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GAUSS-MANIN CONNECTION VIA

WITT-DIFFERENTIALS

ANDREAS LANGER and THOMAS ZINK

Abstract. Let X/R be a smooth scheme over a ring R. Consider the category
of locally free crystals of finite rank on the situs Crys(X/Wt(R)). We show that
it is equivalent to the category of locally free Wt(OX)-modules of finite rank
endowed with a nilpotent, integrable de Rham-Witt connection. In the case
where R is a perfect field this was shown by Etesse [E] and Bloch [Bl]. We use
the result for a construction of the Gauß-Manin connection as a de Rham-Witt
connection.

We generalize ideas of Bloch [Bl] about de Rham-Witt connections to a

relative situation, and apply this to construct the Gauß-Manin connection

in crystalline cohomology using Witt differentials.

Let S be a scheme such that p is nilpotent on S. Let X be a scheme

over S. Then the Witt differentials WtΩ
1
X/S are defined in [L-Z] for each

natural number t. These sheaves on X satisfy the same exact sequences

and functorialities as the usual Kähler differentials: Let X → Y → S be

morphisms of schemes. Then there is an exact sequence of sheaves on X.

Wt(OX )⊗Wt(OY ) WtΩ
1
Y/S −→ WtΩ

1
X/S −→WtΩ

1
X/Y −→ 0.

The reader will deduce this easily from the isomorphism (4.1).

Assume moreover that X → Y is a closed immersion defined by a sheaf

of ideals a ⊂ OY . One can proof in the same way that there is an exact

sequence:

Wt(a)/Wt(a)
2 d
−→Wt(OX)⊗Wt(OY ) WtΩ

1
Y/S −→WtΩ

1
X/S −→ 0.

The structure of WΩ1
X/S in the case where X is an affine space over S

is determined in [L-Z, Proposition 2.17].

Let E be a locally free Wt(OX) module on X. A de Rham-Witt con-

nection on E is a homomorphism of sheaves of abelian groups on X

(0.1) ∇ : E −→WtΩ
1
X/S ⊗Wt(OX) E,
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which satisfies the following relations:

∇(ξx) = dξ ⊗ x + ξ∇x,

where ξ and x are sections of Wt(OX) and E respectively. The operator ∇

induces maps WtΩ
l
X/S ⊗Wt(OX) E →WtΩ

l+1
X/S ⊗Wt(OX) E, which we denote

by the same letter ∇. We call the de Rham-Witt connection (0.1) inte-

grable if ∇2 = 0. A de Rham-Witt connection induces a connection on the

OX -module E ⊗Wt(OX) OX . If this connection is nilpotent [K], we call ∇

nilpotent.

We denote by Wt(S) the topological space S endowed with the struc-

ture sheaf Wt(OS). This is a scheme. We consider the crystalline situs

Crys(X/Wt(S)) with respect to the canonical divided powers on Wt(S).

Theorem. Let X/S be a smooth scheme. Then the category of lo-

cally free crystals of finite rank is equivalent to the category of locally free

Wt(OX)-modules of finite rank endowed with a nilpotent, integrable de

Rham-Witt connection.

This was proved by Bloch if S is the spectrum of a perfect field. Let

E be a crystal on X as indicated. The starting point of the proof is the

construction of Etesse [E] of the de Rham-Witt complex with coefficients

in E over a perfect base S and more recently over arbitrary S in [L-Z].

Let E be the value of the crystal E at the pd-thickening X → Wt(X).

The crystal defines an integrable nilpotent de Rham-Witt connection (0.1)

on E. Hence we obtain a complex:

E
∇
−−→WtΩ

1
X/S ⊗Wt(OX ) E

∇
−−→WtΩ

2
X/S ⊗Wt(OX) E

∇
−−→ · · · .

This is called the de Rham-Witt complex with coefficients in E.

We obtain a functor

(0.2) E 7−→ (E,∇)

from the category of finite locally free crystals to the category of finite

locally free modules with a de Rham-Witt connection.

