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TRUNCATED MICROSUPPORT AND HYPERBOLIC

INEQUALITIES

ANA RITA MARTINS and TERESA MONTEIRO FERNANDES

Abstract. We prove that the k-truncated microsupport of the specialization

of a complex of sheaves F along a submanifold is contained in the normal

cone to the conormal bundle along the k-truncated microsupport of F . In the

complex case, applying our estimates to F = RHomD(M,O), where M is a

coherent D-module, we obtain new estimates for the truncated microsupport of

real analytic and hyperfunction solutions. When M is regular along Y we also

obtain estimates for the truncated microsupport of the holomorphic solutions

of the induced system along Y as well as for the nearby-cycle sheaf of M when

Y is a hypersurface.

§1. Introduction and statement of the main results

Let X be a real manifold and let F denote an object of the derived cat-

egory of abelian sheaves on X. The microsupport of F , denoted by SS(F ),

was introduced by M. Kashiwara and P. Schapira ([13]; [14]), as a subset

of the cotangent bundle π : T ∗X → X describing the directions of non

propagation for F . The truncated microsupport of a given degree k (or

k-truncated microsupport), SSk(F ), defined by the same authors, is only

concerned by degrees of cohomology up to the order k and allows us to

consider some phenomenon of propagation in specific degrees. Such notion

is particularly useful in the framework of the theory of linear partial dif-

ferential equations. More precisely, when F is the complex of holomorphic

solutions of a coherent module M over the sheaf DX of holomorphic differ-

ential operators on a complex manifold X, SSk(F ) is completely determined

as a subset of the characteristic variety Char(M), which itself coincides with
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SS(F ). In the characteristic case, interesting propagation results (cf. [2],

[19], [11]) may be obtained with the truncated microsupport. The truncated

microsupport and its functorial properties were studied in [11] and [12].

It is now natural to study the behaviour of SSk(F ) under specialization

along a submanifold. That is the main purpose of this work, having in scope

the application to D-modules, specially to holomorphic solutions of induced

systems and to real analytic solutions.

Let k be a field. Let Db(kX) denote the bounded derived category of

complexes of sheaves of k-vector spaces.

Let M be a submanifold of X. We shall identify TT ∗

M
X(T ∗X), T ∗(TMX)

and T ∗(T ∗
MX) thanks to the Hamiltonian isomorphism. Unless otherwise

specified, we shall follow the notations in [13]. In particular, for F ∈
Db(kX), νM (F ) denotes the specialization of F along M , an object of

Db(kTM X) and CT ∗

M
X(SSk(F )) denotes the normal cone to SSk(F ) along

T ∗
MX. For a morphism f : Y → X we shall use f#, a correspondence

which associates conic subsets of T ∗Y to conic subsets of T ∗X as well as

the operation +̂ which associates to pairs of conic closed subsets of T ∗X

conic closed subsets of T ∗X.

The main result of this work is the following:

Theorem 1.1. Let M be a closed submanifold of X and let F ∈ Db(kX).

Then:

SSk(νM (F )) ⊂ CT ∗

M
X(SSk(F )).

The main difficulty in its proof is that the use of distinguished triangles

is not always convenient because of the shift they introduce. To overcome

it, we needed to deduce a number of further functorial properties. Namely,

as an essential step of the proof of this theorem, we obtain the following

estimate:

Theorem 1.2. Let Y and X be real manifolds, let f : Y → X be a

morphism and let F ∈ Db(kX). Then

SSk(f
−1F ) ⊂ f#(SSk(F )).

Let us denote by fd and fπ the canonical morphisms (fd was noted by
tf ′ in [13]):

fπ : Y ×X T ∗X → T ∗X and fd : Y ×X T ∗X → T ∗Y .
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Regarding f as the composition of a smooth map with a closed embed-

ding, the proof of Theorem 1.2 relies in two steps. The first is to apply

Proposition 4.4 of [11] which proves the estimate when f is smooth. The

second is Proposition 6.1, where we obtain the estimate

SSk(F |M ) ⊂ jdj
−1
π (SSk(F )+̂T ∗

MX),

when j : M → X is a closed embedding.

Remark that, in that case, j#(SSk(F )) = jdj
−1
π (SSk(F )+̂T ∗

MX).

In particular, when f is non characteristic with respect to F , we get

SSk(f
−1F ) ⊂ fdf

−1
π (SSk(F )).

Namely, whenM is non characteristic with respect to F , in other words,

SS(F ) ∩ T ∗
MX ⊂ T ∗

XX,

we have SSk(F )+̂T ∗
MX = SSk(F ) + T ∗

MX and

jdj
−1
π (SSk(F ) + T ∗

MX) = jdj
−1
π (SSk(F )).

Let now Y be a complex closed smooth hypersurface of a complex an-

alytic manifold X and assume that Y is defined as the zero locus of a

holomorphic function f . Let ψY denote the functor of nearby cycles associ-

ated to Y . Recall that Y may be regarded as a submanifold Y ′ of TYX by

a canonical section s given by s such that ψY (F ) ' s−1νY (F ).

Then, Theorem 1.1 entails:

Corollary 1.3. Let F ∈ Db(kX). Then

SSk(ψY (F )) ⊂ sds
−1
π (CT ∗

Y
X(SSk(F ))+̂T ∗

Y ′(TY X)).

Let us point out that one interesting application of Proposition 6.1 is

the new estimate for the k-truncated microsupport of the tensor product

(see Proposition 6.7).

We end this paper with the application of our results to the complex

F = RHomDX
(M,OX ) of holomorphic solutions of a coherent DX -module

M on a complex manifold X(see Section 6.2). Let DX be the sheaf of linear

partial differential operators of finite order and OX the sheaf of holomorphic

functions. Let Y be a complex submanifold of X and j be the embedding

of Y in X. We shall denote by MY the induced system, an object of the
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derived category of left DY -modules. Recall that, when M is regular in

the sense of [10], MY has coherent cohomology. Let τ : TYX → Y be the

projection. Still under the assumption that M is regular along Y , one

defines a coherent DTY X -module νY (M), the specialization of M along Y ,

satisfying a natural isomorphism

νY (RHomDX
(M,OX )) ' RHomDTY X

(νY (M),OTY X).

Moreover, if Y has codimension 1, one defines the nearby-cycle module

ψY (M), a coherent DY -module, satisfying a natural isomorphism

ψY (F ) ' RHomDY
(ψY (M),OY ).

We refer to [8] for the details on these isomorphisms.

Set V = SS(F ) = Char(M) and denote by V =
⊔

α Vα the (local)

decomposition of V in its irreducible components. Let Yα be the irreducible

complex analytic subset π(Vα) of X. The notion of orthogonality between a

submanifold Y of X and an involutive subvariety V of T ∗X will be recalled

at Section 6.2. We recall in Lemma 6.8 that if Y is orthogonal to V and V

is irreducible, then V ′ = jd(j
−1
π (V )) is irreducible and π(V ) has the same

codimension of π′(V ′). Here, π′ : T ∗Y → Y denotes the projection.

As a consequence of Theorem 1.1 together with the results of [8] we

obtain:

Theorem 1.4. Let M be a coherent DX -module. Then:

SSk(RHomτ−1DX
(τ−1M, νY (OX))) ⊂ CT ∗

Y
X(SSk(F )).

If, moreover, M is regular along Y in the sense of [10] we have:

SSk(RHomDTY X
(νY (M),OTY X)) ⊂ CT ∗

Y
X(SSk(F )).

From the preceding theorem, the results of [8] and Corollary 1.3 we

obtain:

Corollary 1.5. Assume that M is regular along Y in the sense of

[10]. Then

SSk(RHomDY
(ψY (M),OY )) ⊂ sds

−1
π (CT ∗

Y
X(SSk(F ))+̂T ∗

Y ′(TY X)).

