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EVEN-RELATIVE-DIMENSIONAL VANISHING CYCLES

IN BIVARIANT INTERSECTION THEORY

HIROSHI SAITO

Abstract. For a smooth variety proper over a curve having a fibre with iso-

lated ordinary quadratic singularities, it is well-known that we have the vanish-

ing cycles associated to the singularities in the étale cohomology of the geomet-

ric generic fibre. The base-change by a double cover of the base curve ramified

at the image of the singular fibre has singularities corresponding to the singu-

larities in the fibre. In this note, we show that in the even relative-dimensional

case, there exist elements of the bivariant Chow group of the base-change with

supports in the singularities and hence their images in the bivariant Chow

group with supports in the special fibre and that the usual cohomological van-

ishing cycles are obtained as their images by a natural map, a kind of “cycle

map” so that the elements in the bivariant Chow groups can be regarded as the

vanishing cycles. The bivariant Chow group with supports in the special fibre

has a ring structure and the natural map is a ring homomorphism to the coho-

mology ring of the geometric generic fibre. Also discussed is the relation of the

bivariant Chow group with supports in the special fibre to the specialization

map of Chow groups.

The vanishing cycles are studied extensively since Picard in the study

of topology of algebraic varieties and live in (co-)homology groups. In this

note, we shall show that the vanishing cycles of isolated ordinary quadratic

singularities of even relative-dimensional case live in appropriate bivariant

Chow groups, and from which the usual vanishing cycles are obtained by

natural maps.

In order to state our result more precisely, we review the Chow bi-

variant theory briefly ([F], 17). We denote the (usual) Chow group of

an algebraic scheme X by CH·(X). For a morphism f : X → Y of al-

gebraic schemes, an element of CHp(X
f
→ Y ) is a collection of maps

c = {cg : CH·(Y
′) → CH·−p(X ×Y Y ′)} for all morphisms g : Y ′ → Y

satisfying certain compatibility conditions with proper push-forward, flat
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pull-backs and pull-back by regular embeddings. In the sequel, we always

put X ′ = X ×Y Y ′. The image cg([Y
′]) ∈ CHm−p(X

′) is called c evaluated

at [Y ′] if dimY ′ = m. In particular, for a base field k, we have a bijection

CH−q(X → Spec k) ∼= CHq(X) by evaluation at [Spec k]. The bivariant

theory has three operations:

(1) We have the pull-back g∗(c) ∈ CHp(X ′ → Y ′) for c ∈ CHp(X → Y )

and for any morphism g : Y ′ → Y by restriction.

(2) For X
f
→ Y

g
→ Z and c ∈ CHp(X → Y ) and b ∈ CHq(Y → Z), we

have c · b ∈ CHp+q(X → Z), the multiplication defined by composition.

(3) For X
f
→ Y

g
→ Z with f proper and d ∈ CHp(X → Z), we have

the proper push-forward f∗(d) ∈ CH
p(Y → Z).

These operations have some compatibility conditions including the projec-

tion formula. For a flat morphism g : Y → Z of pure relative dimension

d, the flat pull-back defines an element [g] ∈ CH−d(Y → Z) called the

orientation class. If g : Y → Z is smooth, the composition · [g] : CH p(X →

Y )→ CHp−d(X → Z) is bijective. In particular, if Y is smooth of pure di-

mension d, then CHp(X → Y ) ∼= CHp−d(X → Spec(k)) ∼= CHd−p(X). For

a regular embedding g : Y → Z of codimension d, the pull-back by g defines

also an orientation class [g] ∈ CHd(Y → Z). It is known that a local com-

plete intersection morphism, i.e. a regular embedding followed by a smooth

morphism defines an orientation class, as a composite of corresponding ori-

entation classes, which is independent of the decomposition ([F], 6.6). We

define CHp(X) = CHp(X
idX−→ X). This is isomorphic to the Chow group

of X of dimension dimX − p for X smooth, but it is not in general. Notice

that CH ·(X) has a ring structure by composition.

Let f ′ : Y → T be a morphism from smooth algebraic variety of dimen-

sion 2r+1 to a smooth curve over algebraically closed field of characteristic

6= 2 such that the fibre Ys′ over a point s′ ∈ T has only isolated ordinary

quadratic singularities W and let ϕ : S → T be a double covering rami-

fied at s ∈ S with ϕ(s) = s′ and f : X → S be the base-change of f ′ and

V = W ×T {s} ⊂ X. We choose a (strict) henselization s → Sh → S.

We shall denote the étale cohomology of a scheme X with Z`-coefficient

(` 6= char. k) by H ·(X). Then, we have

Theorem. For each point v ∈ V , we have

CHr+1(v → X) ∼= Z.



VANISHING CYCLES IN BIVARIANT INTERSECTION THEORY 51

Let ∆v ∈ CHr+1(Xs → X) be the image of a generator by the map

CHr+1(v → X) → CHr+1(Xs → X) induced by the natural embedding

v → Xs and Xt̄ be the geometric generic fibre of X → S. Then there exists a

natural map CHr+1(Xs → X) → H2r(Xt̄) sending ∆v ∈ CH
r+1(Xs → X)

to the vanishing cycle δv ∈ H
2r(Xt̄) with respect to the point v.

Thus, the vanishing cycle ∆v lives in the bivariant group CHr+1(Xs →
X) and the cohomological vanishing cycle δv is its image by the natural

map.

The map CHr+1(Xs → X) → H2r(Xt̄) appearing in the theorem is in

fact a part of collection of maps

CHp+1(Xs → X) −→ H2p(Xt̄)

for 0 ≤ p ≤ 2r. They have the following properties.

The collection CH ·+1(Xs → X) has a ring structure such that the map

CH ·+1(Xs → X) −→ H2·(Xt̄)

is a ring homomorphism.

The diagram

CHp(Xs)
◦[is]
−−−→ CHp+1(Xs → X)





y





y

H2p(Xs)
sp∗
−−−→ H2p(Xt̄)

is commutative, where the left vertical map is the “natural” cycle map

and is : Xs → X is the embedding and sp∗ : H2p(Xs) → H2p(Xt̄) is the

specialization map.

If p and q are integers with p+ q = 2r, we have the specialization map

sp∗ : CHq(Xt̄) −→ CHq(Xs)

of Chow groups (cf. [F] 20.3 and 1.12 below), which factors as

sp∗ : CHq(Xt̄)
σ
−→ CHp+1(Xs → X) −→ CHq(Xs)

where the second map is the evaluation at [X]. Then the composite

CHp(Xt̄)
σ
−→ CHp+1(Xs → X) −→ H2p(Xt̄)
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is the cycle map. Moreover the vanishing cycle ∆v vanishes in CHq(Xs).

