 and 0 = multp(a1) = multp(a2)

≤ multp(a3) ≤ · · · ≤ multp(an). We define

(NI , σI) :=
(
N(b; a1, . . . , an),R≥0 · e1 + · · · + R≥0 · en

)

and let MI be the dual lattice of NI . We denote by SI the affine toric

variety defined by (NI , σI) over k and by sI the distinguished point of SI

which corresponds to the cone σI in (NI)R. Let αI := e∗1 + · · · + e∗n be the

point of σ∨I and let

ωI := d(a1e
∗
2 − a2e

∗
1, a1e

∗
3 − a3e

∗
1, . . . , a1e

∗
n − ane

∗
1)

be the rational (n− 1)-form on SI .

Throughout this subsection, we choose and fix a sufficiently divisible

positive integer l.

Lemma 5.7. Let I be a subset of {1, . . . , n+1} such that I is saturated

or I = {n + 1} and let x ∈ ZI be any closed point. Then the following

assertions hold.

(1) (SI , sI) is a local model of (Xqs, x).

(2) We have k(SI) · ω
⊗l
I ∩ (Ωn−1

SI
)[l] ⊂ OSI

· χlαIω⊗l
I .

(3) There is a rational (n− 1)-form ωx on X such that M
[l]
x ⊂ k(X) ·ω⊗l

x

and ωx is identified with ωI by the isomorphism ÔX,x
∼= ÔSI ,sI

.

(4) There is a function hx ∈ OX,x such that it can be identified with χlαI

by the isomorphism ÔX,x
∼= ÔSI ,sI

.

(5) Let ϕI : S′ → SI be a toric resolution obtained by subdividing the cone

σI . Then, for any exceptional divisor E′ of ϕI , the order of the pole

of ϕ∗
I(χ

lαIω⊗l
I ) along E′ is at most Al/rI − 1.

Proof. Let x ∈ ZI be a point and |I| = k. For each I ⊂ {1, . . . , n+ 1},

we associate an affine variety

CP,I := Speck[{ξi | i ∈ {0, . . . , n+ 1} \ I}]× Spec k[u1, u
−1
1 , . . . , uk−1, u

−1
k−1],
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where P = P(1, a1, . . . , an, b). The group scheme µrI
acts on UI by ξi 7→

ξi⊗ t̄
a1 , uj 7→ uj and gives the quotient (CP,I/µrI

) ∼= D+(xI) (cf. Definition-

Lemma 3.2). There is a natural morphism

τI : CP,I −→ (CP,I/µrI
) ∼= D+(xI).

The locally closed subset ZI is exactly the closed subsetX∩
(⋂

i/∈I(ξi = 0)
)

of

X∩D+(xI). Let fI , gI be the functions of {ξi | i /∈ I} and u1, . . . , uk−1 which

correspond to f , ypx0 respectively. Then, we see that CX,I = (gI − fI =

0) ⊂ CP,I . The group scheme µrI
acts on CX,I and gives the quotient

CX,I/µrI
= X ∩ D+(xI). Since Xqs is quasi smooth, there is some i0 /∈ I

(or j ∈ {1, . . . , k − 1}) such that we can choose {ξi | i /∈ I, i 6= i0} and

u1, . . . , uk−1 (or {ξi | i /∈ I} and u1, . . . , ûj , . . . , uk−1) as local coordinates of

CX,I at the point τ−1
I (z). If n+1 /∈ I, then we write ν instead of ξn+1 in the

following. In this case, the coordinate ν corresponds to the homogeneous

coordinate y and we have gI = νpξ0. By this observation, we can describe a

local model of Xqs at z ∈ ZI . To go further, we divide the proof of (1)–(4)

into four cases.

Case 1: I = {k + 1, . . . , n} is saturated and rI | d.

In this case, we can write fI = f ′ + f ′′, where f ′ = f ′(u1, . . . , un−k−1)

and f ′′ ∈ (ξ0, . . . , ξk)
2 since I is saturated and rI | d. Hence, (∂(gI −

fI)/∂ξi)(x) = 0 for i = 0, . . . , k and, by the smoothness of CX,I , we may

assume that ξ0, . . . , ξk, ν, u1, . . . , un−k−2 form a local coordinates of CX,I at

τ−1
I (x). The action of µrI

on CX,I is given by ξi 7→ ξi ⊗ t̄ai , ν 7→ ν ⊗ t̄b and

ui 7→ ui. Thus, we see that (SI , sI) is a local model model of Xqs at x. We

may assume that ξi (resp. uj) corresponds to χe∗i (resp. χẽ∗j ) for i = 0, . . . , k

(resp. j = 1, . . . , n− k − 2) after passing to the completion.