Furthermore, Proposition 6.1 together with the results of [8] and The-

orem 6.7 of [11] entails:
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Theorem 1.6. Assume that M is regular along Y in the sense of [10].

Then:

SSk(RHomDY
(MY ,OY )) ⊂ jdj

−1
π (SSk(F )+̂T ∗

YX).

If, moreover, Y is non characteristic for M, we have

SSk(RHomDY
(MY ,OY )) ⊂ jdj

−1
π (SSk(F )).

If Y is orthogonal to each Vα such that codim π(Vα) ≤ k, the preceding

inclusion becomes an equality, for every i ≤ k:

SSi(RHomDY
(MY ,OY )) = jdj

−1
π (SSi(F )).

Recall that M. Kashiwara has proven in [9] that, when Y is non char-

acteristic for M,

SS(RHomDY
(MY ,OY )) = jdj

−1
π (SS(F )).

The condition of orthogonality is required in Theorem 1.6 in order to have

the analogous equality up to a given degree k.

Let us now assume that the complex manifold X is the complexified

of a real analytic manifold M . Denote by AM the sheaf of real analytic

functions on M and by j the embedding of M in X.

Another important application of Theorem 1.2 is:

Proposition 1.7. Let M be a coherent DX -module. Then we have the

estimate:

SSk(RHomDX
(M,AM )) ⊂ jdj

−1
π (SSk(F )+̂T ∗

MX).

Let BM denote the sheaf of Sato’s hyperfuntions on M . As an immediate

consequence of Proposition 1.7 together with Theorem 6.7 of [11] we get:

Corollary 1.8. Let M be an coherent DX -module. Assume that

SSk(F ) ∩ T ∗
MX ⊂ T ∗

XX.

Then,

SSk(RHomDX
(M,AM )) = SSk(RHomDX

(M,BM )) ⊂ jdj
−1
π (SSk(F ))

⊂ jdj
−1
π ((

⋃

codimYα<k

Vα) ∪ (
⋃

codimYα=k

T ∗
Yα
X)).
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We shall illustrate this corollary with an example (see Example 6.10)

of a propagation phenomenon for real analytic solutions of a class of non

elliptic differential operators, which, as far as we know, is new.

When M is elliptic, in other words,

SS(M) ∩ T ∗
MX ⊂ T ∗

XX,

we get the estimate:

For any k, SSk(RHomDX
(M,AM )) = SSk(RHomDX

(M,BM ))

⊂ jdj
−1
π ((

⋃

codimYα<k

Vα) ∪ (
⋃

codimYα)=k

T ∗
Yα
X)).

We thank M. Kashiwara and P. Schapira for the useful discussions

through the preparation of this work.

§2. Notations

We will mainly follow the notations in [13].

Let X be a real manifold. We denote by τ : TX → X the tangent

bundle to X and by π : T ∗X → X the cotangent bundle. We identify X

with the zero section of T ∗X. Given a smooth submanifold Y of X, TYX

denotes the normal bundle to Y and T ∗
YX the conormal bundle. Given a

submanifold Y of X and a subset S of X we denote by CY (S) the normal

cone to S along Y , a closed conic subset of TYX.

Let f : X → Y be a morphism of manifolds. We denote by

fπ : X ×Y T ∗Y → T ∗Y and fd : X ×Y T ∗Y → T ∗X

the associated morphisms.

Given a subset A of T ∗X, we denote by Aa the image of A by the

antipodal map

a : (x; ξ) 7→ (x;−ξ).

The closure of A is denoted by A. For a cone γ ⊂ TX, the polar cone γ◦ to

γ is the convex cone in T ∗X defined by

γ◦ = {(x; ξ) ∈ TX;x ∈ π(γ) and 〈v, ξ〉 ≥ 0 for any (x; v) ∈ γ}.
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Given conic subsets A and B of T ∗X, the operations A+B and A+̂B

are defined in [13] and will be recalled in Section 3.

Given an open subset Ω of X, as in [13], we denote by N ∗(Ω) the

conormal cone to Ω.

When X is an open subset of a real finite-dimensional vector space E

and γ is a closed convex cone (with vertex at 0) in E, we denote by Xγ the

open set X endowed with the induced γ-topology of E.

Let k be a field. We denote by D(kX) the derived category of complexes

of sheaves of k-vector spaces on X and by Db(kX) the full subcategory of

D(kX) consisting of complexes with bounded cohomologies.

For k ∈ Z, we denote by D≥k(kX) (resp. D≤k(kX)) the full additive

subcategory of Db(kX) consisting of objects F satisfying H j(F ) = 0, for

any j < k (resp. Hj(F ) = 0, for any j > k). The category D≥k+1(kX) is

denoted by D>k(kX).

Given an object F ofDb(kX) and a submanifoldM ofX, νM (F ) denotes

the specialization of F along M , an object of Db(kTM X).

Let F be an object of Db(kX); we denote by SS(F ) its microsupport, a

closed R
+-conic involutive subset of T ∗X. For p ∈ T ∗X, Db(kX ; p) denotes

the localization of Db(kX) by the full triangulated subcategory consisting

of objects F such that p /∈ SS(F ).

Let X be a finite-dimensional complex manifold. We denote by OX

the sheaf of holomorphic functions, by DX the sheaf of linear holomorphic

differential operators of finite order and by DX(·) the filtration by the order.

Given a coherent DX -module M, we denote by Char(M) its characteristic

variety.

Let Y be a closed submanifold, let τ be the projection of TYX on Y and

let V ∗
Y denote the V-filtration on DX with respect to Y . Let D[TY X] denote

the sheaf of differential operators on TYX with polynomial coefficients with

respect to the fibers of τ . Let θ denote the Euler operator on TYX. Recall

that M is regular along Y if for any local section u of M there exists a non

trivial polynomial b of degree m such that

b(θ)u ∈ (V 1
Y (DX) ∩ DX(m))u.

Following Kashiwara in [8], given an appropriate good V ∗
Y -filtration on M,

the specialized of M along Y , νY (M), is the coherent DTY X -module gene-

rated by the associated graded module. When Y is a hypersurface, one

defines a coherent DY -module, the nearby-cycles module ψY (M), as the

degree zero homogeneous term of that graded module.
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§3. Review on normal cones in cotangent bundles

For the reader’s convenience we shall recall here some operations on

conic subsets in cotangent bundles defined on [13].

Let X be a real manifold, (x) a system of local coordinates on X and

denote by (x; ξ) the associated coordinates on T ∗X. Given two conic subsets

A and B of T ∗X, one defines the sum

A+B = {(x; ξ) ∈ T ∗X; ξ = ξ1 + ξ2, for some (x; ξ1) ∈ A and (x; ξ2) ∈ B}.

When A and B are closed, A+̂B is the closed conic set containing

A + B, described as follows: (x0; ξ0) belongs to A+̂B if and only if there

exists sequences {(xn; ξn)}n in A and {(yn; ηn)}n in B such that:





xn, yn −→
n
x0,

ξn + ηn −→
n
ξ0,

|xn − yn||ξn| −→
n

0.

Let M be a submanifold of X. Let (x′, x′′) be a system of local coor-

dinates on X such that M = {(x′, x′′);x′ = 0} and let (x′, x′′; ξ′, ξ′′) denote

the associated coordinates on T ∗X. Given a subset Λ of T ∗X we describe

the normal cone to Λ along T ∗
MX, CT ∗

M
X(Λ), as follows: (x′0, x

′′
0 ; ξ

′
0, ξ

′′
0 ) ∈

CT ∗

M
X(Λ) if and only if there exist sequences of real positive numbers {cn}n

and {(x′n, x
′′
n; ξ′n, ξ

′′
n)}n in Λ such that:





(x′n, x
′′
n; ξ′n, ξ

′′
n) −→

n
(0, x′′0 ; ξ′0, 0),

cn(x′n; ξ′′n) −→
n

(x′0; ξ
′′
0 ).