It is worthwhile to note that we do not assume the vanishing cycle

algebraic. Hence a transcendental cycle can be represented in terms of

bivariant Chow theory.

As an application we give a formula for the intersection number of the

vanishing cycle with an algebraic cycle in terms of the tangent cone at the

singular point (cf. 1.16).

§1. Vanishing cycles in bivariant groups

Recall that a morphism of algebraic schemes is said to be an envelope

if it is proper and every fibre over a schematic point has a rational point.

Recall also that the envelopes define a Grothendieck topology.

Theorem 1.1. (Kimura [K]) For a morphism X → Y of schemes, the

functor Y ′ 7→ CHp(X ×Y Y
′ → Y ′) is a sheaf for the Grothendieck topology

of envelopes of Y .

1.2. Let f : X → S be a morphism of schemes of dimension 2r + 1

(r > 0) to a smooth curve over an algebraically closed field k of characteristic

6= 2, s ∈ S a point. We assume that the morphism f is smooth over S\{s},

and that the fibre Xs has only isolated ordinary quadratic singularities and

they are also isolated ordinary quadratic singularities of X. We denote the

set of singular points of X by V . Recall that a point of a variety is an

isolated ordinary (or non-degenerate in our case) quadratic singularity if it

is formally or étale-locally isomorphic to the origin of

q =
n+1
∑

i,j=1

aijxixj = 0

in the affine space with aij ∈ k and det(aij) 6= 0. Here instead of assuming

det(aij) 6= 0, we may assume that (aij) is the identity matrix; or that q =

x1x2 + · · ·+x2m−1x2m if n = 2m−1 and q = x1x2 + · · ·+x2m−1x2m +x2
2m+1

if n = 2m. Let π : X̃ → X be the blowing-up along the singular points of X,

Q be the exceptional divisor. Then X̃ is smooth and Q =
∐

v∈V Qv and each

Qv is a smooth quadric in P2r+1. Moreover, let X̂s be the blow-up of the

fibre Xs along V and, Q′ = Q ∩ X̂s be the exceptional divisor of X̂s. Then

X̂s is smooth and the strict transform of the fibre Xs and Q′ =
∐

v∈V Q
′
v

and each Q′
v is a smooth quadric in P2r.
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Proposition 1.3. Let Y be a closed subscheme of X, and

Ỹ ∩Q −−−→ Q




y





y

j

Ỹ
i
−−−→ X̃





yπ′





y

π

Y
i
−−−→ X

be Cartesian squares. Then for each integer p, if p 6= 0 or Y 6= X, we have

CHp(Y → X) ∼= Ker(j! : CH2r+1−p(Ỹ )→ CH2r−p(Ỹ ∩Q)).

Proof. Note that

X ′ = X̃ ×X X̃ = X̃ ∪ (Q×X Q).

Putting Y ′ = X ′ ×X Y , we have the exact sequence

0 −→ CHp(Y → X) −→ CHp(Ỹ → X̃) −→ CHp(Y ′ → X ′)

by the above theorem, where the second map is the difference of the maps

induced by the first and second projections from X ′ to X̃. Since X̃
∐

(Q×X

Q) → X ′ is an envelope, CHp(Y ′ → X ′) injects into CHp(Ỹ → X̃) ⊕
CHp(Y ×X Q×X Q→ Q×X Q). Hence, we have an exact sequence

0 −→ CHp(Y → X) −→ CHp(Ỹ → X̃) −→ CHp(Y ×XQ×XQ→ Q×XQ).

The second map factors as

CHp(Ỹ → X̃) −→ CHp(Y ×XQ→ Q) −→ CHp(Y ×XQ×XQ→ Q×XQ)

and the latter map, the difference of the maps induced by the first and the

second projections p1, p2 : Q×X Q→ Q) is injective for p > 0: the problem

is local on X by 1.1, we may assume the singular point is unique. Then

choosing a point q on Q, we have injections

i1, i2 : Q −→ Q×X Q,

defined by i1(x) = (x, q), and i2(x) = (q, x). Assume for x ∈ CHp(Y ×X

Q → Q), we have p∗1(x) − p
∗
2(x) = 0. Notice that p1 ◦ i1 = idQ and p2 ◦ i1
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factors through a point. Applying i∗1 to the equality, we get x− i∗1 ◦ p
∗
2(x) =

x− (p2 ◦ i1)
∗(x) = 0. The element (p2 ◦ i1)

∗(x) is the image of an element

of CHp(Y ×X q → q) ∼= CH−p(Y ×X q), which vanishes unless p ≤ 0. We

conclude the injectivity for p > 0. Thus, we have the exact sequence

0 −→ CHp(Y → X) −→ CHp(Ỹ → X̃) −→ CHp(Q ∩ Ỹ → Q).

Since X̃ and Q are smooth, we have the natural identifications

CHp(Ỹ → X̃) = CH2r+1−p(Ỹ ),

CHp(Q ∩ Ỹ → Q) = CH2r−p(Q ∩ Ỹ ),

and we can identify the map CHp(Ỹ → X̃) → CHp(Q ∩ Ỹ → Q) with

j! : CH2r+1−p(Ỹ )→ CH2r−p(Ỹ ∩Q). For p = 0, we have

CH0(Ỹ → X̃) ∼= CH2r+1(Ỹ ) = 0

unless Y = X by dimension reason, and clearly, CH 0(X → X) = Z.

Corollary 1.4. If v is a singular point of X, we have

CHp(v → X) =

{

Z if p = r + 1,

0 otherwise.

Proof. By Proposition 1.3, we have

CHp(v → X) = Ker(j ! : CH2r+1−p(Qv)→ CH2r−p(Qv))

where Qv denotes the exceptional divisor lying over the point v. By the

excess intersection formula ([F], Theorem 6.3), we have j ! = c1(NQv/X̃) ∪
: CH2r+1−p(Qv) → CH2r−p(Qv). Since NQv/X̃ = OQv

(Qv) = −hv, where

hv is the hyperplane section of Qv, the above proposition implies the desired

formula (cf. 1.17).

Corollary 1.5. We have exact sequences

0 −→ CHp(Xs → X) −→ CH2r+1−p(X̃s) −→ CH2r−p(Q).

The following proposition follows similarly from Theorem 1.1.
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Proposition 1.6. The sequence

0 −→ CHp(X̃s) −→ CHp(X̂s)⊕ CH
p(Q) −→ CHp(Q′)

is exact.