Let

ωx =
dξrI

0 ∧ d(ξ1/ξ
a1
0 ) ∧ · · · ∧ d(ξk/ξ

ak

0 ) ∧ du1 ∧ · · · ∧ dun−k−2

ξrI

0 (ξ1/ξ
a1
0 ) · · · (ξk/ξ

ak

0 )u1 · · · un−k−2

be the rational (n − 1)-form on X. We see that, after passing to the com-

pletion, ωx can be identified with ωI . Let ξ′1, . . . , ξ
′
n, ν

′ be the natural affine

coordinates of D+(x0) defined by ξ′i = xi/x
ai

0 for i = 1, . . . , n and ν ′ = y/xb
0.

If we restrict ωx on X ∩ D+(xI) ∩ D+(x0), it can be written as

ωx =
dG1 ∧ · · · ∧ dGn−1

G1 · · ·Gn−1
,
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where Gi is a monomial of ξ′1, . . . , ξ
′
n for every i. Then, by Remark 4.6,

there is a rational function Ψ on X such that ωx = Ψη. Therefore, we see

that

M[l]
x ⊂ k(X) · η⊗l = k(X) · ω⊗l

x .

By Corollary 5.4, we have

OSI
· ω⊗l

I ∩ (Ωn−1
SI

)[l] ⊂ OSI
· χlαIω⊗l

I ,

where, in this case, αI = e∗1 + · · · + e∗k+1. Put hx = ξl
0 · · · ξ

l
k. Then, the

function hx ∈ OX,x is identified with χlαI after passing to the completion.

Case 2: I = {k + 1, . . . , n} is saturated and rI ∤ d.

In this case, we can write fI = f ′0ξ0 + · · · + f ′kξk + f ′′, where f ′i =

f ′i(u1, . . . , un−k−1) and f ′′ ∈ (ξ0, . . . , ξk)
2 since I is saturated and rI ∤ d.

Hence, we have (∂(gI − fI)/∂ui)(z) = 0 and (∂(gI − fI)/∂ξi)(z) = f ′i(z)

for z ∈ ZI . By the smoothness of CI , there is some j ∈ {0, . . . , k} such

that f ′j(z) 6= 0. Such a j necessarily satisfies d − aj ≡ 0 (mod rI). For

simplicity of the proof, we assume that j = 0. Note that the description

of ωx below depends on the choice of j and we need to consider the case

j ∈ {1, . . . , k} for a complete proof. But, in that case, the description of ωx

is similar and, moreover, rather easy compared to the case j = 0. Hence,

we concentrate on the case j = 0. We see that ξ1, . . . , ξk, u1, . . . , un−k−1

form a local coordinates of CI at τ−1
I (z). After renumbering the indices of

a1, . . . , ak, we may assume that ci = [ai]
I for i = 1, . . . , k (See Definition 5.6

for the definition of ci). Thus, we see that (SI , sI) is a local model of Xqs

at x and, after passing to the completion, ξi (resp. uj) is identified with χe∗i

(resp. χẽ∗j ) for i = 1, . . . , k (resp. j = 1, . . . , n− k − 1). Let

ωx =
dξ

r′I
1 ∧ d(ξ

c′1
2 /ξ

c′2
1 ) ∧ · · · ∧ d(ξ

c′1
k /ξ

c′
k

1 ) ∧ du1 ∧ · · · ∧ dun−k−1

ξ
r′
I

1 (ξ
c′1
2 /ξ

c′2
1 ) · · · (ξ

c′1
k /ξ

c′
k

1 )u1 · · · un−k−1

be the rational (n − 1)-form on X, where c′i = cip
−multp(c1) and r′I =

rIp
−min{multp(rI),multp(c1)}. We see that, after passing to the completion, ωx

can be identified with ωI and, as in the case 1, we have M
[l]
z ⊂ OX,z · ω

⊗l
x .

