ON THE NON-MINIMAL MARTIN BOUNDARY POINTS

TERUO IKEGAMI

Dedicated to Professor KIYOSHI NOSHIRO on his 60th birthday

1. In a Green space¹⁾ $\hat{\mathcal{Q}}$ we can introduce Martin's topology and make it the Martin space²⁾ $\hat{\mathcal{Q}}$. $\hat{\mathcal{Q}}$ is a dense open subset of $\hat{\mathcal{Q}}$ and the kernel

$$K(p, x) = \begin{cases} \frac{G(p, x)}{G(p, y_0)} & p \neq y_0 \\ 0 & p = y_0 \neq x \\ 1 & p = y_0 = x \end{cases}$$

can be extended continuously to $(p, x) \in \hat{\mathcal{Q}} \times \mathcal{Q}$, where G(p, x) is a Green function in \mathcal{Q} and y_0 the fixed point of \mathcal{Q} . $\hat{\mathcal{Q}}$ is a metric space. $\mathcal{A} = \hat{\mathcal{Q}} - \mathcal{Q}$ is divided into two disjoint subsets \mathcal{A}_0 , \mathcal{A}_1 and $s \in \mathcal{A}_1$ is characterized by the fact that K(s, x) is a minimal positive harmonic function³⁾ in $x \in \mathcal{Q}$.

2. We shall show the following theorem:

THEOREM. No point of Δ_0 is an isolated point.

Proof. Let ω be an open subset of \mathcal{Q} , $\{x_n\}$ (n = 1, 2, ...) be a sequence of points in ω such that $x_n \to x_0 \in \mathcal{A}$. If we denote by \mathscr{H} the family of positive superharmonic functions in \mathcal{Q} , each of which dominates $K(x_n, y)$ on $\mathcal{Q} - \omega$, then $\inf_{v \in \mathscr{K}} v(y)$ is equal to the positive superharmonic function except a polar set. We shall write this superharmonic function $\mathscr{C}_{K_n}^{\omega}(y)$.

In this case

Received June 17, 1966.

¹⁾ M. Brelot, G. Choquet, Espaces et lignes de Green. Annales Inst. Fourier 3 (1951), pp. 199-263.

²⁾ M. Brelot, Le problème de Dirichlet. Axiomatique et frontière de Martin. Journal de Math. 35 (1956), pp. 297-335 (pp. 329-330). Cf. also R. S. Martin, Minimal positive harmonic functions, Trans. Amer. Math. Soc., 49 (1941), pp. 137-172. M. Parreau, Sur les moyennes des fonctions harmoniques et analytiques et la classification des surfaces de Riemann, Annales Inst. Fourier 3 (1952), pp. 103-197. L. Naïm, Sur le rôle de la frontière de R. S. Martin dans la théorie du potentiel, Annales Inst. Fourier 7 (1957), pp. 183-281.

³⁾ R. S. Martin, loc. cit., p. 137.

$$\mathscr{C}^{\omega}_{K_n}(y) = \int K(x, y) \, d\mu_n(x)$$

where μ_n is a positive mass-distribution on $\hat{\omega} \cap \Omega$ and the total mass of μ_n does not exceed 1, $\hat{\omega}$ being the boundary of ω in $\hat{\Omega}$. By the theorem of choice, we can extract from $\{\mu_n\}$ the subsequence $\{\mu'_n\}$ such that μ'_n converges vaguely to μ and the carrier of μ is contained in $\overline{\hat{\omega} \cap \Omega}$.

$$v(y) = \int K(x, y) \, d\mu(x)$$

is a positive superharmonic function in \mathcal{Q} , and we have

$$\mathscr{C}^{\omega}_{K_{x_0}}(y) \leq v(y).$$

In fact, for fixed $y \in Q$ and r > 0 we shall denote by ε_y'' the mass-distribution which can be obtained after sweeping out the unit mass on y to the exterior of the sphere (circle) of radius r and with center y. Then

$$U^{r}(x) = \int K(x, z) d\varepsilon_{y}^{\prime r}(z)$$

is bounded and continuous on \hat{Q} . Therefore

$$\lim_{n\to\infty}\int U^r(x)\,d\mu'_n(x)=\int U^r(x)\,d\mu(x).$$

By reciprocal law

$$\lim_{n\to\infty}\int \mathscr{C}^{\omega}_{K_{\infty n'}}(z)\,d\varepsilon_{y}^{\prime r}(z)=\int v(z)\,d\varepsilon_{y}^{\prime r}(z)$$

and by Fatou's lemma

$$\int \mathscr{C}^{\omega}_{K_{x_0}}(z) \, d\varepsilon_{y}^{\prime\prime}(z) \leq \underline{\lim_{n \to \infty}} \int \mathscr{C}^{\omega}_{K_{x_n}}(z) \, d\varepsilon_{y}^{\prime\prime}(z) = \int v(z) \, d\varepsilon_{y}^{\prime\prime}(z).$$

By making $r \to 0$ we can get for each $y \in \Omega$

$$\mathscr{C}^{\omega}_{K_{x_{0}}}(y) \leq v(y).$$

If $\mu_{l'}$ denotes the restriction of μ to Δ and μ_2 the restriction of μ to Q, then

$$v(y) = \int K(x, y) d\mu_1(x) + \int K(x, y) d\mu_2(x)$$

= $u(y) + w(y)$

where u is harmonic and w is a potential, and this is just the Riesz decomposi-

tion.