Proposition 1.7. There is an exact sequence

CHq(Q
′)

−
−→ CHq(X̂s)⊕ CHq(Q)

+
−→ CHq(X̃s) −→ 0.

Proof. Consider the fibre square

Q′ −−−→ X̂s




y





y

Q −−−→ X̃s

and notice X̃s\Q = X̂s\Q
′. We have the desired exact sequence by [F], Ex-

ample 1.8.1, where the first arrow is the difference of push-forwards induced

by the natural inclusions and the second map is the sum of push-forwards

induced by the natural inclusions.

Proposition 1.8. We have an exact sequence

0 −→ CH2r−p(Q
′) −→ CHp(X̃s) −→ CHp+1(Xs → X) −→ 0.

Proof. Indeed, we have a diagram whose horizontal sequences are exact:

0 −−−→ CHp(X̃s) −−−→ CHp(X̂s)⊕CH
p(Q)

−
−−−→ CHp(Q′)





y





y

∼=

x





0 ←−−− CH2r−p(X̃s) ←−−− CH2r−q(X̂s)⊕CH2r−q(Q)
−
←−−− CH2r−p(Q

′)

We shall show that the right vertical arrow is zero; then we have an injection

0 → CH2r−p(Q
′) → CHp(X̃s) and its cokernel injects into CH2r−p(X̃s).

Notice that the map CHp(X̂s)⊕ CH
p(Q)→ CHp(Q′) is identified with

CHp(X̂s)⊕ CH
p(Q) −−−→ CHp(Q′)





y

∼=





y

∼=

CH2r−p(X̂s)⊕ CH2r−p(Q) −−−→ CH2r−p(Q
′)



56 H. SAITO

where the lower map is the difference of the maps induced by the injec-

tions i : Q′ ↪→ Q, j : Q′ ↪→ X̂s. Hence, the image of z ∈ CH2r−p(Q
′) in

CH2r−1−p(Q
′) is i!i∗(z) + j!j∗(z). By the excess intersection formula, we

have

i!i∗(z) + j!j∗(z) = c1(NQ′/Q) ∪ z + c1(NQ′/X̂s
) ∪ z

=
(

c1(NQ′/Q) + c1(NQ′/X̂s
)
)

∪ z;

but since c1(NQ′/Q) is the hyperplane section of quadric, while c1(NQ′/X̂s
)

is the minus of the hyperplane section of quadric, it vanishes. We thus have

an exact sequence

0 −→ CH2r−p(Q
′) −→ CHp(X̃s) −→ CH2r−p(X̃s).

To determine the image, consider the diagrams

Q Q
∥

∥

∥





y

Q −−−→ X̃s
∥

∥

∥





y

Q −−−→ X̃

,

Q′ −−−→ X̂s




y





y

Q −−−→ X̃s




y
id





y

Q −−−→ X̃

and we see that the following diagram commutes, where the lower map is

induced by the inclusion Q ↪→ X̃ :

CH2r−p(X̂s)⊕ CH2r−p(Q)
−
−−−→ CH2r−1−p(Q

′)




y





y

CH2r−p(X̃s) −−−→ CH2r−1−p(Q).

Since the right vertical arrow is injective, the image in CH2r−p(X̃s) of the

kernel of the horizontal arrow above, i.e., the image of CH p(X̃s), is the

kernel of the horizontal arrow below, that is, CHp+1(Xs → X).

Proposition 1.9. The ring structure of CH ·(X̃s) induces the ring

structure on CH ·+1(Xs → X) from the map CHp(X̃s)→ CHp+1(Xs → X).
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Proof. It suffices to show that the multiplication of an element of

CH ·(X̃s) by an element of CH(Q′) is in CH(Q′). Note that the map

CH ·(X̃s) −→ CH(X̂s)⊕ CH(Q) = CH(X̂s)× CH(Q)

is a ring homomorphism and that X̂s and Q are smooth, so we can and

we do identify the Chow cohomology and the Chow homology. Let i and j

denote the inclusions Q′ ↪→ Q and Q′ ↪→ X̂s. For z ∈ CH(X̃s), its image

in CH(X̂s) × CH(Q) is of the form (x, y), x ∈ CH(X̂s), y ∈ CH(Q) with

i∗(y) = j∗(x) = w. The image of CH(Q′) is of the form (j∗(u),−i∗(u)),
u ∈ CH(Q′). Then, we get

(x, y) · (j∗(u),−i∗(u)) = (x · j∗(u),−y · i∗(u))

= (j∗(j
∗(x) · u),−i∗(i

∗(y) · u))

= (j∗(w · u),−i∗(w · u)),

so the product is in the image of CH(Q′).

Remark 1.10. For p 6= 2r, CH2r−p(Q
′) ↪→ CHp(X̃s) can be identified

with CHp(Q′ → X̃s) ↪→ CHp(X̃s), but not for p = 2r.

Definition 1.11. We denote a generator of the kernel of multiplica-

tion by the hyperplane section of the Chow group of codimension r of 2r-

dimensional quadric by ∆. For a singular point v of X, there is a cycle

∆v ∈ CH
r(X̃s) whose restriction to Qv is the cycle ∆ and whose restric-

tion to the other Qv′ and to X̂s vanish, by 1.6. We denote its image in

CHr+1(Xs → X) also by ∆v (1.8). It is the image by the map induced by

v → Xs of a generator of CHr+1(v → X), and hence is determined up to

sign.

When X is proper over S, we have the degree map

〈 〉 : CH2r+1(Xs → X) −→ CH0(Xs) −→ Z

defined by

〈c〉 =

∫

Xs

c([X])

for c ∈ CH2r+1(Xs → X). If c1 + c2 ∈ CH
2r(X̂s)⊕ CH

2r(Q) ∼= CH2r(X̃s)

is a lift of c (1.6), then

〈c〉 =

∫

X̂s

c1([X̂s]) +

∫

Q
c2([Q])
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which is independent of the choice of the lifting, by definition of the map

CH(Q′)→ CH(X̂s)⊕CH(Q) and the isomorphisms CH0(X̂s) ∼= CH0(Xs),

CH0(Q
′) ∼= CH0(Q). Note that we have (cf. 1.17 below)

〈∆2
v〉 = (−1)r2.

Theorem 1.12. Fix a (strict) henselization s → Sh of s → S and

let Xt̄ be the geometric generic fibre of X → S and p, q be integers with

p + q = 2r. We have the specialization map sp∗ : CHq(Xt̄) → CHq(Xs).

There is a map σ : CHp(Xt̄)→ CHp+1(Xs → X) such that

sp∗ : CHq(Xt̄)
σ
−→ CHp+1(Xs → X) −→ CHq(Xs)

where the second map is the evaluation at [X].