By Corollary 5.3, we have

k(SI) · ω
⊗l
I ∩ (Ωn−1

SI
)[l] ⊂ OS · χlαIω⊗l

I ,

where, in this case, αI = e∗1 + · · ·+e∗k. Put hx = ξl
1 · · · ξ

l
k. Then the function

hx is identified with χlαI after passing to the completion.
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Case 3: I = {k + 1, . . . , n+ 1} is saturated.

Since rI ∤ d and I is saturated, we can write fI = f ′0ξ0 + · · · + f ′kξk + f ′′,

where f ′ = f ′(u1, . . . , un−k−1) and ′′ ∈ (ξ0, . . . , ξk)
2. As in the case 2,

we have (∂(gI − fI)/∂ξj)(z) = f ′j(z) 6= 0 for some j ∈ {0, . . . , k} such

that aj ≡ d ≡ 1 (mod rI). For simplicity of the proof, we assume that

j = 0. Therefore, we may assume that ξ1, . . . , ξk, u1, . . . , un−k form a local

coordinates of CI at τ−1
I (z). After renumbering the indices of a1, . . . , ak, we

may assume that ci = [ai]
I for i = 1, . . . , k. Thus, we see that (SI , sI) is a

local model of Xqs at x and, after passing to the completion, ξi (resp. uj) is

identified with χe∗i (resp. χẽ∗j ) for i = 1, . . . , k (resp. j = 1, . . . , n− k − 1).

Let

ωx =
dξ

r′
I

1 ∧ d(ξ
c′1
2 /ξ

c′2
1 ) ∧ · · · ∧ d(ξ

c′1
k /ξ

c′
k

1 ) ∧ du1 ∧ · · · ∧ dun−k−1

ξ
r′
I

1 (ξ
c′1
2 /ξ

c′2
1 ) · · · (ξ

c′1
k /ξ

c′
k

1 )u1 · · · un−k−1

be the (n − 1)-form on X, where c′i and r′I are defined in the same way as

in case 2. We see that ωx can be identified with ωI after passing to the

completion and M
[l]
x ⊂ k(X) · ωx, as in the case 1. By Corollary 5.4, we

have

k(SI) · ω
⊗l
I ∩ (Ωn−1

SI
)[l] ⊂ OSI

· χlαIω⊗l
I ,

where, in this case, αI = e∗1+· · ·+e∗k. Put hx = ξl
1 · · · ξ

l
k. Then, the function

hx is identified with χlαI after passing to the completion.

Case 4: I = {n+ 1}.
After renumbering the indices of a1, . . . , an, we assume that Condition

(2.3.2) holds for j = 1 and 0 = multp(a1) = multp(a2) ≤ multp(a3) ≤
· · · ≤ multp(an). In this case, we have gI = ξ0 and fI = f(ξ0, . . . , ξn).

Thus, (∂(gI −fI)/∂ξ0)(Pn+1) = 1− (∂fI/∂ξ0)(Pn+1) 6= 0 and we can choose

ξ1, . . . , ξn as local coordinates of CI at τ−1
I (Pn+1). Then, we see that (SI , sI)

is a local model of Xqs at Pn+1 and ξi is identified with χe∗i for i = 1, . . . , n

after passing to the completion. Let

ωx =
d(ξa1

2 /ξa2
1 ) ∧ · · · ∧ d(ξa1

n /ξan

1 )

(ξa1
2 /ξa2

1 ) · · · (ξa1
n /ξan

1 )

be the rational (n−1)-form on X. We see that ωx is identified with ωI after

passing to the completion and, as in case 1, we have M
[l]
Pn+1

⊂ k(X) · ω⊗l
x .

By Corollary 5.5, we have

k(S) · ω⊗l
I ∩ (Ωn−1

SI
)[l] ⊂ OSI

· χlαIω⊗l
I .
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Put hx = ξl
1 · · · ξ

l
n. Then the function hx is identified with χlαI after passing

to the completion.

Finally, let us prove (5). For k = 1, . . . , rI − 1, let

βk =





(1/rI)
(∑m

i=1[kci]
Iei + [kb]Ien

)
if n+ 1 /∈ I,

(1/rI)
∑m

i=1[kci]
Iei if n+ 1 ∈ I and I 6= {n+ 1},

(1/b)
∑n

i=1[kci]
Iei if I = {n+ 1},

be the lattice point of σI . We see that an exceptional divisor E′ of ϕI

corresponds to some lattice point β ∈ σI ∩ NI which can be written as

β = βk+β′ for some k and some lattice point β′ = β′1e1+· · ·+β′nen ∈ σI∩NI ,

where β′i is a nonnegative integer for i = 1, . . . , n.

