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ISOPARAMETRIC HYPERSURFACES WITH FOUR

PRINCIPAL CURVATURES REVISITED

QUO-SHIN CHI

Abstract. The classification of isoparametric hypersurfaces with four princi-

pal curvatures in spheres in [2] hinges on a crucial characterization, in terms

of four sets of equations of the 2nd fundamental form tensors of a focal sub-

manifold, of an isoparametric hypersurface of the type constructed by Ferus,

Karcher and Münzner. The proof of the characterization in [2] is an extremely

long calculation by exterior derivatives with remarkable cancellations, which

is motivated by the idea that an isoparametric hypersurface is defined by an

over-determined system of partial differential equations. Therefore, exterior

differentiating sufficiently many times should gather us enough information for

the conclusion. In spite of its elementary nature, the magnitude of the calcula-

tion and the surprisingly pleasant cancellations make it desirable to understand

the underlying geometric principles.

In this paper, we give a conceptual, and considerably shorter, proof of

the characterization based on Ozeki and Takeuchi’s expansion formula for the

Cartan-Münzner polynomial. Along the way the geometric meaning of these

four sets of equations also becomes clear.

§1. Introduction

In [2], isoparametric hypersurfaces with four principal curvatures and

multiplicities (m1,m2), m2 ≥ 2m1 − 1, in spheres were classified to be

exactly the isoparametric hypersurfaces of FKM -type constructed by Ferus

Karcher and Münzner [4]. The classification goes as follows. Let M+ be a

focal submanifold of codimension m1+1 of an isoparametric hypersurface in

a sphere, and let N be the normal bundle of M+ in the sphere. Suppose on

the unit normal bundle UN of N there hold true the four sets of equations

Fµ
αp = Fµ

α p−m,

Fα
a+m b = −Fα

b+m a,
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Fµ
a+m b = −Fµ

b+m a,

ωb
a − ωb+m

a+m =
∑

p

Lp
ba(θ

p−m + θp),

for some smooth functions Lp
ba. Here, m := m1 for notational ease. At

n ∈ UN with base point x, the indices a (and b), p, α, µ run through,

respectively, n⊥, the subspace perpendicular to n in the fiber Nx, and the

three eigenspaces of the shape operator An with eigenvalues 0, 1, −1. Also,

F i
ja is, up to constant multiples, the (i, j)-component of the second funda-

mental form in the normal a-direction at x ∈ M+ pulled back to n ∈ UN ,

and θi and ωi
j are the coframe and connection forms on UN . We proved

that these four sets of equations characterize an isoparametric hypersurface

of FKM -type, on which the Clifford system acts on M+.

The first three sets of equations above are algebraic whereas the last one

is a system of partial differential equations. We introduced in [2] a spanning

property on the 2nd fundamental form of M+, which says that the 2nd

fundamental form is nondegenerate in the weaker sense that it is a surjective

linear map from the subsapce of the direct sum of the aforementioned α and

µ eigenspaces of the tangent space to the normal space, when one fixes any

one of the two slots in the bilinear form. This spanning property turned

out to be a crucial one for simplifying the four sets of equations, in that we

proved that the spanning property and the first set of equations imply the

three remaining sets of equations.

Our next crucial observation is that the first set of equations is really

a formulation about Nullstellensatz in the real category in disguise, in view

of an identity of Ozeki and Takeuchi [3]. From this point onwards, we com-

plexified to harness the rich complex algebraic geometry to our advantages,

which eventually led to an induction procedure and an estimate on the di-

mension of certain singular varieties, to verify that the first set of equations

and the spanning property always hold on M+ when m2 ≥ 2m1 − 1, where

m2 is the dimension of the other focal submanifold. Therefore, the isopara-

metric hypersuface is of FKM -type, on which the Clifford system acts on

M+, if m2 ≥ 2m1 − 1.

The only unsettled cases not handled by the bound m2 ≥ 2m1 − 1 are

exactly the exceptional ones with multiplicity pairs (3, 4), (4, 5), (6, 9) and

(7, 8). It appears that handling these exceptional cases in general would

entail taking all the four sets of equations into account.

The proof that these four sets of equations characterize an isoparametric
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hypersurface of FKM -type in [2] is an extremely long calculation with re-

markable cancellations, which is motivated by the idea that an isoparametric

hypersurface is defined by an over-determined system of partial differential

equations. Therefore, exterior differentiating the four sets of equations suffi-

ciently many times should gather us enough information for the conclusion

on a local scale, which then implies its global counterpart by analyticity.

In spite of its elementary nature, the magnitude of the calculation and the

surprisingly pleasant cacellations make it desirable to understand the un-

derlying geometric principles.

The purpose of this paper is to give a conceptual, and considerably

shorter, proof of the characterization that these four sets of equations are

equivalent to that the underlying isoparametric hypersurface is of FKM -

type. We first show that the first three sets of equations give rise to a man-

ifold (diffeomorphic to a sphere of dimension m1) worth of intrinsic isome-

tries of M+, whereas the fourth set of equations asserts that these intrinsic

isometries extend to ambient isometries of the ambient sphere. We then ex-

plore further geometries of M+, in conjunction with Ozeki and Takeuchi’s

expansion formula of the Cartan-Münzner polynomial [3], to verify that the

sphere worth of isometries, when extended to ambient isometries, form a

round sphere in the space of symmetric matrices. This says precisely that

these isometries form a Clifford sphere, and so the isoparametric hypersur-

face is of FKM -type.

The work would not have been done without the inspiring papers of

Ozeki and Takeuchi [3].

§2. Preliminaries

2.1. Unit normal bundle of a focal submanifold of an isopara-

metric hypersurfaces with four principal curvatures

Let

x : Mn −→ Sn+m+1

be a submanifold with normal bundle

N =: {(x,n) ∈ R
n+m+2 × R

n+m+2 | n ⊥ TxM, n ⊥ x}.