Proof. Recall the definition of the specialization map (cf. [F] 20.3).

For a finite extension L of the function field κ(t) in the field κ(t̄), let S′′

be the normalization of Sh in L · κ(th), where th is the generic point of the

henselization Sh. Recall that a field k is a Nagata (= universally-japanese

[EGA], chapt 0, 23.1.1) ring [B], chap. V, §3, no 2, théorème 2, hence so is

the local ring OS,s, therefore its henselization hOS,s is also a Nagata ring

[EGA], IV, 18.7.3. Because L · κ(th) is a finite extension of κ(th), S′′ is

finite over Sh. Since Sh is henselian and S ′′ is integral hence connected,

S′′ is a local ring with residue field k. Thus, s → Sh factors uniquely as

s → S′′ → Sh. Let S′ be the normalization of S in L, we have a map

S′′ → S′, hence, a pointed (smooth) curve s → S ′ → S. If L1 is a finite

extension of L, and if s → S ′
1 is the corresponding pointed curve, we have

a map of pointed curves s → S ′
1 → S′. We consider the system of (germs

of) pointed curves thus obtained. Let s→ S ′ → S be the pointed (smooth)

curve smooth over S outside s. Consider the base-change

X̃s −−−→ X̃ ′ −−−→ X̃




y





y





y

s −−−→ S′ −−−→ S.

Then we get the natural isomorphism X̃\X̃s
∼= X\Xs. Denote the inclusion

s→ S′ by k′. We have the exact sequence

CHq+1(X̃s)
k′

∗−→ CHq+1(X̃
′) −→ CHq+1(X̃

′\X̃s) −→ 0
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and the map k′! : CHq+1(X̃
′) → CHq(X̃s). Since k′! ◦ k′∗ = 0 holds by the

excess intersection formula, and because of the fact that the normal bundle

N{s}/S′ on the point {s} is trivial, we get a map

CHq+1(X̃
′\X̃s) −→ CHq(X̃s).

Taking the limit of these maps for various S ′, we get the desired specializa-

tion map

CHq(Xt̄) −→ CHq(X̃s).

For the inclusion i : Q → X̃, we claim that 0 = i! ◦ k′! : CHq+1(X̃
′) →

CHq−1(Q). Look at the diagram

Q −−−→ X̃s −−−→ s




y





y





yk′

Q∗ −−−→ X̃ ′ −−−→ S′





y





y





y

Q
i
−−−→ X̃ −−−→ S.

Then we get i! ◦ k′! = k′! ◦ i! by [F], 6.4. Since s ∈ S ′ is the only point over

s ∈ S, and the image of Q in S is s, Q∗
red = Q. Hence CH(Q)

∼=
→ CH(Q∗).

From the diagram
Q Q −−−→ s
∥

∥

∥





y





yk′

Q −−−→ Q∗ −−−→ S′

and the excess intersection formula, we conclude 0 = k ′! : CHq(Q
∗) →

CHq−1(Q). This means that the image of k′! : CHq+1(X̃
′) → CHq(X̃s)

is in the kernel of i! : CHq(X̃s) → CHq−1(Q), that is, in CHp+1(Xs → X)

by (1.5). Therefore we have σ : CHp(Xt̄) → CHp+1(Xs → X) and the

specialization map factors as

σ : CHp(Xt̄)
σ
−→ CHp+1(Xs → X) −→ CHq(X̃s).

Since the specialization maps commute with the push-forwards, the diagram

CHp(Xt̄) −−−→ CHq(X̃s)
∥

∥

∥





y

CHp(Xt̄) −−−→ CHq(Xs)
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commutes, where the horizontal arrows are specializations and the right

vertical arrow is push-forward, from which the theorem follows.

Remark 1.13. We have an exact sequence

0 −→
⊕

v

CHr+1(v → X) −→ CHr+1(Xs → X) −→ CHr(Xs) −→ 0.

In fact, it follows from Propositions 1.3 and 1.7 that we have the exact

sequence, since CHr(Q)→ CHr−1(Q) is surjective.

Proposition 1.14. The maps σ : CHp(Xt̄)→ CHp+1(Xs → X) form

a ring homomorphism.

Proof. Let s → S ′ → S be as in the previous proof. We shall show

that the map CHp(X̃ ′) → CHp(X̃ ′\X̃s) ∼= CHq+1(X̃
′\X̃s) is surjective.

We have the diagram
Ys −−−→ Y




y





y
b

X̃s −−−→ X̃ ′ −−−→ X̃




y





y





y

s −−−→ S′ −−−→ S

where b : Y → X̃ ′ is a resolution of singularities of X̃ ′. (See 2.7 below for

the resolution.) We may assume that Y \Ys
∼= X̃ ′\X̃s. Note that the map

CHp(Y ) ∼= CHq+1(Y ) −→ CHq+1(Y \Ys) = CHp(Y \Ys)

is surjective. Since the diagram

CHp(Y ) −−−→ CHp(Y \Ys)




y





y

CHp(X̃ ′) −−−→ CHp(X̃ ′\X̃s)

commutes, where the left vertical arrow is given by x 7→ b∗(x ◦ [b]), and the

right vertical arrow is bijective, the restriction map

CHp(X̃ ′) −→ CHp(X̃ ′\X̃s)
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is surjective and this map factors as

CHp(X̃ ′) −→ CHq+1(X̃
′) −→ CHp(X̃ ′\X̃s) = CHq+1(X̃

′\X̃s).

The diagram
CHp(X̃ ′) −−−→ CHq+1(X̃

′)




y





y

CHp(X̃s) −−−→ CHq(X̃s)

commutes, where the upper horizontal map is evaluation at [X̃ ′], the lower

horizontal map is evaluation at [X̃s], and the vertical maps are the restric-

tions. Therefore, we get the commutative diagram

CHp(X̃ ′) −−−→ CHp(X̃ ′\X̃s)




y





y

CHp(X̃s) −−−→ CHp+1(Xs → X).

The upper horizontal map is surjective and the maps except the right verti-

cal arrow form ring homomorphisms, hence so do the right vertical ones. By

passing to the limit, we see that the induced map CH ·(X̃t̄)→ CH ·+1(Xs →
X) is a ring homomorphism.

Proposition 1.15. Let s→ S ′ be a pointed curve as in the proof of the

theorem (hence s→ S ′ is the unique point over s→ S) with the ramification

index e of the morphism S ′ → S at s and consider the cartesian square

X
p′
←−−− X ′





y





y

S
p
←−−− S′.