Thanks to the Hamiltonian isomorphism, one gets an embedding of

T ∗M into TT ∗

MXT
∗X and, for a conic subset Λ of T ∗X, the set T ∗M ∩

CT ∗

M
X(Λ) is described as follows: (x′0, x

′′
0 ; ξ

′
0, ξ

′′
0 ) ∈ T ∗M ∩ CT ∗

M
X(Λ) if and

only if there exists a sequence {(x′n, x
′′
n; ξ′n, ξ

′′
n)}n in Λ such that:





(x′′n; ξ′′n) −→
n

(x′′0 ; ξ
′′
0 ),

|x′n| −→n
0

|x′n||ξ
′
n| −→n

0.
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Let f : Y → X be a morphism of manifolds. The notion of f#, a

correspondence introduced in [13] associating conic subsets of T ∗Y to conic

subsets of T ∗X, is rather complicated and we refer the reader to [13] for the

details. We just recall the following results:

Proposition 3.1. (cf. Proposition 6.2.4 of [13]) Let Λ be a conic sub-

set of T ∗X.

(i) Assume that f : M → X is a closed embedding. Then,

f#(Λ) = T ∗M ∩ CT ∗

MX(Λ).

(ii) Let (x) (resp. (y)) be a system of local coordinates on X (resp.

Y ) and let (x; ξ) (resp. (y; η)) be the associated coordinates on T ∗X (resp.

T ∗Y ). Then

(y0; η0) ∈ f#(Λ) if and only if there exist a sequence {(xn; ξn)}n in Λ

and a sequence {yn}n in Y such that

yn −→
n
y0, xn −→

n
f(y0), (

tf ′(yn) · ξn) −→
n
η0, |xn − f(yn)||ξn| −→

n
0.

We shall also need the following description of j# when j is an embed-

ding:

Lemma 3.2. Let M be a closed submanifold of X and let j denote the

embedding of M in X. Let Λ be a closed conic subset of T ∗X. Then:

jdj
−1
π (Λ+̂T ∗

MX) = T ∗M ∩ CT ∗

M
X(Λ),

where we identify TT ∗

M
XT

∗X and T ∗TMX by the Hamiltonian isomorphism.

Proof. It is enough to prove that

jdj
−1
π (Λ+̂T ∗

MX) = j#(Λ).

Let p ∈ jdj
−1
π (Λ+̂T ∗

MX) and let (x′, x′′) be a system of local coordinates on

X in a neighborhood of p such that M = {(x);x′ = 0}. Let (x; ξ) denote

the associated coordinates on T ∗X. Suppose p = (x′′0; ξ
′′
0 ).

Then there exists ξ′0 such that (0, x′′0 ; ξ′0, ξ
′′
0 ) ∈ Λ+̂T ∗

MX. By definition

of +̂, there exist sequences {(x′n, x
′′
n; ξ′n, ξ

′′
n)}n in Λ and {(0, y′′n; η′n, 0)}n in
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T ∗
MX such that





(x′n, x
′′
n), (0, y′′n) −→

n
(0, x′′0),

ξ′′n −→
n
ξ′′0 ,

ξ′n + η′n −→
n
ξ′0,

|(x′n, x
′′
n) − (0, y′′n)||(ξ′n, ξ

′′
n)| −→

n
0.

Hence 



x′′n −→
n
x′′0 ,

x′n −→
n

0,

ξ′′n −→
n
ξ′′0 ,

|x′n||ξ
′
n| −→n

0

and (x′′0 ; ξ
′′
0 ) ∈ j#(Λ).

Conversely, let p ∈ j#(Λ), p = (x′′0; ξ
′′
0 ). Then there exists a sequence

{(x′n, x
′′
n; ξ′n, ξ

′′
n)}n in Λ such that





(x′′n; ξ′′n) −→
n

(x′′0 ; ξ
′′
0 ),

x′n −→
n

0,

|x′n||ξ
′
n| −→n

0.

The sequences {(x′n, x
′′
n; ξ′n, ξ

′′
n)}n in Λ and {(0, x′′n;−ξ′n, 0)} in T ∗

MX satisfy

the necessary conditions so that (0, x′′0 ; 0, ξ′′0 ) ∈ Λ+̂T ∗
MX, hence (x′′0 ; ξ

′′
0 ) ∈

jdj
−1
π (Λ+̂T ∗

MX).

Lemma 3.3. Let Λ be a closed conic subset of T ∗X and M a closed

submanifold of X. One has:

(Λ+̂T ∗
MX)+̂T ∗

MX = Λ+̂T ∗
MX.

Proof. Let (x′, x′′) be a system of local coordinates on X such that

M = {(x′, x′′);x′ = 0} and let (x′, x′′; ξ′, ξ′′) be the associated coordinates

on T ∗X.
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Let (x0; ξ0) ∈ (Λ+̂T ∗
MX)+̂T ∗

MX, then there exist sequences {(xn; ξn)}n

and {(yn; ηn)}n in Λ+̂T ∗
MX and T ∗

MX, respectively, such that





xn, yn −→
n
x0,

ξn + ηn −→
n
ξ0,

|xn − yn||ξn| −→
n

0.

For each n ∈ N, since (xn; ξn) ∈ Λ+̂T ∗
MX, there exist sequences {(xn

m; ξn
m)}m

in Λ and {(yn
m; ηn

m)}m in T ∗
MX such that





xn
m, y

n
m −→

m
xn,

ξn
m + ηn

m −→
m

ξn,

|xn
m − yn

m||ξn
m| −→

m
0.

Hence we can find subsequences {(xk; ξk)}k and {(yk; ηk))}k of {(xn
m; ξn

m)}n,m

and {(yn
m; ηn

m + ηn)}m,n, respectively, such that





xk, yk −→
k
x0,

ξk + ηk −→
k
ξ0,

|xk − yk||ξk| −→
k

0,

which gives (x0; ξ0) ∈ Λ+̂T ∗
MX.

Conversely, since π(Λ+̂T ∗
MX) ⊂M , we get:

Λ+̂T ∗
MX ⊂ (Λ+̂T ∗

MX) + T ∗
MX ⊂ (Λ+̂T ∗

MX)+̂T ∗
MX.

Let us now assume that X is an open subset of R
n with the coordinates

(x) = (x1, ..., xn) and that M is the submanifold {(x′, x′′) ∈ X; (x′) =

(x1, ..., xd) = 0}. Let δ > 0 and let γ be the closed convex proper cone

given by:

γ = {(x′, x′′);xn ≤ −
1

δ
|(x′, xd+1, ..., xn−1)|}.

Hence

γ◦a = {(ξ′, ξ′′); ξn ≥ δ|(ξ′, ξd+1, ..., ξn−1)|}.
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Moreover (x+ γ) ∩M = x+ (γ ∩M), for each x ∈M . Let R
+ denote

the set of real positive numbers and let us introduce the following notation:

for any λ ∈ R
+

γλ = {(x′, x′) ∈ X; (λ−1x′, x′′) ∈ γ}

Vλ = {(x′, x′′); (λ−1x′, x′′) ∈ V }.

Remark that if λ < 1, Int(γ◦aλ ) ⊃ γ◦a.

Lemma 3.4. Let Λ be a conic closed subset of T ∗X.