Suppose that I 6= {n+ 1}. Then, we have

multE′(ϕ∗
Iχ

lαI ) = lαI(β) ≥ lαI(βk) = (l/rI)
∑

i∈I#
[kai]

I > l(rI −A)/rI .

The last inequality follows from Condition (2.3.1). The rational (n−1)-form

ϕ∗
IωI has a pole along E′ with multiplicity one. Thus, the order of the pole

of ϕ∗
I(χ

lαIω⊗l
I ) along E′ is l − multE′(ϕ∗

Iχ
αI ) < Al/rI .

Suppose that I = {n+ 1}. We assume that Condition (2.3.2) holds for

j = 1 and 0 = multp(a1) = multp(a2) ≤ multp(a3) ≤ · · · ≤ multp(an). If

β′ 6= 0 then we have

multE′(ϕ∗
Iχ

lαI ) = lαI(β) ≥ lαI(β
′) = l(β′1 + · · · + β′n) ≥ l.

Therefore, the order of the pole of ϕ∗
I(χ

lαIω⊗l
I ) along E′ is at most l −

multp(ϕ
∗
Iχ

αI ) ≤ 0. In the following, we assume that β′ = 0, that is, β = βk.

If k /∈ Ψ1 then we can write ϕ∗
Iχ

a1e∗i −aie
∗

1 |U ′ = zpnihi, where U ′ is an open

set of S′, z is a defining equation for E′ on U ′, ni is a nonnegative integer

and hi is a holomorphic function which does not vanish along E′. Hence,

the form ϕ∗
IωI |U ′ = (dh2 ∧ · · · ∧ dhn)/(h2 · · ·hn) is holomorphic on U ′. If

k ∈ Ψ1 then we have

multE′(ϕ∗
Iχ

lαI ) = lαI(β) = lαI(βk) = (l/b)
∑n

i=1
[kai]

I > l(b−A)/b.

The last inequality follows from Condition (2.3.2). The (n − 1)-form ϕ∗
IωI

has a pole along E′ with multiplicity one. Therefore, the order of the pole

of ϕ∗
I(χ

lαIω⊗l
I ) along E′ is l − multE′(ϕ∗

Iχ
αI ) < Al/b. This completes the

proof.
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Next, consider a local model of Xqs at a point of ZI when I is not

saturated and I 6= {n+1}. In this case, there is a unique I ′ ⊂ {1, . . . , n+1}
such that I ′ ⊃ I, rI′ = rI and I ′ is saturated. Suppose that S is the affine

toric variety defined by (N, σ) := (NI′ , σI′ + R≥0 · ẽ1 + · · · + R≥0 · ẽi) for

some i. Since σI′ is a face of σ, the toric variety SI′ can be seen as an open

subvariety of S and the rational (n− 1)-form ωI′ can be seen as a rational

(n− 1)-form on S.

Lemma 5.8. Notation as above. Let I be a subset of {1, . . . , n+1} such

that I is not saturated and I 6= {n + 1}, and let x ∈ ZI be a point. Then,

there is a nonnegative integer n′ such that (SI , sI) is a local model of Xqs

at x, where SI is the affine toric variety defined by (NI , σI) := (NI′ , σI′ +

R≥0 · ẽ1 + · · ·+R≥0 · ẽn′) over k and sI is the distinguished point of SI which

corresponds to the cone σI . Moreover, there is a rational (n − 1)-form ωx

on X and a function hx ∈ OX,x with the following properties.

(1) M
[l]
x ⊂ k(X) · ω⊗l

x .

(2) After passing to the completion, ωx (resp. hx) is identified with ωI

(resp. χlαI ) by the isomorphism ÔX,x
∼= ÔSI ,sI

, where ωI := ωI′ and

αI := αI′ .

(3) We have k(S) · ω⊗l
I ∩ (Ωn−1

SI
)[l] ⊂ OSI

· χlαIω⊗l
I .

(4) Let ϕI : S′ → SI be a toric resolution obtained by subdividing the cone

σI . Then, for any exceptional divisor E′ of ϕI , the order of the pole

of ϕ∗
I(χ

lαIω⊗l
I ) along E′ is at most Al/rI − 1.