It follows that this functor is fully faithful. Indeed, let E
′ be a sec-

ond crystal. We want to assign to a homomorphism (E,∇) → (E ′,∇′) a

homomorphism of crystals. This is a local question on X. Therefore we

may assume that there is a Witt-lift Y/Wt(S), i.e. Y is a smooth scheme
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over Wt(S) which lifts X, with a morphism Wt(X) → Y satisfying some

properties ([L-Z, Definition 3.3]). By the Poincaré lemma [B-O] (com-

pare [L-Z, 3.56]) we have an resolution of E by the complex of crystals

LY (ΩY/Wt(S) ⊗ EY ). The comparison with the de Rham-Witt complex

yields a quasi-isomorphism:

(0.3) E ∼= LY (WtΩX/S ⊗Wt(OX ) E).

A homomorphism (E,∇) → (E ′,∇′) induces a homomorphism of the de

Rham-Witt complexes with coefficients in E resp. E ′. Applying the functor

LY one obtains a morphism crystals E→ E
′ from (0.3). Hence the functor

(0.2) is fully faithful. The assertion of the theorem is therefore local for

the Zariski topology on X. For the proof we assume that a Witt-lift Y of

X is given. Let (E,∇) be an integrable de Rham-Witt connection. The

arguments of Bloch with modifications in the relative case yield a locally free

OY -module (M,∇M ) with an integrable connection that induces (E,∇) by

the Proposition below. If ∇ is nilpotent then ∇M is nilpotent and therefore

defines the desired crystal E. This proves the theorem.

We formulate the proposition in terms of rings rather than schemes. Let

R be a ring. Let A be an R-algebra which is étale over a polynomial ring over

R. We choose a Witt lift B/Wt(R) as in the proof of [L-Z, Proposition 3.2].

The map B →Wt(A) induces a map of complexes:

(0.4) Ω•

B/Wt(R) −→WtΩ
•

A/R .

This map is injective. Indeed, for a polynomial algebra B this follows from

loc.cit. Proposition 2.17. The general case is deduced by étale base change

for the de Rham-Witt complex.

Proposition 1. Let M be a free Wt(A)-module with an integrable con-

nection:

(0.5) ∇ : M −→WtΩ
1
A/R ⊗Wt(A) M.

Then there is a basis m1, . . . ,mn of M such that

(0.6) ∇




m1
...

mn


 = Θ⊗




m1
...

mn


 ,

where the entries θij of the n × n-matrix Θ are in the image of the map

(0.4).
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Let us assume that S is noetherian and that the Frobenius morphism

Frob : S/pS → S/pS is finite. This implies that the schemes Wt(X), Wt(Y ),

Wt(S) are noetherian.

Let X → Y → S be smooth morphisms such that Y/S is of relative

dimension 1. Then we construct an exact triangle

(0.7) WtΩ
1
Y/S

L

⊗Wt(OY ) WtΩ
•−1
X/Y −→ WtΩ

•

X/S −→WtΩ
•

X/Y ,

in the derived category of Zariski sheaves on X. The reader may wonder

where the third side of this triangle is. The more precise statement is as

follows: The multiplication in WtΩ
•

X/S induces a natural map

WtΩ
1
Y/S ⊗Wt(OY ) WtΩ

•−1
X/Y −→WtΩ

•

X/S

whose image is clearly in the kernel of the second map of (0.7). We choose

a complex C which represents the first complex in (0.7). From the last map

above we obtain a map C →WtΩ
•

X/S whose image is a fortiori in the kernel

of the second map of (0.7). Hence we obtain a map to the mapping cone of

the last morphism in (0.7):

C[1] −→WtΩ
•

X/S [1]⊕WtΩ
•

X/Y .

The exact meaning of the words “exact triangle” is that the last morphism

is a quasi-isomorphism. We note that this statement is local for the Zariski

topology on X. Therefore the global statement (0.7) follows from the local

statement Proposition 2 which we prove below.

Applying the projection formula ([H, page 106, 5.6]) to the morphism

α : Wt(X)→Wt(Y ) we obtain an isomorphism

Rα∗

(
WtΩ

1
Y/S

L

⊗Wt(OY ) WtΩ
•−1
X/Y

)
= WtΩ

1
Y/S

L

⊗W (OY ) Rα∗WtΩ
•−1
X/Y .

Hence the triangle (0.7) induces a morphism

Rα∗WtΩ
•

X/Y −→ WtΩ
1
Y/S

L

⊗W (OY ) Rα∗WtΩ
•

X/Y .