Let x′′ ∈M ∩ π(Λ) and assume that there is a compact neighborhood V

of x′′ such that

(V × γ◦a) ∩ (Λ+̂T ∗
MX) ⊂ T ∗

XX.

Then, there exists a real positive number C such that for any λ and ε satis-

fying 0 < λ, ε < C,

(Vλε × γ◦aλ ) ∩ Λ ⊂ T ∗
XX.

Proof. We shall argue by contradiction. Therefore, we can find se-

quences (λl)l∈N, (εl)l∈N of positive numbers converging to 0, (x′l, x
′′
l ; ξ

′
l, ξ

′′
l )l∈N

in Λ, (ξ′l, ξ
′′
l ) 6= (0, 0), such that |x′l| ≤ C ′εlλl, for some positive constant C ′

only depending on V , and (0, x′′l ;λlξ
′
l, ξ

′′
l ) ∈ V × γ◦a.

Since the n-component of (ξl)l∈N is positive, after dividing (ξ ′l, ξ
′′
l ) by

ξl,n, we may assume that ξl,n = 1 and that (λlξ
′
l, ξ

′′
l ) is a bounded sequence.

Since |ξ′l||x
′
l| ≤ C ′εlλl|ξ

′
l| we get that (|ξ′l||x

′
l|)l converges to 0. Moreover,

since x′′l is bounded, we may assume that x′′l converges to some x̌′′ ∈ V ∩M
and that (λlξ

′
l, ξ

′′
l ) converges to some (ξ′0, ξ

′′
0 ) ∈ γ◦a, with ξ0n = 1. Consider-

ing the sequences (x′l, x
′′
l ; ξ

′
l, ξ

′′
l )l∈N ∈ Λ and (0, x′′l ;−ξ

′
l + λlξ

′
l, 0)l∈N ∈ T ∗

MX

we get that (0, x̌′′; ξ′0, ξ
′′
0 ) ∈ (V × γ◦a) ∩ (Λ+̂T ∗

MX), which entails ξ0n = 0, a

contradiction.

Let Ω be a subset of X. We shall now recall the notion of conormal

cone to Ω, N ∗(Ω). It is the subset of T ∗X defined as follows:

Given x ∈ X, we denote by Nx(Ω) the subset of TxX consisting of

vectors v 6= 0 such that, in a local chart in a neighborhood of x, there exist

an open cone γ containing v and a neighborhood U of x such that

U ∩ ((Ω ∩ U) + γ) ⊂ Ω.

Note that, in particular, Nx(Ω) = TxX if and only if x /∈ Ω or x ∈ Ω. We

denote by N(Ω) the open convex cone of TX:

N(Ω) =
⋃

x∈X

Nx(Ω),
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and call it the strict normal cone to Ω.

Finally N ∗(Ω), the conormal cone to Ω, is given by

N∗(Ω) =
⋃

x∈X

(N∗
x(Ω)),

where, for each x ∈ Ω, N ∗
x(Ω) = (Nx(Ω))◦.

§4. Review on the truncated microsupport

We shall now recall equivalent definitions of the truncated microsup-

port, following [11].

Given (x0, ξ0) ∈ R
n × (Rn)∗ and ε ∈ R we set:

Hε(x0, ξ0) = {x ∈ R
n; 〈x− x0, ξ0〉 > −ε},

and if there is no risk of confusion we will write Hε instead of Hε(x0, ξ0).

Proposition 4.1. Let X be a real analytic manifold and let p ∈ T ∗X.

Let F ∈ Db(kX), k ∈ Z and α ∈ N∪ {∞, ω}. Then the following conditions

are equivalent:

(i)k There exist F ′ ∈ D>k(kX) and an isomorphism F ' F ′ in Db(kX ; p).

(ii)k There exist F ′ ∈ D>k(kX) and a morphism F ′ → F in Db(kX)

which is an isomorphism in Db(kX ; p).

(iii)k,α There exists an open conic neighborhood U of p such that for

any x ∈ π(U) and any R-valued Cα-function ϕ defined on a neighborhood

of x such that ϕ(x) = 0, dϕ(x) ∈ U , one has

Hj
{ϕ≥0}(F )x = 0, for any j ≤ k.

When X is an open subset of R
n and p = (x0; ξ0), the above conditions

are also equivalent to:

(iv)k There exist a proper closed convex cone γ ⊂ R
n, ε > 0 and an

open neighborhood W of x0 with ξ0 ∈ Int(γ◦) such that (W + γa)∩Hε ⊂ X

and

Hj(X;k(x+γa)∩Hε
⊗ F ) = 0, for any j ≤ k and x ∈W.

Remark 4.2. Note that when X is an open subset of R
n and p =

(x0; ξ0), the equivalent conditions of Proposition 4.1 are also equivalent to:

There exists some F ′ ∈ Db(kX) isomorphic to F in a neighborhood of

x0 and a closed proper convex cone γ in E, with 0 ∈ γ and ξ0 ∈ Intγ◦a,

such that Rφγ∗(F
′) ∈ D>k(kXγ ).
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Definition 4.3. Let F ∈ Db(kX). We define the closed conic subset

SSk(F ) of T ∗X by: p /∈ SSk(F ) if and only if F satisfies the equivalent

conditions in the preceding Proposition.

We shall need the following properties of the truncated microsupport

also proved in [11]:

(i) Given a distinguished triangle F ′ → F → F ′′ +1
−−→, one has

(1) SSk(F ) ⊂ SSk(F
′) ∪ SSk(F

′′),

(2) (SSk(F
′)\SSk−1(F

′′)) ∪ (SSk(F
′′)\SSk+1(F

′)) ⊂ SSk(F ).

(ii) For any F ∈ Db(kX), one has

(3) SSk(F ) ∩ T ∗
XX = π(SSk(F )) = supp(τ≤k(F )).

Proposition 4.4. Let X and Y be two manifolds. Then for F ∈
Db(kX), G ∈ Db(kY ) and k ∈ Z, one has:

SSk(F �G) =
⋃

i+j=k

SSi(F ) × SSj(G).

Proposition 4.5. Let Y and X be two manifolds, let f : Y → X be a

morphism and let G ∈ Db(kY ) such that f is proper on the support of G.

Then for any k ∈ Z,

(4) SSk(Rf∗(G)) ⊂ fπf
−1
d (SSk(G)).

The equality holds in the case f is a closed embedding.

Proposition 4.6. Let Y and X be two manifolds and let f : Y → X

be a smooth morphism. Let F ∈ Db(kX). Then

(5) SSk(f
−1F ) = fdf

−1
π (SSk(F )).

To end this section, we shall prove the following characterizations of the

truncated microsupport not included in [11], which will be useful in the

sequel.
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Lemma 4.7. Let E be a real finite-dimensional vector space, X an open

subset of E and let F ∈ Db(kX). Let U be an open subset of X and γ be a

closed convex proper cone in E with 0 ∈ γ. Assume that

SSk(F ) ∩ (U × Int(γ◦a)) = ∅.

Then, given (x0, ξ0) ∈ U × Int(γ◦a), ε > 0 and an open subset W ⊂ X

such that (W + γ) ∩Hε ⊂⊂ U , one has:

(6) Hj(X;k(x+γ)∩Hε
⊗ F ) = 0, for any x ∈W + γ and j ≤ k.

Proof. We may assume that X is an open subset of R
n.

Let (x0; ξ0) ∈ U × Int(γ◦a), ε > 0 and W ⊂ X be an open subset such

that (W + γ) ∩Hε ⊂⊂ U . Let us prove (6).