Let UN be the unit normal bundle of M . The Riemannian connection on

M splits the tangent bundle of UN in such a way that the horizontal vectors

Xu at u = (x, n) ∈ UN are the ones satisfying

(1) dn(Xu) ∈ TxM ⊂ R
n+m+2.
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Now let Mn be a focal submanifold of an isoparametric hypersurface in

Sn+m+1, n = m + 2N . For each point (x, n) on UN , we let Xp, m + 1 ≤
p ≤ 2m, Xα, 2m + 1 ≤ α ≤ 2m + N , Xµ, 2m + N + 1 ≤ µ ≤ 2m + 2N ,

be orthonormal basis eigenvectors with eigenvalues 0, 1, −1, respectively, of

the shape operator An. Then these eigenvectors can be lifted to the tangent

space at (x, n) via the isomorphism between the horizontal distribution at

(x, n) and the tangent space to M at x. Explicitly, if

x : M −→ Sn+m+1

is the embedding, then by (1), for k = 0, 1,−1, respectively,

(2) d(kx + n)(X) = 0

at (x, n) defines exactly the horizontal lift X of X, when X is an eigenvector

of the shape operator An with eigenvalue k. In fact, since

dn(X) = −kdx(X) = −kX

by (2), we have

(3) X = (dx(X), dn(X)) = (X,−kX),

so that the tangent space to UN at (x, n) splits into

V ⊕H0 ⊕ H1 ⊕ H−1,

where V is the vertical space spanned by Xa = (0,Xa), a = 1, . . . ,m,

Hs, s = 0, 1,−1, are horizontal subspaces spanned by vectors of the form

Xp = (Xp, 0), Xα = (Xα,−Xα), Xµ = (Xµ,Xµ), in the p, α, µ ranges

specified above, whose dual frames are θa, θp, θα, θµ, respectively.

2.2. Lie sphere geometry

Quantitatively, Lie sphere geometry provides an ideal ground for the

unit normal bundle geometry. We will refer to the book [1] for details and

further references. Consider R
n+m+4 with the metric

〈x, y〉 := −x0y0 + x1y1 + · · · + xn+m+2yn+m+2 − xn+m+3yn+m+3

of signature (n + m + 2, 2). The equation 〈x, x〉 = 0 defines a quadric

Qn+m+2 of dimension n + m + 2 in RPn+m+3. A Lie sphere transformation

is precisely a projective transformation of RPn+m+3 which maps Qn+m+2
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to itself. To realize the Lie sphere transformation group, consider, similar

to an orthonormal frame in the case of an orthogonal group, a Lie frame,

which is an ordered set of vectors Y0, . . . , Yn+m+3 in R
n+m+4 such that

〈Ya, Yb〉 = hab, where

(hab) :=





0 0 −J
0 In+m 0
−J 0 0



 ,

where In+m is the identity matrix of the indicated size, J is the 2 × 2

matrix with J11 = J22 = 0 and J12 = J21 = 1. A Lie frame induces a Lie

transformation, and vice versa.

The unit tangent bundle of the sphere Sn+m+1 now naturally identifies

with Λ2n+2m+1, the space of dimension 2n + 2m + 1 of (projective) lines in

Qn+m+2, via the identification

(4) λ : (x,n) 7−→ [(1,x, 0), (0,n, 1)],

where the image of the map denotes the line spanned by the two points

[1,x, 0] and [0,n, 1] in Qn+m+2. The unit normal bundle UN of a focal

submanifold Mn of an isoparametric hypersurface in Sn+m+1 therefore in-

herits a map into Λ2n+2m+1 via (4). In fact one can readily construct a local

smooth Lie frame field on UN as follows. At (x, n) ∈ UN , we let Xa be a

choice of orthonormal vertical frame fields, and Xp, Xα, Xµ be a choice of

the respective orthonormal characteristic frame fields of An. Then

Y0 = (1, x, 0), Y1 = (0, n, 1),

Ya = (0,Xa, 0), Yp = (0,Xp, 0),

Yα = (0,Xα, 0), Yµ = (0,Xµ, 0),

Yn+m+2 =
(

0,−
1

2
n,

1

2

)

, Yn+m+3 =
(1

2
,−

1

2
x, 0

)

,

is a Lie frame field. We set

dYj =
∑

i

ωi
jYi.

Then the Maurer-Cartan equations applied to (ωi
j), which lies in the Lie

algebra of the Lie sphere group, imply

(5) dωi
j = −

∑

k

ωi
k ∧ ωk

j .
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An easy calculation shows that

(6) ω0
0 = ω1

1 = ω1
0 = ω0

1 = 0,

and

(7)
ωa

1 = θa, ωp
0 = θp,

ωα
0 = θα, ωµ

0 = θµ,

where θa, θp, θα, θµ are the dual forms on UN introduced in the preceding

section. Furthermore, we have

(8)
ωa

0 = 0, ωp
1 = 0,

ωα
0 + ωα

1 = 0, −ωµ
0 + ωµ

1 = 0.

Now, on UN we set

(9) 〈dXj ,Xi〉 = ωi
j :=

∑

k

F i
jkθ

k,

where i, j, k run through the a, p, α, µ ranges. Note that F i
jk = −F j

ik.

Differentiating (8) with (5), (6) and (7) in mind, we obtain that F i
jk = 0

whenever exactly two of the indices come from the same range. Moreover,

(10)

F p
aα = −F p

αa = Fα
pa = Fα

ap,

F p
aµ = F p

µa = −Fµ
pa = Fµ

ap,

Fα
pµ = 2Fα

µp = −2Fµ
αp = −Fµ

pα,

Fα
aµ = 2Fα

µa = −2Fµ
αa = Fµ

aα.