Proof. Put k = |I|. Consider the affine variety

UI := Speck[{ξi | i ∈ {0, . . . , n+ 1} \ I}] × Spec k[u1, u
−1
1 , . . . , uk−1, u

−1
k−1]

on which µrI
acts and gives the quotient (UI/µrI

) ∼= D+(xI). Then, UI′ is

the open subvariety D(
∏

i∈I′\I ξi) of UI . We have fI = f ′+
∑

i∈I′\I f
′
iξi+f

′′,

where f ′, f ′i are functions of u1, . . . , uk−1 and f ′′ ∈ ({ξi | i ∈ {0, . . . , n +

1} \ I})2. By Lemma 3.6, we see that there is some i ∈ I ′ \ I such that

(∂(gI − fI)/∂ξi)(x) 6= 0, or there is some j ∈ {1, . . . , k − 1} such that

(∂(gI − fI)/∂uj)(x) 6= 0. In the former case, let x′ be a point of ZI′ such

that (∂(gI − fI)/∂ξi)(x
′) 6= 0 and in the latter case, let x′ be a point of ZI′

such that (∂(gI − fI)/∂uj)(x
′) 6= 0. Then, by the proof of Lemma 5.7, we

see that (SI′ , sI′) is a local model of Xqs at x′ and we may assume that ξi
(resp. uj) is identified with χe∗i (resp. χẽ∗j ). Moreover, there is a nonnegative
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integer n′ such that (SI , sI) is a local model of Xqs at x, where SI is the

affine variety defined by (NI , σI) := (NI′ , σI′ + R≥0 · ẽ1 + · · ·R≥0 · ẽn′) and

sI is the distinguished point of SI which corresponds to the cone σI .

Put ωI := ωI′ and αI := αI′ . As in the proof of Lemma 5.7, we can

write down explicitly the rational (n − 1)-form ωx on X and the function

hx ∈ OX,x with the properties (1) and (2). By Corollary 5.4, we see that

k(SI) · ω
⊗l
I ∩ (Ωn−1

SI
)[l] ⊂ OSI

· χlαIω⊗l
I .

Let us prove (4). For k = 1, . . . , rI − 1, let

βk =

{
(1/rI)

(∑m
i=1[kci]

Iei + [kb]Ien
)

if n+ 1 /∈ I ′,

(1/rI)
∑m

i=1[kci]
Iei if n+ 1 ∈ I ′,

be lattice points of σI . The exceptional divisor E′ corresponds to some

lattice point β ∈ σI ∩ NI which can be written as β = βk + β′ for some k

and some lattice point β′ ∈ σI ∩NI . The (n−1)-form ϕ∗
IωI has a pole along

E′ with multiplicity one. Hence, the order of the pole of ϕ∗
I(χ

lαIω⊗l
I ) along

E′ is l − multE′(ϕ∗
Iχ

lαI ). We have

multE′(ϕ∗
Iχ

lαI ) = lαI(β) ≥ lαI(βk) = (l/rI)
∑

i∈I′#
[kai] > l(rI −A)/rI .

The last inequality follows from Condition (2.3.1) for I ′. Therefore, the

lemma is proved.

Proof of Lemma 4.8. We may assume that rI > 1, that is, ZI is con-

tained in the singular locus of X. Indeed, if rI = 1 then ZI is contained in

the smooth locus of X. Hence, generically around ZI , the invertible sheaf

M[l] is generated by a holomorphic form since M[l] ⊂ (Ωn−1
X )[l]. By the

definition of εi, we see that εi ≤ 0. On the other hand, we have A > 0 by

Condition (2.1.4).

Let x ∈ ZI be any point. Let (SI , sI) be the local model of Xqs at

x, ωI the rational (n − 1)-form on SI and αI the lattice point of σ∨I ∩ MI

which are defined in Definition 5.6 or Lemma 5.8. By Lemma 5.7 and 5.8,

there are a function hx ∈ OX,x and a rational (n − 1)-form ωx such that

M
[l]
x ⊂ OX,x ·hxω

⊗l
x and, after passing to the completion, hxω

⊗l
x is identified

with χlαIω⊗l
I . Let ϕ′ : S′ → SI be the resolution of SI which is induced by

the resolution ϕ of the toroidal embeddingXqs and let E′ be the exceptional

divisor of ϕ′ which corresponds formally to Ei. By Lemma 5.7 or Lemma 5.8,

we see that the order of the pole of ϕ∗(hxω
⊗l
x ) along Ei coincides with that

of ϕ′∗(χαIω⊗l
I ) along E′ and is at most Al/rI − 1. Therefore, we have

Al/rI > lεi and the lemma is proved.
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§6. Proof of main theorems

Proof of Theorem 1.3. This follows from Lemma 4.5, 4.9 and 1.6.