By the microlocal cut-off lemma (Proposition 5.2.3 of [13]), we have a

distinguished triangle

φ−1
γ Rφγ∗F → F → G

+1
−−→,

with SS(G) ∩ (X × Int(γ◦a)) = ∅. Therefore, setting F ′ = φ−1
γ Rφγ∗F , one

has

Hj(X;k(x+γ)∩Hε
⊗ F ) ' Hj(X;k(x+γ)∩Hε

⊗ F ′),

for any x ∈W + γ and j ∈ Z, and SSk(F
′) ∩ (U × Int(γ◦a)) = ∅. Hence we

may replace F by F ′ to prove condition (6).

Arguing by induction on k, we may assume that (6) holds for k− 1 and

hence F ∈ D≥k(kX). Hence, given x ∈W + γ,

Hk(X;k(x+γ)∩Hε
⊗ F ) ' Γ(X;k(x+γ)∩Hε

⊗Hk(F )).

Given s ∈ Γ(X;k(x+γ)∩Hε
⊗Hk(F )) we can extend s to a section

s̃ ∈ Γ(Ω;kHε ⊗Hk(F )) ⊂ Γ(Ω;Hk(F )),

where Ω is a γ-open neighborhood of x+ γ such that Ω ∩Hε ⊂⊂ U .

Set S = supp(s̃) ⊂ Ω ∩ Hε. Since Hk
{ϕ≥0}(F ) ' Γ{ϕ≥0}(H

k(F )), for

any real analytic function ϕ defined on R
n, we get S = ∅ from the following

Lemma, and hence Hk(X;k(x+γ)∩Hε
⊗ F ) = 0.

Lemma 4.8. ([11]) Let γ be a proper closed convex cone in R
n. Let Ω be

a γ-open subset of R
n and let S be a closed subset of Ω such that S ⊂⊂ R

n.

Assume the following condition: for any x ∈ R
n and any real analytic

function ϕ defined on R
n, the three conditions S ∩ {x;ϕ(x) < 0} = ∅,

ϕ(x) = 0 and dϕ(x) ∈ Int(γ◦a) imply x /∈ S. Then S is an empty set.
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Corollary 4.9. Let E be a real finite dimensional vector space, X an

open subset of E and let F ∈ Db(kX). Let U be an open subset of X and γ

a closed convex proper cone in E with 0 ∈ γ. Assume that

SSk(F ) ∩ (U × Int(γ◦a)) = ∅.

Then, for each x0 ∈ U there exists an open neighborhood V of x0 in U such

that

Rφγ∗(RΓΩ1\Ω0
(F )) ∈ D>k(kXγ ),

for every γ-open subsets Ω1 and Ω0 with Ω0 ⊂ Ω1 and Ω1\Ω0 ⊂⊂ V .

Proof. We may assume X = R
n. Let (x0; ξ0) ∈ (U × Int(γ◦a)). We

may find ε > 0 and a γ-open neighborhood Ω of x0 such that Ω∩Hε ⊂⊂ U .

Then, by Lemma 4.7, one has:

Hj(X;k(x+γ)∩Hε
⊗ F ) = 0, for all x ∈ Ω and j ≤ k.

It follows that (φ−1
γ Rφγ∗FHε)Ω ∈ D>k(kX).

Set V = Ω∩Hε and let Ω0 ⊂ Ω1 be two γ-open sets such that Ω1\Ω0 ⊂⊂
V .

One has:

Rφγ∗(RΓΩ1\Ω0
(F )) ' Rφγ∗(RΓΩ1\Ω0

(FHε)) ' RΓΩ1γ\Ω0γ
Rφγ∗(FHε) '

' RΓΩ1γ\Ω0γ
Rφγ∗φ

−1
γ Rφγ∗(FHε) ' Rφγ∗RΓΩ1\Ω0

(φ−1
γ Rφγ∗(FHε)) '

' Rφγ∗RΓΩ1\Ω0
((φ−1

γ Rφγ∗(FHε))Ω) ∈ D>k(kXγ ).

§5. Complements on functorial properties of the truncated mi-

crosupport

In order to prove the main results we need further functorial properties

of the truncated microsupport similar to those of the microsupport itself

but requiring adapted proofs.

Lemma 5.1. Let X be a finite dimensional real vector space, γ a closed

convex proper cone of X with 0 ∈ γ, and Ω a γa-open subset of X such that,

for any compact K of X, Ω∩(K+γ) is relatively compact. Let F ∈ Db(kX)

and assume Rφγ∗F ∈ D>k(kXγ ). Then we have

Rφγ∗FΩ ∈ D>k(kXγ ).
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Proof. The proof is contained in the proof of Lemma 5.4.3 (i) of [13].

Proposition 5.2. Let X be a manifold, F ∈ Db(kX) and Ω be an open

subset of X.

(i) Assume SSk(F ) ∩N∗(Ω)a ⊂ T ∗
XX. Then

SSk(RΓΩ(F )) ⊂ N ∗(Ω) + SSk(F ).

(ii) Assume SSk(F ) ∩N∗(Ω) ⊂ T ∗
XX. Then

SSk(FΩ) ⊂ N∗(Ω)a + SSk(F ).

Proof. The proof is an adaptation of the proof of Proposition 5.4.8 (i)

and (ii) of [13], using Corollary 4.9, Remark 4.2 and Lemma 5.1 instead of

Propositions 5.2.1, 5.1.1 and Lemma 5.4.3 of [13], respectively.

Proposition 5.3. Let Ω be an open subset of X and let j be the em-

bedding Ω ↪→ X. Let F ∈ Db(kΩ). Then:

(i) SSk(Rj∗F ) ⊂ SSk(F )+̂N∗(Ω).

(ii) SSk(Rj!F ) ⊂ SSk(F )+̂N∗(Ω)a.

Proof. The proof is the stepwise adaptation of the proof of Proposi-

tion 6.3.1 of [13], using Propositions 5.2, 4.1 and Corollary 4.9 instead of

Propositions 5.4.8, 5.1.1 and 5.2.1 of [13], respectively.

§6. Proofs of the main results

6.1. Proofs of Theorems 1.1, 1.2 and Corollaries

Proof of Theorem 1.2. Let us first consider the case of the embedding

of a closed submanifold of X:

Proposition 6.1. Let M be a closed submanifold of X and F ∈ Db(kX).

Then

SSk(F |M ) ⊂ jdj
−1
π (SSk(F )+̂T ∗

MX),

where j is the embedding of M in X.

Proof. Let d denote the codimension of M . Let (x1, ..., xn) be a system

of local coordinates onX such thatM = {(x1, ..., xn);x1 = ... = xd = 0} and

let (x; ξ) denote the associated coordinates on T ∗X. Set x′ = (x1, ..., xd),

x′′ = (xd+1, ..., xn).
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Let (x′′0; ξ
′′
0 ) ∈ T ∗M such that (x′′0 ; ξ

′′
0 ) /∈ jdj

−1
π (SSk(F )+̂T ∗

MX). We

shall prove that (x′′0 ; ξ
′′
0 ) /∈ SSk(F |M ).

By the assumption, (0, x′′0 ; ξ′, ξ′′0 ) /∈ SSk(F )+̂T ∗
MX for any ξ′ ∈ R

d. In

particular, (0, x′′0 ; 0, ξ′′0 ) /∈ SSk(F )+̂T ∗
MX. We may assume that (0, x′′0) ∈

π(SSk(F )) ∩M and by (3), that ξ ′′0 6= 0.

Setting x0 = (0, x′′0), ξ0 = (0, ξ′′0 ) and p = (x0; ξ0), there exists a closed

convex proper cone γ such that Int(γ) 6= ∅ and

(7)




ξ0 ∈ Int(γ◦a),

({x0} × γ◦a) ∩ (SSk(F )+̂T ∗
MX) ⊂ T ∗

XX.