In particular, (9) and (10) assert that

(11)

Fα
pa = −〈AXa

(Xα),Xp〉,

Fµ
pa = 〈AXa

(Xµ),Xp〉,

Fµ
αa =

1

2
〈AXa

(Xα),Xµ〉.

We will see the meaning of Fµ
αp in the next section. Note that (5) through

(10) also imply the structural equations (with Einstein summation conven-

tion)

(12)

dθa = −ωa
b ∧ θb − Fα

paθ
p ∧ θα − Fµ

paθ
p ∧ θµ − 4Fµ

αaθ
α ∧ θµ,

dθp = −ωp
q ∧ θq + Fα

paθ
a ∧ θα + Fµ

paθ
a ∧ θµ + 4Fµ

αpθ
α ∧ θµ,

dθα = −ωα
β ∧ θβ − Fα

paθ
a ∧ θp + Fµ

αaθ
a ∧ θµ − Fµ

αpθ
p ∧ θµ,

dθµ = −ωµ
ν ∧ θν − Fµ

paθ
a ∧ θp − Fµ

αaθ
a ∧ θα + Fµ

αpθ
p ∧ θα.
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§3. The symmetries

Consider the natural isometry

T : (p, q) 7−→ (q, p)

from R
n+m+2 × R

n+m+2 into itself.

Proposition 1. Retaining the preceding notations, T leaves UN in-

variant in the case of four principal curvatures.

Proof. The exponential map

exp : (x,n(x)) 7−→ p = cos t x + sin t n(x)

of the sphere Sn+m+1 maps UN to an isoparametric hypersurface Mt in

general, and returns to the focal submanifold at t = π/2, at which p =

n(x) and the derivative of the map is −x, which is normal to the focal

submanifold.

Corollary 1. Any local section s : M → UN , s : x 7→ (x,Q(x)),

gives rise to a local map from M into itself.

Proof. Let π : UN −→ M be the projection. Consider the local map

π ◦ T ◦ s : M → M , which is just the map

g : x 7−→ Q(x).

Since T is an isometry on UN , we next understand its tangent map.

Note that by (3), at (x, n), we have the orthonormal frame (0,Xa), (Xp, 0),

(Xα,−Xα), (Xµ,Xµ) dual to θa, θp, θα, θµ. By the fact that T is a linear

map interchanging the two coordinates, we obtain

Proposition 2.

T∗ : (0,Xa) 7−→ (Xa, 0),

: (Xp, 0) 7−→ (0,Xp),

: (Xα,−Xα) 7−→ (−Xα,Xα),

: (Xµ,Xµ) 7−→ (Xµ,Xµ)

from the tangent space at (x, n) to the tangent space at (n, x) on UN , so

that T∗ interchanges the Ea and Ep distributions and fixes the Eα and Eµ

distributions.
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It follows immediately from the proposition the following.

Corollary 2. Fµ
αp at (x, n) ∈ UN is exactly Fµ

αa at (n, x) ∈ UN .

Consider now the local map

g : x 7−→ Q(x)

arising from a local section s : M → UN , s : M 7→ (x,Q(x)), in Corollary 1.

We ask when g is a local isometry on the focal submanifold M .

Lemma 1. Retain the notations in Corollary 1 and let Xp, Xα, and

Xµ as before be appropriate orthonormal eigenvectors for the shape operator

AQ(x). Then g is a local isometry of M if and only if s∗ maps Xα and Xµ

to their horizontal lifts at (x,Q(x)), and maps Xp to (Xp, Vp) such that

Xp 7→ Vp is an isometry.

Proof. Let s∗(Xp) = (Xp, Vp), s∗(Xα) = (Xα,−Xα+Vα), and s∗(Xµ) =

(Xµ,Xµ + Vµ). That is, we break the three images under s∗ into horizontal

and vertical components. By the very definition of g we see

g∗ : Xp 7−→ Vp,(13)

g∗ : Xα 7−→ Vα − Xα,(14)

g∗ : Xµ 7−→ Vµ + Xµ.(15)

Since the vertical components Vp, Vα and Vµ are all perpendicular to Xp,

Xα and Xµ, we see g∗ is a local isometry if and only if Vα = Vµ = 0.

At each point u = (x, n) of UN , we set, respectively, Ea, Ep, Eα, Eµ to

be the vertical space at u and the three horizontal eigenspaces of the shape

operator An with eigenvalue 0, 1, −1 pulled back to the horizontal space at

u. In light of Lemma 1, we assign smoothly an isometry Ou from Ep to Ea.

Let

Fp = {Xp + Ou(Xp) | Xp ∈ Ep}

at u and consider the distribution

∆u = Fp ⊕ Eα ⊕ Eµ.

If this distribution is integrable, then according to Lemma 1, each leaf Q(x)

will induce an isometry on M . In accordance, we seek to find a necessary
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and sufficient condition for the distribution to be integrable. We can arrange

so that

(16) −Xp−m = Ou(Xp).

Remark 1. Before we proceed, let us look at the isoparametric hyper-

surfaces of FKM -type [4]. Let P0, . . . , Pm be a Clifford system on R
2l, which

are orthogonal symmetric operators on R
2l satisfying

PiPj + PjPi = 2δijI, i, j = 0, . . . ,m.

The 4th degree homogeneous polynomial

F (x) = |x|4 − 2
m

∑

i=0

(〈Pi(x), x〉)2

is the Cartan-Münzner polynomial, so that F−1(t), −1 < t < 1, on the

sphere is a 1-parameter family of isoparametric hypersurfaces whose focal

submanifolds are M± = F−1(±1).