By the comparison theorem [L-Z, Theorem 3.5] the hypercohomology groups

of Rα∗WtΩX/Y are the crystalline cohomology groups Hi
cris(X/Wt(Y )). Let

us make the assumption that these groups are locally free Wt(OY )-modules

for all i. Then we deduce the Gauß-Manin connection:

∇ : H
i
cris(X/Wt(Y )) −→WtΩ

1
Y/S ⊗W (OY ) H

i
cris(X/Wt(Y )) .
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The nilpotence of this connection follows from [K] since it is by definition

a question for t = 1. Since we are in the case of relative dimension 1 it is

automatically integrable.

§1. Witt-differentials modulo IR

Let A be an R-algebra. Let t be a natural number. We set IR =
VWt−1(R) ⊂ Wt(R). To prove the proposition we filter the Witt-differen-

tials WtΩA/R by powers of the ideal IR. We assume that p is nilpotent in

R. Then the ideal IR is nilpotent.

We define

WtΩ
•

A/R = WtΩ
•

A/R/IRWtΩ
•

A/R .

This is a differential graded algebra. In particular we have:

WtΩ
0
A/R =Wt(A) = Wt(A)/IRWt(A).

We remark that the Teichmüller representative x 7→ [x] induces a ring ho-

momorphism R→Wt(A). Hence WtΩ
•

A/R is a complex of Wt(A)-modules

with an R-linear differential

d : WtΩ
l
A/R −→ WtΩ

l+1
A/R .

We denote the image of

VWΩ•

A/R −→WtΩ
•

A/R

by IWtΩ
•

A/R and in degree 0 simply It = IWtΩ
0
A/R = VWt−1(A)/IRWt(A)

(note that there is no Verschiebung on W
•
ΩA/R, and we have an action of

F only if pR = 0). IWtΩ
•

A/R is an ideal in the differential graded algebra

WtΩ
•

A/R. We obviously have

(IWtΩ
•

A/R)2 = 0,

because Vω · Vη = p · V(ωη) = V1 · V(ωη).

We define a second ideal FWtΩ
•

A/R as the kernel of the homomorphism

of differential graded algebras

(1.1) 0 −→ FWtΩ
•

A/R −→WtΩ
•

A/R −→ Ω•

A/R −→ 0.

We have

(1.2) IWtΩ
•

A/R + d IWtΩ
•

A/R ⊆ FWtΩ
•

A/R .
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If A/R is smooth, we will see that (1.2) is a direct sum decomposition and

that the differential d is injective, i.e. we have

IWtΩ
•

A/R ⊕ d IWtΩ
•

A/R = FWtΩ
•

A/R

and there is an exact sequence

(1.3) 0 −→ IWtΩ
•

A/R
d
−→WtΩ

•

A/R/IWtΩ
•

A/R −→ Ω•

A/R −→ 0.

A Witt-lift B/Wt(R) with B →Wt(A) defines a map Ω•

B/Wt(R) →WtΩ
•

A/R

which induces – by reduction modulo IR – a map Ω•

A/R →WtΩ
•

A/R, hence

a Witt-lift defines a splitting of the sequence (1.1). In particular a Witt-lift

defines (for A/R smooth) a direct decomposition

(1.4)
WtΩ

l
A/R = IWtΩ

l
A/R ⊕ d IWtΩ

l−1
A/R
⊕ Ωl

A/R

ω = η1 + dη2 + η3 .

We write δω = η2. Let pr: WtΩ
l
A/R →WtΩ

l
A/R be the projection on Ωl

A/R.

Then pr is homotopic to the identity:

(id−pr)(ω) = dδω + δdω.

Hence the complexes WtΩ
•

A/R and Ω•

A/R are homotopy equivalent.

Remark. The differential d : IWtΩ
•

A/R → FWtΩ
•

A/R/IWtΩ
•

A/R is a
homomorphism of WtΩ

•

A/R-modules for the action from the right:

d(Vηω) = d Vηω + (−1)deg η Vη dω ≡ d Vηω mod IWtΩ
•

A/R .

It remains to prove the following.

Lemma 1. If A/R is smooth, then we have

IWtΩ
•

A/R ⊕ d IWtΩ
•

A/R = FWtΩ
•

A/R .