Let Z ′ ⊂ X ′ be an integral subscheme of dimension r + 1 and Cv∗Z
′ its

normal cone along the intersection v∗ = p′−1(v)∩Z ′ of p′−1(v) and Z ′. We

have inclusions

Cv∗Z
′ ⊂ Cp′−1(v)/X′ = CvX ×s p

−1(s) ⊂ TvX ×s p
−1(s)

and their projective bundles P (Cv∗Z
′) ⊂ P (CvX) ×s p

−1(s) ⊂ P (TvX) ×s

p−1(s). Notice that P (CvX) ⊂ P (TvX) can be naturally identified with the
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inclusion Q ⊂ P2r+1. Under these assumptions and notations, we can write

uniquely

[P (Cv∗Z
′)] = e · Z∗ as a cycle on P (Cv∗Z

′) ⊂ Q

and the image of geometric generic fibre Z ′
t̄ of Z over S by the map

CHr(Xt̄) → CHr+1(Xs → X) ↪→ CHr(X̃s) is Z∗ + (a cycle on X̂s) and

the product of ∆v and the image σ(Z ′
t̄) in CH ·(Xs → X) is given by Z∗ ·∆v

in Q.

Proof. We consider S ′ Zariski-locally around s→ S ′. Let Iv ⊂ OX be

the ideal sheaf of the point v. Then the blow-up X̃ is, by definition,

X̃ = Proj
(

⊕

n≥0

In
v

)

.

Note that p, hence p′ is flat. Let IZ′ ⊂ OX′ be the ideal sheaf of Z ′, and

put Jv = (p′∗(Iv) + IZ′)/IZ′ ⊂ OZ′ . Notice that Jv is the ideal sheaf of v∗

in Z ′. The strict transform of Z ′ in X̃ ′ = Proj
(
⊕

n≥0 p
′∗(In

v )
)

is

Z̃ ′ = Proj
(

⊕

n≥0

Jn
v

)

.

The pull-back Q∗ of the exceptional divisor Q by the morphism X̃ ′ → X̃ is

e · Q, where the latter Q is considered as a divisor lying on X̃s ⊂ X̃ ′. The

pull-back of Z̃ ′ by the inclusion Q∗ ⊂ X̃ ′ is given by

Proj
(

⊕

n≥0

(OX′/p′∗(Iv))⊗ J
n
v

)

= Proj
(

⊕

n≥0

(Jn
v /J

n+1
v )

)

,

which is nothing but the projective bundle associated with the normal cone

Cv∗Z
′ and

Q = Proj
(

⊕

n≥0

(In
v /I

n+1
v )

)

is the projective bundle associated with the normal cone CvX. Since Q∗ ·
[Z̃ ′] = eQ · [Z̃ ′] on Q∗∩ Z̃ ′ = P (Cv∗Z

′), the unique existence of Z∗ = Q · [Z̃ ′]

is trivial. We have X̃s = Q + X̂s as divisors on X̃ ′, hence X̃s · [Z̃
′] =

Q · [Z̃ ′] + X̂s · [Z̃
′] = Z∗ + X̂s · [Z̃

′]. The proposition follows from the

definitions of the maps and products.
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Now we get the following corollary.

Corollary 1.16. Let Z ⊂ X be a subvariety and Zt̄ be the geometric

generic fibre. Then the intersection number 〈σ(Zt̄) ·∆v〉 is 〈[P (CvZ)] · ∆〉

where P (CvZ) ⊂ P (CvX) = Q. In particular, if Z is a smooth subvariety

of X of dimension r+1 passing through the point v, then 〈σ(Z t̄) ·∆v〉 = ±1.

For another such a variety Z ′, 〈σ(Zt̄) · ∆v〉 = 〈σ(Z ′
t̄) · ∆v〉 if the parities

of r and dim(TvZ ∩ TvZ
′) are opposite and 〈σ(Zt̄) · ∆v〉 = −〈σ(Z ′

t̄) · ∆v〉,

otherwise.

Proof. Everything is clear except the last one. It follows from the next

proposition.

Proposition 1.17. Let Q be a smooth quadric in Pm+1 and h ∈

CH1(Q) be the hyperplane section of Q. Then the Chow groups of Q are as

follows:

Case m = 2r− 1. CHp(Q) = Zhp for 0 ≤ p < r and CHp(Q) = Zhp/2

for r ≤ p ≤ m.

Case m = 2r. CHp(Q) = Zhp for 0 ≤ p < r and CHp(Q) = Zhp/2 for

r < p ≤ m. For p = r, CHr(Q) = Z[L1] ⊕ Z[L2], where L1, L2 ⊂ Q are

r-dimensional planes.

The ring structure of CH ·(Q) is given by [Li] · h
j = hr+j/2 for i = 1, 2

and 0 < j ≤ r. We have

〈[L] · [L′]〉 =

{

1 if dimL ∩ L′ is even,

0 if dimL ∩ L′ is odd,

for r-dimensional planes L, L′ ⊂ Q. Here we adopt the convention dim ∅ =

−1.

Except the last part on the intersection numbers, the proposition is

well-known. For the last part, note that the rational equivalence and the

algebraic equivalence coincide on a smooth quadrics and see [H], XIII, 4,

Theorem III.

Example 1.18. If Z ′ ⊂ X ′ is smooth at v′, then the intersection num-

ber 〈σ([Z ′
t̄]) ·∆v〉 is ±1.
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First we shall show that Z ′ → S′ is smooth at v′. In fact, assume

that the differential map Tv′Z
′ → Ts′S

′ vanishes. Since Tv′Z
′ = Cv′Z

′ ⊂

Cv′X
′ ⊂ Tv′X

′, we have

Tv′Z
′ ⊂ Cv′X

′ ∩Ker(Tv′X
′ → Ts′S

′).

The kernel Ker(Tv′X
′ → Ts′S

′) is (2r + 1)-dimensional and Cv′X
′ ⊂ Tv′X

′

is a quadric, the linear space Tv′Z
′ of dimension r + 1 is in zero locus of

a quadratic form of (2r + 1)-dimensional space. Since X ′
s′ has an isolated

ordinary quadratic singularity at v ′, the quadratic form is nondegenerate,

which is impossible. We can choose the coordinates x0, . . . , x2r+1 at v′ (or

lifts of a basis of the Zariski tangent space), so that x0 is a local parameter

of S′ at s′, and that x0, . . . , xr are the local coordinates of Z ′ at v′. Then

with the notation in the proof of Proposition 1.15, Jv∗ = (x0
e, x1, . . . , x2r+1)

and Cv∗Z
′ = Spec(k[x0]/(x0

e))×Tv′Z
′. Hence, P (Cv∗Z

′) = e P (Tv′Z
′) as a

cycle, and Z∗ = P (Tv′Z
′) ⊂ P (CvX); we get the intersection number as is

stated above.