M+ is the variety carved out by the quadrics 〈Pi(x), x〉 = 0, i =

0, . . . ,m, whose normal bundle at x is spanned by P0(x), . . . , Pm(x). If

we set Q :=
∑

j ajPj , where
∑

j(a
j)2 = 1, then {Q(x) : x ∈ M+} is a leaf

in the unit normal bundle of M+. These leaves, as Q varies, give rise to an

integrable distribution ∆ of the sort we are considering. In fact, at x the 0-

eigenspace of the shape operator AQ(x) is spanned by PQ(x), where P ⊥ Q

for all P . Therefore, a typical vector in the 0-eigenspace, say, Xp := PQ(x),

will be mapped via Q to −P (x) in the normal space at x, which we designate

as −Xp−m. That is, −Xp−m = Q(Xp), which is compatible with (16).

Proposition 3. ∆ is involutive if and only if

Fµ
αp = Fµ

α p−m,(17)

Fα
a+m b = −Fα

b+m a,(18)

Fµ
a+m b = −Fµ

b+m a.(19)

Proof. (Sketch) ∆ is the kernel of

θa + θa+m

for all a, which we differentiate while invoke (12).
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Proposition 4. When ∆ is involutive, the isometries g induced by

the leaves of ∆ extend to ambient isometries in Sn+m+1 if and only if

(20) ωb
a − ωb+m

a+m =
∑

p

Lp
ba(θ

p−m + θp).

for some Lp
ba. In particular, the unit normal bundle of M+ of an isopara-

metric hypersurface of FKM-type satisfies (17) through (20).

Proof. We will show that each g∗ leaves the 2nd fundamental form and

the normal connection form invariant, from which the rigidity follows [6].

Recall from Lemma 1 that we let Xα, Xp, Xµ be respective orthonormal

characteristic vecotr fields of AQ(x) in M , and let Xa be orthonormal normal

vector fields perpendicular to the normal vector Q(x) at x in M ; in fact,

Xa, Xp, Xα, Xµ form a Lie frame field over the section s. Recall that

g : x 7→ Q(x) is induced from the leaf s : x 7→ (x,Q(x)), where

s∗(Xp) = (Xp,−Xp−m).

s∗(Xα) = (Xα,−Xα),

s∗(Xµ) = (Xµ,Xµ),

by the definition of the distribution ∆. So we have from (13), (14) and (15)

g∗(Xp) = −Xp−m,(21)

g∗(Xα) = −Xα,(22)

g∗(Xµ) = Xµ.(23)

To keep our notation straight, we let

Y−1(g(x)) := Q(x),

Y0(g(x)) := x,

Ya(g(x)) := −Xa+m(x),

Yp(g(x)) := −Xp−m(x),

Yα(g(x)) := −Xα(x),

Yµ(g(x)) := Xµ(x).

We set X−1(x) := x, X0(x) := Q(x). Y−1, Y0 and Ya are normal, and Yp,

Yα, Yµ are tangent to M at g(x), in contrast to X−1, X0 and Xa being
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normal and Xp, Xα, Xµ being tangent to M at x, when we regard M

as a submanifold of R
n+m+2. We therefore have set up a normal bundle

isomorphism

(24) Ψ : Xa 7−→ Ya, −1 ≤ a ≤ m,

between the normal bundle of M over x and the normal bundle of M over

g(x) covering g∗.

The 2nd fundamental form at x is

S(X,Y ) = −
∑

a

〈dXa(X), Y 〉Xa

for X,Y ∈ TM , a = −1, . . . ,m, and is

Π(X,Y ) = −
∑

a

〈dYa(X), Y 〉Ya

at g(x). In view of (21), (22), (23),

Π(g∗(Xα), g∗(Xµ)) = −
∑

a≥1

〈dYa(g∗(Xα)), g∗(Xµ)〉Ya

= −
∑

a≥1

〈−dXa+m(Xα),Xµ〉(−Xa+m)

= −
∑

a≥1

〈dXa+m(s∗(Xα)),Xµ〉Xa+m

= −
∑

a≥1

∑

t

Fµ
a+m tθ

t(s∗(Xα))Xa+m

= −
∑

a≥1

∑

t

Fµ
a+m tθ

t((Xα,−Xα))Xa+m

= −
∑

a≥1

Fµ
a+m αXa+m,

where the third equality follows from the fact that the frames Xα are indeed

smoothly defined as part of a Lie frame over the section s, so that the

exterior differentiation can be conducted over s with respect to s∗(Xα) that

covers Xα. Likewise,

Ψ(S(Xα,Xµ)) = −
∑

a≥1

〈dXa(Xα),Xµ〉Ψ(Xa)

= −
∑

a≥1

Fµ
aα(−Xa+m) =

∑

a≥1

Fµ
aαXa+m.
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So they are equal by (10) and (17). We remark that a = −1, 0 do not appear

in the above equalities because, for instance,

〈dY0(g∗(Xα)), g∗(Xµ)〉Y0 = 〈dx(Xα),Xµ〉x

= 〈Xα,Xµ〉x = 0

= Ψ(S(Xα,Xµ)).