Proof. By [L-Z, (2.43)] it suffices to show that the sum is a direct sum.
For this it suffices to show that the Wt(A)-module homomorphism

(1.5) d : IWtΩ
•

A/R −→ FWtΩ
•

A/R/IWtΩ
•

A/R

is an isomorphism.
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Let P = R[T1, . . . , Td] be a polynomial algebra. Assume that A is
étale over P . We obtain (1.5) from the corresponding morphism for P by
tensoring with the étale morphism Wt(P )→Wt(A). Hence we may assume
A = R[T1, . . . , Td]. In this case each element of WtΩ

l
A/R is a unique sum of

basic Witt differentials e(ξ, k, I0, . . . , Il) by [L-Z, Proposition 2.17]. Recall
that a weight k : [1, d] ∈ Z≥0[1/p] in such a sum has denominator pu ≤ pt.
We denote by e(ξ, k, I0, . . . , Il) the images of the basic Witt differentials in
WtΩ

l
A/R. Then the claim in Lemma 1 follows from the following.

Lemma 2. Let ω ∈ WtΩ
l
P/R. Then ω has a unique representation

ω =
∑

k integral

e(ξk, k, I0, . . . , Il) +
∑

k frac

e(ξk, k, I0, . . . , Il)

with ξk ∈ R for k integral and ξk ∈
V u

Wt−u(R)/p V u

Wt−u(R) for k fractional

such that pu is the denominator of k. The elements in IWtΩ
l
A/R are the

elements with a representation

ω =
∑

I0 6=∅

k frac

e(ξk, k, I0, . . . , Il).

Proof. Lemma 2 follows from loc.cit. Proposition 2.17 in conjunction
with Proposition 2.5.

§2. Integrable connections on Wt(A)-modules

Let M be a free Wt(A)-module of rank n. We consider a connection

∇ :M−→WtΩ
1
A/R ⊗Wt(A)M

and call ∇ integrable, if ∇2 : M → WtΩ
2
A/R ⊗Wt(A) M vanishes. Let

m1, . . . ,mn be a basis of M. We write

(2.1) ∇




m1
...

mn


 = Θ⊗




m1
...

mn




where Θ is a n× n-matrix with entries in WtΩ
1
A/R. We abbreviate (2.1) as

∇(m) = Θ⊗m, and we call Θ the connection matrix.
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Lemma 3. Let (M,∇) be an integrable connection. Then there is a

basis m of M, such that the connection matrix has coefficients in Ω1
A/R ⊂

WtΩ
1
A/R.

Proof. We first show the analogous claim for the induced connection

∇ :M−→ (WtΩ
1
A/R/IWtΩ

1
A/R)⊗Wt(A)M.

By (1.4) the connection matrix Θ of ∇ is of the form Θ = ω + dρ with
ω ∈M(n×n,Ω1

A/R) and ρ ∈M(n×n, I). Then define m′ = (1− ρ)m. We
get

∇m′ = d(1− ρ)⊗m + (1− ρ)ω ⊗m + (1− ρ)dρ⊗m(2.2)

= ω ⊗m′ − ρdρ⊗m ≡ ω ⊗m′ mod IWtΩ
1
A/R ⊗M.

Hence we can find a basis ofM such thet Θ has coefficients in Ω1
A/R. Then

the connection matrix Θ with respect to this basis has the form Θ = ω + η
with ω ∈M(n× n,Ω1

A/R) and η ∈M(n× n, IWtΩ
1
A/R). Then we have

∇2m = dω ⊗m + dη ⊗m + ω2 ⊗m + ωη ⊗m + ηω ⊗m + η2 ⊗m.

We consider the matrix of this map ∇2 : M→WtΩ
2
A/R⊗M corresponding

to the decomposition (1.4)

(2.3) (ωη + ηω)⊕ (dη)⊕ (dω + ω2).

We remark that η2 = 0 because (IWtΩA/R)2 = 0. Since ∇ is integrable,
all summands in (2.3) are zero, in particular dη = 0, hence η = 0. So the
connection matrix Θ has coefficients in Ω1

A/R. Lemma 3 follows.

§3. Proof of Proposition 1

For A/R smooth we consider the filtration Im
R WtΩ

•

A/R of the de Rham-

Witt complex. We set

W
(l)
t Ω•

A/R = WtΩ
•

A/R/I l
RWtΩ

•

A/R

and

G•

l = I l
RWtΩ

•

A/R/I l+1
R WtΩ

•

A/R .