Proof of Theorem 1.2. Theorem 1.3 and 1.5 imply that the weighted

hypersurface Xf defined over C is not ruled for a very general f ∈ Hd(C)

(cf. [12, Section 4.4]). If X = Xf is defined over C, it is quasi smooth

for a general f ∈ Hd(C) by Corollary 3.7. Therefore, X has only quotient

singularities for a general f ∈ Hd(C). We have

OX(−KX) ∼= OX

(∑n

i=0
ai + b− d

)
.

Thus, Condition (2.1.4) implies that −KX is ample. This completes the

proof.

§7. Examples of nonrational Q-Fano varieties

In this section, we present some examples of nonrational Q-Fano vari-

eties. In Theorem 7.1 and 7.3 below, we do not prove that (p, {ai}, b, n, d)
satisfies Condition (2.1.5). This is because there are computer programs for

checking quasi smoothness and our cases can be done easily, or one can also

prove it directly.

7.1. Nonrational terminal Q-Fano threefolds

There are lists [7, 16.6], [2, Table 1] and [3, Table 1] of weighted hy-

persurfaces of dimension three which are terminal Q-Fano varieties. We

obtained Table 1 below by choosing members of those lists that satisfy both

Condition 2.1 and 2.3.

Let (p, {ai}, b, n, d) be one of those listed in Table 1. It is straightforward

to check that it satisfies Condition 2.1 and 2.3. The integer c in Table 1

is defined as c := −d +
∑n

i=0 ai > 0 so that we have OX(−KX) ∼= OX(c).

The singular points of X and types of singularities of X are written in the

last column. Pi stands for the point (0 : · · · : 0 : 1 : 0 : · · · : 0), where the 1

is in the i-th position, and Pij is a point contained in the singular stratum

Z{i,j}. As a result, we obtain the following examples.

Theorem 7.1. Let p, a0, . . . , a3, b and d be integers listed in Table 1.

Then, the weighted hypersurface

Xf := (ypx0 − f(x0, . . . , x3) = 0) ⊂ PC(1, a1, a2, a3, b)

is a non-ruled terminal Q-Fano threefold for a very general f ∈ Hd(C).
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Table 1: A List of (p, {ai}, b, n, d) satisfying Condition 2.1 and 2.3.

d p (a0, . . . , a3, b) c Singularities

No. 1 5 2 (1, 1, 1, 1, 2) 1 P4 : 1
2(1, 1, 1)

No. 2 7 2 (1, 1, 1, 2, 3) 1 P3 : 1
2 (1, 1, 1), P4 : 1

3(1, 1, 2)

No. 3 9 2 (1, 1, 1, 3, 4) 1 P4 : 1
4(1, 1, 3)

No. 4 10 3 (1, 1, 1, 5, 3) 1 P4 : 1
3(1, 1, 2)

No. 5 10 3 (1, 1, 2, 5, 3) 2 P4 : 1
3(1, 1, 2)

No. 6 15 2 (1, 1, 2, 5, 7) 1 P2 : 1
2 (1, 1, 1), P4 : 1

7(1, 2, 5)

No. 7 15 2 (1, 1, 3, 4, 7) 1 P3 : 1
4 (1, 1, 3), P4 : 1

7(1, 3, 4)

No. 8 15 2 (1, 2, 3, 5, 7) 3 P1 : 1
2 (1, 1, 1), P4 : 1

7(1, 3, 4)

No. 9 16 3 (1, 1, 2, 8, 5) 1 P23 : 1
2(1, 1, 1), P4 : 1

5 (1, 2, 3)

No. 10 21 2 (1, 1, 3, 7, 10) 1 P4 : 1
10(1, 3, 7)

No. 11 22 3 (1, 1, 3, 11, 7) 1 P2 : 1
3 (1, 1, 2), P4 : 1

7(1, 3, 4)

No. 12 28 3 (1, 1, 4, 14, 9) 1 P23 : 1
2(1, 1, 1), P4 : 1

9 (1, 4, 5)

Remark 7.2. [7, 16.6] (resp. [3, Table 1], [2, Table 1]) is the list of

terminal Q-Fano weighted hypersurfaces of dimension three with c = 1

(resp. c = 2, c ≥ 3). We remark that [7, 16.6] is the complete list while [3,

Table 1] and [2, Table 1] may not be complete lists.