In the same vein, for a = 1, . . . ,m,

Π(g∗(Xp), g∗(Xα)) = −
∑

a≥1

〈dYa(g∗(Xp)), g∗(Xα)〉Ya

= −
∑

a≥1

〈−dXa+m(Xp),−Xα〉(−Xa+m)

=
∑

a≥1

〈dXa+m(s∗(Xp)),Xα〉Xa+m

=
∑

a≥1

∑

t

Fα
a+m,tθ

t(s∗(Xp))Xa+m

=
∑

a≥1

∑

t

Fα
a+m,tθ

t((Xp, 0) + (0,−Xp−m))Xa+m

=
∑

a≥1

(Fα
a+m,p − Fα

a+m,p−m)Xa+m

= −
∑

a≥1

Fα
a+m,p−mXa+m,

where we invoke the fact that s∗(Xp) = (Xp, 0) + (0,−Xp−m) with (Xp, 0)

horizontal and (0,−Xp−m) vertical. Likewise,

Ψ(S(Xp,Xα)) = −
∑

a≥1

〈dXa(Xp),Xα〉Ψ(Xa)

= −
∑

a≥1

Fα
ap(−Xa+m) =

∑

a≥1

Fα
apXa+m.

So they are equal by (18). Similar identities hold for other pairs of vectors.

In short,

(25) Π ◦ g∗ = Ψ ◦ S.

The normal connection form is

DXa =
∑

b

Λb
aXb,



ISOPARAMETRIC HYPERSURFACES 141

where Λb
a = 〈dXa,Xb〉 at x and is

DYa =
∑

b

Θb
aYb,

where Θb
a = 〈dYa, Yb〉 at g(x). We next establish

g∗Θb
a = Λb

a,

that is,

(26) Dg∗(V )(Ψ(ζ)) = Ψ(DV (ζ)).

(25) and (26) will establish the rigidity. Now

g∗Θb
a(Xα) = 〈−dXa+m(Xα),−Xb+m〉

= F b+m
a+m,α = 0,

while Λb
a(Xα) = 0 similarly. On the other hand,

g∗Θb
a(Xp) = 〈dYa(g∗(Xp)), Yb〉

= 〈−dXa+m(Xp),−Xb+m〉

= ωb+m
a+m(s∗(Xp)),

while

Λb
a(Xp) = 〈dXa(Xp),Xb〉

= 〈dXa(s∗(Xp)),Xb〉

= ωb
a(s∗(Xp)).

Therefore they are equal if and only if ωb
a −ωb+m

a+m annihilates s∗(Xp), if and

only if it annihilates the distribution ∆ because it automatically annihilates

the horizontal s∗(Xα) and s∗(Xµ) (F i
jk = 0 if exactly two indices are from

the same range), if and only if

ωb
a − ωb+m

a+m =
∑

p

Lp
ba(θ

p−m + θp)

for some Lp
ba because θp−m + θp, for all p, form the dual of ∆.
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§4. The focal submanifold M+ is a real affine variety

Conversely, assuming now that (17) through (20) hold true, we will

establish that the isoparametric hypersurface is of FKM -type.

By Proposition 4, each leaf now is of the form (x,Q·x) for some constant

orthogonal matrix Q, so that in fact it induces a global isometry x 7→ Q · x
on M . (“ · ” denotes matrix multiplication.) Note also that since Q · x is

a normal vector at x ∈ M , we have 〈Q · x, x〉 = 0. In fact we have an

Sm-worth of such Q’s because there is a leaf through each point of a fiber

of UN ; let the set of the Sm-worth of Q’s be denoted by C. Now C begins

to look like the Clifford sphere. One needs to establish next the Clifford

properties of the Q’s in C.

We first show that

Q2 = Id

for all Q in C. Retaining all the previous notations, we see that Q is exactly

Ψ in (24). Hence x + Q · x, Xa − Xa+m, Xµ are eigenvectors of Q with

eigenvalue 1, while x − Q · x, Xa + Xa+m, Xα are eigenvectors of Q with

eigenvalue −1, which implies that Q is symmetric. So Q2 = Id because Q

is also orthogonal.

Definition 1. M+ is the focal submanifold satisfying (17) through

(20).

Lemma 2.

M+ = {x ∈ Sn+m+1 : 〈Q · x, x〉 = 0, all Q ∈ C},

so that M+ is a real affine variety.

Proof. For x in M+, Q · x is a normal vector for any Q ∈ C. So clearly

〈Q · x, x〉 = 0. Conversely, the sphere Sn+m+1 is covered by the exponential

map

(27) exp : (t, x, P ) 7−→ y =: (cos t)x + (sin t)P · x

with x in M+ and P in C. We ask when y satisfies 〈Q · y, y〉 = 0 for all Q.

This is equivalent to, upon expansion, the condition

sin 2t〈P · x,Q · x〉 = 0

for all Q in C. When picking Q to be P , we see by P 2 = Id that this is in

turn equivalent to sin 2t = 0. In other words, t = 0, π/2, or π, which implies

that y lies in M+.
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§5. More geometry of M+

Fix a point e ∈ M+. We have the decomposition

R
2+m+n = Re ⊕ T ⊕ N,

where T and N are the tangent and normal spaces of M+ at e. We write a

typical element in R
2+m+n as

te + y + w,

where t ∈ R, y ∈ T , and w ∈ N , with respect to the decomposition. We will

from now on coordinatize R
2+m+n this way. Clearly, t = ±1, y = w = 0 are

two points on M+. (M+ is diametrically symmetric.) Let

CM+ := {rx : r ∈ R, x ∈ M+}

be the cone over M+.

Convention 1. Pick P0, . . . , Pm ∈ C such that P0 · e, . . . , Pm · e are

orthonormal. This is possible since the map C → UeN given by P 7→ P · e
is a diffeomorphism. Henceforth, we refer to P0, . . . , Pm as such a choice in

C.

Remark 2. All identities to be derived below will not be hard to verify

if C is a round sphere, which will be our end result. However, at this point C
is only diffeomorphic to a sphere. What is remarkable is that the identities

remain true under the weaker condition that C is a diffeomorphic sphere.

Lemma 3. Let t0e + y0 + w0 ∈ CM+. Then the line te + y0 + w0

parametrized by t intersects CM+ in exactly one point if w0 6= 0.