Therefore we may find a neighborhood V of x0 such that

(8) (V × γ◦a) ∩ (SSk(F )+̂T ∗
MX) ⊂ T ∗

XX.

In particular, ({x0} × γ◦a) ∩ SSk(F ) ⊂ {(x0; 0)}. Therefore,

({x0} × Int(γ◦a)) ∩ SSk(F ) = ∅,

and we may choose V such that

(9) (V × Int(γ◦a)) ∩ SSk(F ) = ∅.

and

(10) (V × γ◦a) ∩ T ∗
MX ⊂ T ∗

XX.

After changing the local coordinates on X if necessary, we may also

assume: 


ξ0 = (0, ..., 0, 1),

γ◦a = {(ξ′, ξ′′); ξn ≥ δ|(ξ′, ξd+1, ..., ξn−1)|},

for some δ > 0. Hence,

γ = {(x′, x′′);xn ≤ −
1

δ
|(x′, xd+1, ..., xn−1)|},

and, for any x ∈M, (x+γ)∩M = x+(γ∩M). For ε > 0 let us denote by Hε

the open half-space Hε = {x ∈ X; 〈x − x0, ξ0〉 > −ε}. Let us choose ε > 0

and an open neighborhood W ⊂ V of x0 such that (W +γ)∩Hε ⊂⊂ V . Set

γ′ = γ ∩M , V ′ = V ∩M , W ′ = W ∩M and H ′
ε = {x′′ ∈M ; 〈x′′ − x′′0 , ξ

′′
0 〉 >
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−ε}. Since γ ′ is a closed convex proper cone in M such that ξ ′0 ∈ Int(γ′◦a)

and W ′ is an open neighborhood of x′0 in M , by Proposition 4.1 its enough

to prove that there exists ε′ > 0 such that (W ′ + γ′) ∩ H ′
ε′ ⊂ M and

Hj(M ;k(x+γ′)∩H′

ε′
⊗ F |M ) = 0, for all j ≤ k and x ∈W ′.

This will be a consequence of Lemma 3.4 with Λ = SSk(F ). We shall use

the notation γλ, Vλ introduced in Section 3. Let C be given by Lemma 3.4

and let us choose sequences (λl)l∈N, (εl)l∈N of real positive numbers, satis-

fying 0 < εl, λl < C, such that (λl)l∈N converges to 0 and (εl)l∈N converges

to C. Replacing the sequences by convenient ones we may assume from the

beginning that C < 1.

Remark that γ◦aλl
⊃ γ◦a and that

Vλlεl
∩M = V ∩M = V ′,

Wλlεl
∩M = W ∩M = W ′,

Wλlεl
+ γλlεl

∩Hε ⊂ Vλlεl
,

(Wλlεl
+ γλl

) ∩Hεlε ⊂ Vλlεl
.

Let x′′ ∈M ∩W be given, choose a sequence x′′l in W converging to x′′ such

that x′′ ∈ Int(x′′l + γ′) and note H ′ = H ∩M . Then, for any j ≥ k, we have

Hj(M ;k(x′′+γ′)∩H′

Cε
⊗ F |M ) ' lim

−→
l

Hj(X;k(x′′

l
+γλl

)∩Hεlε
⊗ F ) = 0,

thanks to Lemma 4.7. Hence (x′′0; ξ
′′
0 ) /∈ SSk(F |M ).

End of the proof of Theorem 1.2. Let us decompose f by the graph map

Y −→
g
Y ×X −→

h
X, f = h ◦ g

where g(y) = (y, f(y)) and h is the second projection on Y ×X.

Identifying Y with the graph of f , we may assume that Y is a closed

subvariety of Y ×X, and we get by Proposition 6.1 and Proposition 4.6,

SSk(f
−1F ) = SSk(g

−1(h−1F )) ⊂

⊂ gdg
−1
π (hdh

−1
π (SSk(F ))+̂T ∗

Y (Y ×X)).

We shall prove that

gdg
−1
π (hdh

−1
π (SSk(F ))+̂T ∗

Y (Y ×X)) = f#(SSk(F )).
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Let (y) be a system of local coordinates on Y , (x) a system of local

coordinates on X and let (y; ξ), (x; η) be the associated coordinates on T ∗Y

and T ∗X, respectively.

Let (y0; ξ0) ∈ gdg
−1
π (hdh

−1
π (SSk(F ))+̂T ∗

Y (Y ×X)), then there exists ξ, η

such that (y0, f(y0); ξ, η) ∈ hdh
−1
π (SSk(F ))+̂T ∗

Y (Y ×X) and ξ0 = ξ+tf ′(y0)·
η. Hence we may find sequences {(yn, xn; ξn, ηn)}n in hdh

−1
π (SSk(F )) and

{(y′n, f(y′n); ξ′n, η
′
n)}n in T ∗

Y (Y ×X) such that





(yn, xn), (y′n, f(y′n)) −→
n

(y0, f(y0)),

(ξn, ηn) + (ξ′n, η
′
n) −→

n
(ξ, η),

|(yn, xn) − (y′n, f(y′n))||(ξn, ηn)| −→
n

0.

One has (xn; ηn) ∈ SSk(F ), ξn = 0 and ξ′n + tf ′(y′n) · η′n = 0, for all

n ∈ N, and since tf ′(y′n) · (ηn + η′n) −→
n

tf ′(y0) · η = ξ0 − ξ, it follows that
tf ′(y′n) · ηn −→

n
ξ0.

Therefore we have sequences {(xn; ηn)}n ∈ SSk(F ) and {y′n}n in Y such

that 



yn −→
n
y0, xn −→

n
f(y0),

tf ′(y′n) · ηn −→
n
ξ0

|xn − f(y′n)||ηn| −→
n

0.

This gives (y0; ξ0) ∈ f#(SSk(F )) and also the converse thanks to Propo-

sition 3.1.

Corollary 6.2. Let M be a closed submanifold of X and F ∈ Db(kX).

Then

SSk(FM ) ⊂ SSk(F )+̂T ∗
MX.

Proof. Let j : M ↪→ X denote the embedding of M on X. Then

FM ' j∗(F |M ) and by Proposition 4.5 and Proposition 6.1

SSk(FM ) = jπj
−1
d (SSk(F |M )) ⊂

⊂ jπj
−1
d jdj

−1
π (SSk(F )+̂T ∗

MX) ⊂ SSk(F )+̂T ∗
MX.
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Proposition 6.3. Let M be a closed submanifold of X, U = X \M ,

j the embedding U ↪→ X, ι the embedding of M in X and let F ∈ Db(kU ).

Then:

(i) SSk(Rj∗F ) ∩ π−1(M) ⊂ SSk(F )+̂T ∗
MX,

(ii) SSk(Rj!F ) ∩ π−1(M) ⊂ SSk(F )+̂T ∗
MX,

(iii) SSk((Rj∗F )|M ) ⊂ ιdι
−1
π (SSk(F )+̂T ∗

MX).

Proof. The proof of the two first conditions is analogous to the proof of

the two first conditions of Proposition 6.3.2 of [13], replacing Proposition

5.4.4 and Theorem 6.3.1 of [13], by Propositions 4.5 and 5.3, respectively.

Let us now prove the third inequality. By Proposition 6.1 and (i),

SSk((Rj∗F )|M ) ⊂ ιdι
−1
π (SSk(Rj∗F )+̂T ∗

MX) ⊂

⊂ ιdι
−1
π ((SSk(F )+̂T ∗

MX)+̂T ∗
MX).

By Lemma 3.3

(SSk(F )+̂T ∗
MX)+̂T ∗

MX = SSk(F )+̂T ∗
MX.