Then we have a canonical map

(3.1) pl : IWtΩ
•

A/R −→ G
•

l .
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Assume that B → Wt(A) is a Witt-lift over Wt(R) and Ω•

B/Wt(R) →

WtΩ
•

A/R the induced map. Similarly to (1.4) we find a direct sum de-

composition

(3.2) G•

l = pl IWtΩ
•

A/R ⊕ pld IWtΩ
•−1
A/R
⊕ I l

R/I l+1
R ⊗R Ω•

A/R .

We start with the connection ∇ : M →WtΩ
1
A/R⊗Wt(A) M of Proposition 1.

This induces connections onMl = M/I l
RM

∇(l) : Ml −→W
(l)
t ΩA/R ⊗W

(l)
t

(A)
Ml .

Assume we have a basis m̃ ofMl such that

(3.3) ∇(l)m̃ = Θ⊗ m̃ with Θ ∈M
(
n× n,Ω1

B/Wt(R)/I
l
RΩ1

B/Wt(R)

)
.

Since the existence of such a base was shown for l = 1 in Section 2 it is

enough to show the following:

Claim. There is a lifting m of m̃ to Ml+1 such that (3.3) holds for

l + 1.

Proof. Let m be any lifting. Then (3.2) implies

∇(l+1)m = Θ⊗m + plη ⊗m + pldρ⊗m

with ρ, η having coefficients in IWtΩ
0 or 1 and Θ in Ω1

B/Wt(R)/I
l+1
R Ω1

B/Wt(R).
Now we consider the induced connection

∇̃(l+1) : Ml+1 −→W
(l+1)
t ΩA/R/pl IWtΩ

•

A/R ⊗W
(l+1)
t

(A)
Ml+1 .

∇̃(l+1)(m) = Θ⊗m + pldρ⊗m.

Choose m′ = (1− plρ)m as new basis. As in (2.2) we can write

∇(l+1)m′ = Θ⊗m′ + plη ⊗m′.

We compute

(∇(l+1))2m′ = (dΘ + Θ2)⊗m′ + pl(Θη + ηΘ)⊗m′ + pldη ⊗m′.

Since ∇(l) is integrable, we have dΘ + Θ2 ∈ M(n × n, I l
R/I l+1

R ⊗R Ω2
A/R).

Since pl(Θη + ηΘ) has coefficients in plIWtΩ
2
A/R, the decomposition (3.2)

implies that pldη = 0 and hence plη = 0. The claim follows.
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§4. The Gauß-Manin connection in the smooth case

Consider ring homomorphisms R→ S → T . In the graded pro-algebra

WtΩ
•

T/R we can consider the ideal It generated by all ds for s ∈ Wt(S).

Then It is invariant under d, and the pro-ideal {It} is invariant under F

and V . We show the invariance under F . A general element of It is a

sum of elements of the form ωds with ω ∈ WtΩT/R and s ∈ Wt(S). Let

s = (x0, x1, x2, . . . ) and ρ = (x1, x2, x3, . . . ). Then Fds = [xp−1
0 ]d[x0] + dρ

and we have

F(ωds) = FωFds = Fω [xp−1
0 ]d[x0] + Fωdρ.

This is an element in It−1.

The canonical epimorphism WtΩ
•

T/R → WtΩ
•

T/S factors obviously

through a map

(4.1) WtΩ
•

T/R/It −→WtΩ
•

T/S .

The properties of It show that the left hand side is a F -V -pro-complex in

which d becomes a W (S)-linear map. Hence the map (4.1) has a section

by the universal property of WtΩ
•

T/S . This section is surjective, because

it maps dt, for t ∈ Wt(T ), to the same element in WtΩ
•

T/R, and these

differentials generate WtΩT/R. Therefore the map (4.1) is an isomorphism

and we have an exact sequence

0 −→ It −→WtΩ
•

T/R −→WtΩ
•

T/S −→ 0.

We also have a sequence of maps, in fact a complex for each k ≥ 1

(4.2) WtΩ
1
S/R ⊗Wt(S) WtΩ

k−1
T/R −→WtΩ

k
T/R −→WtΩ

k
T/S −→ 0.