Proof. First, note that 〈Pi ·e, e〉 = 〈Pi ·e, y0〉 = 0, since Pi ·e is a normal

vector to M+ at e. Furthermore, 〈Pi · w0, w0〉 = 0 because w0/|w0| ∈ M+

as well by Proposition 1. It follows that for 0 ≤ i ≤ m, we have

(28)
0 = 〈Pi · (te + y0 + w0), te + y0 + w0〉

= 〈Pi · y0, y0〉 + 2t〈Pi · e,w0〉 + 2〈Pi · y0, w0〉

for te + y0 + w0 ∈ CM+. Since Pi · e, i = 0, . . . ,m, form an orthonormal

basis for the normal space N of M+ at e, if we set

wi := 〈Pi · e,w0〉,
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we obtain
∑

i

w2
i = |w0|

2.

Multiplying through (28) by wi and summing up over i, we obtain

(29) 2t|w0|
2 = −

m
∑

i=0

wi〈Pi · y0, y0〉 − 2
m

∑

i=0

wi〈Pi · y0, w0〉.

If w0 6= 0, then there is only one solution for t.

We record that, along the normal vector P · e, we have

(30) 〈S(v1, v2), P · e〉 = −〈P · v1, v2〉,

where P ∈ C, S is the 2nd fundamental form and v1 and v2 are two tangent

vectors to M+ at e. That is, we have

(31) AP ·e(v) = −(P · v)T ,

where the upper script T denotes orthogonal projection onto the tangential

component at e for an tangent vector v. The identity is true because P · x,

as x varies around e in M+, is a normal vector field, whose derivative at e

gives (31). For notational ease, we set

(32) pi := −〈Pi · y0, y0〉.

Corollary 3. Let t0e + y0 + w0 ∈ CM+, w0 6= 0. Then t0 is the

double root of the quadratic polynomial (in t)

(33)

4|w0|
2t2 + 4

( m
∑

i=0

−piwi + 2

m
∑

i=0

wi〈Pi · y0, w0〉

)

t

+
m

∑

i=0

p2
i − 4pi〈Pi · y0, w0〉 + 4〈Pi · y0, w0〉

2 = 0.

Proof. Squaring (28) and summing over i, we obtain the polynomial

for which t0 is a root. Conversely, suppose t is a root of the polynomial.

Tracing backwards, we obtain (28) and so (29). This implies that t = t0.
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Now we compare (33) with the equation derived in [3]. Let F be the

4th degree homogeneous Cartan-Münzner polynomial. Then

(34)

F (te + y + w) = t4 + (2|y|2 − 6|w|2)t2 + 8

( m
∑

i=0

piwi

)

t

+ |y|4 − 6|y|2|w|2 + |w|4 − 2
m

∑

i=0

p2
i + 8

m
∑

i=0

qiwi

+ 2

m
∑

i,j=0

〈∇pi,∇pj〉wiwj ,

where qi(y), i = 0, . . . ,m, are some cubic homogeneous polynomials in y; in

fact, they are the 3rd fundamental forms of M+.

Lemma 4. t0e+ y0 + w0 ∈ CM+, w0 6= 0. Then t0 is the double root of

the quadratic polynomial (in t)

(35) 4|w0|
2t2 − 4

( m
∑

i=0

piwi

)

t +

m
∑

i=0

(p2
i − 4qiwi) + 4|w0|

2|(P · y0)
⊥|2 = 0,

where P ∈ C is such that

P · e =

m
∑

i=0

wi

|w0|
Pi · e (= w0/|w0|),

and ⊥ denotes the orthogonal projection onto the normal space N to M+

at e.

Proof.

f := F (te + y0 + w0) − |te + y0 + w0|
4

= F (te + y0 + w0) − (t2 + |y0|
2 + |w0|

2)2 = 0,

if te + y0 + w0 ∈ CM+, because F (x) = 1 for x ∈ M+; f is a 2nd order

polynomial in t by (34). The only messy term in f is the one involving ∇pi

in (34). However, since

∇pi = −2(Pi · y0)
T ,
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we have, in view of (31),

(36)

m
∑

i,j=0

〈∇pi,∇pj〉wiwj

= 4
m

∑

i,j=0

〈(Pi · y0)
T , (Pj · y0)

T 〉wiwj

= 4

m
∑

i,j=0

〈APi·e(y0), APj ·e(y0)〉wiwj

= 4|w0|
2〈AP ·e(y0), AP ·e(y0)〉

= 4|w0|
2〈(P · y0)

T , (P · y0)
T 〉

= 4|w0|
2〈P · y0, P · y0〉 − 4|w0|

2〈(P · y0)
⊥, (P · y0)

⊥〉

= 4|w0|
2|y0|

2 − 4|w0|
2|(P · y0)

⊥|2,

due to the fact that P is orthogonal. Hence t0 is a root of f as a polynomial

of t.

Conversely, suppose t is a root of the polynomial f . Then te + y0 + w0

must belong to CM+. Thus by Lemma 4, we have t = t0.

Henceforth, we drop the subscript 0 from y0 and w0 for notational ease.

Corollary 4.

(37)

m
∑

i=0

wi〈Pi · y,w〉 = 0,

and

(38) −
m

∑

i=0

pi〈Pi · y,w〉 +

m
∑

i=0

〈Pi · y,w〉2 = −
m

∑

i=0

qiwi + |w|2|(P · y)⊥|2

for all te + y + w ∈ CM+. As a consequence, for w 6= 0,

(39) t =

∑m
i=0 wipi

2|w|2
.