Hence

SSk((Rj∗F )|M ) ⊂ ιdι
−1
π (SSk(F )+̂T ∗

MX).

Note that, with Lemma 3.2 and Proposition 6.3 in hand, we obtain the

analogue of Proposition 6.3.2 of [13].

Corollary 6.4. Let M be a closed submanifold of X and F ∈ Db(kX).

Then

SSk(RΓM (F )) ⊂ SSk(F )+̂T ∗
MX.

Proof. This is a consequence of Proposition 6.3, together with the

distinguished triangle

RΓM (F ) → F → RΓX\M (F )
+1
−−→ .

Corollary 6.5. Let M be a closed submanifold of X and F ∈ Db(kX).

Assume that

SSk(F ) ∩ T ∗
MX ⊂ T ∗

XX.

Then

SSk(FM ⊗ ωM |X) = SSk(RΓM (F )).
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Proof. Let π̇ be the restriction of π to the cotangent bundle deprived

of the zero section. We have a distinguished triangle

FM ⊗ ωM |X → RΓM(F ) → Rπ̇(µM (F )|Ṫ ∗

M
X) →

+1
.

Since by Theorem 5.1 of [11] and the assumption we have

supp(τ≤k(µM (F ))) ⊂ T ∗
XX,

we get that µM (F )|Ṫ ∗

M
X ∈ D>k(kṪ ∗

M
X). Hence the third term of the distin-

guished triangle above is an object of D>k(kX), which entails that

SSk(Rπ̇(µM (F )|Ṫ ∗

M
X)) = ∅.

Corollary 6.6. Let M be a closed submanifold of X and F ∈ Db(kX).

Let j denote the embedding of M in X.Then

SSk(j
!F ) ⊂ jdj

−1
π (SSk(F )+̂T ∗

MX).

Proof. This is a consequence of Proposition 6.1 and Corollary 6.4 to-

gether with Lemma 3.3.

Proof of Theorem 1.1. The proof is the adaptation step by step of the

proof of Theorem 6.4.1 of [13], applying Proposition 4.6, and Proposition

6.3 instead of Proposition 5.4.5 and Proposition 6.3.2, respectively of [13].

Let now Y be a complex closed smooth hypersurface of X defined as

the zero locus of a holomorphic function f . Let ψY denote the functor of

nearby cycles associated to Y . Then Y may be regarded as a submanifold of

TYX by a canonical section s such that ψY (F ) ' s−1νY (F ). Once more we

identify TT ∗

Y
XT

∗X, T ∗(T ∗
YX) and T ∗(TYX) (cf. Proposition 5.5.1 of [13]).

Recall that, in a system of linear coordinates x = (x1, ..., xn) on X such

that Y is defined by x1 = 0, s : Y → TYX is the section s(x2, ..., xn) =

(x2, ..., xn; 1). With the local coordinates described above, and A being a

conic closed subset of T ∗(T ∗
YX), we have:

sds
−1
π (A) = {(x2, ..., xn; ξ2, ..., ξn);∃ξ1, (x2, ..., xn, 1; ξ2, ..., ξn, ξ1) ∈ A}.

Corollary 1.4 is an immediate consequence of Proposition 6.1.

The following estimate for the tensor product can be seen as a genera-

lization of Proposition 6.1:
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Proposition 6.7. Let F and G belong to Db(kX). Then:

SSk(F ⊗L G) ⊂
⋃

i+j=k

(SSi(F )+̂SSj(G)).

Proof. Let δX : X → X ×X be the diagonal embedding.

Since F ⊗L G ' δ−1
X (F �

L G), the result follows from Proposition 6.1

and Proposition 4.4.

6.2. Application to D-modules

Let X be a complex finite dimensional manifold. One of the important

problems in the theory of D-modules is the relation between the charac-

teristic variety of a system M and that of its induced system MY along a

closed submanifold Y , which was completely solved in the non characteristic

case by M. Kashiwara as well as in a more general situation treated in [15],

which includes the case where M is regular along Y in the sense of [10].

Similarly, in the case of a smooth complex hypersurface, it is interesting to

relate Char(M) and Char(ψY (M)), where ψY denotes the functor of nearby

cycles.

Let d be the codimension of Y , denote by j the embedding Y → X and

by π′ the projection T ∗Y → Y . Given an homogeneous involutive subvariety

V of T ∗X of codimension ≥ d, we shall say that Y is orthogonal to V if there

exists a smooth involutive submanifold V ∗ containing V such that Y and V ∗

are orthogonal. More precisely, there exist a set {f1, ..., fd} of homogeneous

functions of degree zero vanishing on π−1(Y ), such that the differential

dfi are linearly independent on π−1(Y ), and a set {g1, ..., gp}, p ≥ d, of

homogeneous functions of degree one linearly independent on V ∗ such that

the matrix of the Poisson brackets [{fi, gj}]|V ∗ has everywhere rank d.

As before, F will denote the complex RHomDX
(M,OX ). Let SS(F ) =⋃

α Vα be the decomposition of SS(F ) in its irreducible involutive compo-

nents in a neighborhood of p ∈ T ∗X. Let us denote by Yα the variety

π(Vα).

Recall that in Theorem 6.7 of [11] it is proved that, for any k, SSk(F ) =

(
⋃

codimYα<k

Vα) ∪ (
⋃

codimYα=k

T ∗
Yα
X).

Proof of Theorem 1.4. The first assertion is an immediate consequence

of Theorem 1.1 and the second follows from the regularity of M.

Proof of Corollary 1.5. It is a consequence of Corollary 1.3 and the reg-

ularity of M.
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Proof of Theorem 1.6. Since M is regular along Y , one has the isomor-

phism

RHomDY
(MY ,OY ) ' RHomDX

(M,OX )|Y ,

and the first part is an immediate consequence of Proposition 6.1. Let us

now prove the second assertion. It will be a consequence of the Lemma

below:

Lemma 6.8. Assume that the homogeneous involutive variety V is ir-

reducible and that Y is orthogonal to V .

Then :

(i) V ′ = jd(j
−1
π (V )) is an irreducible homogeneous involutive subvariety

of T ∗Y .

(ii) The codimension of π′(V ′) is equal to the codimension of π(V ).

(iii) When V is the characteristic variety of a coherent DX -module, the

orthogonality of Y implies that Y is non characteristic for M.

Proof. Let V ∗ be a smooth involutive manifold containing V such that

Y is orthogonal to V ∗. Since the assertions can be checked locally, by

a standard reasoning we may consider a system (x; ξ) of local symplectic

coordinates on T ∗X in a neighborhood of p ∈ V ∩ π−1(Y ) = j−1
π (V ), such

that Y is the submanifold {(x) = (x1, ..., xn);x1 = ... = xd = 0} and V ∗

is defined in T ∗X by the equations ξ1 = ... = ξd = gd+1(x
′′; ξ′′) = ... =

gp(x
′′; ξ′′) = 0, where we set (x′) = (x1, ..., xd) (resp. (ξ′) = (ξ1, ..., ξd)),

(x′′) = (xd+1, ..., xn) (resp. (ξ′′) = (ξd+1, ..., ξn)). Therefore, the irreducible

ideal of definition I(V ) is generated by a set of functions

{ξ1, ..., ξd, gd+1(x
′′; ξ′′), ..., gp(x

′′; ξ′′), hp+1(x
′′; ξ′′), ..., hp+l(x

′′; ξ′′)},

for some l ≥ 0. Hence I(V ′) is generated in OT ∗Y by the set of functions

{gd+1(x
′′; ξ′′), ..., gp(x

′′; ξ′′), hp+1(x
′′; ξ′′), ..., hp+l(x

′′; ξ′′)},

which entails (i), (ii) and (iii).