§2. Comparison with cohomology

2.1. We fix a (strict) henselization s → Sh of s → S and assume that

the morphism f : X → S is proper. We denote the étale cohomology of Y

with coefficients in Λ = Z` by Hn(Y ), where ` is a prime invertible in k (for

simplicity of notation, we omit the Tate twist). Standard reference for the

formalism of the vanishing cycle in the sequel is [SGA 7], exposé XIII and

exposé XV. We have

Proposition 2.2. We have a canonical map clX̃s
: CHp(X̃s) →

H2p(X̃s) which forms a ring homomorphism. Similarly, we have a canonical

map clXs
: CHp(Xs)→ H2p(Xs) which forms a ring homomorphism.

Proof. We have the exact sequence

0 −→ CHp(X̃s) −→ CHp(X̂s)⊕ CH
p(Q)

−
−→ CHp(Q′)

and similarly, by the Mayer-Vietoris sequence, we get the exact sequence

0 −→ H2p(X̃s) −→ H2p(X̂s)⊕H
2p(Q)

−
−→ H2p(Q′).
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Since X̂s, Q and Q′ are smooth, we have the commutative diagram

0 −−−→ CHp(X̃s) −−−→ CHp(X̂s)⊕CH
p(Q) −−−→ CHp(Q′)





y





y

0 −−−→ H2p(X̃s) −−−→ H2p(X̂s)⊕H
2p(Q) −−−→ H2p(Q′)

and we get the map clX̃s
: CHp(X̃s) → H2p(X̃s) making the left square

commutative. Since the maps in the diagram form ring homomorphisms,

we see that clX̃s
: CH ·(X̃s) → H2·(X̃s) is also a ring homomorphism. Sim-

ilar arguments show the existence of the map clXs
: CHp(Xs) → H2p(Xs)

defined from the usual cycle map CHp(X̂s)→ H2p(X̂s) by considering the

envelope π̂s : X̂s → Xs and the Leray spectral sequence Hp(Xs, R
qπ̂s∗Λ)⇒

Hp+q(X̂s). Notice that Rqπ̂s∗Λ (q > 0) are Hq(Q′) supported at the point

v and that Hq(Q′) = 0 for odd q.

Theorem 2.3. Let sp∗ : H2p(Xs) → H2p(Xt̄) be the specialization

map. There exists a map

CHp+1(Xs → X) −→ H2p(Xt̄)

making the following diagram commutative

CHp(Xs)
◦[is]
−−−→ CHp+1(Xs → X)





y





y

H2p(Xs)
sp∗
−−−→ H2p(Xt̄).

where is : Xs → X denotes the embedding. Moreover the map CH ·+1(Xs →

X) → H2·(Xt̄) is a ring homomorphism and the image of ∆v ∈

CHp+1(Xs → X) is the vanishing cycle δv ∈ H
2r(Xt̄) relative to the point

v, and the composite

CHp(Xt̄)
σ
−→ CHp+1(Xs → X) −→ H2p(Xt̄)

is the cycle map.

In fact, we prove the following.
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Lemma 2.4. (i) Let sp∗ : H2p(X̃s)→ H2p(Xt̄) be the specialization map

for X̃ → S. Then the kernel of the composite CHp(X̃s) → H2p(X̃s) →

H2p(Xt̄) contains CH2r−p(Q
′).

(ii) Consider the map CHp+1(Xs → X)→ H2p(Xt̄) making the follow-

ing diagram commutative

CHp(X̃s) −−−→ CHp+1(Xs → X)




y





y

H2p(X̃s) −−−→ H2p(Xt̄).

Then this map CH ·+1(Xs → X)→ H2·(Xt̄) is a ring homomorphism.

Proof. To simplify the notation, we denote the base-change X×SS
h →

Sh by X → S. Without fear of confusion, we may and do identify the group

CHp+1(Xs → X) with the cokernel of CH2r−p(Q
′)→ CHp(X̃s) by 1.8. By

construction, we have a natural map H4r−2p(Q
′) ∼= H2p−2(Q′)→ H2p(X̃s),

which makes the following diagram commutative:

CH2r−p(Q
′) −−−→ CHp(X̃s)





y





y

H2p−2(Q′) −−−→ H2p(X̃s).

Consider the injective ring homomorphism H2p(X̃s)→ H2p(X̂s)⊕H
2p(Q).

An element of H2p(X̃s) is identified with (x, y) ∈ H2p(X̂s) ⊕H
2p(Q) with

j∗(x) = i∗(y). For u ∈ H2p−2(Q′), its image is (j∗(u),−i∗(u)). Let q = 2r−p

and z′ = (x′, y′) ∈ H2q(X̂s) ⊕ H2q(Q) with j∗(x′) = i∗(y′) = w′. Then,

the product of u and z′ is given by u · z′ = (j∗(u · w
′),−i∗(u · w

′)) ∈

H4r(Xs)⊕H
4r(Q), which is the image of an element of H4r−2(Q′). Identi-

fying H4r(Xt̄) ∼= Λ, we have

sp∗(u · z′) = 〈j∗(u · w
′)〉 − 〈i∗(u · w

′)〉

= 〈u · w′〉 − 〈u · w′〉

= 0,

where the brackets denote the intersection numbers. Now let us show that

the maps sp∗ : H2p(X̃s) → H2p(Xt̄) are surjective when tensored with Q.
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The proof will be completed in Subsection 2.6. Before embarking in the

proof, notice that, since the intersection pairing

H2p(Xt̄)Q ×H
2q(Xt̄)Q −→ ΛQ

is perfect, we see that sp∗(H2p−2(Q′)) are torsion. For the proof, we need a

lemma.

Lemma 2.5. We denote the image of ∆v ∈ CHr(X̃s) by the map

CHr(X̃s) → H2r(X̃s,Λ) also by ∆v. Then its image by sp∗ : H2r(X̃s) →
H2r(Xt̄) is the vanishing cycle δv with respect to the point v.

Proof. Let π : Y = Q
∐

X̂s → X̃s be the natural map. Recall Q′ =

Q ∩ X̂s. We have an exact sequence

0 −→ ΛX̃s
−→ π∗(ΛY ) −→ ΛQ′ −→ 0,

from which we get

H2r−1
Q (X̃s,ΛQ′) −→ H2r

Q (X̃s,ΛX̃s
) −→ H2r

Q (X̃s, Rπ∗(ΛY )) −→ H2r
Q (X̃s,ΛQ′).