Moreover, the projection of CM+ onto the T ⊕N -space is the variety carved

out by the equations

(40) |w|2〈Pi · y, y〉 − wi

m
∑

j=0

wj〈Pj · y, y〉 + 2|w|2〈Pi · y,w〉 = 0

for all i = 0, . . . ,m.
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Proof. The first two equations are apparently true for w = 0. For

w 6= 0, they follow from comparing the coefficients of (33) and (35), since

both quadratic polynomials have the same double root. The third equation

is a consequence of the first and (29). Finally, the last set of equations

follow from (28) and the third equation.

Lemma 5. Notation as above, for e ∈ M+, there is an open set U in

T such that for each point y ∈ U , there are only a finite number of w ∈ N

(and hence finitely many t) for which te + y + w ∈ M+ with the property

that these w span N .

Proof. Consider the orthogonal projection π : M+ → T given by te +

y + w 7→ y. The map π is surjective onto a neighborhood of y = 0, because

π is in fact a local diffeomorphism near e due to the fact that T is tangent

to M+ at e. By Sard’s theorem, the regular values of π in this neighborhood

form a dense and open set S. Pick an open ball U in S. The preimage of π

over each point in U is finite with a fixed number of elements, so that π is

a covering map over U .

Suppose for some y in U , the elements of π−1(y) is contained in a proper

subplane L of Re ⊕ N , then a slight perturbation from y to a nearby y′ in

T will disconnect the pertured image of the plane Re⊕ N from M+, which

contradicts the constancy of the number of elements of preimages near y,

as a slight perturbation does not alter the intersection number. Therefore,

the elements of π−1(y) span Re⊕N . However, since t is a function of y and

w 6= 0 by (39), we see that the elements of π−1(y) projects to elements in

N which span N .

Lemma 5 enables us to say more about (38) now.

Lemma 6. Let te + y + w ∈ CM+. Then

(41)

m
∑

i=0

qiwi =

m
∑

i=0

pi〈Pi · y,w〉,

and

(42) |w|2|(P · y)⊥|2 =
m

∑

i=0

〈Pi · y,w〉2.
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Proof. The identities are trivially true if w = 0. We assume w 6= 0

now. Recall P from (35). We claim that if t 6= 0, then

(43) |(P · y)⊥|2 = 0

if and only if

(44)

m
∑

i=0

〈Pi · y,w〉2 = 0.

To see this, note first of all, that (P · y)⊥ = 0 means y belongs to the direct

sum of the ±1-eigenspace of the shape operator AP ·e at e. To see this, recall

that Q · e traces out the unit normal sphere of M+ at e as Q varies in C.

Therefore, (P · y)⊥ = 0 gives

(45) 0 = 〈(P · y)⊥, Q · e〉 = 〈P · y,Q · e〉 = 〈y, PQ · e〉.

However, since P is a normal bundle isomorphism of M+, P maps the unit

normal sphere at e to that at P · e. That is, PQ · e traces out the unit

normal sphere at P · e as Q varies in C. On the other hand, the unit normal

sphere at P · e generates Re ⊕ E0, where E0 is the 0-eigenspace of AP ·e,

by Proposition 2. Hence, (45) asserts that y belongs to the direct sum of

the ±1-eigenspace of the shape operator AP ·e. In particular, (44) follows

because it is equivalent to 〈Pi · y, P · e〉 = 0, i = 0, . . . ,m, i.e.,

(46) 〈y, PiP · e〉 = 0

for all i. However, we know PiP ·e are unit normal vectors at the point P ·e,

by the construction of C, which are thus vectors in Re ⊕ E0. In particular,

(46) and so (44) hold true if (43) does, proving one direction of the claim.

Conversely, assume

(47)

m
∑

i=0

〈Pi · y,w〉2 = 0.

Set r =: |w|, n =: w/|w| and ni =: wi/|w|. Substituting (39) into (33) and

(35), with (37) in mind, we derive

(48) 0 = 4

( m
∑

i=0

〈Pi · y, n〉2
)

r2 − 4

( m
∑

i=0

pi〈Pi · y, n〉

)

r − 〈P · y, y〉2 +

m
∑

0

p2
i ,
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and

(49) 0 = 4|(P · y)⊥|2r2 − 4

( m
∑

i=0

qini

)

r − 〈P · y, y〉2 +

m
∑

0

p2
i ,

where we also employ the identity

(50) −
m

∑

i=0

piwi = r〈P · y, y〉,

which follows from (31).

We observe that (47) is equivalent to

(51) pi(y) = 2twi

for all i by (28). Also,

−(〈P · y, y〉)2 +

m
∑

i=0

p2
i = 0,

because (47) implies the first two terms of (48) vanish, and so

(52) |(P · y)⊥|2|w|2 =

m
∑

i=0

qiwi

hold by (49). Substituting (51) into the right hand side of (52), we obtain

|(P · y)⊥|2|w|2 =
1

2t

m
∑

i=0

qipi = 0

by the identity
∑m

i=0 piqi = 0 [3]. Therefore,

|(P · y)⊥|2 = 0,

and the claim is established.

By the claim, for t 6= 0, either both sides of (42) are zero, in which case

(41) holds as well by (38), so that our proof is done, or we can from now on

assume that both sides of (42) are nonzero. Now since

(53)

m
∑

i=0

〈Pi · y,w〉2 6= 0,
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〈Pi · y,w〉2 6= 0 for some i, for which (40), which is

r2〈Pi · y, y〉 − r2ni

m
∑

j=0

nj〈Pj · y, y〉 + 2r3〈Pi · y, n〉 = 0,

asserts that there is a single r 6= 0 satisfying both (48) and (49), so that in

the case when

−(〈P · y, y〉)2 +

m
∑

i=0

p2
i 6= 0,

(48) and (49) have the same nonzero double roots. Hence, we compare the

coefficients of (48) and (49) to conclude (41) and (42). On the other hand,

if

−(〈P · y, y〉)2 +
m

∑

i=0

p2
i = 0,

then (50) implies
( m

∑

i=0

pini

)2

=
m

∑

i=0

p2
i ,

from which the Cauchy-Schwarz inequality asserts that

pi = λni

for some λ, so that

( m
∑

i=0

pi〈Pi · y, n〉

)

r =
λ

r

m
∑

i=0

wi〈Pi · y,w〉 = 0

by (37). This forces r = 0 by (53) and (48), which is absurd since w 6= 0.