Let now S/R be smooth of relative dimension 1, hence WΩi
S/R = 0 for

i ≥ 2. This implies that the maps WtΩ
1
S/R ⊗Wt(S) It → WtΩ

•

T/R are zero

(because ds1ds2 = 0 for s1, s2 ∈Wt(S)). The sequence (4.2) factors through

a sequence of complexes

(4.3) WtΩ
1
S/R ⊗W (S) WtΩ

•

T/S[−1] −→WtΩ
•

T/R −→WtΩ
•

T/S .

From now on we assume that p is nilpotent in R, and that the Frobenius

morphism on R/pR is a finite map. Moreover all morphisms R → S → T

will be smooth and S/R will be of relative dimension 1. In the following we

will prove that (4.3) becomes a distinguished triangle when we replace the

tensor product on the left hand side by the derived tensor product. More

precisely we show:
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Proposition 2. Under the above assumptions the sequence (4.3) de-

fines a distinguished triangle in the derived category of Wn(R)-modules.

(4.4) WtΩ
1
S/R

L

⊗W (S) WtΩ
•

T/S [−1] −→ WtΩ
•

T/R −→ WtΩ
•

T/S .

The question is local for the étale topology on SpecT . To see this we

choose a number m such that pm annihilates Wt(R) and consequently all

modules in the triangle above. The individual modules in the complexes

involved are Wt(T )-modules. We consider them as Wt+m(T )-modules via

restriction of scalars F m : Wt+m(T )→Wt(T ). Then the complexes involved

are complexes of Wt+m(T )-modules with linear differentials. Let T → T ′

be a faithfully flat étale morphism. Then the same holds for Wt+m(T ) →

Wt+m(T ′). The étale base change for the de Rham-Witt complex shows

that

Wt+m(T ′)⊗Wt+m(T ) WtΩ
•

T/R
∼= WtΩ

•

T ′/R

as complexes in the category of Wt+m(T ′)-modules. Together with the

corresponding fact for T/R replaced by T/S this shows that the assertion

is local with respect to the étale topology on SpecT . Hence we may assume

that the map S → T of R-algebras fits into a square

(4.5)

T ←−−−− S
x

x

R[T1, . . . , Td, X] ←−−−− R[X] ,

where the vertical maps are étale. Let S ′ = R[X]. We first reduce to

the case that S = S ′. Suppose that (4.4) holds for the diagram of rings

R → S′ → T . Since any Wt(S
′)-linear derivation on Wt(T ) vanishes on

Wt(S) (because Wt(S) is étale over Wt(S
′)) it follows from the universal

property of {WtΩ
•

T/S} as F -V -pro-complex, that WtΩ
•

T/S = WtΩ
•

T/S′ . The

left hand side in (4.4) may be rewritten as follows:

WtΩ
1
S/R

L

⊗W (S) WtΩ
•

T/S = (WtΩ
1
S′/R ⊗Wt(S′) Wt(S))

L

⊗W (S) WtΩ
•

T/S

= WtΩ
1
S′/R

L

⊗W (S′) WtΩ
•

T/S = WtΩ
1
S′/R

L

⊗W (S′) WtΩ
•

T/S′ .

Hence we may assume that S = R[X]. By the étale base change property

of the de Rham-Witt complex we may also assume T = S[Y1, . . . , Yd] is a
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polynomial algebra as well. We will show that the derived tensor product

in the triangle (4.4) is quasi-isomorphic to the kernel of the second map.

Let T̃ = Wt(S)[Y1, . . . , Yd] be the canonical Witt-lift of T with the map

T̃
σ
→ Wt(T ), Yi 7→ [Yi]. By [L-Z, (3.8)] this induces a quasi-isomorphism

Ω•

eT/Wt(S)
→WtΩ

•

T/S . Hence we obtain a morphism:

(4.6) WtΩ
1
S/R ⊗Wt(S) Ω•

eT/Wt(S)
[−1] −→WtΩ

1
S/R ⊗Wt(S) WtΩ

•

T/S[−1] .

This arrow represents the derived tensor product WtΩ
1
S/R

L

⊗W(S)WtΩ
•

T/S[−1].

From (4.6) we obtain a morphism

(4.7) WtΩ
1
S/R ⊗Wt(S) Ω•

eT/Wt(S)
[−1] −→WtΩ

•

T/R ,

which factors through It. Therefore we have to show that (4.7) induces a

quasi-isomorphism.