It is proved in [5] that a general member of each of the 95 families

listed in [7, 16.6] are (birationally) rigid, which implies the nonrationality

of the general member. Thus, among the twelve families of our examples,

No. 5 and 8 are new and the remaining ten provide the known cases with

an alternate proof of nonrationality. Nevertheless, our examples are new in

the sense that our proof shows that all unirulings have degree divisible by

2 (if p = 2) or 3 (if p = 3).

7.2. Nonrational log terminal Q-Fano varieties of dimension

≥ 4

Let m, n be integers such that 4 ≤ n, 0 < m < n and let l be an odd

integer such that n −m + 1 < l < 2(n −m). Then, for every odd positive

integer a with a > (m+ 1)/2, the combination

(p, a0, . . . , am, am+1, . . . , an, b, n, d) = (2, 1, . . . , 1, a, . . . , a, (al − 1)/2, n, al)

satisfies Condition 2.1. We show that (p, {ai}, b, n, d) satisfies Condition 2.3

for every odd positive integer a. We see that Isat = {I1, I2}, where I1 =
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{m+ 1, . . . , n} and I2 = {n + 1}. Thus, (p, {ai}, b, n, d) satisfies Condition

(2.3.1) since we have

A := d−
∑n

i=0
ai = (l +m− n)a− (m+ 1)

and

min
0<k<a

{∑m

i=0
[kai]

I1
}

= m+ 1.

Moreover, (p, {ai}, b, n, d) satisfies Condition (2.3.2) for j = 1. Indeed,

we see that il /∈ Ψ1 for i = 1, . . . , (a − 1)/2 and, for an integer c with

0 < c ≤ (a− 1)/2, [ka]I = c if and only if k ≡ cl (mod b). In other words,

we have [ka]I ≥ (a+ 1)/2 for k ∈ Ψ1 and hence

min
k∈Ψ1

{∑n

i=1
[kai]

I
}

= min
k∈Ψ1

{
m[k]I + (n−m)[ka]I

}

≥ m+ (n−m)(a+ 1)/2.

We have

A−

(
b− min

k∈Ψ1

{∑n

i=1
[kai]

I
})

≥ (l +m− n)a− (m+ 1) − (al − 1)/2 +m+ (n−m)(a+ 1)/2

= ((l +m− n)a+ n−m− 1)/2 > 0

since l + m − n > 0 and n − m > 0. Therefore, (p, {ai}, b, n, d) satisfies

Condition (2.3.2) and we obtain the following examples.

Theorem 7.3. Let m, n be integers such that 4 ≤ n and 0 < m < n,

and let l be an odd positive integer such that n −m + 1 < l < 2(n − m).

Then, for every odd positive integer a with a > (m + 1)/2, the weighted

hypersurface

Xf := (y2x0 − f(x0, . . . , xn) = 0) ⊂ PC(1m+1, an−m, (al − 1)/2)

of degree al is a non-ruled log terminal Q-Fano variety for a very general

f(x0, . . . , xn) ∈ Hal(C).

Here, P(1m+1, an−m, (al − 1)/2) is the weighted projective space

P(

m+1︷ ︸︸ ︷
1, . . . , 1,

n−m︷ ︸︸ ︷
a, . . . , a, (al − 1)/2).
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Remark 7.4. The singular locus of Xf is the union of Z̄I1 = (x0 =

· · · = xm = y = 0) ∩Xf and ZI2 = {Pn+1}. The singularity of Xf at each

point of Z̄I1 is of type

1
a(

m+1︷ ︸︸ ︷
1, . . . , 1,

n−m−2︷ ︸︸ ︷
0, . . . , 0, b) = 1

a(

m+1︷ ︸︸ ︷
2, . . . , 2,

n−m−2︷ ︸︸ ︷
0, . . . , 0,−1)

and that of Xf at Pn+1 is of type

1
b (

m︷ ︸︸ ︷
1, . . . , 1,

n−m︷ ︸︸ ︷
a, . . . , a) = 1

b (

m︷ ︸︸ ︷
l, . . . , l,

n−m︷ ︸︸ ︷
1, . . . , 1),

where b = (al − 1)/2.
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