Hence, (41) and (42) are verified, when t 6= 0.

Lastly, we observe that the points in CM+ with t = 0 is a proper

subvariety in CM+ due to the nondegeneracy of M+ in the ambient sphere.

Therefore, as the points te + y + w, t 6= 0, approach points with t = 0 in

CM+, we see by continuity that (41) and (42) remain true.

Corollary 5.

(54)

m
∑

i=0

qi(y)wi =

〈 m
∑

i=0

pi(y)Pi · y,w

〉

holds true for all y ∈ T and all w ∈ N .
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Proof. By the preceding lemma, the same equation is valid for the finite

w over each y in U defined in Lemma 5. However, these finite w generate

the space N for each y ∈ U by Lemma 5; so the equality is true for all N

at each y ∈ U since both sides of the equation are linear in w. Hence the

equation must be true for all T and N since homogeneous polynomials are

analytic.

Remark 3. In fact, one can see from [3] that

F (y, y, y, w) = 2

m
∑

i=0

qi(y)wi,

where F (x1, x2, x3, x4) is the symmetric function associated with the

Cartan-Münzner polynomial. Hence by (54), we have derived

(55) F (y, y, y, w) = 2

〈 m
∑

i=0

pi(y)Pi · y,w

〉

.

§6. The final argument

Now we come to the crucial lemma.

Lemma 7. Let (P0 ·e, . . . , Pm ·e) and (P 0 ·e, . . . , P m·e) be two orthonor-

mal bases for the normal space N to M+ at e, where P0, . . . , Pm, P 0, . . . , Pm

∈ C. Let

(56) P j · e =

m
∑

i=0

Ai
j(Pi · e)

for some constant orthogonal matrix (Ai
j). Then

P j =

m
∑

i=0

Ai
jPi.

Proof. By (55), we have

(57) F (y, y, y, w) =

〈 m
∑

i=0

pi(y)Pi · y,w

〉

=

〈 m
∑

i=0

pi(y)P i · y,w

〉

.

Now since

pi(y) = 〈S(y, y), Pi · e〉,
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by (30) and (32), we have immediately

pj(y) =
m

∑

i=0

Ai
jpi(y),

which results in, by (57),

(58)

〈 m
∑

i=0

pi(y)

(

Pi −
m

∑

j=0

Ai
jP j

)

· y,w

〉

= 0

for all y ∈ T and w ∈ N . For ease of notation, set

Mi =: Pi −
m

∑

j=0

Ai
jP j .

In particular, (58) implies that

( m
∑

i=0

pi(y)Mi

)

· y ∈ T.

Hence
( m

∑

i=0

pi(y)Mi

)

· y =

( m
∑

i=0

pi(y)MT
i

)

· y = 0,

where the superscript T denotes the orthogonal projection onto T . That

it is equal to zero comes from the fact that, e.g., P T
i is just the shape

operator APi·e, and therefore the correct transformation compatible with

(56) prevails. We conclude that

(59)

( m
∑

i=0

pi(y)Mi

)

· y = 0

for all y ∈ T . On the other hand,
( m

∑

i=0

pi(y)Mi

)

· w = 0

for all w ∈ N . This is because first of all, e.g., 〈Pi ·w,Pj · e〉 = 0. For, again

PiPj · e is in the span of e and the 0-eigenspace of APj ·e, so that as a result
(
∑m

i=0 pi(y)Mi

)

· w is perpendicular to the normal space N ; moreover,

〈( m
∑

i=0

pi(y)Mi

)

· w, y

〉

=

〈( m
∑

i=0

pi(y)Mi

)

· y,w

〉

= 0
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by (59) and the fact that the operators involved are symmetric, so that
(
∑m

i=0 pi(y)Mi

)

· w is also perpendicular to T . Lastly

〈( m
∑

i=0

pi(y)Mi

)

· w, e

〉

= 0

since
( m

∑

i=0

pi(y)Mi

)

· e = 0

automatically by (56). The upshot is that

m
∑

i=0

pi(y)Mi = 0

for all y ∈ T .

We are now in the situation where we have m + 1 constant matrices

M0, . . . ,Mm such that
m

∑

i=0

pi(y)Mi = 0

for all y ∈ T . If one of Mi is nonzero, we will find constants c0, . . . , cm, not

all zero, such that
m

∑

i=0

cipi(y) = 0

for all y ∈ T , by looking at an appropriate matrix entry. In other words,

the symmetric matrix

M =:

m
∑

i=0

ciAPi·e

(A is the shape operator) satisfies 〈M · y, y〉 = 0 for all y. Thus M = 0,

which implies that the shape operator An, where n is the unit normal vector

normalized from the vector
(
∑m

i=0 ciPi

)

·e, will be identically zero. This is a

contradiction, since we know all the shape operators for M+ have 0, ±1 as

eigenvalues. In conclusion, all Mi = 0, which is what we want to prove.

Theorem 1. C is the Clifford sphere if and only if (17) through (20)

hold.
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Proof. This follows immediately from the preceding lemma, because it

says that C is the round sphere in the space of symmetric endomorphisms,

if (17) through (20) hold. Conversely, we have seen that an isoparametric

hypersurface of FKM -type satisfies (17) through (20).
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