(4.8) WtΩ
1
S/R ⊗Wt(S) Ω•

eT/Wt(S)
[−1] −→ It .

We consider Witt differentials in It of the following type: To denote

basic Witt differentials in WtΩ
•

T/R we use weight functions k : [0, d] →

Z≥0[1/p
t−1], where the argument 0 corresponds to the variable X. We will

consider basic Witt differentials e(ξ, k,P) = et(ξ, k,P) as in [L-Z, Proposi-

tion 2.17].

Definition 1. Let T be a polynomial algebra over R. We say a dif-
ferential ω ∈WtΩ

•

T/R is of weight k if it is a sum of basic Witt differentials

of the type e(ξ, k,P).

The Wt(R)-module WtΩ
•

T/R is the direct sum of its graded pieces

WtΩ(k)•T/R. The operators F , V , d respect this graduation as follows ([L-Z,

Proposition 2.5]):

F : WtΩ(k)•T/R −→Wt−1Ω(pk)•T/R

V : WtΩ(k)•T/R −→Wt+1Ω(k/p)•T/R

d : WtΩ(k)•T/R −→WtΩ(k)•T/R .

A differential ω in the integral part may be indentified with a differen-

tial of the de Rham complex ΩW (R)[X,T ]/W (R). In this case the concept of

weight above coincides with the usual concept for the de Rham complex of

a polynomial algebra (compare [L-Z, Sections 2.1 and 3.3]).
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Lemma 4. Let ω1, ω2 ∈ WtΩ
•

T/R be differentials of weight k1 respec-

tively k2. Then the product ω1ω2 has weight k1 + k2.

Proof. By the remark above this is clear if both weights k1 and k2 are
integral. In the general case we assume that ωi for i = 1, 2 are basic Witt
differentials. We write ωi = V uiω′

i or d V uiω′
i for i = 1, 2 and ω′

1 and ω′
2.

Let us begin with the case ω1 = V u1ω′
1 and ω2 = V u2ω′

2. Without loss
of generality we may assume that u1 ≥ u2. Our assertion follows from the
formula:

ω1ω2 = V u1
(ω′

1p
u2 F u1−u2

ω′
2).

Next we show that the expression V u1ω′
1d

V u2ω′
2 is of weight k1 + k2. Using

the Leibniz rule and what we already proved, we may assume that u1 ≥ u2.
Then the expression becomes:

V u1
(ω′

1
F u1−u2

dω′
2).

The assertion follows from the integral case. The rest of the proof is similiar.

From now on we assume k(0) = 0, i.e. X doesn’t appear in the basic

Witt differentials. We will denote by l ∈ Z[1/pt−1] a number with denomi-

nator pu(l), such that u(l) ≥ 0.

Then we consider Witt differentials of the following 3 types:

a) e(ξ, k,P) F r

d[Xs], where r, s ∈ Z≥0, s not divisible by p, ξ ∈Wt(R).

b) e(ξ, k,P)d V u(l)
[Xpu(l)l], where u(k) ≥ u(l) > 0.

c) e(1, k,P)d V u(l)
(η[Xpu(l)l]), where u(k) < u(l), η ∈Wt−u(l)(R).

Lemma 5. Each element in It is a unique sum of elements of the type

above.

Proof. We begin showing that an element of It may be expressed as
a sum of elements of type a), b), c). It is generated as an abelian group
by elements of the form ωds where ω ∈WtΩ

•

T/R is a basic Witt differential

and s ∈ Wt(S). If ω doesn’t contain the variable X we are almost done,
because an element ds may be written by the one-dimensional case of [L-Z]
loc.cit. in the form

(4.9) ξ F r

d[Xs], or d V u(l)
(η[Xpu(l)l]).
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Assume for example that ds is of the second type in (4.9) and u(k) ≥

u(l). We may write ω = V u(k)
ω1. We write:

ωds = V u(l)
(V

u(k)−u(l)
ω1dη[Xpu(l)l]).

This permits to place the constant η in the Witt differential ω. Hence we
obtain the type b) above. The type c) is obtained in a similiar way.

Next we consider the case, where ω contains the variable X. Let us
assume that ω is integral, i.e. is in the de Rham complex of the lifting
Wt(R)[X,T ]. In this case ω = [X]eω′ or ω = F t

d([X]e[Y ]f )ω′. If we have
the first equality we just have to write [X]eds as a sum of basic Witt dif-
ferentials. If the second equality holds we find by the Leibniz rule:

F t

d([X]e[Y ]f )ds = F t

d([Y ]f ) F t

[X]eds.