Since Y is non characteristic, we have

SS(F |Y ) = Char(MY ) = jdj
−1
π (SS(F )).

On the other side, since SSk(F ) ∩ T ∗
YX ⊂ T ∗

XX, we get from the first

assertion that SSk(F |Y ) ⊂ jdj
−1
π (SSk(F )), for any k. Moreover, setting
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V ′
α = jdj

−1
π (Vα), by the preceding Lemma, for any α such that codimYα ≤ k,

V ′
α is an irreducible component of SS(F |Y ). Therefore by Theorem 6.7 of

[11], for any i ≤ k,

SSi(F |Y ) ⊃ jdj
−1
π (SSi(F )).

Example 6.9. Let X = C
n, with n ≥ 3, endowed with the coordinates

(x1, ..., xn). Let Y be the hypersurface {xn = 0} and Ω = {x ∈ X; Re(x1 −
xn−1) < 0}. Let J be a coherent left ideal of DX and set M = DX/J .

Assume that there exist in J an operator P in the Weierstrass form with

respect to the derivation Dxn and an operator Q such that the principal

symbol of Q, σ(Q), is of the form

σ(Q) = x1q(x1, ..., xn−1; ξ1, ..., ξn−1),

and q does not vanish on T ∗
δΩX. Then,T ∗

δΩX ∩ SS1(M) ⊂ {0} and, setting

Ω′ = Ω ∩ Y , Ω′ has smooth boundary δΩ′. By Theorem 1.3, T ∗
δΩ′Y ∩

SS1(MY ) ⊂ {0}. Therefore

HomDY
(MY ,H

1
{Re(x1−xn−1)≥0}(OY ))|δΩ′ = 0.

Proof of Corollary 1.5. As proved in [8], we have the isomorphism

RHomDY
(ψY (M),OY ) ' ψY (RHomDX

(M,OX)).

It is then enough to use Proposition 6.1.

Let M be a real analytic manifold of dimension n, X a complex analytic

manifold complexifying M and M a coherent DX -module.

Let AM denote the sheaf of real analytic functions on M . Remark that

AM = OX |M . Let BM denote the sheaf of Sato’s hyperfunctions on M .

Recall that

BM ' RΓM(OX) ⊗ orM/X [n].

Proof of Proposition 1.7. One has

RHomDX
(M,AM ) ' F |M .

Therefore, by Proposition 6.1

SSk(RHomDX
(M,AM )) ⊂ jdj

−1
π (SSk(F )+̂T ∗

MX)

Let us remark that a variant of the preceding result was obtained in

[19] for k = 1 using directly the properties of holomorphic functions.
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Proof of Corollary 1.8. The first part is an immediate consequence of

Corollary 6.5. The second follows from Proposition 1.7 and Theorem 6.7 of

[11].

Example 6.10. Let M = R
n, with n ≥ 2, endowed with the coor-

dinates x = (x1, ..., xn). Let Ω = {x ∈ M ;φ(x) < 0} for some real

C1-function. Let X = C
n and M be a coherent DX -module defined by

M = DX/DXP where P is a differential operator. Assume that the princi-

pal symbol σ(P ) is of the form

σ(P ) = a(x)q(x; ξ),

where a(x) is a holomorphic function and q does not vanish on T ∗
MX,

more precisely, q is the principal symbol of an elliptic operator. Recall

that SS1(F ) ⊂ {(x; ξ); a(x) = 0, ξ ∈ Cda(x)} ∪ q−1(0). This entails that

T ∗
MX ∩ SS1(F ) ⊂ T ∗

XX and hence

SS1(RHomDX
(M,AM )) =

= SS1(RHomDX
(M,BM )) ⊂ jdj

−1
π (SS1(F )).

Assume that dφ(x) is not in Cda(x) for any x ∈ δΩ ∩ a−1(0). Then

T ∗
δΩM ∩ SS1(RHomDX

(M,AM )) ⊂ T ∗
MM. In other words

HomDX
(M,H1

{φ(x)≥0}(AM ))|δΩ

= Ext1DX
(M,Γ{φ(x)≥0}(BM ))|δΩ = 0.

Remark 6.11. In general we do not have an interesting estimate for

SSk(RHomDX
(M,BM )). Let j denote the inclusion M ↪→ X. Then BM '

j!OX ⊗ orM/X [n] and RHomDX
(M,BM ) ' j!(RHomDX

(M,OX))[n]. By

Corollary 6.6, one gets

SSk(RHomDX
(M,BM )) = SSk+n(j!RHomDX

(M,OX )) ⊂

⊂ SSk+n(RHomDX
(M,OX ))+̂T ∗

MX.

By Theorem 6.7 of [11],

SSk+n(RHomDX
(M,OX )) = SS(RHomDX

(M,OX )) = Char(M).
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Hence we get

SSk(RHomDX
(M,BM )) ⊂ Char(M)+̂T ∗

MX for any k ≥ 0,

in other words, if M is hyperbolic for M then

SSk(RHomDX
(M,BM )|M ) ⊂ T ∗

MM.

But this is well known and is an example that the notion of truncated

microsupport does not work well under Fourier Transform.

Let Db
C−c(kX) denote the full subcategory of Db(kX) consisting of ob-

jects with C-constructible cohomology, that is, the objects F ∈ Db(kX) for

which there exists a complex analytic stratification X =
⋃
Xα such that

the sheaf Hj(F )|Xα is locally constant of finite rank, for every j ∈ Z and α.

A perverse sheaf is an object F of Db
C−c(kX) satisfying the following

two conditions:

(a) for any complex submanifold Y of X of codimension d, H j
Y (F )|Y is

zero for j < d;

(b) for any j ∈ Z, Hj(F ) is supported by a complex analytic subset of

codimension ≥ j.

P. Schapira proved in [18] that, when F is a perverse object ofDb
C−c(kX),

Hj(RΓS(F ))x = 0, for j ≥ 2n,

for any closed subanalytic subset S of X and any x ∈ X being non isolated

in S.

Proposition 6.12. Let M be a coherent DX-module Then

SSn−1(RHomDX
(M,BM )) = SS(RHomDX

(M,BM )).

Proof. Let ϕ be a real analytic function defined on X and x0 ∈ X

such that ϕ(x0) = 0. Then the set {x ∈ X;ϕ(x) ≥ 0} is a closed subana-

lytic subset of X. Assume that M is holonomic. By the Riemann-Hilbert

correspondence ( [7]), F is perverse.

Hence,

Hj(RΓ{ϕ≥0}RHomDX
(M,BM ))x0

' Hj+n(RΓ{ϕ≥0}∩M (F ))x0
= 0,

for every j ≥ n. By Proposition 4.1,

SSn−1(RHomDX
(M,BM )) = SS(RHomDX

(M,BM )),
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under the assumption that M is a holonomic DX -module.

To treat the general case, we argue as in the proof of Theorem 2 of

[18]. Let us denote by ∗ the functor N 7→ N ∗ = ExtnDX
(N ,DX). Recall

that Kashiwara proved in [6] that if M is coherent, then M∗ is holonomic,

M∗∗∗ ' M∗ and M∗∗ is a submodule of M. Defining the coherent DX -

module L by the exact sequence:

0 → M∗∗ → M → L → 0,

one gets L∗ = 0 and so L locally admits a projective resolution of length

n− 1. Therefore,

Hj(RΓ{ϕ≥0}RHomDX
(M,BM ))x0

' Hj(RΓ{ϕ≥0}RHomDX
(M∗∗,BM ))x0

= 0,

for j ≥ n.

This proves

SSn−1(RHomDX
(M,BM )) = SS(RHomDX

(M,BM )),

for every coherent DX -module M.
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