Since Hn
Q(X̃s,ΛQ′) = Hn(Q′,Λ) and H2r

Q (X̃s, Rπ∗(ΛX̃s
)) = H2r(Q,Λ) ⊕

H2r
Q′(X̂s,Λ), we see that the sequence

0 −→ H2r
Q (X̃s,Λ) −→ H2r(Q,Λ)⊕H2r

Q′(X̂s,Λ)
−
−→ H2r(Q′,Λ)

is exact. Moreover, we have natural maps

0 −−→ CHr(Q→ X̃s) −−→ CHr(Q)⊕ CHr(Q′ → X̂s) −−→ CHr(Q′)




y





y

0 −−→ H2r
Q (X̃s,Λ) −−→ H2r(Q,Λ)⊕H2r

Q′(X̂s,Λ) −−→ H2r(Q′,Λ).

Hence we get the map

CHr(Q→ X̃s) −→ H2r
Q (X̃s,Λ)

making the left square of the diagram commutative. It is clear that we have

also maps CHr(Qv → X̃s) → H2r
Qv

(X̃s,Λ) for each v and the map above is

identified with the direct sum of these maps. Note that ∆v ∈ CH
r(X̃s) is

in the image of CHr(Qv → X̃s) → CHr(X̃s). Choose a singular point v
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and let X∗ be the blowing-up of X at the singular points of X except v.

We consider the diagram

X̃ −−−→ X∗ −−−→ X




y





y





y

S S S

and the corresponding near-by functors Rψ̃, Rψ∗, Rψ. Recall that

H2r
v (Xs, RψΛ) ∼= Λ and the vanishing cycle δv is its generator (or its image

in H2r(Xt̄,Λ)). We have then a commutative diagram

H2r
v (Xs, RψΛ) −−−→ H2r

v (X∗
s , Rψ

∗Λ)




y





y

H2r(Xs, RψΛ) −−−→ H2r(X∗
s , Rψ

∗Λ)

and the lower groups are isomorphic to H2r(Xt̄,Λ). In the diagram

H2r
Qv

(X̃s, Rψ̃Λ) −−−→ H2r(X̃s, Rψ̃Λ) −−−→ H2r(X̃s\Qv, Rψ̃Λ)
x





x





x





H2r
v (X∗

s , Rψ
∗Λ) −−−→ H2r(X∗

s , Rψ
∗Λ) −−−→ H2r(X∗

s \{v}, Rψ
∗Λ),

the horizontal rows are exact. The middle terms are both isomorphic to

H2r(Xt̄,Λ). The right vertical map is isomorphic since X̃s\Qv
∼= X∗\{v}

and the nearby functor is local on X∗
s , and X̃s. Moreover, the lower left

map is injective and its image is generated by the vanishing cycle δv . We

have a canonical map Λ→ Rψ̃Λ and the image of the composite

H2r
Qv

(X̃s,Λ) −→ H2r
Qv

(X̃s, Rψ̃Λ) −→ H2r(X̃s, Rψ̃Λ)

is contained in the image of H2r
v (X∗

s , Rψ
∗Λ). The diagram

H2r
Qv

(X̃s,Λ) −−−→ H2r
Qv

(X̃s, Rψ̃Λ)




y





y

H2r(X̃s,Λ) −−−→ H2r(X̃s, Rψ̃Λ)

commutes and the lower horizontal map is identified with the specialization

map

sp∗ : H2r(X̃s,Λ) −→ H2r(Xt̄,Λ).
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The cycle ∆v is in the image of H2r
Qv

(X̃s,Λ) in H2r(Xt̄,Λ). Thus, sp∗(∆v) =

aδv with a ∈ Λ. Since ∆v
2 = (−1)r2 + 0 ∈ H4r(Q,Λ) ⊕ H4r(X̂s,Λ) =

H4r(X̃s,Λ) and the specialization map is a ring homomorphism, we have

(−1)r2 = 〈sp∗(∆v
2)〉 = 〈sp∗(∆v)

2〉 = 〈a2δv
2〉 = (−1)r2a2,

hence a = ±1, or sp∗(∆v) = ±δv. Since the vanishing cycle δv (and ∆v) are

defined up to sign, we see the image of ∆v is the vanishing cycle δv.

2.6. Now we return to the proof of Lemma 2.4. Assume that 0 ≤ p <

2r. Notice that the pull-back

H2p(Xs,Λ) −→ H2p(X̃s,Λ)

is injective since the diagram

H2p(Xs,Λ) −−−→ H2p(Xt̄,Λ)




y

∥

∥

∥

H2p(X̃s,Λ) −−−→ H2p(Xt̄,Λ)

commutes and the upper horizontal map is injective. We have also the

commutative diagram

0 −−−→ H2p
Q′(X̃s,Λ) −−−→ H2p

Q′(Q,Λ)⊕H2p
Q′(X̂s,Λ)

−
−−−→ H2p(Q′,Λ)





y





y





y

0 −−−→ H2p(X̃s,Λ) −−−→ H2p(Q,Λ)⊕H2p(X̂s,Λ)
−
−−−→ H2p(Q′,Λ)

and the middle vertical map is injective. In particular, the left vertical

map is also injective. It also follows that H2p−2(Q′,Λ) = H2p
Q′(X̃s,Λ) in

H2p(X̃s,Λ). The composite of the lower left horizontal map and the pull-

back H2p(Xs,Λ)→ H2p(X̃s,Λ) is of the form (0,pull-back). Since the upper

left horizontal map is “diagonal”, i.e., it is identified with the diagonal map

Λ → Λ ⊕ Λ for 0 ≤ p ≤ 2r − 1, H2p(Xs,Λ) injects into the cokernel of
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H2p
Q′(X̃s,Λ)→ H2p(X̃s,Λ). Consider the commutative diagram

H2p−1(X̃s\Q
′,Λ) −−−→ H2p

Q′(X̃s,Λ) −−−→ H2p(X̃s,Λ)




y





y





y

H2p−1(X̃s\Q
′, Rψ̃Λ) −−−→ H2p

Q′(X̃s, Rψ̃Λ) −−−→ H2p(X̃s, Rψ̃Λ)