This expression may be written as a sum of Witt differentials of type a).
Now assume that ω is not integral and write ω = V u

ω′ of d V u

ω′ for some
integral ω′. If the first equation holds we write:

ωds = V u

(ω′ F u

ds).

We apply what we proved to the expression in brackets. Then we remark
that V u applied to an element of type a), b), c). is again an element of this
type by standard formulas [L-Z, Definition 1.4 and (1.16)]. By the former
case this expression may be written in the form ω1ds1, where ω1 doesn’t
contain the variable X. The case ω = d V u

ω′ is similiar.
To show the uniqueness we remark that the elements in the list a),

b), c) above are all homogenous for the weight graduation by Lemma 4.
Therefore we have to show that for a fixed weight a sum of these elements
over different weights can’t be zero, if not all members of this sum are zero.

Consider the case a) and assume that k is integral. Note that r, s are
fixed in the sum. Since we are in the de Rham complex of a polynomial
algebra the multiplication by F r

d[Xs] can’t kill a differential form, which
doesn’t depend on X. By the independence of the e(ξ, k,P) we conclude
that all members of the sum must be zero. If k is not integral we have a
sum of basic Witt differentials of type V u

e(ξ, k′,P) and d V u

e(ξ, k′,P) with
k′ primitive integral multiplied with F r

d[Xs]. Assume that this expression
is zero and apply d. Then we obtain for the remaining sum:

d V u(k)
(∑

P

e(ξP , k′,P) F (r+u)d[Xs]
)

= 0.
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We claim that the sum is zero. Indeed by Lemma 4 this sum is a sum of
basic Witt elements of primitive integral weight. There the operator d V u(k)

acts injectively (compare: [L-Z, Theorem 2.24]). Hence by the integral case
all terms in this sum are zero. Going back to the situation before applying
d, we see that no terms V u(k)

e(ξ, k′,P) can appear in our sum. Doing our
argument again the case a) follows.

The same argument applies if we want to show our assertion in case b).

Finally we consider the case of a sum of elements of type c). We use
the Leibniz rule:

e(1, k,P)d V u(l)
(η[Xpu(l)l])

= ±d(e(1, k,P) V u(l)
(η[Xpu(l)l]))∓ V u(l)

(η[Xpu(l)l])e(1, k,P).

The right hand side is a sum of two basic Witt differentials for different
partitions. Indeed for the first summand the first intervall of the partition
is zero but for the second not. Therefore in this case the assertion follows
from the independence of basic Witt elements.

We will now finish the proof of Proposition 2. It suffices to show that

the map (4.8) is a quasi-isomorphism. We know by [L-Z, Proposition 2.1]

that the elements e(1, k,P) ∈ Ω•

eT/Wt(S)
form a basis over Wt(S), where

k : [1, d] → Z≥0 runs over all integral weights. Hence any element in the

abelian group WtΩ
1
S/R ⊗Wt(S) Ω•

eT/Wt(S)
is a unique sum of elements of the

following type:

1) ξ F r

d[Xs]⊗e(1, k,P), where r, s ∈ Z≥0, s not divisible by p, ξ ∈Wt(R).

2) d V u(l)
(η[Xpu(l)l])⊗ e(1, k,P), where 0 < u(l), η ∈Wt−u(l)(R).

These elements are mapped by (4.8) exactly to elements of type a) and

c) above with k integral. Therefore an element in the cokernel It of (4.8)

is a unique sum of elements of type a), b), c) with k not integral. By

[L-Z, Proposition 2.6] the cycles in the complex It are generated by those

elements, where the first intervall of the partition P is empty. But these

elements are also boundaries. This proves Proposition 2.
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Springer LNM 407, 1974.



16 A. LANGER AND T. ZINK

[B-O] P. Berthelot and A. Ogus, Notes on crystalline cohomology, Princeton, 1978.

[Bl] S. Bloch, Crystals and de Rham-Witt connections, J. Inst. Math. Jussieu, 3 (2004),

no. 3, 315–326.

[E] J.-Y. Etesse, Complexe de De Rham-Witt à coefficients dans un crystal, Comp.
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