From now on let x_0 be a point of Δ_0 and x_0 be isolated. Let

$$K(x_0, y) = \int_{\Delta_1} K(x, y) d\nu(x)$$

be the canonical representation⁴⁾ of $K(x_0, y)$. Then we can find a neighbourhood $\hat{\delta}$ of x_0 such that

$$\widehat{\delta} \cap \Delta_0 = \{x_0\}$$

and

(2)
$$\nu(\underline{J}_1 - \overline{\hat{\delta}}) > 0.$$

If we set $\omega = \hat{\delta} \cap \Omega$, then

$$\mathscr{C}^{\omega}_{K_{x_0}}(y) = \int_{\Delta_1} \mathscr{C}^{\omega}_{K_x}(y) d\nu(x)$$
$$= \int_{\Delta_1 - \overline{\delta}} \mathscr{C}^{\omega}_{K_x}(y) d\nu(x) + \int_{\overline{\delta}} \mathcal{C}^{\omega}_{K_x}(y) d\nu(x)$$

The first term of the last side is harmonic, because ω is thin at each point of $\mathcal{A}_1 - \overline{\delta}^{(5)}$ and therefore we can get $\mathscr{C}^{\omega}_{K_x}(y) \equiv K(x, y)$.

We note that μ_1 is the restriction of the mass-distribution μ to $(\overline{\hat{\delta}} \cap \Omega) \cap A$, which is contained in $\overline{\hat{\delta}} \cap A$ and does not contain the point x_0 . By (1) we can get $\mu_1(A_0) = 0$, that is, μ_1 is the canonical mass-distribution of u, and by (2)

$$u_1(y) = \int_{\Delta_1 - \overline{\delta}} K(x, y) \, d\nu(x) > 0.$$

Since

$$v(y) = u(y) + w(y)$$

$$\geq \mathscr{C}^{\omega}_{K_{x_0}}(y) \geq \int_{\delta_1 - \overline{\delta}} \mathscr{C}^{\omega}_{K_x}(y) d\nu(x) = \int_{\delta_1 - \overline{\delta}} K(x, y) d\nu(x) = u_1(y)$$

and u is the greatest harmonic minorant of v, we have

 $u \ge u_1$,

but the canonical mass-distribution of u has the carrier in $\Delta_1 \cap \overline{\delta}$, whereas the canonical mass-distribution of u_1 has positive mass only in $\Delta_1 - \overline{\delta}$. As $u_1 > 0$

⁴⁾ R. S. Martin, loc. cit., p. 157.

⁵⁾ L. Naïm, loc. cit., p. 203 (théorème 3) and p. 205 (théorème 5).

the canonical mass-distribution of u has positive mass in $\Delta_1 - \overline{\hat{\delta}}$; this is a contradiction. Q.E.D.

COROLLARY. If $\Delta_0 \neq \phi$ then Δ_0 contains at least countable points.

Remark. In the above consideration we rely upon the following argument: we have always $u \ge u_1$, and, if $u_1 > 0$, then μ_1 is not the canonical mass-distribution of u.

Mr. K. Matsumoto has kindly pointed out the following result:

Let x_0 be a point of Δ_0 and ν be the canonical mass-distribution of $K_{x_0}(y)$, then the common part of the carrier of ν with Δ_1 is contained in $\overline{\Delta}_0$.

The proof follows from the preceding remark; let E be the carrier of ν . If $E \cap \varDelta_1 \oplus \overline{\varDelta}_0$, then there exist a point z_0 and a set A satisfying the following conditions:

- 1) A is an open neighbourhood of z_0 in Δ ,
- 2) $\nu(A) > 0$,
- 3) $A \subset \underline{A}_1$.

We can construct an open set (in \hat{Q}) $G : G \cap \Delta = A$. In this case, there exist two positive numbers $0 < \rho_1 < \rho$ such that:

- i) dist $(z_0, x_0) > \rho$,
- ii) $\overline{U_{\rho}(z_0)} \subset G^{6_1}$,
- iii) $\nu(U_{\rho_1}(z_0) \cap \varDelta) > 0.$

If we set $\omega = \Omega - \overline{U_{\rho}(z_0)}$, under the same notations as in the proof of the above theorem, we see from i), $x_0 \in \overline{\omega}$ and, as $(\overline{\mathfrak{T} \cap \Omega}) \cap \Delta \subset \overline{U_{\rho}(z_0)} \cap \Delta \subset G \cap \Delta = A \subset \Delta_1$, μ_1 is canonical and from $\Delta - \overline{\omega} \supset U_{\rho_1}(z_0) \cap \Delta$, $\mu_1 > 0$, this is a contradiction.

Osaka City University

⁶⁾ We denote $U_{\rho}(z_0) = \{x \in \hat{Q}; \text{ dist } (x, z_0) < \rho\}$, where the metric dist (x, z_0) is the Martin's metric.