−−−→ H2p(X̃s\Q′,Λ)




y

−−−→ H2p(X̃s\Q
′, Rψ̃Λ)

where the horizontal rows are exact. Since X̃ → S is smooth on X̃s\Q
′, the

vanishing functor vanishes on X̃s\Q
′, and hence Λ ∼= Rψ̃Λ there. It follows

that the both vertical extreme arrows are bijective. The injectivity of the

upper second map gives a commutative diagram

0 −−−→ H2p
Q′(X̃s,Λ) −−−→ H2p(X̃s,Λ) −−−→ H2p(X̃s\Q

′,Λ)




y





y

∥

∥

∥

0 −−−→ H2p
Q′(X̃s, Rψ̃Λ) −−−→ H2p(X̃s, Rψ̃Λ) −−−→ H2p(X̃s\Q

′, Rψ̃Λ)

with exact rows. As H2p(Xs,Λ) injects into the cokernel of H2p
Q′(X̃s,Λ) →

H2p(X̃s,Λ), the maps

H2p(Xs,Λ) −→ H2p(X̃s,Λ) −→ H2p(X̃s\Q
′,Λ),

H2p(Xs,Λ) −→ H2p(X̃s,Λ) −→ H2p(X̃s, Rψ̃Λ) = H2p(Xt̄,Λ)

are injective. Moreover, the latter map is bijective for p 6= r, and otherwise

0 −→ H2r(Xs,Λ) −→ H2r(Xt̄,Λ)
(δv ,?)
−→

⊕

v

Λv

is exact. Therefore, in view of 2.5 in the case of p = r, the maps

sp∗ : H2p(X̃s,Λ) → H2p(Xt̄,Λ) are surjective when tensored with Q and

the torsion elements of H2p(Xt̄,Λ) come from H2p(Xs,Λ). The image of

H2p
Q′(X̃s,Λ) ∼= H2p−2(Q′,Λ) in H2p(Xt̄,Λ) is torsion, and it comes from

H2p(Xs,Λ). Since its image in H2p(X̃s\Q
′,Λ) ∼= H2p(X̃s\Q

′, Rψ̃Λ) van-

ishes, the image ofH2p
Q′(X̃s,Λ) inH2p(Xt̄,Λ) must vanish. Hence, the images
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of CH2r−p(Q
′) ↪→ CHp(X̃s) in H2p(Xt̄,Λ) vanish for 0 ≤ p ≤ 2r. (The case

p = 2r is trivial.) Since the composition CHp(X̃s)→ H2p(X̃s)
sp∗
−→ H2p(Xt̄)

is a ring homomorphism, CH ·+1(Xs → X)→ H2·(Xt̄) is also a ring homo-

morphism. Thus, Lemma 2.4 is proven.

2.7. The theorem follows from the lemma by the functoriality except

the last part. It remains to show that the composite CH p(Xt̄) →
CHp+1(Xs → X) → H2p(Xt̄) is in fact the cycle map. By definition,

the map is given as follows. Let s → S ′ be a pointed open smooth curve,

smooth over S outside s. The map CHp(X̃S′) → CHp(X̃S′\X̃s) is sur-

jective and induces the map CHp(X̃S′\X̃s) → CHp(X̃s) by restriction.

We have the cycle map CHp(X̃s) → H2p(X̃s) and the specialization map

H2p(X̃s) → H2p(Xt̄), hence we get CHp(X̃s) → H2p(X̃s) and the map

CHp(X̃S′\X̃s)→ H2p(Xt̄). The inductive limit of these maps for various S ′

gives the desired map. Thus it suffices to show that for c ∈ CH p(X̃S′), the

image of the pull-back c|X̃s
by the map CHp(X̃s) → H2p(X̃s) → H2p(Xt̄)

is the class of c|Xt̄
in H2p(Xt̄). If b : Y → X̃S′ is a resolution of singularities

and if c′ = b∗(c) ∈ CHp(Y ), then the class of c|Xt̄
in H2p(Xt̄) is the image

of the class of c′ by the map H2p(Y )→ H2p(Xt̄). Since the map factors as

H2p(Y ) → H2p(Ys) → H2p(Xt̄), where the latter map is the specialization

map for Y → XS′ , it is sufficient to verify that the image of the class of c′

by the map H2p(Y )→ H2p(Ys) is the image of the class of c|X̃s
by the map

bs
∗ : H2p(X̃s)→ H2p(Ys). The map S ′ → S factors as S ′ → S′′ → S, where

S′′ → S is étale at the image of s ∈ S ′, and S′ → S of the form xe = y,

where x and y are the local parameters at the images of the point s. Local-

izing if necessary, we may assume S ′′ → S is étale. Since the base-change

ψ : XS′′ → X is étale, the map ? ◦ [ψ] : CHp(Xs → XS′′)→ CHp(Xs → X)

is bijective. Thus, we may assume S ′′ = S. The scheme X̃S′ has singu-

larities along Q′ and at each point of Q′, it is étale-locally isomorphic to

Q′×{(u, v, w) ∈ A3 ; uv = w2e}, which is essentially a surface singularity of

type A2e−1. Hence the exceptional divisor of a resolution Y of singularities

consists of divisors E1, . . . , E2e−1, among which each Ei has a map Ei → Q′

with fibre P1; Ei and Ei+1 intersect along a section Q′
i; and Ei and Ej

do not intersect for |i − j| > 1. Moreover, X̂s intersects with E1 along Q′
0

which is isomorphic to Q′ and with no other exceptional divisors. Similarly,

Q intersects with E2e−1 along Q′
2e−1 which is isomorphic to Q′ and with

no other exceptional divisors. Denoting E0 = X̂s and E2e = Q, we have

Ys =
⋃2e

i=0 Ei. Put Y ′ =
∐2e

i=0 Ei. Then the natural map Y ′ → Ys gives an



72 H. SAITO

injection

0 −→ H2p(Ys) −→ H2p(Y ′).

Put X ′ = E0
∐

E2e. Thus we get the commutative diagram

Ys ←−−− Y ′





y





y

X̃s ←−−− X ′,

where the right vertical arrow is the identity on E0 and E2e; and is, on the

other Ei’s, the projection Ei → Q′ = Q′
0 ⊂ E0. We get a commutative

diagram
H2p(Ys) −−−→ H2p(Y ′)

x





x





H2p(X̃s) −−−→ H2p(X ′).

Since X ′ and Y ′ are smooth, we have the commutative diagram

CHp(Y ′) −−−→ H2p(Y ′)
x





x





CHp(X ′) −−−→ H2p(X ′)

where the horizontal maps are the cycle maps. Similarly, the diagram

CHp(Y ′) −−−→ H2p(Y ′)
x





x





CHp(Y ) −−−→ H2p(Y )

is also commutative. Combining these, we see that the image of the class

of c′ by the map H2p(Y )→ H2p(Ys) is the image of the class of c|X̃s
by the

map bs
∗ : H2p(X̃s)→ H2p(Ys).
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